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ABSTRACT

The fraction of faults detected for a digital network is frequently high

for the first few input combinations applied out of a set of test vectors.

When the particular ordering of test patterns does not appreciably change the

shape of the coverage curve, there appears to be an advantage to splitting the

test into segments which are applied at different times. It is shown that the

expected time to error detection and the probability of an undetected double

error can be reduced. The amount of reduction is dependent on the shape of

the fault coverage curve. It is conjectured that such a reduction can be

obtained for VLSI networks.
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INTRODUCTION

The shape of a fault coverage curve; i.e. the cumulative fraction of
F

detected faults as a function of the number of tests applied, is often a

saturated curve. Recent work on fault-tolerant computing (1,2) and built in

test (3) have reported such situations. This characteristic is often found in

testing situations; fault table minimization, D algorithm, path sensitizing,

random test, etc. (4).

The basic strategy proposed in this paper is to split up a test set into

two or more segments; then apply these shorter tests at differed times so that

there is a reduced time between periods of testing. If each test segment
^t

detects many or most faults then it is expected that faults should be detected

sooner on the average. Consider the 15 gate combinational logic c3.rcuit in

Figure 1. The function realized is a 3 out of 5 select followed by a majority

vote. Three ones on the E inputs select three T lines out of the five using

f

gates 1 to 5; gates 6 to 11 OR the selected lines in various pairs which are

ALNDed at gates 12 to 14. Gate 15 ORs these products to realize the majority

of the three selected T inputs. This function was implemented in a Rockwell-

Collins gate array as part of a VLSI project. Suppose the possible faults are

single gate input or output stuck-at faults. There are 3 leads each for gates

1 to 14 and 4 leads for gate 15. The 46 total pins result in 92 single

faults. Since there are no reconvergent fan-out paths of differing inversion

parity, expanding and contracting faults can be considered separately. We

start with tests for expanding faults. It is easy to show that the following

4 tests will detect all combinations of gate input or gate output stuck faults

which increase the number of ones in the function.
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T11 E - 11100

T - 01011

T12 E - 00111	
(1)

T - 11100

T13 E - 01011

T = 11100

T14 E - 11100

T - 00111

Any single test from set (1) will detect 27 of the 46 expanding stuck

faults while any two consecutive tests (including T 11 , T14) will detect 44 of

the 46.

For contracting faults the following six tests will detect gate input or

output stuck faults.

I

T01 E = T = 10010

T02 E - T = 00101

T03 E = T = 01001

T04 E = T = 01010

T05 E = T - 11000

T06 E = T = 00110

(2)

The first 3 tests detect 40 out of the 46 contracting faults.



Suppose we interlace sets (1) and (2) as follows:

T110 TOI , T12 , T02 , T039 T139 T0O T14 , T0P T06	 (3)

It is easy to count the number of single stuck faults detected by (3) as

individual patterns are applied. The resulting fault coverage curve is given

as the solid line in Figure 2. Rotating (3) and considering other initial

test patterns gives the other two curves in Figure 2.

Next we compare two different methods of applying set (3):

1. Complete Test: The entire set (3) is applied every I time units,

2. Segmented Test: The first 5 tests of (3) every odd multiple of I/2

time units and the last 5 tests of -(3) every e9en multiple of I/2.

In the complete case any single fault in the first I time units is

detected by the test at time I. We ignore faults which occur during the

testing for the moment. This assumption does not significantly change the

result. Suppose further that the fault process is stationary. The expected

time to fault detection ETFD is thus half the interval or I/2.

For the segmented case consider single faults that occur in the first

internal of I/2. Some faults are missed by the five tests at I/2 and are not

detected until the end of the next I/2 segment by the remaining five tests.

For this example it turns out that the same fraction of faults in the second

subinterval are missed by the even set.

The faults detected by the odd set will have an average time to detection

of half the subinterval or I/4. The 11 faults missed by the odd set will have

their time to detection increased by I/2, the time between the odd and even

subtests.

3
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ETFD : 92 + (
4 + 2

)
 92

fault detection fir this

(4)

s 1 57
2 92

The second factor of (4) is a factor by which we have reduced the ETFD by

partitioning the complete test into two segments. This reduction is bought.at

a cost of testing twice as often. The overhead in shifting to testing mode

has been doubled.

4	 Another measure of testing goodness applicable to fault tolerant system
-^ s

F
is the probability of an undetected double error. The idea is that a single

fault tolerant system can either adapt or flag the rest of the world when a

single error is detected yet still compute correctly. Undetected double

errors on the other hand might lead to overall system failure (1, 2). We

assume a Poisson fault process (5) to estimate the probability of an

undetected double error.

