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Abstract

All failure detection methods are based on the use of redundancy, that ;
is on (possible dynamic) relations among the measured variables. Conse- |
quently the robustness of the failure detection process depends to a great
deqree on the reliability of the relundancy relations given the inevitable
presence of model uncertainties. In this paper we address the problem of
determining redundancy relations which are optimally robust in a sense
which includes the major issues of importance in practical failure detection
and which provides us with a significant amount of intuition concerning the
geometry of robust failure detectioan.
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1. Introduction

In this paper we consider the issue of robust failure detection. In
one way or another all failure detvction methods generate signals which tend
to hichlight the presence of particular failures if they have actually
occurred. However, if any model uncertainties have effects on the obser-
vables which are at all like those of one or more of the failure modes, these
will also be accentuated. Consequently the problem of robust failure de-
tection is concerned with generating signals which are maximally sensitive
to some effects (failures) und minimally sensitive to others (model errors).

The initial impetus for our approach to this problem came from the
work reported in (5, 13] which document the first and to date by far mcst
successful application and *light testing of a failure detection algorithm

based on advanced methods which use analytic redundancy. The singular

feature of that project was that the dynamics of the aircraft were decomposed

in order to analyze the relutive reliability of each individual source of
potentially useful failure detection information.

In [2] we presented the results of our initial attempt to extract the
essence of the method used in {5, 13] in order to develop a general approa?h
to robust failure detection. As discussed in that reference and in others
(such as [3, 7-9])), all failure detection systems are based on exploitind

analytical redundancy relat. ons or (generalized) parity checks. These are

simply functions of the temjoral histories of the measured quantities which
have the property that they are small (ideally zero) when the system is
operating normally. 1In [2] we present one criterion for measuring the re-
liability of a particular r:dundancy relation and use this to pose an
optimization problem to det: rmine the most reliable relation. In (3, 19] we

present another method whic) has some computational advantages not found

e gy W e




in the approach described in [2].
.In this paper we describe the major results of [2, 3, 19]. 1In the
next section we review the notion of analytic redundancy for pgr.fectly
known models and provide a geometric interpretation which forms the start-
ing point for our investigation of robust failure detection. Section 3
ad_dtesses the problem of robustnes_s using our geometric ideas, ag:d in that
section we pose and solve a first version of the optimum robust redundancy
problem. In Section 4 we discuss extensions to include three important
issues not included in Section 3: scaling, noise, and the detection/rpbust-

ness tradeoff.
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Consider the noisc-fre« discrete-time model
x(k+1) = Ax(k) + Bi:-(k) (2.1)
y(k) = Cx(k) (2.2)

where x is n-dimensional, u is m-dimensional, y is r-dimensional, and A, B,
and C are perfectly known. A redundancy relation for this model is some

linear combination of prese:t and lagged values of u and y which should be

identically zero if no chances (i.e. failures) occur in (2.1), (2.2). As

discussed in [2, 3, 19], redundancy relations can be specified mathemati-

cally in the following way. The subspace of (p+l)r-dimensional vectors

given by
C
GAfuwlw' Jaa | =o0 (2.3)
CAp

is called the space of parily or redundancy relations of order p. The reason

for this terminology is the following. Suppose that w € G. Then (2.1) =
(2.3) imply that if we part:on @ into (p+l) subvectors of dimension r

w = [mé,...,mé] (2.4)
.~
then at any time k
. p i-1 i-i-1
r(k) = Iowg Iylepri) - L, CA I”% Bu(k-p+j)] = 0 (2.5)

The quantity r(k) is called a parity check. A simpler form for (2.%)
(which we will use later) c:n be written in the case when u = 0 (or, equiva-
lently, if the effect of th' inputs are subtracted from the observations

before computing the parity check). 1In this case
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rik) = w' Y (k=p+1) (2.6)
. 1
y (k) :
To continue our development, let ur as:ume that
w 0 '
b # (2.
Let us denote the components of w, as
wi = [wil,...,mir] (2.8)

