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ABSTRACT -

A method for numerically.selving the thrée~dimensional unstea&y
Euler equatio;s uéing flﬁﬁ'@é@ﬁﬂ% splitting 1s developed. The equations
are cast in curvilinear coordinates and a finite volume discretization
is used. Arn explicit upwind séconduarder predictor-corrector scheme

Is used to solve the discretized equations. The scheme is stable for a

CFL number of 2 and local time stepping is used to accelerate convergence

-Afor~stead§-state problems, Characterisficng;féﬁié.Sodhdary conditions

are developed andused in the far field and at surfaces. No additional
dissipation terms are Included in the scheme. Numerical results are
compared with results from an existing three~dimenzional ¥uler code

and expeximental data.
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I. INTRODUCTION

In support of NASA's 1nterest‘in the use of prop-fans as a propul-
sion devicg, a’computaﬁﬁa@hl nethod was recently developed for numerically
solving the flowfield about a swept, tapered, supercritical wing with a
propéller producing thrust and swirl (Ref. 1). The equations solved
vere essentially Euler equations with body force terms included to
simulate the propeller. The Euler solver used was an extension of the
method of Jameson, et. al. (Refs. 2 and 3) referred to as FLOST. Although

good agreement was obtained with experimental data (Ref, 1), some

difficﬁlty in convergence, particularly the energy equation, was encountered

using.the FL057‘centra1~difference scheme. Recently, convergence
difficulties were also reported by Swafford (Ref. 4) in solving a sef
of hypefbolic equations with source terms (which can be éohsidered
similar to thé force terms included in thé Euler equations in Ref. 1)
using a similar central-difference scheme. An upwind scheme eliminated
‘the convergence problems in Ref. 4. Moreover, any additional smoothing.
added to the upwind scheme was found to be detrimental with regard to
convergeﬁce._ (Additional sméothing'was found to always be necessary

in using the central-~difference scheme in Ref. 4,) T&erefore,.it

seemed appropriate to consider an upwind scheme for selving the three-
dimensional EBuler equations.

Thé flux~vector-split form of the equations Qsedvis developed in
the following secfion. The motivation and background of using splitting
is given iﬁ the literature (see, for example, Steger and Warming (Ref. 5))
and 1s not repeated here. Moreover, many of the matrices neéded are

given in the literature (see Refs. 6 and 7); however, all equations

[RRTTe LY

-



and matrices needed are developed and included in Section II for clarity

and completeness, Formulation of the equations for numerical solution -

- and the algorithm used to solve the discretized equations are discussed

te Charactsistic variable boundary conditions used

in Section ITL.

in the far field and at surfaces are developed in Section IV. Numerical
results, including comparisons with FLO57 solutions and experimental

data, are presen'ted and discussed in Section V,
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: II. SPLITTING

The conservation law vector form of the Eufier equations in

Cartesian coordinates x,y, and z are

ag 3 . 9g  8h _ . ...
e Tty ¢ (2.1)

where

T
q = [p, pu, pv, pw, e]

' 2 ' T
[pu, pu” + p, puv, puw, ule # p)}

Lo
o

o2
"

2 ! T

[ov, puv, pv™ + p, pvw, v(e # p)]
: 2 . T

h = [pw, puw, pvw, pw" + p, w(e +* p)]

(v - 1} [e - léa(uz + v2 + wzlﬁ«]

=
L]

Using curvilinear coordinates defined as

™
fl

g(x1Y9z)

n(x,y,z)

=
#

Y
i

C(X’Yoz)

T =t
it is strailghtforward to transform Eq. (2.1) ro

aq a6, o ;
ar, + o + 3" = 0 : (2.2)

where

‘ T
Q = Jlp, pu, pv, pw, el
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. ' : T
F= 3oy, pul + E.p, pvU+Ep, pWU + £ p, Ule + p)]
. | .
G = JloV, puV + n.p, pv¥ + np, pwV + n,p, V(e + p)]

: T
H = J[pW, puW + ¢ p, pvll + cyp. pwi + ¢ p, W(e + p)]

I=x bz -2y -y (xnzc 2%+ 2oy -y xd
£ =0 My z - y.)
x nt ” *n't
-1
" (zﬁyc ")
=T (y£ n - Zﬁyn)

£ =g (4 Cxz) ORIGINAL FAGE 13
y *r T %% OF POCR QUALITY

y =7 (xgzc - zgx)

=
i

-1
by =9 (zﬁxn " xﬁzn)

-1
J (xnyz; - ynxc)

LRl
i{

-1
My = _(yaxc = Ry

L
it

-1
2 = 3Gy -y
U= Exuv+ £yv + £ w

u + +- W
v nx nyv nZ

fla
54

We ;xu + cyv +

The strong conservation law of the Euler equations in curvilinear

coordinates (Eq. (2.2)) can be written in the quasilinear form

9Q 39 c Q..
e + A 5E 4 B - ac 0 : (2.3)



where the matrices A, B, and C are given by ‘ B
| aF ORI FRED
A= OF POOR GUALITY
2 .
B = 5Q
oH

aQ

Carrying out these operations, one obtains a matrix £

0 Kk, _ K,
k¢ - ub, K (2-vu+e, 'xéyé“:“;“icx’(wy'- Dv
K= ky¢ - vek kxv - ky(y -. l)vu ky(z - y)v + Ok
k¢ - wek kxw - kz(y - Du kyw - kz(y - 1)v
2o -L0 k2o 0 - (-Dus, KO- - (Do,
| kz 0 ]
ku - kx(y - Dw kx(‘Y - 1)
kv - ky(y - Dw | _ky,(Y - 1) : (2.4)
kz(z - Y)W+ 0 _kzv(‘y - 1)
(52 - ¢) - Gy E Lwe, 6y ]
where J : :
¢ = lél (u2 + v‘2 + wz)