For a Poisson process with rate a, the probability of exactly k

occurrances in time interval t is

p(k,t) - e -Xt (at )k

k!
(5)

i

To simplify the example we assume that at is very small so that 
a-at 

can be

treated as the value 1. This assumption does not appreciably change the

character of the results. Expression ( 5) thus is reduced to
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p ( k , t ) - 

(Xt)k

k!	 (6)

Also we note that p(k,t) is much larger than p(k+l,t), i.e. single errors are

much more likely than double errors which in turn are much more likely than

triple errors, etc.

Consider P21 the probability of an undetected double error in an interval

I between complete test sets. For L successive frames of I this probability .

is approximately

P - L (aI)2
2	 2	 (7)

Expression (7) assumes that LXI is-small compared to 1.

Next consider the complete test divided in two and applied every I/2 time

units. Double errors within the shorter interval I/2 are undetected. In

addition some single errors in the first interval are undetected after the

partial test at I/2. If such an undetected fault is followed by another fault

in the next interval before time I then an undetected double error has

occured. In a similar fashion there are some single errors between time I/2

and I which when followed by another single error in the next half interval

result in an undetected double error. Note that these cases are in essence

the same as those in the discussion leading to expression (4). Adding the

probability of these three situations for L frames of I we find a total

probability
F

'^	 (aI) 2 	 11	 L-1 11

P2 
L	

2	 [1 + q 2 + L 92^	 (8)	 i

LW

,y t
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Replacing (L-1) in the last term of (8) by L simplifies the expression with

the following upper bound.

P 2 = L "2) 2 (.1) (1
.. 92 + 92)

	
(9)

The particular arrangement of (9) is intentional. The form is extended

to the general case in the appendix A. The left most portion, L(XI) 2/2, is

the probability of the complete test (7). hex... the 1 / 2 term corresponds to

one over the number of segments. Finally, the right -most term is 1 plus twice

the fraction of undetected faults. Comparing ( 9) and (7) wt see that the

segmented test probability is reduced by a factor of (57/92).

__ ,^.



GENERAL CASE

In appendix A expressions are developed for the mean time to fault

detection and for the probability of an undetected double error when segmented

testing is used. Each of the M test segments is assumed to be applied at

uniform time intervals. The extension to nonuniform application is

straightforward and could be advantageous in some cases. The forms of these

expressions allow a segmenting gain to be defined, assuming the same average

testing effort for segmented and for nonsegmented test. This gain g(M) is the

ratio of the probability for the segmented to the nonsegmented case. For both

mean time to detection and probability of an undetected double error, the same

gain expression results,

M-1
g(M) - M/[1 + 2 E ai^

i=1

The parameter M is the number of O!st segments and a sub i bar denotes the

fraction of faults missed by i consecutive test segments averaged over all M

starting positions.

If the coverage curve is a straight line, then it is easy to show that

the gain is always 1. In this case there is no advantage to segmenting. When

the curve is concave (e.g., where there is a lot of initialization of state

variables in a sequential network) then the gain is less than one and

segmentation makes things worse. Fortunately the convex shape seems much more

prevelent and improvement is often possible.

Examining the gain expression (10) we see that the numerator and

denominator bo;:h increase with M. Whether an optimum value of M exists

depends on the coverage curve. Practically speaking one would expect test

7
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overhead to eventually become significant as M is increased. In addition, M

is limited to the number of individual tests in the complete test T. With
E
r

these factors in mind it is instructive to consider the theoretical case where

the coverage function is an exponential. Let

ai =	 1(11)
2 M

When the number of faults times some a t is less than one we assume that the

test is complete. Using (11) in (10) and letting i become large will merely

lower bound the possible gain. Substituting (11) into (10) we obtain a lower

bound on g(M),

M(2K/M— 1)	
(12)(2K/M+ 1) .

Supposing that M is a continuous variable and maximizing (12) with resnect to

M we find that the maximum occurs for M very large and that

Lim g(M) = In 2 K
2

s
or approximately

g	 0.34657 K	 (13)

we let g denote the unrealizable gain maximum.

M larger than the number of tests has no meaning. For M 	 K/2 in (12),

g(K/2) = 0.3 K	 (14)



and

g(K/2) - 0.8656 g.