Since at least one element of wn is nonz:ro, we can normalize w so this
component has unity value. 1In order to illistrate several points, let us

assune that the first component, mpl = 1., 1n this case (2.5) can be re-

written as

p-1 )

r
yl(k) = - i§0 Wy yl(k-p+1) < iZo ng wig ys(k-p+i)

p i1 i-j-1
+ iEO j§0 w'i CA Bu(k-p+j)] =0 (2.9)

There are two very important interpret:tions of (2.9). The most
obvious is that the right-hand side of this equation represents a synthetic
measurement which can be directly compared to yl(k) in a simple comparison
test. The second interpretation of (2.9) i: as a reduced-order dynamic
model. Specifically this equation is nothing but an autoregressive-moving
average (ARMA) model for yl(k). (From the point of view of the evolution
of Yy according to (2.9), Yoreear¥, and the components of u are all regarded
as inputs). This second interpretation, allows us to make contact with the
numerous existing failure detection methods. Typically such methods are
based on a noisy version of the model (2.1), (2.2) representing normal

system behavior together with a set of deviations from this model
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representing the several failure modes. Rather than applying such methods

to a single, all-encompassing model as in (2.1), (2.2), one could alterna-
tively apply the same téchniques to individual models as in (2.9) (or a
combination of several of these), thereby isolating individual (or specific
groups of) parity relations. For example, this is preciseiy what was done
in [5, 13]). The advantage of such an approach is that it allows one to
separate the information provided by redundancy relations of.differing
levels of reliability, something that is not easily done when one starts
with the overall model (2.1), (2.2) which combines all redundancy relations.
In the next two section: we address the main problem of this peper,
which is the determination o7 optimally robust redundancy relations. The
key to this approach is the uobservation that G in (2.3) is the orthogonal

complement of the range Z of the matrix

(2.10)

Qs 0

AP

Thus (assumingu = 0 or that ‘-he effect of u is subtracted from the obser-
vations) a complete set of i dependent parity relations of order p is given
by the orthogonal projection of the window of observations y(k),

y(k"l) go e ,Y(k'p) onto G.
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3. An Angular Measure of Robustness g'F“G'NAL 8325“_'3'

Consider a model containing imperfcctl’ known parameters N, process

noise w and measurement noise v:

x(k+l) = A(ﬂ)*(k) + B(n)u(k) + w(k (3.1)

y(k) = C(N)x(k) + v(k) (3.2)

where n is a vector of unknown parameters aid where the matrices A, B, C
and the covariances of w and v are function: of 1Nn. Le% K denote the set
of possible values which N can take on. 1In their work [2] Chow and Willsky
used the following line of reasoning. If tie parameters of the system were
known perfectly and if there were no proces; or measurement noises, then
according to (2.5) we could find a vector w' = [wé.....wé] and a vector

U = [uo,...,up_ll with

P

L - z ' j-i‘l .
CH jupel wi CA B (3.3)

80 that

P p-1

r(k) = L wlytk-p+i) = Lo ul uk-psl) =0 (3.4)

In the uncertain case, what would seem to mike sense is to minimize some
measure of the size of r(k). For ecxample one could consider choosing w and

M that solve the minimax problem

min max  E (ro1? (3.5)
w,u nex xo(n) L
| wl =1 U,

T ———

Here the expectation is taken for each valu: of n and assuming that the
system is at particular operating point, i.e. that u(k) = Y, and that xo(ﬁ)

is the corresponding set point value of the state. This criterion has the
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interpretation of finding the approximate parity relation which, at the

specified operating point, produces the residual with the smallest worst-
case mean-square value when no failure has occurred.

