
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



r

NASA Technical Memorandum 83550
	 _v

f

b t `

A Real-Time, Portable, Microcomputer-
Based Jet Engine Simulator

(NASA-T4-83550) B REAL-TIKE, PORTABLE,
MICROCOMPUTER-BASED JET ENGINE SIMUL

CSCL 09$
(NASA)	 12 p HC A02/MF A01

R. A. Blech, J. F. Soeder,
and J. R. Mihaloew
Lewis Research Center
Cleveland, Ohio

Prepared for the
1984 Simulators Mini-Conference

`	 sponsored by the Society for Computer Simulation
Norfolk, Virginia, April 18-20, 1984

RYGA

N84-16812

Unclas
G3/60 18127



^r
g	 F

ORIGINAL PANE 1S	
A REAL-TIME, PORTABLE, MICROCOMPUTER-BASED JET ENGINE SIMULATOR

OF POOR QUALITY

R. A. Blech, J. F. Soeder, and J. R. Mihaloew
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

l

Ui

w

ABSTRACT

Modern piloted flight simulators require de-
tailed models of many aircraft components, such as
the airframe, propulsion system, flight deck con-
trols and instrumentation, as well as motion drive
and visual display systems. The amount of computing

paver necessary to implement these systems can exceed
that offered by dedicated mainframe computers. One
approach to this problem is through the use of dis-
tributed computing, where parts of the simulation
are assigned to computing subsystems, such as micro-
computers. One such subsystem, a real-time, port-
able, microcomputer-based ,jet engine simulator, is
described in this paper. The simulator will be used
at the NASA Ames Vertical Motion Simulator facility
to perform calculations previously done on the
facility's mainframe computer. The mainframe will
continue to do all other system calculations and
will interface to the engine simulator through ana-
log I/0. The engine simulator hardware includes a
16-bit microcomputer and a floating-point coproces-
sor. lhere is an 8 channel analog input board and
an 8 channel analog output board. A model of a small
turboshaft engine/control is coded in floating-point
FORTRAN. The FORTRAN code and a data monitoring
Program run under the control of an assembly language
real-time executive. The monitoring program allows
the user to display and/or modify simulator variables
on-line through a data terminal. A dual disk drive
system is used for mass storage of programs and data.
The CP/M-86 operating system provides file management
and overall system control. The frame time for the
simulator is 30 milliseconds, which includes all
analog I /O operations.

INTRODUCTION

The accuracy and detail of a simulation is
determined by the requirements of the simulation
task, the complexity of the physical system being
simulated, and the capabilities of the simulation
computer. Piloted flight simulation is perhaps one
of the most demanding simulation tasks. A complex
aircraft system must be represented mathematically,
and that representation must execute on a computer
in real-time. The computer mutt also control various
flight deck instrumentation, motion drive and visual
display systems.

In order to accomplish goals such as the evalu-
ation of propulsion system and airframe control
interactions, representative airframe and propulsion
system models are necessary. However, the detail of
these models is often constrained by the storage and
speed limitations of the simulation computer. Ex-
tensive simplification of some of the aircraft sub-
system models is then required to allow real-time
operation. This process not only compromises the
fidelity of the model, but can be costly and time

consuming as well. Of course, a faster and more
powerful simulation computer could be acquired, but
this is not always practical.

One approach to solving this problem is to dis-
tribute the computational load among many "tightly
coupled" processors that communicate with each other
through a specialized network (1). This method is
currently being investigated, but is not yet mature.
It does, however, offer the most potential for in-
creasing computational throughput with current com-
puter technology. Another, simpler approach is to
offload part of the computations to a separate com-
puter system (this system, if necessary, can itself
consist of several "tightly coupled" computers) which
is "loosely coupled" to the simulation mainframe.
The communication between this separate computer
system and the mainframe could be digital (serial or
parallel), or through standard AID and D/A con-
verters. In either case, the communication overhead
must be much less than that of the simulation compu-
tations if any benefit is to be realized.