(}k " kxu -+ kyv + kzw

and matrices A, B, and C are given by the matxix ﬁ'd_epending on whether

w2
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k in Bq. (2.4) is &, n, or ¢. That is

K= A for k = §
K=B fork=n (2.5)
K=C. for k=g

The «lgensystem of the matrices A, B, and € is important to

achieve the intented splitting. However, there are few zero elements

in Eq. («.4) and the eigenvalues of A, B, and C are difficult to

determice using Eq. (2.4) directly. Hence, consider the nonconservative

vector form of the Euvler equations in curvilinear coordinates

29, , 99 29 ..9.,,
5 T A aE;+b + ¢ 0 (2.6)

where

' T
q = Jlp, U, V, W, pl

Note that Eq. (2.3) can be written as
3q g 321 3q |
Mgk anglann gl ot g= @ 2.7

where M is the matrix %%u Multiply Eq. (2.7) on the left by M_I

to -obtain
.__‘1 29 29 89
I + M AM 5E + M BM an + M CM ar
where I 1s the jdentity matrix. Then from Eqs. (Z.6) and (2.7)

a = N tau
b=BM _ (2.8)

c = M tom
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Therefore, the matrix a is similar to A, b’is'similar to B, and ¢ is
similar 'to C, Because similar matrices have the same eigenvalues
(Ref. 8), the eigenvalues ofﬂA, B; and C are Known by determining the
eigenvéiueé-of a;“L;aéﬁd .. The matrices a, b, and ¢ are more simple
to handle than matrices A, B, and C because they contain several zero
elements as shown below. | .

The matrices a, b, and ¢ are now determined. ‘The matrix M gi-en

9Q 4.
— —
1 0 0 0 0
u o 0 0 0
M= | v 0 p 0 0 (2.9)
w 0 0 o] 0
% A
y-1 pu  pv pw )
The inverse of this matrix is
1 0 0 0 0
_u 1 0 0 0
p [
wla] oY 0 1 0 0 (2.10)
p p
_¥ 0 0 E3 0
p p .
¢ “u(y-1)  =v(y-1) -w(y-1} (‘Y"lz-j
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Then by Eqs. (2.8) the matrices a, b, and ¢ are given by

r_e k 0
k P y pkzv
» K
0 0 0 -2
. Y]
Y )
K e 0 0 Gk . 0 .p (2.11)
k
. %
0 0 0 ek 5
2 2 2
0 kxpc kypc kzpc 6k
L. o
where
' K = a for k = ¢
kK =b for k= n : (2312)
K = c' for k =

g

The ¢ in th@ pc2 terms In Eq. (2.11) is the speed of sound and isnot
to be confused with the matrix ¢. The ¢ appearing in Egs. (2.9)
and (2.10) is again

d‘) E Y;l (L12 + V2 + Wz)

just as 1n Eqs. (2.4).
“From Eq. (2.11) the eigedvalues of watrices &, b, and ¢ are
easily determined. The cigenvalues are

1.2 3. e
Ao A7 = AT E kxu + kyv + kzw Gk

k TRl k
A a o+ el (2.13)
k k ,

AZ = 0, - c|vk]|
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1 5
where Ak’ }‘k’ )‘k’ Ak’ and Ak

k = n, and ¢ for k = g. Correspondingly, the eigenvectors are

are the eigenvalues of a for k = £, b for

R g - T
xy = Ik, 0, Ky, -k, 0]
oo - . T
Xy = [ky, okz, 0, kx’ 0]
o= Ik, k, -k, 0, 017 | 2.14
Xq = [cz, ks -k, 0, (2.14)

I S Y . y ¥
XS /é_ P kxa "ky’ kz: pc]
where
: - k k

k iy X '

x| Vk] (1:2 + 12 + 1;2)/2

X 2
. - k ' :
e , k = ' , (2.15)
v ; ' v VKT

S i

Sufficient equations have now been developed to carxry out the
splitting. The integral conservation law form of the Euler equations
will be formuiated and discretized for numerical solution in the‘

.féllowing section.' This formulation requires evaluation of the
vectors F, G, and H at faces of the finite volumes. By splitting
the vectors F, G, and H into fhe sum of separate vectors, each having
an eigenvalue as a coefficient, the evaluation of each separate vector
by extrapolating from the appropriate direction indicated by the sign

of its eigenvalue can be carried out.
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The vectors F, G, and H are homogeneous functions o: degree one

in Q; therefore, by Fuler's Theorem (Ref. 9)