Let us make several comments concerning the procedure just described.
In the first place the optimization problem (19) is a complex nonlinear
programming problem. Furthermore, the method does not easily give a sequence
of parity relations ordered by their robustness. Finally the optimum parity
relation clearly depends upon tho operating point as specified by uo and
xo(n). In some problems this ma’ be desireable as it does allow one to
adapt the failure detection algorithm to changing conditions, but in others
it might be acceptable or preferable to have a single set of parity rela-v
tions for all operating conditions. The approach developed in this paper
produces such a set and results in a far éimpler computational procedure.

To begin, let us focur ¢n (3.1), (3.2) with u=w = v = (0. Referring
to the previous discussion, ve note that it is in general impossible to
find parity checks which are perfect for all possible valués of N, That is,

in general we cannot find a subsvace G which is orthogonal to

c(n)
Z(n) = Range c(n)@(n) (3.6)
cma(r)®
for all n.

what would seem to make iense in this case is to choose a subspace G
which is "as orthogonal as possible” to all possible Z(Nn). Several rossible
ways in which this can be don: are described in detail in (3]. 1In ttis
paper we focus on the one approach which leads to the most complete picture
of robust redundancy and which is comutationally the simplest. To do this,

however, we must make the assumption that K, the set of possible values of
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n is finite. Typically what this would involve is choosing representative
points out of the actual, continuous range of parameter vﬂlues. Here ":epke-

sentative” means spanning the range of possible values and havina density '

variations reflecting any desired weightings on the likelihood or importance

.of particular scts of parameter valucs. However this is accomplished, we

will assume for the remainder of this paper that 1) takes on a discrete set

of values N=1,...,L, and will use the notation A, for A(n=i), 2, for Z(nei),

i i

etc,

To obtain a simple computational procedure for determining roﬁust re-
dundancy relations we first compute an average obscrvation subspace zo which
is as close as possible to all of the zi, and we then choose G to be the
orthogonal complement of zo. To be more precise, note first that the zi are
suhspaces of possibly differing dimensions (dim zi = vi) embedded in a space
of dimension N = (p+l)r. We will find it convenient to use the same symbols

zl,....zL to denote matrices of sizes Nxv,, i=1l,...,L, whose columns form

i
orthonormal bases for the corresponding subspaces., Letting M = v1+...+vL,
we define the NxM matrix
= teven 3.7
2 [Zl . . ZL] ( }

Thus the columns of Z span the possible directions in which observation
histories may lie under normal conditions.

We now suppose that we wish to determinc the s best parity checks (so
that dim G=s). Thus we wish to determine a subspace Z of dimension N-s.
The optimum choice for this subspace is taken to be the span of the (not

necessarily orthogonal) columns of the matrix zo which minimizes

Z
lz -zl (3.8)

subject to the constraint that rank [ = N-s. Here -l p denotes the

Frobenius norm:
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lollg = § layl°

L agtud

i3 (3.9)

" There arc several impoitant rcasons for choosina this criterion, onu
being that it does produce & space which is as close as possible to a
specified set of directions. A second is that the resulting optimization
problem is easy to solve. in particular, let -he singular value decomposi-
tion of 2 (14, 15] be given by

Z2=ULvV ' (3.10)

where U and V are orthogonal matrices, and

I= ‘. 0 (3.11)

Here 01 < 02 <t ON are the singular values of 2 ordered by magnitude.
Note we have assumed N < M, If this is not the case we can make it so
without changing the optimw choice of zo by padding 2 with additional
columns of zeros. It is reidily shown [17, 18] that the matrix z° minimiz-

ing (3.8) is given by

-0 ( -
-Oc :
Zo =U 8+l .ol v (3.12)
) on:

