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"Numerical Solution of Axisymmetric Flow with Arbitrary Wall Geometry." The
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APPLICATION OF THE METHOD OF LINES FOR SOLUTIONS OF
THE NAVIER-STOKES EQUATIONS USING, A NONUMIFORM GRID DISTRIBUTION

By

J. S. Abolhassanil and S. N. Tiwari2

SUMMARY

The feasibility of the method of lines is investigated for solu-

tions of physical problems requiring nonuniform grid distributions. To

attain this, it was also necessary to investigate the stiffness charac-

teristics of the pertinent equations. For specific applications, the

governing equations considered are those for viscous, incompressible,

two-dimensional and axisymmetric flows. These equations are transform-

ed from the physical domain }:awing a variable mesh to a computational

domain with a uniform mesh. The two governing partial differential

equations are the vorticity and stream function equations. The method

of lines is used to solve the vorticity equation and the successive

over relaxation technique is used to solve the stream function equa-

tion.

The method is applied to three laminar flow problems. These are:

the flow in ducts, curved-well diffusers, and a driven cavity. Results

obtained for different flow conditions are in good agreement with

available analytical and numerical solutions. The viability and

validity of the method of lines are demonstrated by its application to

Navier-Stokes equations in the physical domain having a variable mesh.

Graduate Research Assistant, Department of Mechanical Engineering and,
Mechanics, Old Dominion University, Norfolk, Virginia 23508.

"	 - 2 Eminent Professor, Department of Mechanical Engineering and Mechanics
Old Dominion University, Norfolk, Virginia 23508.
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Chapter 1

INTRODUCTION

In engineerig and sciences, most physical phenomena may be de-

scribed by a set of differential equations and boundary condition equa-

tions. These equations are mostly nonlinear in nature, and in a major-

ity of cases, they can be solved only by numerical approaches. In

particular, the field of fluid dynamics is governed by a specific set

of nonlinear partial differential equations called the Navier-Stokes

equations. In certain cases, flow fields may be described accurately

4

n by the incompressible form of the Navier-Stokes equations, 	 For the
r`

present study, the incompressible form of the Navier-Stokes equations

is expressed in terms of the stream function and vorticity. 	 The

resulting equations are two coupled nonlinear partial differential

!. equations. The boundary conditions for the dependent variables, stream

function and vorticity, are expressed by a set of coupled linears
equations which depend on the nature of physical applications.

In the field of computational fluid dynamics, finite difference

'^ and finite	 t	 helemen t methods have a well developed history.	 Another

method called "The Method of Lines (MOL)" has also received special

" attention for the numerical solution of certain partial differential

M,

-

^'	
f

equations.	 Detailed discussions on the method of lines are available

5

w
in [1 -81 *.	 If the governing equations contain both time and space

Gvariables, the procedure is to discretize the space variable component

.= and treat the time varying component as a continuum. 	 This leads to a

" system of coupled ordinary differential equations (ODE'S) which can be

*The number in brackets-indicate references.

t ,



integrated with sophisticated ordinary differential equation software

(9) having automated time-step control.	 The advantages of this

approach are that the techniques can be applied quickly and the magni-

tude of knowledge about ordinary differential equation solvers can be

utilized for obtaining specific salutiona,,
a

The early development of the method of lines was in the Soviet

Union.	 Liskovet's article [I] is a review of 154 papers which date up

to the mid-sixties. 	 This review has considered linear partial differ-

' ential equations of elliptic, parabolic, and hyperbolic types. 	 Leser

k

E.	 •. and Harrison [2], and Hicks and Wei [3] showed extensively the

viability and validity of the method for linear partial differential
kr 

equations.	 Later, Klunker et al.	 [4] used the method of litres to

calculate nonlinear conical flows.	 It was concluded that the method of

lines is a useful and versatile procedure for structuring the numerical.