The latter approach is the one being taken by
NASA Lewis Research Center in a distributed process-
ing experiment to be conducted at the NASA Ames
Research Center's Vertical Motion Facility (VMS).
The VMS (2) is a piloted simulator which, in addi-
tion to a six-degree-of-freedom type cockpit, is
also capable of 630-ft of vertical motion. This
feature is particularly useful for rotorcraft and
V/STOL applications. Normally, all simulator cal-
culations for the VMS are done on the facility's
mainframe computer. However, for the distributed
processing experiment, the calculations for the air-
frame, flight deck instrumentation, motion and visual
display systems will be performed on the mainframe,
while the propulsion system calculations will be
performed on a separate microcomputer system. The
microcomputer hardware and software, which form a
stand-alone, portable, real-time simulator, are the
subject of this paper.

ENGINE SIMULATOR REQUIREMENTS

The system to be modeled for this simulation
experiment was a small turboshaft engine. A typical
turboshaft engine is shown in figure 1. The turbo-
shaft propulsion system consists of a compressor,
combustor, gas generator turbine and a power turbine.
The engine control consists of a hydromechanical
unit (HMU), that provides basic engine control and
fuel metering, and an electrical control unit (ECU),
that trims the HMU to maintain rotor speed and load
sharing (in the 2-engine helicopter application).
The ECU also limits the gas generator turbine outlet
temperature. A more complete description of the
engine and control system can be found in
reference 4.
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At to one specific hardware and software environment,
lator must interface to the VMS mainframe which runs 	 such as the NASA Ames VMS mainframe computer.
the helicoper airframe simulation in a 30 millisecond
frame time. Selection of the same frame time for
the engine simulator provides a 3 Hertz bandwidth, 	 SOFTWARE DESCRIPTION
which was deemed sufficient for the piloted simulator
application. Using the same frame time also simpli- 	 Engine and Control Model
fies the interfacing of the engine simulator to the
mainframe. This I/O interface must be relatively
simple for tow software overhead, but of sufficient
speed to provide the required data throughput. It
is also desirable to have some type of operator
interface to allow display and/or modification of
simulation variables. This capability should reside
on the simulator and consume a small portion of the
frame time. It is highly desirable to have the
engine simulation code written in a high level lan-
guage and to have sufficient hardware and software
support for the simulator's microcomputer to permit
downloading of the code from a program development
computer (mainframe) to the simulator. Programming
of the engine simulation in a high level language
(i.e., FORTRAN) necessitates the use of real-time
programming techniques (3).

The microcomputer hardware itself must meet the
speed requirements of the particular application.
It is also desirable that the hardware be compact
and easily transported. The technology should be of
sufficient maturity such that adequate hardware and
software support is available. This includes such
items as a standard bus, I/O and peripheral hard-
ware, and high level language support.

The engine model was derived by applying basic
aerothermodynamic principles for each component.
Steady state component characteristics were used to
define the energy and mass transfer across each 	 }
boundary. Low frequency dynamics, associated with
rotor inertias and component heat soaks were re-_
tained. High frequency volume dynamics were omitted
since these were considered to be outside the fre-
quency bandwidth required in piloted simulations.
Algebraic loops that resulted from omitting high
frequency dynamics were made to converge by using a
high gain digital integrator technique. The result-
ing dynamic effect is similar to that resulting from
application of the conservation equations. Computing
times were reduced and component performance map
accuracy was retained by using a curve fitting tech-
nique similar to regression analysis. The maps were
curve fit using segmented polynomial functions.

Since control evaluation is a prime considera-
tion in the NASA Ames application, a detailed control
representation was essential. Accuracy of the con-
trol model was assured by deriving it directly from
the control specification diagrams used in the real
control.

E.

HARDWARE DESCRIPTION

The simulator hardware is shown in figure 2.
It consists of a microcomputer board, a disk drive
controller board, and analog I/O boards. The boards
are housed in a 9 slot card cage which has a power
supply and cooling fans. Presently, 4 of the 9 slots
are used, leaving 5 slots available for future expan-
sion. All user interaction is accomplished through
the attached CRT and keyboard. Two floppy disk
drives are used for program and data storage. A
printer is available for hard copies of simulator
data.