K = KQ ' 72.16)

where K = F and K = A for k = £, K= G and K = B for k = n, and

'K =Hand K= C for k = . The matrices K can be written

- 1
K = TkAcrk

I (2.17)

where Ak is the diagonal matrix whose diagonal elememt® are the eigen-
values of k (cr, also, K) given by Eq. (2.13) The matxices k given

by Eq. (2.12) can be written

‘ o] ‘;-'1 1
K = }kAklk {2.18)

vhere .the columns of P, are the e.genvectors of K corresponding te the

k

respective eigenvalues. From Eqs. (2.8)

B = MMt (2.19)
Using Eq. (2,18)in Eq. (2.19)
X = MPkAkplzlu"l (2.20)
Thgn-from Eqs. (2.17) and (2.20)
| Ty 7 MP ‘ (2.215)
T;;l = P;lm"l (2.?:11))

The matrices M and M~l are given by Eqs. (2.9) and (2.10). The

matrix P( is

1

o It Bom

f‘:‘";'
33
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where

Rather than invert P

& K
- X

0 K

w | K 0
&

-l i

0 0

1

CRIGINAL PALT
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~

k
2

=t

-k
R

w1
X directly, the matrix P

[+

k

from the left edgenvectors oi K.

3

of P ", i.e.

-1 .

k 0
X
k -k
)" 2
k k
2 y
K
0 X
v
: k
b -
V2
.

w ot

-l

418

ke

(2.22)

can be determined easily

“ha left eigeavectors of x are the rows

(2.23)

-

RPN AT
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The matrices T, and T;l can now be determined using Eqs. (2.21).

These matrices arve

e

=2
=
=

b3 y z
ukx uky - pkz uk, + pky
Tk & vkx + pkz vky . | vkz - pkx
wkx - pky . wk.y + pkx wkz
Lo Uk 9 v v uk ) < n . NS
Y kx + p(vkz wky) =) ky + p(wkx ukz) 71 ka P o(uky vkx)
L
'u . —
alu + ckx)_ au - ckx)
~ . ~ "’ ‘
alv + cky) alv cky) (2.24a)
alw + ¢k ) alw -~ ¢k )
“ 2
2 - 2 “
e L CodEe
\L(Ynl + c0,) “(y~1 e0,)
-

( &Zﬁa

TSR EEYT

7



By :
om&wam "tﬁi\,‘s‘“
Of POOR 1 -y 4 Lk vk P uly-1 sl e vl
kx(l v 2) + p(\‘ky vkz) kx 5 k?.‘) + k 5
C c C
_i 1 + K u(v-1) l‘\ v(y-1)
zp y c2 y 02
R EEPRT YRS W “ 1, 5 uGel) viy=l)
T e k(e =) vk -ul) R e -k Ly L XL
. c C C
B(¢ - cG'k) Blek, - u(y-1} ﬁiclz - v(y-1}]
y
B(¢ + ch) -8lek, + u(y-1)} -NC\:), + w(y-1)]
k +k ..._l"ll. . ..12 ..Y_‘:l
. x 2
C <c
e X, r wly-1) O ot Y
kxp ',b ky cz. ky c?.
- wly-l oyl
LD k1% (2.24b)
[o4 C
Blck, - w(y-1)] B(y-1)
-Bleck, + w(y-1)] B(y-1)
‘where .
¢ -1 (u2 + \J2 + w?')
S, = l: u + I:: v + {\ W
< X y 2
o= P
P -
V2 pc
Using Eqs. (2.16) and (2.17)
K= '.rl Ak'rk Q (2.25)




The diagonal matrix

k

can be written

where Il 2.3 is a matrix which has unity as the first three diagonal
14

elements and all other elcments zero,I& has wnity as the fourth diagonal

element and all other elemnents

~—

[

ORIGINAL pfﬂ.\x' i
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0 0 0
i 0 0
0 N 0
0 K e
0 0 it g

b2

' 4
k 1 2,3 + X I + kw I

diagonal element and all other elements zevo.

rerms are needed on the right hand side of Eg.

o

zero, and 15 bas waity as the fifth

€2.27) instead of five

)

(2.26)

(2.27)

BET I X SO

®ete that only three

because the fivst three eigenvalues are the same as shown by Egs. (2.135.

Using Eqs. (2.25) and (2.27), the split form of K is

1
K = Ak rl

or

1,2,3 Ty fo ¢ Ak

w1
4 fk Q +

K=K + K, + K

“v Ty Is T

Q (2.28)
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where

-1
Koy = 4 T I Ty Q@
K= AT 1Tt
3% AT ts T @

Everythihg is now available to carry out these operations and determine

the split form of the vector K. The operations described by Eq.

(2.28) give

K= Kl + K2 + K3

where
K=TF for' k = §
K=¢G for k= n
K=H for k=21
P
pu
=ty XL
Kl ARJ ” pv
pw
o u? & v )
e -

(2.29)

Tooww™ 4 VA noe

"



B

ORIGINAL PAGE 8
OF POOR QUALITY.
P

l.su + pckx

pv + pck
y

pw -%-,pckz

e+ p + pch
" P pcek

5 J ' >
3 )\k 2y

1
"

4 .
A = O c|vk|

5
A = gk _—3

" P
| vk| = 02 412 41D
» X y .2

.k

k, = -
S Y
ek &2 kxu + kyv “+ kzw

Thomas (Ref. 10).

