
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

1184-16856(NASA-CR-173207) ERROR LATENCY ESTIMATION
USING FONCTIONAL FAULT BODELING (I0va Unir.)
27 p HC A03/8F A01	 CSCL 12A

Error Latency Estimation Using

Functional Fault Modeling

Uncla s
G3/64 00534

By

Sridhar R. Manthani
Nirmal R. Saxena
John P. Robinson

Electrical and Computer Engineering
The University of Iowa
Iowa City, Iowa 52242

ti
Prepared for

Langley Research Center
Under NAG-195

August 1983

Summary

complete modeling of faults at gate level for a fault —tolerant computer

is both infeasible and uneconomical. Functional Fault modeling is an approach

where units are characterized at an intermediate level and then combined to

determine fault behavior. This report is a preliminary study on the

applicability of Functional Fault Modeling to the FTMP. Using this model a

forecast of error latency is made for some functional blocks. This approach

may be useful in representing larger sections of the hardware and may aid in

uncovering system—level deficiencies.

Introduction

1

s

The complexity of a fault-tolerant computer makes it impractical to

exhaustively estimate its reliability parameters using a low level fault model

(1,2) A particular logic function may be implemented in different. forms as a

technology matures or seperate venders may select different yet equivalent

forms. Even in current MSI circuits, equivalent logic specifications are used

rather than detailed transistor representations. A higher level approach is

Functional Fault Modeling (3-5). In a Functional Model gates cease to be the

primitives in analysis. The whole hardware structure is partitioned into

functional primitives. The partitioning is based on many factors. Whatever

partitioning was used in the design process is usually the starting point for

functional fault modeling. Faults occuring internal to a partition propagate

to the outputs of the partition (all gate level faults will manifest as some

functional level faults). This mapping of faults is many to one thus making

functional level modeling potentially simpler.

If the technology is well understood then the functional model can be

made to accurately represent the partition both in range of behavior and in

statistical characteristics. A library of models can be developed including a

hierarchy of units (e.g., flip-flop models used to develope a counter model,

etc.). When the technology is not well understood-the functional modeling can

be done in a more conservative manner (6-11). All conceivable fault behavior

could be represented, then as actual behavior data becomes available the

functional model can be made more accurate.

Because of the highly redundant nature of the FTMP, it is difficult to

surface many of its faults during its normal operation. But FTMP behaves as a

fault secure circuit for most of the faults. Eventually when that ri

2

i
portion of the circuit is exercised the fault affect propagates to the outputs

of the partition. Since we know the circuit structure it is easy to break an

existing functional primitive into smaller primitives and improve the . accuracy

of the model.

FACTORS INFLUENCING ERROR LATENCY

In FTMP, Error Latency is influenced by hardware and software. Faults on

an active single bus line are masked by the voters and except in the BGU's,

the error decoding circuits detect these errors.

Three primary factors influence error latency:

1. Whether the Faulty circuit is exercised,

2. The rate at which the error latches are read, and

3. Whether that part is influencing the detection circuitry.

Each of the above cases needs to be analysed carefully to arrive at an

accurate overall latency estimate.

1. The first factor is a natural consequence of the highly redundant

nature of the FTMP. If the fault occurs in an inactive region it is harmless,

but another fault at this juncture might cause abnormal behaviour. An example

of this is a fault on one of the spare buses as the first fault followed by a

fault on an active bus. This might result in replacing all the units enabled

on the faulty active bus by another faulty bus. Subsequent detection of the

second fault might take several cycles. It is imperative to activate

periodically all the redundant parts just to avoid long latency faults. Some

assumptions were made regarding exercising the redundant parts to arrive at a

(definitive figures for the error latency. The particular assumptions are

given later.

3

2. The second factor is software determined. A program called SCC

(System Configuration Controller) performs the chore of reading and

interpreting the error latches. The dispatcher directs SCC to the leastly

loaded triad. The first part of the program determines whether any errors

were reported in the preceding frame. It also determines whether the error

reported during a previous frame has been corrected. If not it waits for a

maximum of four cycles for the previous error to be corrected. An assumption

is made in this regard to make definitive forecasts.

3. Some parts like the BGUs do not have error detection circuitry.

Single faults here are often masked although all parts may be active. These

latent faults have to be dealt with specially. Normally there is no way to

propagate many of the single faults in the voting hardware and deskewers

unless we have another fault in such a way that they cooperate to cause

noticeable faulty output behaviour.