The microcomputer board is based on the Intel
8086 microprocessor and the 8087 floating-point co-
processor. The board has 64K of RAM, parallel and
serial I/0, programmable timers and an interrupt
controller (5). The fast floating-point capability
provided by the 8087 is a major reason for its selec-
tion. Operation of the 8087 is mostly transparent
to the user, especially if a high level language is
used. A FORTRAN compiler and an assembler which
support both the 8086 and 8087 are available. The
microcomputer board as well as the other system
boards are interconnected via Intel's Multibus (5)
system. Use of the Multibus ensures a wide variety
of peripheral and other hardware support.

The analog boards provide 8 channels of analog
to digital conversion (ADC) and 8 channels of digital
to analog conversion (DAC). These analog channels
are used to communicate with the mainframe computer.
Although noise immunity and accuracy suffer somewhat
with this approach (as opposed to digital interfac-
ing) these disadvantages are outweighed by the
greatly reduced software and hardware overhead.
Additionally, since many computer systems support
analog I/O operations, the simulator is not limited

The resulting analytical model is a sixteenth
order model which includes two real engine states,
three psuedo engine states and eleven control states.
The resulting set of differential equations was
solved as a general initial and boundary value prob-
lem using a trapezoidal integration algorithm. The
function generation and convergence techniques were
designed specifically to accomplish rapid computa-
tion and stability.

The engine model was coded in floating-point
FORTRAN. The availability of a FORTRAN compiler for
the 8086-8017 microcomputer greatly simplified the
transporting of the code from the program development
mainframe to the microcomputer. Only minor changes
to the original mainframe code were necessary to
achieve successful compilation on the microcomputer's
compiler. These changes typically involved removal
of I/O statements that were no longer necessary for
operation on the microcomputer, which had its own
library of I/O routines.

There are several inputs to the model which, in
this case, are generated externally on the VMS main-
frame computer figure 3). These inputs are routed
by the mainframe from either the airframe calcula-
tions or the VMS cockpit mockup. The first input
represents a load torque to the engine model. It is
generated by the airframe simulation and is a result
of the aerodynamic forces on the rotor blade.
Another input, called the load demand spindle (LDS),
is a function of the rotor blade collective pitch.
The collective pitch is controlled by the helicoper
pilot. The power available spindle (PAS) input sets
the upper limit on available engine power, and is
also set by the pilot. Finally, a power turbine
reference speed signal, which sets the desired rotor
speed, is fed to the engine control simulation.
Environmental conditions are determined from the
external inputs of altitude and mach number. In
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response to these inputs, the engine simulation out-
puts a generated torque value, as well as outputs
for cockpit displays such as rotor speed and gas
turbine inlet temperature. These inputs and outputs
are transferred via the analog interface of the
microcomputer-based simulator hardware.

Assembly language Executive

The engine simulator is an interrupt-driven
system. An interrupt is generated internally every
30 milliseconds to begin the simulator frame. This
interrupt is generated by the microcomputer's on-
board programmable timer. The analog input board
used an interrupt to signal the microcomputer that
converted data is available. The 8087 also signals
any floating-point error conditions via interrupt.
Finally, a failsafe timer generates an interrupt if
any external device fails to respond to a data read
or write request within a specified interval.

An assembly language executive was developed to
efficiently handle the response to these interrupts.
The executive also initializes the simulator system
before each run. During the simulation frame, after
all analog data has been read, the FORTRAN engine
model is called by the executive. After the model
calculations are completed, the analog output chan-
nels are updated. The remaining time in the frame
is spent executing the data monitoring routines.
These routines continue to execute until the next
timer interrupt is received to begin the next simu-
lator frame.

Assembly language routines perform the physical
analog input and output operations through the DAC
and ADC hardware. These routines also define the
logical connection between the hardware DAC or ADC
channel and a corresponding FORTRAN simulation vari-
able. The logical connection consists of an address,
which specifies the FORTRAN variable associated with
the analog channel, and a scale factor. The scale
factor is used in the conversion of the FORTRAN
floating-point representation from/to the integer
form used by the DAC and ADC hardware. Both the
address and the scale factor may be modified on-
line, thus allowing any DAC or ADC channel to be
reassigned. This feature is particularly useful for
dynamic debugging of the simulator in a stand-alone
mode.