4;-, 1',ucions to nonlinear equations. 	 Jones et al.	 [5] presented an

extensive discussion for application of the method of lines in elliptic

systems.	 It was concluded that a large nuaber of lines may cause

nonconvergence.	 However, this conclusion was based on results obtained

from linear systems.	 Loeb and Schiesser (101 presented an elegant way

to analyze the stability of the method of lines. 	 It was concluded that

•	 higher order finite difference approximations to the spatial deriva-

tives would improve the accuracy, stability and computational cost.
7

r	 Madsen and Sincovec [6] applied the method of lines for solution of

a.
several nonlinear partial differential equations. These problems were

the diffusion of electrolytes, flow through porous media, and global.

atmospheric transport with kinetics. It was concluded that the method

of lines gives satisfactory and reliable results which could not be

2

•
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obtained by using the finite difference schemes. Hamilton [71 obtained

solutions of axisymmetric and two-dimensional inviscid flow over blunt

bodies using the method of lines and observed very accurate solutions

using just a few lines. Kurtz et al. [8) applied the method of lines

to the viscous stream function - vortici.ty equations in a rectangular

coordinate system. The particular problem discussed was the flow in a

driven cavity. It was concluded that the method of lines is capable of

producing solutions to the stream function - vorticity equation at very

high Reynolds numbers where standard finite difference techniques fail

[11].

The literature survey indicates that the method of lines has been

applied by several investigators in atunerical experimentations using

only the uniform grid distribution. For many physical problems,

however, it becomes essential to have irregular grid distributions.

This may be due to the complexity of the physical boundary geometry,

and/or local grid resolution. Therefore, there exists a strong need

for investigating the feasibility of the method of lines for physical

domains that are covered with variable grids which conform to the

boundary contours and may be concentrated in specified regions.

The objective of this study is to establish the validity and via-

bility of the method of lines where there is an arbitrary grid distri-

bution. Also, this study investigates the effects of grid concentra-

tion, Reynolds number, boundary conditions, and differencing schemes on

stiffness and stability by using a one •-dimensiona, advection - diffu-

sion fluid flow equation and heat equation.

J
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For viscous incompressible flow, the equations of motia-a are

derived in two-dimensional and axi.symmetric coordinate systems in

Chap. 2. These equations are transformed from the physical domain

having a variable grid to a computational domain with a uniform grid.

The resulting equations are solved numerically. The method of lines is

used to solve the vorticity equation and successive overrelaxation is

used to solve the stream function equation. The computation procedure

is presented in Chap. 3. The stiffness analysis is presented in

Chap. fit•. A discussion on appropriate boundary and initial conditions

is given in Chap. 5. Information on grid generation is presented in

Chap. 6. In this study, the grids are generated by an algebraic method

which transforms the irregular physical domain into a uniform

computational domain. For physical applications, specific  problems

considered are: the flow between horizontal ducts, curved-wall diffus-

ers, ead flow in a driven cavity. The applications are described in

Chap. 7. Results are obtained for different flow conditions and are

F_ , ,	 compared with available analytical and numerical solutions in Chap. 8.

The viability and validity of the method of lines are illustrated by

r
	

its applications to the incompressible Navies-Stokes equations.

=r



it

39.	 (2.2)
1 C O

a x.

S

w,

yy^^

s

continuity:

5

a

-f

^F

i{#

Chapter 2

THEORETICAL FORMULATION

The theory of fluid dynamics is based upon a set of governing

equations called the Navier-Stokes equations. For multi-dimensional

flow, the equations are second order nonlinear parabolic -elliptic

partial differential equations. The first-order boundary -layer forms

of the Navier-Stokes equations are parabolic in nature and offer some

computational conveniences. The p-z equations, however, are not

applicable in many realistic flow conditions such as reverse and

separated flows. Therefore, it becomes essential to make use of the

full Navier-Stokes equations in many flow situations of practical

interest. A brief discussion of the basic governing equations used in

this study is presenLed in this chapter.

2.1 Governing Equations

For viscous incompressible flow the equations of motion can be

written in tensor notation as

4

i^

rf	
^k

t^

r	 t

Z : -	 Momentum: DU a P	 a	 -	 a Ui 	 ^^ U	 (2. 1)

P	 _	 +	 u	 +

Dr	 a xi a x^	 a x^ a xi

It should be noted that in Eq. (2.1), U is constant in the case ofw ,.