DESCRIPTION OF DETECTION PROCESS AT HIGH LEVEL

It may be recalled that all tasks run at one of the three preassigned

rates. The assumptions made in this paper regarding the rates are:

1. R1 rate is 3.125 hz (320 msecs).

2. R3 rate is 12.5 hz (80 msecs).

3. R4 rate is	 25 hz (40 msecs).

SCC, the high level fault handling program runs at R1 rate, i.e. every 320

msecs this program processes the error information supplied by hardware. SCC

also aids in surfacing the faults by running self testing programs and

activating spare units at regular intervals. We can summarize the fault

detection process as the arrival of disagreement at the voters of a triad,

stimulated by normal activity or test activity. Test activity includes self

4

testing and spare cycling phases. The detection of faults initiates fault

identification and later reconfiguration. The identification and

reconfiguration is done with the help of special procedures initiated by

SCC. To have an accurate prediction of fault detection times, for various

faults it is important to know how the tasks constituting normal activity and

test activity are dispatched. The flow chart in Figure 1 explains SCCs

dispatching strategy at a high level. We see that test activity is dependent

on a parameter set in software (Time to Cycle). Whenever a swap command is

execut-d this parameter is initialised. In the current configuration Time to

Cycle will be true every S seconds. When this boolean value is true, spare

cycling is done. The purpose of test activity is to propagate the affects of

any faults in spare units to the error latches so that SCC detects them.

DESCRIPTION OF SELF TESTING IN FTMP

Self Test programs are run to detect some of the latent faults in error

latches, voters, error decoding circuitry, and cache PROMs of the FTHP. SCC

calls the master self test program .SELF-TEST) which in turn calls one of the

38 self tests. Each . self test is designed to test a specific unit and in each

run of SCC only one of the tests is invoked. The P, R, and T tests are

invoked if three corresponding bus lines are active. The C test is performed

if 4 clock lines are active. Essentially in P, R, T, and C tests a

disagreeing input stream is fed on one of the active lines and error latch

contents are checked to see whether the injected fault is reported. In PROM

test a checksum verification is made on different segments. To simplify the

analysis some assumptions were made regarding the self tests.

5

a

RESTART

NORMAL

^—	 ENTRY
i
1

I
I

ANY
NO

FAULTS
I	 DETECTED?

I

I

I IS
RECONF.

t
REQUIRED?

YES

1

I

I	 IDENTIFY YES

1

i

STATE

1	 ^^

1	 ^
i RECONF.

I
STATE

i 1

I ^

I ^

SELF
TESTS

IS
TIME TO
	 NO

CYCLE

YES

SPARE
CYCLING

Figure 1.

F^

ASSUMPTIONS ON SELF TESTS

As can be seen from flow chart in Figure 2 in some cycles SCC does not

invoke self tests. Since the rate of self testing is much larger than spare

cycling, it is assumed that self tests run periodically without interruption

from Spare Cycling. This will give estimates which are lower bounds on

average times. Based on this, the assumptions ST1 and ST2 are made.

ST1. Self tests are run at R1 rate, i.e., every 320 msecs.

ST2. Time to complete one cycle of self tests - 38 * 320 msecs - 12.160

secs. The order is given in Figures 2 and 3.

Occurrence of a fault is random with respect to the self test cycle. The

segmented testing employed makes the detection time vary between zero (when

occurrence of detectable fault is immediately followed by its detecting self

test) aad the time taken to complete the whole cycle (when the detecting self

test runs just prior to the occurrence of its detectable fault). ST3 follows

from the above.

ST3. Mean time to detection of any fault which can be detected in one

self test cycle - 38 * 320/2 - 6.08 secs, 	 s a.

e
i

DESCRIPTION OF SPARE CYCLING IN FTMP

FTMP has processors, memories, and buses 1n , its spare pool. 'Units from

the pool can be brought on line to replace any failed active unit. To uncover

latent faults spares are periodically brought online even if all active units

are functioning correctly. Spares are assigned as shadows to active triads.

A shadow essentially duplicates the activities of the triad it is assigned to

track and differs from active units in its access priorities to the buslines

(e.g., a processor shadow cannot participate in polling, thus denying it

1

access to the transmit bus). But shadows watch the R and C bus lines to

7

t^
Ca5

cC
Cy

t^
Qa

5

G^

t^

5

320 ms	 > 5 sec

Figure 2.