2 3
)\k ')\k = kxu + kyv +.kz

-3

" This is the same form of the equations as presented by Rekli

C e g A i
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ITI. ALGORITHM ,
The discretized integral form of Eq. (2.2) in computational

space for a cell with center denoted as %,j,k is (see, for example,

Ref. 11)
89 peande + (F, ., - F, )AndL + (G,.. - G. ,)AEAL
At - Wy~ Py 45 T ik
+ (Hk+% - Hk_%)A€An = 0 ' (3.1)
or

§F. &G, oH
£ i, T3,k
mtEtEe tE = O (3.2)

The central difference operator notation in Eq. (3.2) indicates the

flux vectors are evaluated at cell faces in this finite volume formu-

lation as illustrated in Fig. 1.

The numerical scheme used is a finite volume version of the

second~order upwind scheme of Warming and Beam (Ref. 12), The

present scheme is an extension of that used by Deese (Ref. 13) for two-

dimensional flow. To illustrate this scheme consider the simple model

equation
du . AF(uw) .
3t 4 5 0 (3.3)

where F(u) = au; and a is a constant taken as greater than zero

for illustration. The second-order upwind scheme of Warming and Beanm

is n
: vr
-+l on i
u, v, - At ‘(3t4a)

)
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2 n =n+l
u;+l = P(u + u;+l) - %; Zzgl "%glzf%;'" (3'A§)
where
W R - r )
and :
. 1?(6‘;“)

The finite volume form of Eq. (3.3) corresponding to Eq. {3.2) is

Au i : :
et A =0 (3.5)
By using the one-point upwind extrapolationé, u, for u ;. and u
i - i i+ i-l
for Uy the predictor step for Eq. (3.5) is
- n
VF .
-n+l n  adt, n n n i
Y1 %Y T A (“i mYyg) Ty e - 3.6

which is the same as Eq. (3.4a). By using the two-point upwind

extrapolations, 2u, - u for u and 2u -, for u

17 Myag For ug i-1 -y 0 the

finite volume corrector step 1s

ntl _ 0 abt

n ~nt+l  ~ntl
b T S [(2“ - )"(2“1 1T U Py e )
or -
~n+1
n+l " aAt[( 4 ol ) + ( - )] - ﬁﬁ.ffi
Y1 T YT o 200y + Uy 1-1 2 hx
3.7)
Using Eq. (3.4a), Eq. (3.7) can be written
T 2.n
V°F —~ntl
nt+l -n+4-1 At i At VF
Yy /(“+‘1)“2 b T2 T ix (3.8)

ot Fr BRIV o e st

£2 SN

7 ek ™D Tee,

-
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which is the same form as Warming and Beam's corrector step given by
Eq. (3.4b). The stability, dissipation, ahd dispersion analyses of
Ref.ﬁgl,-tm%@%EQre,EQrei$®plicable to the present finite volume scheme.
In addition, it is not difficult(to show that this scheme is also
consistent.

| The scheme for the complete three-dimensional unsteady equation
is:
Predicto;:

et T n

: . ©oe » ~n A0
Qiaj.’k " Qi,j,:"‘ - ATilj’k /e::l“"e(Qi'*‘:érj:k) - F)e(Qi‘,'t‘»jak)

“n - “n ) ’ ~n
00y g1 T S0y gy i) ()

_-ﬂ(é‘;’j,k_“,é)] 3.9

where the subscript £ corresponds to one part of the split vector in

Eq. (2.29); and

~

Qn = Qn if the correspondin \1 A4 o AS ivenvalu»
5,3,k T L3,k COTTCOPONEINB fp» Bg» OF A €78 ¢

2

evaluated at i+%,j,k is > o

1 .4 _ v
if the corresponding Aé,ké, or A? eigenvalue

n n
Qg 1,k = 1,5,k £

evaluated at i+:,j,k is < 0

and similarly for Qg;% ; The same is done for Qz 4%,k and
: L ’ 23

K

Qg,j—%,k except At, ki, andyki eigenvalues are interrvogated; and
gimilarly, for 6“ and 6“ except Al Xa and AS
i i:jr!"+!é i,3,k-% AN 4 VC

elgenvalues are interrogated.
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At 3
n+l n _ 1,1,k s (ol Cw oD
@ j K gk T T e Fe Qg i Ep Qg i)

AN ~1 Any
+ GpQy gun, 00 "OHQ gy i)t YICH 4 k+') HpQ; 5 k-3

L Enkl =+l =l zn+l '
* Q54 - %%MJQ+%W§P) 6p(Qy yp.10
=n+1 n-i-l :
Zn+l .
etc, variables are determined in the same way

where the Qii/ i,k
»

as the Qi+? 3,k etc, variables as described below Eq. (3.9) except

23Jd s
0 R i | N :
Qi,],k’ etc, are used in place of Qi,j,k’ etc. The Qi+%,j,k’ etc, are

determined by

4 5

N if the corresponding Xé . AE’ or AE

n n
Ug, g,k ™ 2,5,0 7 Qaan,g
' eigenvalue evaluated at i+s,j,k

is > 0

or

N n n L . 1 4 S

Qs %4,k Q44 - Qi+2,j,k if the cormesponding AE’ AE’ or Ag
eigenvalue evaluated at i+%,j,k