Data Monitoring Software

The Microcomputer Interactive Data System or
MINDS is a software package that can be used for
on-line data display and parameter modification.
The MINDS software is loaded into the microcomputer
memory, co-resident with the simulation code and the
real-time executive. Between the time that the pro-
cessor has finished computing the simulation and the
time that it gets the next timer interrupt, the real-
time executive can call the MINDS software to allow
operator interaction with the simulation. This in-
teraction takes the form of the operator assigning a
name and data type to certain memory locations.
This process of assigning attributes to memory loca-
tions defines MINDS data elements. The operator can
then display and modify the data elements symboli-
cally while the simulation is running.

In addition, tables of the data elements can be
defined thereby allowing display of a group of data
elements simultaneously. The MINDS package contains
commands to manipulate the data elements including
the capability to save data element definitions in a

disk file so that they can be used at a later time.
Finally, the MINDS package contains a monitor to
display and set any group of locations in the micro-
computer memory referenced by absolute address. The
monitor also has the ability to set conditional
breakpoints based on data element values anywhere in
the executing code. Once the breakpoint has been
reached, the monitor will collect the values of all
the microcomputer registers and, optionally, a pre-
defined data table. This capability facilitated the
debugging of the real-time simulation.

CP/M Operating System

The CP/M operating system is a general purpose,
single user operating system marketed by Digital
Research, Inc. of Pacific Grove, Ca. The operating
system provides the facilities to do console com-
munications, program load and unload, disk file
management and rudimentary memory management. The
operating system contains three major sections, the
Command Control Processor (CCP), the Basic Disk
Operating System (BOOS), and the Basic Input/Output
System (BIOS). The CCP accepts all commands that
are typed from the console, interprets them, and
takes appropriate action. The BOOS contains the
facilities to read, write and organize files on a
floppy disk. Finally, the BIOS contains all the
hardware-dependent information necessary to allow
CP/M to operate in a particular environment.

In the engine simulator application, the CP/M-86
operating system is used to load the simulation,
executive and MINDS software from the floppy disks.
In addition, the MINDS software uses the operating
system for disk file management of data element def-
initions. Further information on CP/M-86 can be
found in reference 7.

SOFTWARE DEVELOPMENT CYCLE

The software development cycle is shown in
figure 4. The development began with the engine
model formulation and FORTRAN coding on an IBM 370
mainframe at NASA Lewis Research Center. Model
functionality and accuracy were verified on the IBM
370. At this point, the source code was downloaded
via a serial link from the IBM 370 to a microcomputer
development system. The source code was recompiled
on the development system's resident FORTRAN com-
piler. The compiler generated native code for the
8086-8087. The resulting object code was linked
with the real-time executive and the MINDS object
code. The final module was then transferred to a
CP/M-86 compatible disk for conversion to an execut-
able command file on the engine simulator hardware.

Timing studies on the hardware verified that
the 30 ms frame time requirement was met. Next,
steady state data were collected and compared to
data obtained from the IBM 370 version of the FORTRAN
simulation. After the steady state data had been
verified, transient data were collected. The inputs
to the simulator, which would typically be provided
by the VMS mainframe, were simulated internally.
The main control input, LDS, was stepped and various
outputs were observed through the DAC channels and a
strip chart recorder. The step response of the
microcomputer-based simulator was compared to that
of the IBM 370 simulation and verified.

Once operation of the simulator was verified at
NASA Lewis on a stand-alone basis, steps were initi-
ated to transport the unit to the VMS facility at
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NASA Ames. There, it will be interfaced to the
mainframe computer via the analog I/0. Testing will
again be performed, including "open-loop" tests where
the simulator reads data from the mainframe (which
executes a resident engine simulation), but the
mainframe does not receive input data from the simu-
lator. The analog outputs will be monitored, how-
ever, to verify that correct results are being
generated. The final stage of testing will be com-
plete when system operation is verified with the VMS
being completely dependent on the microcomputer-hosed
engine simulator for all engine calculations.