For the gain to be half of g we find Numerically that

M	 L
5.525

Example 2

Suppose that a network requires L = 48 tests and that the coverage curve

satisfies (11) with K - 12. the limiting value for the gain g is 4.159. When

M - 6 there are 6 subsets of 8 tests each and the a coeficients would be

1
a1 = 4 i

Any 8 test segment detects 3/4 of the faults.

The gain from (12) or (14) computes to

g(6) = 3.6

Evaluating (10) directly assumeing a  is zero for i > 5 gives

g(6) - 3.601

9

Table 1 lists the gain function for example 2 as a function of M.

^iil j
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M Number	 g(M) ImprovL-aent

of Segments Ratio or Gain

2 1.998

3 2.647

4 3.111

6 3.601

12 4.000

24 4.118

48 4.149

Table 1. Gain for Example l

s

4
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Case Study

The segmented testing idea was applied to a particular subsystem of SSI

and MSI logic called the bus guardian unit (BGU). A brief description of this

subsystem and the testing assumptions are given in 9ppendix B. The unit has a

complexity of 1296 equivalent gates and 655 packag- pins. Assuming single pin

stuck at 1 or 0 faults, a lower bound on the fraction of missed faults was

made for M=6. From these estimates (Tables B1) we can compute a lower bound

on the segmenting gain (expression 10) for 2,3 and 6 segments (Table 2). it

is felt that these lower bounds are within 10% of the actual valves for the

test set considered.

x

.:J
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M Number	 g(M) Improvement

of Segments	 Ratio or Gain

2	 1.49

3	 1.79

6	 2.22

Table 2. Segmenting Gain for the Case Study

v
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DISCUSSION

The segmenting of a test set presented may also be applied when a

processor is tested by executing self—test code. Segmenting should be

i

beneficial whenever the overhead associated with switching to test mode is

small and little initialiation is associated with test subsequences.

It is possible to specifically design test sets to enhance the gain

obtained from segmenting. Examples have been constructed where a slightly

longer test which is constructed to be segmented yields a lower mean time to

detection than the shortest test set. In both cases the average number of

tests per unit time was held constant. Finally it may be possible to design

networks to maximize the gains from a segmented testing environment.

F^
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In this appendix we develop expressions for the probability of a double

error occuring before the first error is detected, P 2 , and the mean time

between single fault occurrence and detection MTFD. The fault process is

assumed to be Poisson with the fault rate a very small.

Initially suppose that a complete fault detection set T of length L is

divided into M segments and is applied to a unit under test uniformly spaced

in time and repeated periodically. The total time for one complete test is

denoted by I. The fraction of time actually spent applying test patterns is

assumed to be small. If not, the results are not changed significantly but

the analysis is considerably more complex. Let T  denote the jth test

segment. The total test T is then

T as T 
0 
T 1 ... TM-1 ,	 (Al)

Any rotation of T, e.g.,

T  Tj+l	 TM-1 T0T1	 Ti-1	
(A2)

is assumed to also be a complete test and to have the same coverage curve as

T. This is for simplicity of notation and will be relaxed later. Let aj

denote the fraction of faults which are undetected by the first j test

segments. Clearly a  is nondecreasing in J. Figure Al indicates a  on a

typical coverage curve.
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For a Poisson process the probability of exactly k occurrences in a time

t is given by

e-at (Xt)k
k!

where a is the rate parameter. Consider the system for L complete testings.

In this total time there are LM intervals between test segments. Consider the

instances where a single error in the first interval is undetected before some

other error occurs. A double error before any testing has probability

_ XI
2

e 
M (

^M) 2 •

We suppose that XI is very small compared to 1 so that the exponential term

can be replaced by 1 in the various expressions. Thus a double error in the

first interval has probability given by ( XI)2/2M2.

A single fault in the first interval which is missed by test segment To

has probability al 
XI 

assuming equally likely faults. A single fault in the

second interval has probability^'I . This situation has probability
a (),1)2

1 M2 	
In a similar fashion an error in the first block which is

undetected in the first j intervals followed by an error in interval j+1 has

probability a. (X2)2
M

In the LM intervals the first case occurs LM times, the second occurs LM-

1 times, and the last occurs LM-j times. Adding all such terms results in the

probability of two errors in an interval or a single error which is undetected

before a second error occurs, P2

A
a

A2

(A3)

(A4)
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P2	 2)2 [^ + a l (LM-1) + a2 (LM-2j + •• + aj (LM-j) ••] _
M

(XI) 2 LM M-1

2 [ 
2 + E aj(LM-j)]