is < 0

-

and similariy for 62_%,j,k. Again, the same is dene for Qg,ji%,k

and Q? 3, ki by interrogating the appropriate n or f eigenvalues.
Although the algorithm given by Eqs. (3.9) and (3.10) is an

extension to three dimensions of that used in Ref. 13 for two dimensions,

the interrogation of eigenvalues differs significamtly. -Three methods

were tried in Ref. 13 to handle the computation of flow variables at

. cell faces when eigenvalues were of different sign en either side of

. exe¥e3d L,

e e et s
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the cell face. The approach taken in the present scheme is to compute
eilgenvalues at cell faces rather than at cell centers as illustrated in
Fig. 2 on é 14 uzconszaniy@lagwﬂ The difficulty assecianted with eigenvalues
changing sign is thus eiiminated. This seems a natural approach because
the use of Eq. (2.29) in the finite volume discretized equations (Eq. (3.2)),
requires that eigenvalues be knéwn at cell faces. The aigenvalues are
computed by averaging the inférmatibncn\either side of & cell face that

is necessary for their computétion according to Eq. 12.13). Then,
depending on the sign of the eilgenvalues, the information necessary to
’compute the remaining terms in the Spiit vectors given by Eq. (2.29) for
use in the algorithm given by Egs. (3.9) and (3.10), is determined by
extrapolation from the appropriate directlon.

is determined from

The time st At
h m s ep 1,3,k
£ n C
Mk MM Mgk
ATi ik = 3 n ' . - 3 (3.11)
2 At At + At at? o, + M. . AT, '
1’3)1( iDj’k i!j’k i)J’k "!"'ZMZEB',k i)J’k

where

k  _ _CFL Ak (3.12)

At
i)j ’k

maxlkf,
L

for k = &, n, and . Because the eipgenvalues are computed at cell faces

rather than cell centers, A£ is the average'of the sigenvalues on cell

k
faces in the k = constant computational planes (where k = £, n, or ),
and £is eipenvalue 4 or 5 because one of these will always have the
maximum absolute value. To accelerate convergence for steady-state

solutions the maximum allowable time step in each volume is used where

CFL < 2,
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For the computation of the first points inside the couumputational
domain, the scheme is only first order accurate and stable for a CFL
of 1. The time steps at these outside points are, therefore, decreased

by a factoxr of 2.
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1V, BOUNDARY CONDITIONS

To derive the characteristic variable boumdary conditions, the Euler
equationa'need tofbe castlin characteristic variable form. Therefore,
the characteristic variable form of tle equétiéns i; derived first,
followed by the derivation of the boundary conditions for the specific

cases of supersonic and subsonic inflow and outflow, and impermeable
surfaces.
4.1 .Characteristic Variables
Consider the nonconservative form of the Euler equations given
by Eq. (2.6). Using Eg. (2.18) in Eq. (2.6), and multiplying Eq. (2.6)

on the left by P;l, gives

=1 3q , -1 sl 8g ol -1 3q 4
P oo PP P M P st P Pt e Em t 0 WD

where k = §, n, or f, and m includes the remaining two curvilinear
coordinates out of the set £, n, or § where m # k. Therefore, there
Is a two~term surmation on m in the third term in Eq. (4.1). Define

the third term in Eq. (4.1) as

-1 ‘ ~1 3q ’
i b4 —
Sk,m Pk “m Am Pm am . (4.2)

with the two~-term summation on m understood. Equation (4.1) can be

written

pt 244 pr 3, oo (4.3

k k 'k 9k “k,m

- : ) -1
Consider Pkl to be a constant matrix denoted as Pk 0 Then
- _ R

Eq. (4.3) can be written

P T
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a(p o (P
MWL + A Fi,o q)+'s = 0

ot Kk ok k,m

Defining the characteristic vector, Wk, as
. PO

S o
Wy = Pk,oq
Eq. (4.4) becomes
oW oy
k k -
5t T Mk F Sm = O

The elements of the characteristic vector, wk, are ~alled characteristic

variables, and are denoted by LA
53

The characteristic variables, Wy g are determi.ed using Eq. (4.5,
, .

The vector q is
' T
q= J[p, u, v, w, rl

and the matrix P
k,o

(4. %)

(4.5

(4.6)

is given by Eqs. (2.23) where the variables p and

¢ (speed of sound) in Eq. (2.23) are denoted Py and s to indicate

a reference condition. Using q and Pilo in Eq. (4.5), the elements
’

of the characteristic vector

W o= (w w W W w )?
k k1 Yk,2* Yk,3° Yk,4° Yk,5

are

. X -
W [k, (o 5 + kv kyw 1

K1 ,
[vk| c

it

w. —d [k (p - J%) - kzu + kxw}

k,2 fvk| ¥ c
oy " g [k (o - J%) gy - k v)

3 .
[ vk] e

4.7)

(4.8a)

(4.8b)

(4.8¢c).
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g1 plvk]
W o= —= | + (ku+ kvt kwl (4.8d) .
k,4 jox] vZ IO X . K,
- 3 1 vk |
s i = (e + kow - kow ] (4. 8¢)
k,5 lvk| V2 P,e, X . y