1

Schedule of Self Tests

1. Reset self test state.
2. POLL, ANY TRIAD, LOW ORDER
3. PROM, TRIADI, 1800
4. PROM, TRIAD2, 1800
5. PROM, TRIADS, 1800
6. R, TRIADI, LOW ORDER
7. R, TRIAD2, LOW ORDER
8. R, TRIADS, LOW ORDER
9. PROM, TRIADI, 1A00
10. T, TRIADI, LOW ORDER
11. T, TRIAD2, LOW ORDER
12. T, TRIADS, LOW ORDER
13. C, ANY TRIAD, LOWEST ORDER
14. POLL, TRIADI, MIDDLE ORDER
15. PROM, TRIAD2, lAQO
16. PROM, TRIADS, IA00
17. PROM, TRIADI, 1CQ0
18. R, TRIADI, MIDDLE ORDER
19. R, TRIAD2, MIDDLE ORDER
20. R, TRIADS, MIDDLE ORDER
21. PROM, TRIAD2, 1C00
22. T, TRIADI, MIDDLE ORDER
23. T, TRIAD2, MIDDLE ORDER
24. T, TRIAD3, MIDDLE ORDER
25. C, ANY TRIAD, 2ND LOW
26. POLL, TRIADI, HIGH ORDER
27. PROM, TRIAD3, 1C00
28. PROM, TRIADI, 1E00
29. PROM, TRIAD2, 1E00

30. R, TRIADI, HIGH ORDER
31. R, TRIAD2, HIGH ORDER
32. R, TRIAD3, HIGH ORDER
33. PROM, TRIAD3, 1E00
34. T, TRIADI, HIGH ORDER
35. T, TRIAD2, HIGH ORDER
36. T, TRIAD3, HIGH ORDER
37. C, ANY TRIAD, 2ND HIGH

38. C, ANY TRIAD, HIGH ORDER

Figure 3. Schedule of self test program units

8

9

maintain synchronism. To get them on-line, only the SGUs of the shadow and

the unit it is replacing have to be written into. SCC calls a procedure

ISSUE-SWAP-CNND to perform spare cycling. This is issued whenever Time to

Cycle is true (see flow chart). This procedure determines which spare unit

should be brought on-line and which unit it should replace. On each pass only

one spare unit is swapped. The order in which spare cycling is done is given

in Figure 4.

ASSUMPTIONS ON SPARE CYCLING

In the present system "Time to Cycle" is true every S secs in the absence

of reported faults. There is an interaction between spare cycling and

self testing because both of them cannot be done in a single cycle. Spare

cycling occurs at least twice in a cycle of self tests. Since the spare

cycling rate is much smaller in comparison to self testing, we assume both

self testing and spare cycling occur periodically without any interaction.

This will result in a more optimistic estimate or a lower bound on the

latency. Moreover the faults which can be propagated by spare cycling are

configuration dependent. Cycling changes inactive units, of a particular

configuration into active by changing the system configuration. This makes

the otherwise latent faults get detected in subsequent normal activity. The

swapping of processors and memories depends on the replacement policy.

Swapping of bus lines is easier to visualise as the maximum number of spare

bus lines of a particular type can be two. The following assumptions are made

regarding the rate and mode of spare cycling.

SCI. Spare cycling is done every S secs.

SC2. Spare cycling follows the order shown in Figure 4.

SC3. After the decision on which triad to issue swap command is made,

10
•

d ttlZ ^_

C.1

do

A

A

^^ Yi r^/TT T
GY1

^.- h ZQZ

d ZQZ

Q

r--- 1d Zas-^

^ h IQ,L.-.

d £QZ +u-•----

d ZQZ

d tal

^n
fA

w
^v
av

Os
r

M

4
GC

Ln

K

Go
N

v

c
u
U
L
O

i
t

oRSGINAL PAGE 11
OF POOR QUALITY.

.r
u

u
w0a

the units are swapped using the LRU (Ltast Recenrty Used)

algorithm. Here the unit which will be used to replace is the

one which has been longest in spare pool for that triad and the

unit it will replace is the one which is active for the longest

time.

Figures Sa and Sb il' ,--trate this assumption as applied to processors and

buses respectively. We have illustrated the case of 12 pro , _asors with no•

failed processors or buses.

FAULT CLASSIFICATION

It is clear that SCC detectc many different types of faults and it uses	
3

various programs to uncover then. Classification of faults is based on the

type of faults which mould be detsc*ed by a particular detection program.

Faults which go undetected are also classified. A level tree diagram (Figure

6) is given which descriLes the natur: and difficulty in 3etecting a fault.

Class 1: This corresponds to those faults which become visible during the

normal activity in the form of 'isagreement at voter propagated to

the error latches.