M	 j =1

2	 M-1

	

P2 = L(MI) [f + J E1	 aj(1 -)]	 tA5)

For L large we can replace (1- M) by 1 and approximate this expression by

P2 = L(MI) 2 [ 
2	

M-1

 
+ E ai ]

J=1

M-1

P2 	L(^2)2 1 (1 + 2	 E	 a.	 .	 (A6)
j=1

Expressions (A5) and (A6) omit triple and higher order faults since we

have assumed that XI is very small.	 The first factor L(XI) 2/2 is the ._4
. L

probability of two errors within an interval I for L intervals. 	 This is the

case where the total test is applied once in I time units. 	 The factor 1/M is

the maximum reduction possible for M segments when the coverage curve is very

steep, i.e., the sum of the 61 is small.	 The last term is the dependency on

the shape of the coverage curve.

Next suppose that a rotation of the test set (A2) gives a different

coverage curve than the initial order (A1).	 Up to M different fractional

probabilities could result.	 But in our summation leading up to (A5) we can

replace a l by the average of the M possibility different fractional

coefficients, one for each phase of (A2). 	 Thus we define an average

fractional coefficient aj,

1 M-1
aj	 M	

E	 fraction of faults undetected by Ti Ti+1  	 Ti+j-1
1=0
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'	 where the subscripts are added modulo M. Using the same procedure as led to

(A6) we find the probability P2,

P a L(aI) 2 1 (1 + 2 MEl nj)2 ^— M	 j =1

s	 The computation of the mean time between single fault occurrence and

detection, MTFD, is quite similar to that of P 2 . Suppose initially that any

rotation of T has the same coverage curve. A fault can occur uniformly within

the first interval I/M. For those faults that are detected by T o the mean

Y

time is just half the interval or I/2M. The fraction of such faults is
i

1 •- a l . The fraction a l - a2 of faults in the first interval is detected by

T i . For this second class the mean time is I/M longer or 3I/2M. Forming the

expected value we find

MTFD = 2M [(1 — a l ) + 3(a l — a2 ) + 5(a
2 

— a3 ) + •••]

M-1
=ZM[1+2 E ^J

j=1

Again the interpretation of (A8) is similar to that of (A6). The factor

I/2 is the value expected for no segmenting, the second factor 1/M is the

maximum conceivable reduction for M segments, and the last factor is the

coverage curve coefficient.

As was the case for P 2 (A8) is easily extended to different coverage

curves for rotations and

M-1

	

MTFD 2 M [1 + 2 E aj ]	 (A9)j l 

A4

(A7)

(A8)
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Appendix B - Case Study

Introduction

M

The bus guardian unit (BGU) of the fault-tolerant multi-processor (FTMP)

is specialized module designed to enable or decouple a bus drive to a system

bus line.	 Two BGU's are used for each processor/memory unit.	 A BGU has an

equivalent complexity of about 1200 logic gates.	 In operation, 3 out of 5 bus

lines are selected on the basis of an internally stored select code SEL. 	 Each

selected bus line is input to a synchronizing sub-unit called a deskewer. 	 The

three synchronized bit streams are voted to yield a serial message. 	 if the

message is recognized as being addressed to the particular BGU, then one of 5

storage registers are updated. 	 Four of these registers generate the 20 BGU

output enable lines while the fifth register contains the select code, SEL.
1

1
8

Because of the fault-tolerant nature of the communication scheme and the $.,

limited output visibility, the BGU is an interesting module to test. 	 To `:~

simplify the discussion we will ignore the specialized BGU operations

associated with power-on, master-resest, and power-fail and consider normal
d

operation.

At the highest level there are 3 types of BGU behavior;

Case 1.	 Correct response to a valid message,

Case 2.	 Failure of the BGU to recognize a valid message,

Case 3.	 Change by the BGU when not commanded.

i

These last two correspond to a miss or a false alarm respectively. 	 These

cases require separate tests to detect. 	 The following three facets of the BGU

add to the testing problem.

i{



The FTMP communication system is designed to tolerate single failures,

hence the three seperate serial inputs which are voted. But with three

correct bus inputs, many BGU interval faults are also tolerated when they

occur prior to voting. BGU voter discrepencies (2 of 3 or 1 of 3) are not

visible as outputs. This situation requires test inputs which are also 2 of 3

or 1 of 3 to propagate faults to a visible output.