The characteristic variables correspond in order to the eigenvalues

1 ‘, .
Ak w kxu + kyv f kv = 8 (4. 9a)
R . A
Ak = ek | (4. 9y)
3 o

Ak = ek . (4. 9¢)
N c|Vk| (4. 9)
k k '
N -‘clvkl (4. %)
k. k . N

4,2 Characteristic Variable Boundary Condigions

Thé boundary conditions are derived below assuming locally one-
dimensional flow. This assumption is probably better for far fileld
“boundary conditiens than for boundary conditions applied on or nesr
surfaces, However, numerical experiments uwsing zero pressﬁre gradient,
extrapolation, vormal pressure gradient, and locally one-dimcnsional
characteristic variable boundary conditions, indicate that similar vesults
can be obtained using any of these four methods for impermeable wall
boundary conditions as long és the grid is not extraordinaxrily coarsa.
For the computationé performed thus far, the ilocally one-dimensional
characteristic vaviable impermeable wall boundary conditious ave to be

preferred over the other three methods; hence, this method is developed -
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below. (Further investigations should be performed without the
locally one-dimensional assumpﬁion, howevar,)

By neglecting:ﬁhemgﬁhirecpjons in Eq. (4.6) one obtains

W aw i
k ko .
5 + Ak 3 0 (4.1

This equation can be written

aw, ou aw, .
— B — w0 ) A Y
e P A T o (4.11;

whare

at = N

The elgenvalues, therefore, indicate a direction in computational
‘space. According to Eq. (4.11) one particular eigenvalue is assoei#ted
with one particular characteristic varisble. Each eigenvalue, Ai.
indicates the direction across the k = consﬁant computational surface
that information contained in the associated characteristic variable,
wk,i’ propegates. This result is the basis for determining the
boundary counditions refexred to here as characteristic variable boundsry
_conditions. .
boundary conditions are now developed for the following five

specific cases

1. supersonic inflow

2. supersonic outflow

3. Sugsonic inflow

4. subsonic outflow

5. impermeable surface
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Supersonic Inflow

This is a situation where all eigenvalues have the same sign,

Because flow is coming into.the computational domain, all flow variables

are Sbecifiéd;

Supersonig Outflcw’

This is another situation where all eigenvalues have the sawe sign.
Because flow ié leaving the coﬁputational domain all flow variables st
the‘boundary must be obtained from the solution in the computational
domain. All flow variables are extrapolated from inside the computational
domain to the boundary.

Subsonic Inflow

This situatien is characterized by four eigenvalues of the sane sign
and one of differing sign. For the subsonic inflow case shown in Vig.
3a with the flow in :ie direction of increasing computational cooydinate

k, the first four eigenvalues are positive and the fifth is negative.

P P R

Foxr the subsonic inflow case shown in Fig. 3b with the flow fu the

direction of decreasing computational cocfdinate k, the first three and
fifth eigenvalues are negative and the fourth eigemvalue is.positive. ' ;
For a totally general three-dimensional code either sitﬁation n Fig. 3

could occur. Each possiblity in Fig. 3 is taken Into account in the-

.

following derivation. Using the characteristic warisbles given by .

Eqs.'(ﬂ.S) one obtains

Ry kv e kwl = LR o\ - 400
[kx(p 2) + sz kyk)a [kx(p cz) + kzv kyw]b (4.22a) -

‘ . o o }
- -._E- - N 2 ‘ Y - -E— - - 4 o . (
[ky(p cz) ku k_RRWIa [ky(p c2) k,u kxw]b {(4.120) '
o o

)
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- R -k = -2y b k- '
[k, (o 02) - kvl = [k G c2) * ku kxv]b (4.12¢)
(V) [o]

[gigkl * (kxu +>R?V'{f&zwi3; = [édggiA; (kxu + kyv + kzw)]b (4.124)

o o

[
pOO

Pl " : = (Pl - ; 4.12¢)
[p Pl (qu 4 kyv + kzw)]z [ T (ku + kyv + kzh)]b (4,12¢)

where the plus signs in EBq. (4.124d) and the negative signs in Eqs. (4.12¢)

the situation in Fig. 3b. The subscript a refers to approaching the
boundary, subscipt b refers to the boundary, and subscript £ reﬁers to
leaving the boundary (see Fig. 3). Note from the equations for kx, ky’
and k, given helov Lq. (2.2) that the products Jk, Jky, andljkz are:

components of avea vectors. The computer code actually uses these

components of cell surface areas, and because the boundary of iaterest

in Egs. (4.12) is the cell face containing the boundary point b, the
area vector components of interest correspond to this cell face. The
netrics at peints a and £ arve taken to be the same as those at point b,
and the coefficlents of the bracket terms in Egs. (4. 8) are not carried
through the wmanjipulation of the equations. The linearization point o
is taken té be on the boundary.