Class 2: Faults in redundant hardware, PROMs, error latches which do not show

up in normal activity belongs to this class. Self tests uncover

these faults.	
i.

Class 3: Faults in inactive units serving as spares belong to this class.

Spare Cycling uncovers these faults.

Class 4: Faults which go undetected.

a

12

EXAMPLE TO DEMONSTRATE FUNCTIONAL FAULT MODELING

In this section we choose a specific unit for functional fault

modeliag. The procedure similar to this can be adopted to compute the fault

detection times for any other unit. A broad classification of the functional

misbehavior patterns of the unit in question is done. The classification

should be realistic in the sense that physical or logical gate level, faults

could produce that kind of functional misbehavior. After having defined the

misbehavior patterns one can categorize them into the fault classes discussed

in the previous sections depending upon how and when they set the system error

latches. To obtain the distribution of various faults amongst the fault

classes one has to identify the number of faults which result in a particular

misbehavior pattern. Then by exhausting all possible misbehavior patterns one

can obtain the resulting distribution faults belonging to each class. The

resulting distribution faults coupled with the assumptions of fault detection

software made in earlier sections can be used to obtain curves for fault

detection times.

We choose the 315 input-select unit given in Figure 7 which provides a

representative partitioning of the fault classes. This unit is present in all

the bus interfaces and BGU's. Its function is to select 3 out of 5 input

lines based on the 4 bit select code supplied by - the control register (see

Table 1). Regardless of the exact nature of implementation, the following

functional fault modeling approach can be taken.

MB1. Selects less than three active lines (assuming no duplication of

any active line).

MB2. Duplicated active line comprises two of the three active lines

selected.

-_ ,	 wwa	 A-

Uri

13

L.

MB3. Faults which result in functional misbehavior only when the select

code or system configuration is changed (faults here manifest as

MB1 or MB2 when configuration is changed).

MB4. Faults which cannot be detected.

Gate level faults can be maped into the above functional fault

classification.

Except for the BGU's, all other 3/5 select units are used in conjunction

with a voter—error ROM combination and MBi lines up with Class i. These

functional classes MBi will fall into the earlier overall fault classes

depending upon the location of the 3 / 5 select unit. If the select unit is

located in a spare then MB1, MB2, and MB3.are in Class 3, faults in inactive

units. When the select unit is in a BGU, MB1 falls into Class 2 which

requires special testing.

To illustrate the many to one mapping we take a specific implementation

of the 3/5 select (T BUS INTERFACE) and map the gate level faults to MB1, MB2, i°a

MB3, and MB4 (Classl, Class2, Class3 and Class4 respectively). 	 Some faults

are data dependent and mal	 o different fault behavior for different

implementations.	 To illustrate this, let the initial select code correspond

to lines 1, 2, and 4 being active. 	 Owing to some fault if 1, 3, and 3 are 4'
1

selected then clearly it falls to MB1 in say the T bus interface. 	 But if the

initial configuration changes from 1, 2, and 3 to 1, 3, and 3 due to a fault _	 =

then the fault falls to MB2. 	 The duplication of a line fora select code is

implmentation dependent.	 Therefore it is better to consider implementation

details to obtain a finer model.	 Assuming that all possible errors can occur^^

in the select code we tabulate the faults.	 Since the select code at a':^'s

particular instant of time is not known an averaging technique is used. 	 We

assume that all valid codes are equally likely.	 By this we get distribution
1

of select code faults into various classes (see Table 2).

Table 1

14

S3

Select

S2

Code

S1	 SO

For

A

U29

B

U30

A	 B Line 1 Line 2 Line 3

(SO) (S 1 S2) (S1)	 (S2)