" 	 laminar flow. For the oake of generality, Eqs. (2 . 1) and (2.2) can be

y

nondiLuensionalized by introducing the following variables:
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U.
1

X,
1

P
U .	 a
	

,	 X. =	 , P
i	

^	
i L

P UZ

u t
V	 = u	 ,	 t

m
= 

L/Um
(2.3)

A substitution of these variables in Eqs.	 ( 2.1) and ( 2.2) results in

DU. 	 _ BP	 a
+

rrau.

+`^	 4 a
(2.4)

Dt
F—

X.	 a X. X.	 ax.

au.
(2.5)

= 0

ax.
1

where a - u /Re	 (2.6)

Equations (2.4) and (2.5) can be written in two-dimensional cartesian

or cylindrical coordinates as

;j

}

7
`

aU	 au	 au	 aP
aZ+var+uaz^—az+zaz^

a	 aU
"aZ)+

1 s a_	 a	 aV	 au
r	 ^aZ +ar)

av
ar

aV	 aV	 aP
+v ar

+u R.z =_ 9r
a

DV2art"ar)+

L_ av	 au	 2ya av	 V

(2.7)

(2.8)

i

s'

Equations ( 2.7) to ( 2.9) are applicable to plane two -dimensional flows

if 6	 0 and to axisymmetry flows if 6 = 1.

2.2 Stream Function and Vorticity Formulations

There are now three equations, Egs, (2.7) - (2.9), and three

unknowns U, V, and P. Introducing the definitions of the stream

k
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function and vorticity it is possible to reduce the number of equa-

tions to two and this eliminates the pressure. The definitions of the

stream function and vorticity are:

a 	 9 	 (2.10)
w 

"az 
—ar

U - li d 	(2.11)

	

r ^—z	 (2.12)
where w is the vorticity and is the stream function.

A combination of Eqs. (2.7) through (2.12) results in

awa2w 	
9 2w 	 aw

^at 'a	 +a_- +d [ar
9a aw

u-2 a Z) a Z
+[ 

V-2 a rr'

a2 a	 a2a a V a U
+[a	 —	 "] [asz +ar]

_ r]

1W ] C
+ sw [V + arl /r

32 a 	 a V _ aU

	

+ 2 araZ [ar aZI	
(2.13)

,i

w
r:

92 + .a 2 *	 6 a + r w = 0	 (2.14)- r ar

Equation (2.13) is the non-conservative form of the vorticity equation.

The conservative form can be obtained by multiplying the continuity

equation by w and adding it to Eq. (2.13) as

ĵsJ8 ? aw	 j a 2w	 a 2 w	 aw
_a t	 °`	 a^ + ate- + a [a r

w	
{'

_
r^ 

/r

J`

a (Uo)	 a (Wi) _ 	 a«
{az	 +	 2 [

F

aw + a« , aw
,	

F

9 	 az aZ	 ar	 Dr

' +1 8W a«	 32a	 32a	 [3 V aU
K'	 f4 yl

{
•:

2

[ 9 V _	 1
+ 2 araZ	 3 	 aZ }

(2.15)
. °r

y7

t.

a^ 7
Yn
E
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c"

Ir

t>

fzz ^ z	 +zz f9 + 
2 z n z fg n +n zz fn + n z fnn

(2.19)

f

4 ti

k

I
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The preceding equations are nonlinear parabolic-elliptic partial dif-

ferential equations which can be solved numerically along with appro-

priate boundary and initial conditions.

2.3 Coordinate Transformations

The governing Eqs. (2 . 13) through (2.15) are expressed in
4

physical coordinates. For many problems, the boundaries may be quite

irregular (Fig. 2.1a). This requires special consideration for the

application of boundary conditions such as interpolation or some kind

of approximations. Also a local grid resolution is required in most

q

practical problems, which makes it extremely difficult to solve the

governing equations in the physical coordinates. Therefore, it becomes

advantageous to transform Eqs. (2.13) through ( 2.15) into new

computational coordinates. The computational domain is an idealized

rectangular coordinate system where a uniform grid is speci-

fied (Fig. 2.1b). In other words, this transformation maps the z, r

domain of the physical coordinates (Fig. 2.1a) into the ^, Ti domain of
t^.