Closely related are input selection faults. The 3 of 5 select logic and

SEL code assignment interact. Many single bit changes in a SEL code result in

2 of the three desired bus inputs still selected. Thus many select logic

faults and SEL register faults are not visible with 3 correct inputs. Since

the SEL register contents can only be infered from other register outputs, a

series of tests are needed.

Finally the BGU address decoder utilizes 20 message positions. A single

stuck position at the correct value can occur in 20 ways, hence 20 tests are

needed to detect these Case 3 failures. In addition there are other faults

associated with the BGU tima_ng logic which result in Case 3 behavior which can

not be overlapped with addressing false warm faults.

To illustrate the segmenting idea we make the following testing

assumptions. The assumptions 2 and 3 correspond, approximately, to the

manufacturing test environment.

1. The fault class is single pin stuck-at 1 or 0 faults.

2. The 5 system bus lines are available as inputs. Bus inputs can be freely

chosen.

3. The 20 enable ouputs are observable.

4. Fault dectection is the objective.

The BGU is constructed from 50 digital integerated circuits (Table B1), 3

delay units, two op amp comparitors and some discrete components such as pull-

B2
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up resistors, decoupling capacitors, etc. The unit is assembled on a single

circuit board. The digital circuits include 26 SSI packages, 24 MSI packages,

and 3 delay units. The SSI accounts for 327 logic pins with 193 equivalent

gates; the MSI for 328 pins with 1103 equivalent gates. As compared to LSI or

VLSI the gate to pin ratio is quite small.

h
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Description ot i,^

 Kna 6 p teE Yrs	 FinE	 Get*s

54L500 Quad NAND 12 4 2	 ^4 8

54LS0Z Quad NOR 12 4 1	 12

54L604 Hex	 Inverter 12 2 }	 :2

540 4 Her	 inverter 12 12

54LSO9 Quad AND-OC 12 4

54LS1O 7ripIe	 N.kND 12

54LS30 8 input NAND

54LS32 Quad OR 12 4 2	 24 8

54LS74 Dual	 D	 F>ip-Flop 12 12 7	 84 84

54LS112 Dual	 J-K	 Flio-Flop 14 16 1	 14 1 !,

54LS240 Octal	 Buffer 1E: 10 1	 18 10

4001G Quad CMOS NOR 12 4 2	 24 8

700, He,C1OS Sufier 14 7 5	 70 A

5ubto01	 327 193

54LS138 3-G Decoder ^^ 1^ ^	 14 16

54LAW Lctal	 Shift	 Regs 12 4S 208

54LE1P1 4	 Bit	 Up/Down	 Ctr 10 5S 5	 70 29O

54LS251 8-1	 Mux 1.4 17 42 51

54LS253 Duel	 4-1	 Flux 14 it I	 2G S 2:

54LS259 Octal	 Latch 42 174

7136 6 Bit	 Commarator 14 22 1	 14 22

540174 Hex	 Register CMOS 14 62 5	 70 SlU

'
Subtota!	 328	 11O3

Total	 55	 12&t-

Pins = Logic	 Pins	 Gates'= Eouiva.l*nt Gates

Table	 Bi-	 Bus	 Guardian	 Digital Integrated	 Circuits
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Examining the design 11 detail there are five key areas which require

particular test inputs:

A. The five output registers and associated tri-state buffers.

B. The address d`coder.

C. The select code register and 3 of 5 select logic.

D. The two vvicers.

E. The timing decade logic.	 r.

Area C has ten distinct paths through the select logic which require two

messages for each path, one to change the SEL code and a second message to
i

verify the updated SEL code by changing an observable output. Another five

messages are required to complete the tc G ting of area A.

Area B req uires 20 test messages for Case 3 (false alarm) failures as

noted earlier. The BUSY voter in Area D requires 6 additional false alarm

messages. Finally Area E can be tested fog Case 3 faults with 7 more
Y

message. The total set of 58 messages is sufficient to test for single pin

s-a faults. It can be shown that at least 54 messages are necessary.

The sufficient message set can be divided into 6 segments with each of

the previously mentioned subsets as evenly as possible yielding 9 or 10 test

messages per segment. A^. upper bound on the a  values for this segmented test

set can be determined by counting the number of faultF that are always

detected. Exact values could be det%rmined by simulation. From upper bounds

on the a  a lower bound on the segmenting gain g(6) expression 10 can be

found. The follo ping table lists these values.

(b.
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1 0.29

2 0.23

3 0.17

4 0.11

5 0.05

Table B1. Miss Fractions a  for the Case Study
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