0 0 0	 0 0 1 0	 0 4 2 1

0 0 0	 1 1 1 0	 0 5 2 1

0 0 1	 0 0 1 0	 1 4 3 1

0 0 1	 1 1 1 0	 1 5 3 1

0 1 0	 0 0 1 1	 0 4 3 2

0 1 0	 1 1 1 1	 0 5 3 2

0 1 1	 0 0 0 1	 1 2 5 4

0 1 1	 1 1 0 1	 1 3 5 4

1 0 0	 0 0 1 0	 0 3 2 1

1 0 0	 1 1 1)	 0	 0 3 2 1

1 0 1	 0 0 1 y	 0	 1 3 3 1

1 0 1	 1 1 1
f
i	 0	 1 3 3 1

1 1 0	 0 0 1 1	 0 3 3 2

1 1 0	 1 1 1 1	 0 3 3 2

1 1 1	 0 0 0 1	 1 1 5 4

1 1 1	 1 1 0 1	 1 1 5 4

* Valid Codes

y

15

INITIAL CODE # CLASS 1 #CLASS 2 # CLASS 3 # CLASS 4

0000 15 0 0 0

0001 15 0 0 0

0010 13 2 0 0

0011 13 2 0 0

0100 13 2 0 0

0101 13 2 0 0

0110 15 0 0 0

0111 15 0 0 0

1000 10 4 1 0

1111 14 0 1 0

Average	 13.6	 1.2	 0.2	 0

Table 2. Select code input error behavior

16

In a similar vein we can get distribution of input and output line stuck

faults. Here we assume that the select code is not faulty and faults manifest

on input and output lines. Faults assumed for input and output signal lines

are stuck-at-1, stuck-at-0 or inversion of the signal line. The number of

fault cases for each legal code is given in Table 3.

SELECT CODE # CLASS 1 # CLASS 2 #CLASS 3 # CLASS 4

0000 18 0 33 6

0001 18 0 33 6

0010 18 0 33 6

0011 18 0 33 6

0100 18 0 33 6

0101 18 0 33 6

0110 18 0 33 6

0111 18 0 33 6

1000 18 0 33 6

1111 18 0 33 6

Average	 18	 0	 33	 6

Table 3. Input or output faults

t:

r,^ ..,i

Q

17

Combining tables 2 and 3 we get the following distribution of faults:

Class 1	 43.88.

Class 2	 1.66%

Class 3	 46.11%

Class 4	 8.33%

Table 4.

Class 1 faults will be detected between 0-320 msec. Class 2 faults here would

require error-latch and voters self tests. Based on the assumptions made

earlier, the Class 2 faults will be detected between 0-12.16 sec.

Class 3 fault detection in the case of 3/5 select unit requires cycling

spare lines. From Figure 5b time between two bus swap commands is 140 secs.

This means that half of the Class 3 errors could be detected in a maximum time

of 140 secs and the rest after the next 140 secs. This case is plotted in

Figure 8.

we summarize the assumptions for Figure 8:

1. The faults are equally likely input select code errors and equally

likely bus input and select output stuck errors.

2. The select unit is not in a BGU but is equally likely to be any

other location.

3. Spare cycling and self-test run at their most frequent rate, i.e.,

the system is lightly loaded.

Triad I Triad 2 Triad 3

A	 123(10) 456(11) 789(12)

B	 10 2 3 (1)* 4 5 6 (11) 7 8 9 (12)

C	 1023 (1) 1156 (4)* 789(12)

D	 10 2 3 (1) 11 5 6 (4) 12 8 9 (7)*

E	 10 1 3 (2)* 11 5 6 (4) 12 8 9 (7)

F	 10	 1 3 (2) 11 4 6 (5)* 12 8 9 (7)

G	 10 1 3 (2) 11 4 6 (5) 12 7 9 (8)*

H	 10 1 2 (3)* 11 4 6 (5) 12 7 9 (8)

1	 10 1 2 (3) 11 4 5 (6)* 12 7 9 (8)

J	 10 1 2 (3) 11 4 5 (6) 12 7 8 (9)*

K	 1 2 3 (10)* 11 4 5 (6) 12 7 8 (9)

L	 1	 2 3 (10) 4 5 6 (11)* 12 7 8 (9)

M	 123(10) 456(11) 789(12)*

* Swap of shadow and active unit

Figure 5(a) Processor spare cycling assuming 12 processors.

One major cycle.

18

19

Bus Spares	 Active Bus Lines

(54) 321
140 secs

(15) 432
140 secs

(21) 543

(32) 154

(43) 215

(54) 32 1

Figure 5(b)

Level 1

Typ

20

9

Any Detectable Fault

Type A
	

Type B
	

Type C

Type A	 Type B
	

Type C

Level 2

(Involves .

State Change)

Level 3

(Involves	 =

State Change)

Type A
	

Type B
	

Type C

line 1

SO
S1

lire 2

line 3

ORIGINAL:' PAGE
	

21

OF POOR QUAI`flY

a

Figure 7. Three out of five select unit (T Bus interface)
i

300

0

c. Class 3

S

2

100 200 t,sec

see

2

50% ORIGINAL PAGE 19

OF POOR QUALITY

600	 t ,maec

0
	

S
	

10	 t,sec

b. Class 2

25% 1—

d. Total of all classes

Figure 8 Detection time for 3/3 select

23

LATENCY

We next relal.e the functional fault classes and latency estimates of the

3/5 select unit to a system model. Faults have significantly different

effects on system behavior. For example a long latency fault in a nonactive

processor doesn't influence the system until it is reconfigured as an active

unit; but the failure of an active P bus line has immediate consequences.