the new computational coordinates (Fig. 2.1b). 'Ibis transformation,

however, adds considerable complexity to the equations of motion. The

following chain rules are used in the transformation process:

f	 ^ f +n nz	 z ^	 z 

f r s9r 
f^ 

+n 
f

r Ti

frr?	 +9rr f9 +2 ^r n r fin +nrr fn + ^r fnn

(2.16)

(2.17)

(2.18)
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z

(a) physical coordinates.

n
S1

S4
	 S2

:^ ^ ^ I I I I I I ^°
S J .:	 a

u.d

(b)	 Computational coordinates.

_
b

Fig. 2.1	 Coordinate systems.
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fzr 0 ^ z g r f99 +gzr f9 + (g z n r +grnz) f9n + 
n zr fn +

n n f
z r nn

Equations (2.13) through (2.15) now can be written in terms of the

transformed var l,ables as

t"

jt

W 
t = At W^^ +
	 + Ci WEn + D1 w  + El 

wnn + F1
	

(2.21)
D '	 ^^ +	 + Gz *E n + D2 *n + E2 ^ nn 

+ F2	 (2.22)

For the non-conservative form of the vorticity equation, Eq. (2.2.1),.

the coefficients are defined as follows:

=a(^2 +^2)
z	 r

aaL zz +e rr + (a /r) fi r] - [U-2 (^ a +n
z	 z

 a )]

	

n	 74

c	 -{V-2 
(ra +nran)]r

C1 y 2x (9 z n z + rnr)

Dl '
aln

zz + n rr	
z

+ (a /r) n	 - ^ U-2 ( z « + n «n)]nz
-	 -{ V-2 (9 a + n a)I n

	

r 9	 r Ti	 r

a(nz + n=)

V

F

10

YWru .̂ _ 	 _	 _.	 rs[.... _. ...._ ._^.. ... w_n^...n.oi.`..f^,..^... 	 ..^^^.r K3 ^...+yyi...^r-.+:^ .I^ ..ate -	 .. •	 ^	 -....^u.v	 ... _.



^lJ e

ORIGINAL PAGÊ I9
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Fl - Ow /r) [ V + r a + n r an ) - (6 /01 + [ (^ z - 9r)a

zz - rr) 
a + 2 {^ z n z - r n r) a 71 	 (n 

zz - 
n rr) an

+(n2 -n2 )a ]	 v +n v +	 +n u ]
z	 r n n	 z	 z n	 r	 r n

+2[ z r aC^	 zra +	 z n r + rnz) a^n

+n	 u +n n a] I	 V +
	 -' u- n u]

zr n	 z r nn	 r^	 r n	 z^	 z n

For laminar flow these coefficients will be reduced to the following:

p; =a( Z +)

$ 	 zz 
+e rr + (6 /r) 9 r] - U g z - V^r

CL _	 z Z +fi r r)

E^
.	 A -am zz +nrr + 6 n r/ r ) - u T, r - V nr

Ej sa (y) z +nr)

F1	 r) (V - a /r)

t
For the conservative form of the vorticity equation, Eq. (2.15), the

K-'	 corresponding coefficients are

7W:,
4.-

n

F

L	
Yi

t s	 '

f

t.

Y C.

^i	 'k sa ( 2 + F,z)
	 ik E

w

d ^'T

- 

a	
zz + rr + (6 /r) r]	 '4

4	 e

r

= 2aznz 
+rnr)

i

°`	 11
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DI	 a (n zz +n rr + 
(6 /r) 

n 

F4 =a (n 2 + n2 )
z	 r

Fi 
=Sawa +	 a (w) ) + 

71 a (W) + 
^ 

a (w,) + 
n 

a (UW)

r a,	 r an	 z a^	
z 

an

The coefficients for the stream function equation, Eq. (2.22), are

defined as follows;