Moreover, since the columns of U are orthonormal, we immediately see that
the orthogonal complement of the ranje of z° is giver by the first s left

singular vectors of Z_, i.e. the first s columns of U. Cunsequently

0

G= luls...:usl (3.13)

and Ujsees,ug are the optimum redundancy relat:ons,

There is an alternative interpr-tation of this choice of G which




provides some very useful insight. .pecifically, recF(l that what we wish to
do is to find a G whose culumns arc .8 orthogonal as possbile to the columns
of the zi, that is, we would like to choose G to make cach of the matrices
2!G as close to zero as possible. I fact, as shown in [3), the choice of

i
G given in (3.13) minimizes

L
= 2 ‘JR!B“‘AL.FWNNI .
Js) = I [lziallg OF POOR QUALITY (3.14)
yielding the minimum value
v o2

There are two important points to obscrve about the result (3.14),
(3.1%). The first is that we can now sec a straightforward way in which to
include unequal weightings on each of the terms in (3.14). Specifically,

if te wi are positive numbers, then

L L

Jov izl = 1w 26l (3.16)
so that minimizing this quantity is accomplished using thc same procedure
described previously but with zi rej-laced by «5; zi. As a second point
note that the optimum value (3.17) provides us with an interrretaticn of
the singular values as measurcsof robustness and with an ordered sequence

of parity relations from most to lc..5t robust.

B .
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In this section we address several of the drawbacks and limitations of

the result of the preceding scvction and obtain modifications to this result

which overcome them at no fundamental increase in complexity.

4.1 Scaling

A critical probiem with the muthod used in thie preceding section is that
all vectors in the cbservation spaces 2 4 are traated as being equally likely
to occur. If there are differencas in scale among the system variables this
may lead to poor solutions for the opiimum parity relations. To overcome
this drawhack we proceed ax followss. Suppose that we are given a scaling

matrix P so that with the change »f basis
£ = pPx (4.1)

one obtains a variable f whicli is equally likely to lie in any direction.
For example if covariance ana ysi: has been performed on x and its covariance

is Q, then P can be chosen to satisfy

1 1

Q=P (P 4.2)

and the resulting covariance «f / is the identity.

As a next step, recall that vhat we would ideally like to do is to choose

a matrix G so that

o - * -1
C* ‘ Cil’
-1
C A. C i P
G' Vil ye | P X G'E‘if. 14.3)
Pa-1
Lct“i". enPeT

is as ssall as possible. In the preceaing section we considered all directions

in 2, = Range (512 to be on ecual footing and arrived at the ciiterion (4.4)

2 T

e s A P15




Since all directions for {, are on equal foitin|, we are led naturally to the

following criterion which takes scaling into a-count
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i=)
Using the result [17] cited in the pr.wiocis section we see that to
find the Nxs matrix G (wath orthenorme! columni) which minimizes J(s) we

mist parfoml 2 singular valee decomposition of the matrix

C=IC.Chu.ciCi) = U rv (4.5)
where c:; < ng < ..< ﬂ: and U = fu, v ...0 uy!. Then u, is the best parity
relation with o?

1 as its measure of robustness, “2 is the next best, etc.,

and J*(s) is given by (3.13). Finally, in anticipaticn of the next subsection,

suppose that we use the stochastac interprotation of {, i.e. that

E(EL') = 1 (4.6)

In this case if we define the parity check vector

My o= c'éit, 4.7

then

etllu, 1% = Jlegelly (4.F)

4.2 Obassrvation and Process Noise

In addition to choosing parity relations which are maximally inssnsitive
to model uncertainties it is also important t« choose relations which suppress

noise. Consider then the mnde)
x(kel) = Aix(k) + D‘\uk) (4.
yik) = cia.(k) + v(k) (4.10)

where v and v are irdepeindent, zero-mean white noise processes with covariances
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[y(k)
=G . (4.10)
lym+m

Then using the interprctation provided in (4.7), we obtain the following

natural generalization of the :riterion (..4):

L 2
E (Il % (4.11)

J(s) = L
i=1

where Ei denotes expectation assuming that the ith model is correct. Assuming
that £(k) = Px(k) has the identity as its covariance, using the whiteness of

w and v, and performing some algebraic minipulations we obtain (3]