Equations (4.12d) and (4.12e) can te combined to obtain

Py = g{Pa-f Ppd Dueolkﬁ(n\,1 - uég + ky(va - v19 o+ kz(wa - wa]} (4. 130)

~ ~ £

vhere k, ky, and k are defined by Eqs. (2.15). Equations (4.12a),
(4.12b), (4.12¢), and (4.120) can be solved for the four remaining

unknown boundary values, giving

~refer to the situation in Fig. 3a, and theother sign option refers te =

cpufets

Coef.
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=p bt (%.,13b)
o]

u, = u_ tk 22 : (&.13c¢)

v, sy Kk 2P (4.134d)

w,oe=w %k —-E-E‘ (4.13e)

The plus sign option in Egs. (4.13) refers to the compﬁtation&l coor="
dinate and inflow situation depicted in Fig. 33, and the uegé&ive sign
opﬁion refers to Fig. 3b. There is no sign option in Fig. (4.13b),

Note that these signs correspond to the sign of the first three eigenvalues,
énd hence this is a means of writing the code for general applications

with arbitrafy orientatlon of the computation coordinates. The point

a 1s outside the computational domain, péint b ig¢ on the computational
boundary, aud point £ is inside the computational domain.

Subsonic OQutflow

This situation is also characterized by four eigenvalues of the
same sign and one of opposite sign. The development of subsonic out-

flow boundary conditions is similar to that for subsonlc inflow, and

- Fig. 3 con be used again for illustration. However, for subsonic out-

flow only one characteristic variable is specified and four are determined
from information inside the computational domain, whexens, for subsonic in-
flow four characteristic varlables were specified'and'one was deternined from
information inside the computational domain. Using the charaéteristic
variables given by Eqs. (4. 8), and the signs of the eigenvalues given

by Eqs. (4.9) for the situations in Fig. 3, one obtains ‘a set of

et v ;;.,:v;.ﬁ‘:%'?’
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equations identical to Eqs. (4.12). Note, however, that although
the equations are identical point a is now inside the computational

domain .and point £ is ouifiide the computationél domain; whereas, just

¥

the Oppositevwas<tfﬁevfor“Subsonic inflow.

Because the éqn&tions for subéonic outflow are the same as Eqs;
(4.12),. they have the same formal solution. However, because one
characteristic variable ig specifiled, the resulting boundary conditions
differ somewhat from the subsonic inflow boundary cenditions. Consider
Eq. (4.128). By specifying that the oﬁéflow islétréiéht, thenp, = sz’
according to Eqs. (4.12¢). The remaining four equations can be solved

for the remaining four variables giving

(4;14a)

pb = p£
Pp = Py

pb = p P m—— 2 (4.14b)

o
~ P_-P .
. a b

Uy * ua:‘:kx “-D‘;-E‘;—"- : (4.14c)
~ P_ =P

vy = vtk ~2—b (4.144)

a PoCo
. , ~.P_ =P .
W, = w %k & b © (4.04be)
b z pc, -

' The plus and minus signs have the same meaning here as for Egs. (4.13).

For external flow computations, Qe could be the awbient static pressure,

P .
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Impermeable Surface
For a boundary across which there is no flow the first three
eigenvalues given by Eg. £47%) are zero, the fouxth is positive, and
the fifth is negative. One condition must, therefore, be specified,
The condition specified is that there is nc flow across the boundary.
The following relations among the charactexistic wvariables are used to
determine the boundary conditions
- - —E. - = - ...E. o -
Ik, (o 5) + kv kyw]b [k (o Cz) + kv lcyw]r (4.15a)
co o .
-~ 2y o = g - B - k& ‘
[ky(pv Cz) kzu + kxw]b [ky(p cz) k,zu + kxw]r - (4.,15b) :
o )
(o - B - - Py s - J15¢
—_— [k, Co 02) + kyu kvl = [k (o 5) Elyu kvl ¢4 ) ‘
oo o ' o ;
L -k = (4,15 7,;
T (kxu +kyv+ kzw]b 0 (4.150) %
| - _ V| -
\; [m.l +(ku+kv+hkwl] = [—PM--%(Q}E.u-l-kv'f-k_w)]
\ i , P c % Yy z b P c # y z ' 7r
o o0 oo , 3
\‘ : ' (4.159) Gl
i |
, ‘ The subscript r refers to a reference value, which is selected as the ut
center of the first cell from the boundary. The: ainus and plus s‘igns '\
in Eq. (4.15e€) correspond to the location of the point r. If the point
o
r is in the positive k direction from the boundary then the minus i
sign is used in Eq. (4.13¢), and if it is in the minus direction then ;‘

the plus sign is used.
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Finite volume codes only require the pressure at an impermeable

boundary and consequently Eqs. (4.15a), (4.15b), and (4.15¢c) are not

{ize handling of points near boundaries

needed. However, to:fapd
and aid in code vectorizafion,‘phantom points are used in the present
version of the code. The use of phantor points requires information of

variables othexr than pressure to ensure, for cxample, zero flow across

© an impermeable bouhdary. Such information can be obtained from Eqs.

(4.159) ..
Equations (A.iSd) and (4.15e) can be solved for Py Equations

(4.15a8) - (4.15d) can then be solved for the remaining four variables.