SIMULATOR OPERATION

The simulator is initialized by bootstrapping
the CP/M-86 operating system. The simulator code
resides on a disk as a CP/M ".CMD" file which iden-
tifies it as an executable command file. It is in-
voked by typing the name which precedes the ".CMD"
suffix. Thus the file "ENGSIM.CMD" is invoked by
typing "ENGSIM". The simulator code is then loaded
into system memory by CP/M-86. The system starts up
initially in the MINDS data monitoring software.
This allows any data element definition files to be
loaded. After this step, MINDS is exited by the "."
command. The interrupts are then enabled and the
engine simulation code is executed. The simulator
is initially in the "IC" or initial condition mode.
The simulator mode is selected locally through the
keyboard or remotely by the mainframe via an analog
channel. Any of the following modes are available:
"IC" or initial condition, "RUN" and "HOLD". These
modes operate similarly to an analog computer. At
any time, simulation variables may be displayed
and/or modified since the MINDS software is con-
tinually operating during the frame idle time.

Severe error conditions such as exponent over-
flow, zero divide and analog output overflow are
detected by the 8087. The 8087 sends an interrupt
to the 8086 to notify it of the error condition.
The 8086 responds by changing the simulator mode to
"HOLD" and displaying a message on the CRT. The
message contains information as to the type of error
and the location of the error. The operator can
then attempt to recover from the error and continue
running or abort the simulation.

PERFORMANCE

Timing

Simulator performance on a stand-alone basis
has been verified. The simulator timing diagram is
shown in figure 5. The overall simulation frame
time is 30 ms, although the actual computation time
for the FORTRAN engine simulation is 21 ms. The
analog I/O operations take a total of 1.4 ms. The
remaining 7.6 ms is used for operator I/O through
MINDS. Experience has shown that actually only 4 to
5 ms is required for adequate response by the MINDS
software. This means that at least another 2.6 ms
is available for additional FORTRAN model computa-
tions, if needed. Thus for a 30 ms frame time on
this simulator hardware configuration, 23.6 ms is
actually available for the FORTRAN engine model cal-
culations, and 6.4 ms is required for I/O overhead.

Accuracy

Steady state data obtained from the
microcomputer-based simulator compares almost exactly

with that obtained from the IBM 370 FORTRAN simula-
tion. Worst case differences were less than .01
percent. Since the IBM 370 and the 8087 coprocessor
handle such things as rounding, floating-point format
and function evaluation (i.e., square root, et )
slightly differently, discrepancies of the typeeVb-
served were expected.

It should be noted that the 8087 implements the;_;
proposed IEEE floating-point arithmetic standard. 	 4.
The IEEE standard is intended to eliminate most of
the inconsistencies in floating-point arithmetic
among various computer systems. By adhering to this
standard, discrepancies in floating-point calcula-	 7V
tions among different computers can be minimized.

The steady state results were also compared to
those obtained from a more detailed engine model,
programmed in the continuous system modelling pro-
gram (CSMP) on the IBM 370. The CSMP model matched
data from the engine manufacturer's steady state
cycle deck. The CSMP results and the microcompute,•
based simulator results agreed typically to within i
to 3 percent. These differences were attributed to
the polynomial curve-fit approach used for the com-
ponent maps on the microcomputer-based simulator.
The CSMP simulation uses table look-up and interpo-
lation methods.

The CSMP model of the engine system is more
detailed dynamically, and hence has greater fidelity
than the model used for the microcomputer-based sim-
ulator. Transient data from the simulation ade-
quately matched those from the CSMP model within the
frequency range of interest for the piloted simulator
application.

CONCLUDING REMARKS

A real-time, portable, microcomputer-based jet
engine simulator has been described. The hardware
and software specifications have been presented. A
helicopter engine and control model, coded in
floating-point FORTRAN, has been run on the simulator
in a 30 ms frame time. The accuracy and frequency
content of the simulation are of the level required
for piloted simulations. the simulator has been
evaluated on a stand-alone basis. The engine simu-
lator will be integrated into the NASA Ames VMS
piloted simulator facility where its performance
will be evaluated.

The hardware described in this paper is only
one approach to constructing a microcomputer-based
simulator. It is anticipated that advances in the
hardware area will make higher performance, lover
cost systems possible. The availability of fast,
floating-point hardware has been shown to simplify
the software development cycle considerably. Real-
time simulations that were once only achievable
through the use of integer, assembly language tech-
niques are now possible using high level languages
and floating-point arithmetic.
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Figure 1. - Small turboshaft engine.
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