L
s = T leyall2 + lIsall? (4.12)
i=1

where S is defined by the folluwwinj:

C.h, . (4.13)

Q = diag (Q,...,Q) (p times)

R = diag (R,...,R) ((p+l) times) (4.14)
L - -—- -

N= I D,QD' = ss' (4.15)
. 1i%7i
i=1

From (4.12) we see that the effect of the noise is to specify another
set of directions, namely the columns of S, to which we would like to make

the columns of G as close to orthoqgonal as possible. From this it is evident
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that the optimum choice of G is computed by performing a singular value

decomposition on the matrix
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0
.

As before (4.16) provides a complete set of parity relations ordered in terms

of their degrees of insensitivity to model errors and noise.

4.3 Detection Versus Robustness

The methods described to this point involve measuring the quality of
redundancy relation:; in terms of how small the resulting parity checks are
undexr normal operat:.iug conditions. However, in some cases one might prefer
to use an alternative viewpoint. 1In particular there may be parity checks
which are not optimally robust in the senses we have discussed but are still
of significant value becausg they are extremely sensitive to particular
failure modes. In this subsection we consider a criterion which takes
such a possibility into account. For simplicity we focus on the noise-free
case. The extension to include noisg as in the previous subsection is
straightforward.

The specific problem we consider is the choice of parity checks for the
robusit detection of a particular failure mode. We assume that the unfailed

mode] of the system is

x(k+l) = Au(n)x(k) (4.17)

yk) = C“(n) x (k) (4.18)
while if the failure has occurred the model is

x (k+1) = Ag(n)x (k) ‘ (4.19)

yk) = cf(n) x (k) (4.20)

In this case one would like to choose G to be "as orthogonal as possible" to
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Assume again that n takes on one of a finite set of possible values, and
let Eu’ and Cf denote the counterparts of C in (4.3) for the unfailed and

failed models, respectively. A natural criterion which reflects our objective

is
L 2 2
J(s) = min ; {llc' 6llg Ic GIIF} (4.21)
G'G=l i=1
If we define the matrix
Ha= [Cu1 u2 ..... Culfffl'cfz""cFLl (4.22)
Ml columns M2 columns
J(s) = nin tr{G'HSH'G} (4.23)
G'G=I
where
MM
-1 ¢+ 0 Ml
s=| ... (4.24)
0 : I M;2

It is straightforward (see [3]) to show that a minor modification of the
result in [17] leads to the following solution. We perfo-m an eigenvector-

eigenvalue analysis on the matrix
HSH' = U A U’ ' (4.25)

wiere U'U = I and

A = diag (Al,..., XN) (4.26)

with Xl <A <L % k and U = (u ..... ZuNl. Then the optimum choice of G

G= [u ....Ius] (4.27)
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i=l

Let us make two comments about this solution.‘ The first is that as many
as M, of the Xi can be negative. 1In fact tle parity check based on u is
likely to have larger values under failed rather than unfailed conditions
if and only if Xi < 0. Thus we immediately see that the maximum number of
useful parity relations for detecting this particular failure mods equals
the number of negative eigenvalues of HSH'. As a second comment, let us
contrast the procedure we use here with a singular value dnccuponitién, which

corresponds essentially to performing an eigenvector-eigenvalue analysis of

HH'. First, assume that the first K of the \i are negative. Then, define

2 2 2
01 = -Al' 02 = -ngno-' OK = -XK'

2 2
Og+1 Xx+1""'°n = AN (4.29)

From (4.25) we have that
HSH' = UISLU'

where
L= diaq(ol,...,on) (4.31)
Assuming that I is nonsingular, define

v = lun , (4.32)

Then (4.31), (4.32) imply that V is S-orthogonal
vVsV' = § (4.33)

and that H has what we call as S-singular value decomposition

1 —————

;
H
!
E
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