The solution of Egqs. (4.15) is

Py =P, * poco(kxur + kyvr + kzwr) (4.16a)
Pb - pr :
Py = oy T (3.160)
c
o
u, = u. - kx(kxur + kyvr + kzwr)_ (4.16c)
= - " N - . v ‘ A
vy = Y . ky(kxur + ker -+ kzwr) (4.16@)
Wy =W kz(kxur +k.yvr + kzwr) ’ (4. 16¢)

where the point r is the center of the first cell from the boundary
and the minus sign in Eq. (4.16a2) is used if r is in the positive k
direction from the boundary, and the plus sign is used 1f r is in the

negative k direction from the boundary.
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4,3 ?hantom Points

Phantom points are denoted by the subscript p.

obtained from the relations

Py = 2P, - Py

The points are

(4.172)
(4.17b)
(4.17¢)
%.170)

(4.17e)

where the subscript in refers to the center of the first cell inside

the computational domain and can be any of thepoints a, £, or r used

in this section. For example, the phantom points for an impermeable

"surface are

P = p_+

p=p_ -+

woRwW, -
p o x

The velocity vector components are the same as those used by Jacocks

Kneile (Ref. 14).

Zpoco(kxur.+ kyvr + kzwr)

z(pb - pr)

2
c
o

2kx(kxur + k.yvr + kzwr)

Zky(kxur + kyvr + kzwr)

2kz(kxur + k.yvr + kzwr)

(4.18a)

(4.18b)

(4.18c)
(4.184)

(4.18¢e)

and
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V. RESULTS

The computer program written to solve the three-dimenéional un-
steady Euler equations~is'r§%érred to as the SKOAL c;de. SKOAL is
an acronym for nothing. “

To investigate the results of this code a numerical solution was
obtained for the ONERA M6 wihg at M_ = 0.84 and @ = 3,06°. The pressure
distribution is shown in Fig. 4. This solution is compared to a

solution from the FLO57 code in Fig. 5. Identical 96x16x16 meshes

 were used for both solutions in Fig. 5.  The major difference between

the two solutions occurs in the outbuvard region of the wing. More
detailed comparisons between the solutions, inciuding compariséns
with experimental data (Ref. 15), are given iIn Fig. 6. Comparisons of
spanwise distributions of lift and drag are givem in Fig. 7. The
FLOS57 code gives a 4% higher value of lift to drag ratio than the
SKOAL code,

The number of supersonic points (NSUP) 15 sometimes used as a
crude indication of convergemce. The FLO57 solution was obtained by
firsg using a 48x8x8 grid and then using this crude grid solution as
initial conditions for the 96x16x16 grid solutiom. Hence the NSUP
correé?onding to an impglsive start for the 96x16x16 grid was not:
available from the FLO57 code for comparison with the SKOAL code. In
oxrder to compare the NSUP history between the two codes, a 48x8x8 grid
solution was obtained using the SKOAL code. These results are presented
in Fig. 8. ;The FLO37 code is stabie for a CrL of 2.8 using a four-
stage Runge~Kﬁtta scheme, whefeas, the SKOAL code is stable for a CFL

of 2,0 using the predictor-corrector scheme. It is interesting to note

iy
e



that the number of cydles‘required for the NSUP to become constant
using fLQS? is 246, whereas, the number of cycies required for the
NSUP to become congtant using SKOAL is 325, The ratio of these two
numbers is essentially the inverse racio of CFL numbers. Another way
of looking at this is to note that fL057 passes through é £lux balance
routiné four times during each cyele, whereas SKOAL passes through a
flux balance routine three time during each cycle. A comparison of
the ratio of the NSUP to the final number of NSUP (denoted as NSUP/
(NSUP)C) as a function of flux balances is giyey in Fig. %. Baced on
the number of flux balances required to reach steady state for this
solution these methods are operating identically. However, one pass
through a dissipation routine (which is similar in terms of computer
resources to an extra pass through the flux balance routine) is required
in the FL657 code which is not required in the SKOAL code because no
additional dissipation terms were included. The important comparison,

howevex, is the number of computer resource units required to reach

steady state. This dependson the coding, vectorization, storage, etc.,

of earh code on the same machine., Such a comparison cannct presently
be made. As the codes now stand, the FLO57 code is probably at least
twice as fast as the SKOAL code per cycle. However, based on Fig. 9,

ic is énticipated that the SKOAL code can be improved,

Numerous other results have been obtained using the SKOAL code
for various two-and three~diﬁensiona1 geometrieé, and for subsonic,
transonilc, and supersonic flow, The ONERA wing, howeyer, is the only
solution obtained thus far that can be compared to aﬁather Fuler code

solution for which the same mesh was used,
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VI. CONCLUDING REMARKS

A method was presented for solving the three-dimensional unsteady
Euler équationsTbaﬁﬁd.on flux vector splitting. The equations were
cast in curvilinea: coordinates and a finite volume discretization

was used for handling arbitfary geometries, The discretized equations

were solved using an explicit upwind second-order predictor-corrector

schene that is étable for a CFL of 2, No additional dissipatioh terms

were included in the scheme, Local time stepp;ng was used to accelerate
convergence forsteady-state problems. "Chafactewistic variéble boundary
conditions were developed and appliedihithe-farfield and at impermeable

surfaces. Numerical results were obtained and compared with results

. from-the FLO57 code and experimental data for the ONERA M6 wing at

M, = 0.84 and a = 3.06°,
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* ONERA 156 WING
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