^z +fir

82 _	 +

	

zz	 rr - (d fir) r

..,	

C2	 2 (9 z z+ 
9 

n

^t
1)2	 n zz + n rr	 (a /r)nr

E2 =na +nr

F2 = raw

Equations (2.11) and (2.12) are written in the transformed coordi-

nates as

U = ( 1 /r)a ( 
r' + n r n )	 (2.23)

4W

The next step is to establish relations between the physical and compu-

tational coordinates such that
F:=..

z = z(9, n)

r	 r(9 , n)	 (2.25)
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The above relations should be unique, single-valued and Have continuous

derivatives. This will be true if the determinant of the Jacobian .

matrix of Eq. (2.25) exists and is nonzero. The Jacobian matrix of the

transformation is expressed as

p z^ nJ r	 rn 	(2.26)

The inverse transformation of Eq. (2.25) and its Jacobian matrix can be

written as

[
1]	 I (d ,r) J 	 (2.27)n	 ^n (z, r)

J*	 z ^ ri 	(2.28)

nz T)r

Equations (2.26) and (2.28) are related by

J = [ J*] -1 	(2.29)

The relations between derivatives of the physical coordinates can be

deduced from Eq. (2.29) as

r	 r

z ^ 1J 1	 Z	 IJT
zt	

_ Z^r	 - !Jf	 n r ll
jJ 4 is the Jacobian determinant.

(2.30)
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The relations between the second derivatives can be obtained by using

Eqs. (2.16), (2.17) and (2.30) as

zz = (g z rg n + n z nn - z J - z zJn) (J I	 ( 2.31 a)

g	 _ (n z	 + E z	 + g n J + g2 J/^J	 (2.31 b)rr	 r nn	 r g n	 r r n	 r 9

9 rz = - (gzzgn + n zznn +99 A + 9 r 
zJn )/ IJ1	 (2.31 c)

k ' nzz = - ( zr^ 	+n zr^n + i zJ
+nZJn )/IJ (	 ( 2.31d)

a

t

nrr (nrn +r	 -fir rJ^ - n=JJ1	 (2.31e)

6C^a

n
rz

- (n	 r	 +	 r	 + n
r En	 r ^E

n J+
n

9 n J Mi	 (2.31f)
n	

'

z r r z

it

Equations (2.30) and (2.31) relate derivatives of physical coordinates

to computational coordinates; these derivatives should exist. ;#

C-
? 1̂1	 I 1

Lk•. lr ^ u	 i

9P 4

i

f

P k

[psM
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Chapter 3

COMPUTATIONAL PROCEDURES

The governing equations, Eqs. (2 . 13)°(2.15), are derived in

=3
S

k	 {

i

i

x

F

The stream-function equation, Eq. (2.22), is a two -dimensional	 v <^a 

elliptic partial differential equations. Discretization of Eq. (2.22)	 ='9y=A

yields a system of linear equations which should be solved at each

iteration. There are several methods available to solve this equation.
x

	

^;	 a

sore of which are listed below: 	 *' ,
! a f

µ

	

'	 1. Direct methods	 F

15	 1.
_	 at	 4

Chap. 2 for incompressible flow in physical coordinates. These

equations are transformed to new computational coordinates, as fqs.

(2.21) and (2.22). As mentioned before, these are full parabolic-

elliptic partial differential equations, which are controlled by the

boundary conditions for all variables along a surface which encloses

the domain of interest. In case of turbulent flow, the equations are

completed by supplying some auxiliary transport property relations.

Because of the complexity of the equations there are only few

analytical solutions. However, the equations can be solved using

numerical techniques such as finite difference method or finite element

method. There is also the method of lines ( MOL). In the present

study, the stream-function equation is solved by the successive

'	 overrelaxation (SOR) method and the vorticity equation is solved by the
w

method of lines.

3.1 Stream Function EquatiOA



2. Richardson's method (point: iteration)

3. Liebman's method (Gauss-Seidel)

4. Successive overrelaxation (extrapolated Liebman method)

5. Alternating directions implicit methods

6. Hopscotch methods

Since only the right hand side of this linear system, Eq.

(2.22), chax)ges at each iteration, it can be solved by the inversion

method. This method sometimes is called the direct method. Ih is is an

efficient method for small systems, but the round off error destroys

the accuracy of solution for large systems.