Hence the functional fault classes ought to be of sufficient detail to allow

appropriate assignment to the various transitions in the system reliability

mods (e.g. Care III).

The classification used in arriving at Tables 2, 3, and 4 would be

applicable to an FTMP system reliability model which distinguished between

faults in active processors and memories and spare processors and memories.

But the classification is not of sufficient detail if BGU behavior is

explicitly included in Cae reelisbility model. Specifically the functional

behavior MB1 (selecting love than 3 active lines) should oe subdivided for the

BGU into the selection of 2 active lines and less than two active lines. The

BGU behavior differs for these two subcases.

Suppose the reliability model does distinguish between active processors

and spare processors, then the Classes in Figure 8 would probably be assigned

as follows:

1. Class 1 and Class 2 to transitions for a fault in an active

processor.

2. Class 3 to transitions for a fault in a spare processor.

3. Class 4 to reduce the occurence probability of a fault.

t

f

24

MODELING PROCESS

The previous sections have attempted to illustrate the functional fault

modeling process when applied to a particular unit the estimation of fault

latency. The following factors are important in this modeling.

1. The detail known about the physical devices and structure of the

implementation and the possible fault mechanisms.

2. The hardware and softwere structure used to detect that a fault has

occurred. What redundancy exists in space and time and hose is it

used to detect faults.

3. The proposed use to be mdae of the latency estimates and the level of

detail about fault behavior that is required. For example. the

determination of worst case behavior.

.i

25

REFERENCES

1. A.L. hopkins, Jr., T.B. Smith, and J.H. Lala, "FT"SP -- A Highly Reliable
Fault-Tolerant Multiprocessor for Aircraft", Proceedings of the IEEE,
October 1978, pp. 1221-1239.

2. S.J. Bavuso, "Advanced Reliability Modeling of Fault-Tolerant Computer-
Based Systems", NATO Advanced Study Institute, Norwich UK, July 1982.

3. P.R. Menon and S.G. Chappell. "Deductive Fault Simulation with Functional
Blocks", TREE Trans. Computers, vol. C-27, pp. 689-695, August 1978.

4. M.A. Breuer and A.D• Friedman, "Functional Level Primitives in Test
Generation", IEEE 'trans. Computers, pp. 223-235, March 1960.

5. A. Micro, "Fault Modelling for Functional Primitives". 082 IEEE Test
Conference. pp. 43-49, 1982.

6. S.M. Raddy, "Complete Test Sets for Logic Functious, "IEEE Trans.
Computers, Vol C-22, pp. 1016-1020, Nov. 1973.

7. S.B. Akers. "Universal Test Sets for Logic Networks", IEEE Trans.
Computers, Vol. C-22, pp. $35-839, September 1973.

8. B. Konemann at al., "Built-in Test for Complex Digital Integ-ated
Circuits", IEEE J. of Solid State Circuits, pp. 315-319, June 1980.

9. Y.H. Levendel and P.R. Menon, "Test Generation Algorithms for Computer
Hardware Description Languages", IEEE Trans. Computers, pp. 577-588, July
1982.

10. W.C. Carter, "Signature Testing with Guaranteed Bounds for Fault
Coverage", 1982 IEEE Test Conference, pp. 75-82, 1982.

11. K. Son and J.Y.O. Fong, "Automatic Behavioral Test Generation", 1982 IEEE
Test Conference, pp. 161-165, 1982.

	GeneralDisclaimer.pdf
	0049A02.pdf
	0049A03.pdf
	0049A04.pdf
	0049A05.pdf
	0049A06.pdf
	0049A07.pdf
	0049A08.pdf
	0049A09.pdf
	0049A10.pdf
	0049A11.pdf
	0049A12.pdf
	0049A13.pdf
	0049A14.pdf
	0049B01.pdf
	0049B02.pdf
	0049B03.pdf
	0049B04.pdf
	0049B05.pdf
	0049B06.pdf
	0049B07.pdf
	0049B08.pdf
	0049B09.pdf
	0049B10.pdf
	0049B11.pdf
	0049B12.pdf
	0049B13.pdf
	0049B14.pdf