The Richardson's method is also known as the Gauss iteration or

point iteration method. As mentioned before, discretization of Eq.

(2.22) yields a system of linear equations which can also be solved

iteratively. The computation is based on values computed in the

previous iteration, i.e.,

w„	 k+1	
f [* (N, k)]	 (3.1)

where k is the iteration number. This iterative computation is carried

'	 out until some convergence criteria is satisfied.

°	 Liebman's method is like Richardson's method except it uses all

a	 updated-values at each iteration step, i.e.,

k+1	
f [V (N,k,k+l)]
	

(3.2)

r

^f

16	 '}
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For better accuracy and efficiency, the results from Liebman's method

may be extrapolated as

N+1	 k + wo & (N,ksk+1)]	 (3.3)
N

where wo > 0

In the preceding equation, w0 is a relaxation parameter. If the value

of w  is between one and two (14w 0< 2), 
it represents overrelaxation,

and if w 0 is less than one (o<wo 1), it represents underrelaxation.

Use of the over-relaxation method usually is not recommended for those

equations which contain strong source terms. It has been found

	

experimentally [12] that W 	 is inversely proportional to Reynolds

number. Therefore, underrelaxation is required as the Reynolds number

is increased.

Extensive discussions on alternating directions implicit (ADI)

and hopscotch methods are available in [11-131 and are not discussed

any further here.

3.2 Successive Overrelaxation Formulation

In this study the successive overrelaxation (SOR) technique is

formulated in such a way that a one-dimensional array is used to

compute and store each variable. A typical node arrangement for SOR is

shown in Fig. 3.1. By using second order differencing, Eq. (2.22) is

expressed as

k+1	 k+k	 1(^
	

&..L k	 k+1
N+1 - ^N + ^N-1^ + 2 `^N+1 ^N-11

+ C2 [^ k	 - * k	 + * k+1	 - *k+1	 l
+7— N+IN+1	 N+IN-1	 N-^IN-1	 N-IN+1

k	 _ k+l	 k	 _	 k+l	 k+l
+ 
	

N+IN	 N-INj + E2 ^* N+IN 2 ^N	 + *N-IN J + F2 =0	 {3.4)

E

F

E

	 17	
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7T3x_7AI

INx(JN-1)

's^4^

M

V I

IN+1

	N+IN-1+	 N+I *.N+IN+l

	

N-1-► 	{-N+1

	

N- IN- 1-+	 N-IN 4-N-IN+1

JIM

1	 2	 IN- 1	IN

Fig. 3.1 Node numbering scheme.
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Note that the coefficients are evaluated at the Nth node point.

Rearrangement of Eq. (3.4) results in

k+l	
k + Residual (k, k+1, N)

^N	 ^N	 2 (A2 + E2)	 (3.5)

where the Residual (k, k+1, N) is defined as

( 2A2 + B2) k	 2A2	 B2 k+lResidual ( k, k+l, N)	 2	 N+1 +	 2	 *N-1

k	 k	 k+l	 k+l
+ v- ^^ N+IN+l - N+IN-1 + N-IN-1 - *N-IN+1]

+	 2	 N+IN + ^2 2- * N-IN 2^ A2 + E2 ] %+F2	 (3.6)

Equation (3.5) is Liebman's method, which can be improved by appropri-

ate extrapolation

j

W
k+l _ k +	o	 Residual (k,k+1,N)

^N - ^N ^AQE2 
(3.7)

There is no analytical way to find the optimal relaxation factor (wo)

for this case. However, one may use the optimal relaxation factor for

k< the Possion ' s equation with Dirichlet boundary conditions [121. This
t,

is given by	 w'°t^ f

r:	 R.

W 	 1 _ 1-C / C]	 (3.8a)

art

r'

P.

._...	 a ^^.` v^...	 ^..	 -`.^► 	 ^y^_ti:.
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where,	 COS (IN-1) + COS (JN-1 ) 2
C =

2

(3.8b)

In Eq. (3.8b), IN and JN are the number of grid points in the axial and

the vertical (radial) directions respectively.

3.3 Application of the Method of Lines to the Vorticity Equation

In the vorticity :equation, the spatial derivatives are replaced

by a corresponding set of second order difference equations. Also, the

vorticity is considered to be continuous in time. This gives

d 

dtN -	 (*N+1 - 4 N +*NJ + Bl (^ N+l -' N-1)/2

+q (* N+IN+l- ^ N+IN-1 + ^ N-IN-1 - * N-IN+1 ) /4

+Dl (^ N+IN * N-IN] /2 + El (* N+IN - 4N + *N-IN) + F1
	

(3.9)

Equation (3.9) is a set of coupled ordinary differential equations,

which should be integrated simultaneously.

The method of lines is used for solving the system of partial

differential equations. As mentioned in the introduction, the method

was developed and used originally in the Soviet Union. Liskovet's

review article [1] is a review of 154 papers which date up to the mid-

sixties. This review has considered linear partial differential

equations'of elliptic, parabolic, and hyperbolic types.

The method of lines basically changes a partial differential e-
6 • >

^:-	 quation to a set of ordinary differential equation which can be

^r integrated numerically. In the case of time dependent partial

differential equations, the procedure is to discretize the spatial

variable and treat the temporal variable as continuous in time. This

Y..

FK
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semi-discretization results in a set of ordinary differential equa-

tions, which can be integrated along the lines of time.

3.3.1 Advantages and Disadvantages of the Method of Lines

Finite difference and finite element techniques are well-develop-

ed and in general they are more attractive in terms of efficiency.

Solutions of partial differential equations using these two methods

lead to a system of linear algebraic equations which can be solved

by direct or iterative methods. However, the nonlinear terms in the

equations must be linearized. In the method of lines, there is no need

for linearization. Other advantages are as follows: (1) possible

establishment of convergence and stability criteria for a wide class of

problems [3, 141, (2) accurate solutions by using higher order

approximations for the derivatives and with less computational costs in

comparison to the finite difference method, and (3) more efficient due

to a better time-step control and easier implementation even for non-

linear systems.

There are certain limitations in the method of lines such as the

number of lines. Jones and et al. [5] estimated that error is equal to

exp [4& /ir b] , where N is the number of lines and b is the characteris-

tic length. This means that using a large number of lines (for better

resolution) may bring significant instability. The former conclusion

is valid for elliptic. systems.

3.3.2 Convergence, Accuracy, and Stability

Convergence exists when the solution approaches the solution of

original continuum differential equations as step size or grid size

approaches zero. But, instability occurs when round off error or any

other computational errors become unbounded. There are extensive

?1



discussions about convergence and stability by Jones et al. (5), and

Loeb and Schiesser [lb]. Their results show that using higher order

finite difference approximations for derivatives improves the accuracy

and the stability, and reduces computer cost. They have also shown

that using more grin points improves the accuracy, but makes the

solution become less stable. Stability may be related to the stiffness

of the equations. ibis effect is investigated in the next chapter.
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Chapter 4

STIFFNESS ANALYSIS

In engineering problems, stiffness may arise due to the physics

of the problem or be introduced to the problem because of the type of

approach applied for obtaining solutions. An example is a problem in-

volving chemical reactions where time scales span from 10' 6 to 105

seconds, simultaneously. This system is referred to as a stiff system

when the processes are coupled and when all time scales must be resolv-

ed. In mathematical terms, when the eigenvalues of a system of

differential equations have a large variation, the system is referred

' 	 to as a stiff system. For example, consider the following equation:

	

-I	 49	 0

y -Ay,	 where A	 0	 -50	 0	 (4.1)
9

c ,.	 0	 1150	 -1200

This equation has a solution of the form

N

w `	 Y1 (x) = e	 + e

q

r'	 Y (x)	
a-50x + e 1200x,

<<	 3.^¢

The eigenvalues of this system vary from -1200 to -1. The degree of

stiffness is measured by the stiffness ratio which is the ratio of the 	 ;ar

^,	 f4

i

23

&77
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-X	 -50X
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largest eigenvalue to the smallest eigenvalue of the system. For

example, the stiffness ratio for Eq. (4.1) is 1200. Stiffness may be a

local problem in which case the equations are stiff in some regions and

nonstiff in other regions. Numerical integration of Eq. (4.1) requires

a specified integration step size h which is determined only by the

components of the eigenvalues, A i and the stability region of the inte-

gration scheme. The stability of numerical integration of Eq. (4.1) is

governed by the maximum absolute value of A L... For example, using

Euler ' s method for the integration, it is necessary that { Max (Ai)}•h<2

[ 15]. This implies that the maximum stable step size is 1/600, meaning

that 600 integration steps are required to reach x = 1.

There are only a limited number of numerical methods available to

solve ordinary differential equations which utilize the stiffness char-

acteristic [9, 14-17 1. A popular method is the Gear ' s method [9, 14,

171.	 Subroutine VOADAM [9] has been used to solve Eq-. (3.9), which

has the options for stiff and nonstiff systems. Stiff and nonstiff

options differ in storage and computer time. 7h a computer memory

required for a stiff solver is of order N2 (N number of eqt^ations),

whereas for a nonstiff solver it is of order N. However, the stiff

option generally requires much less computer time. As an example,

Madsen and Sincovec [6] observed a 400% computer time saving by using

a stiff integrator.

4.1 Effect of Grid Concentration on Stiffness
^r

In many physical problems, one desires to have an arbitrary gri

distribution with concentration at any location in the physical domai

In particular in flow field computation, concentrations are required

'iJ
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a

to capture rapid changes in flow

shock, and separation. Concentri

characteristics of a system, and

effects of grid concentration on

one-dimensional heat equation is

by:

conditions such as boundary layer,

3tions affect the stiffness

it is essential to investigate the

stiffness. For this purpose, a simple

considered. The equation is given

a 	 a2T	 0< x< 1"a tt ate' ,
(4.2)

Equation (4.2) is transformed from the physical coordinate ( x) into a

computational coordinate (n)

aTT
at r n x Th n + n xx^1	 (4.3)

where n- n (x), o < n < 1	 (4.4)

In Eq. (4.3), the spatial derivatives are discretized using a second-

order finite-difference approximation and T is assumed to be continuous

in time. This results in

dt1 
= a i iT +t + b i. T i	 i. + c T.	

(4.5)
dt	 i-1

where

a  = (n X /An) 2 + n xx /( 2&n)	 (4.6a)

b  - 4n x/en) 2	 (4.6b)



Equation (4.5) represents a set of ordinary differential equations

which can be written in matrix form as

dT _ .1 T
	 (4.7)dt "3

f 4

where	 [ A]

bl	 cl

a2	
b2 

f	 c2

a	 b	 c
N-1	 N-1	 N-1

a 	 b N

Eigenvalues of matrix [A] are determined in order to analyze the stiff-

ness characteristics. Eigenvalues of matrix: [ A] depend on boundary

conditions and the relation between physical and computational coordi-

nates.

Consider the following relation between x and n, and the boundary

conditions:

x	 elo'
	

(4.8a)	 ^i

K
(4 8b)
	

a.	 6e -1 r

., 8T(1)T(0)	 0 (4.8c) Y
8x t

y k 	 .
d	 • ''f	 1

r In the above equation,	 K	 is a stretching factor which determines the

' degree and location of the grid concentration.	 A large positive value "•a •'

of	 K	 results in a high grid concentration near x = 0, whereas a large

negative value of k results in a high grid concentration near the x = 1*+`

boundary.	 A substitution of Eq. (4.8) into Eq.	 (4.6) results in

26 {
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'	 a. e	 _ e.. (4.9 a)
(Arn Kb )2	 2Kb2en

-2tQ1

b. _ -2ex (4.9b)
(An Kb)2

-2XI .	 -21M .

C.	
e	

+ 

e
1	 (4.9c)

(An Kb )2  2KbZAn

Eigenvalues of matrix (A] 	 are found numerically using subroutine REQR

[18], and the stiffness ratios are computed for different values of

stretching factors.	 Figure 4.1 shows a plot of the stretching factor

versus the stiffness ratio. 	 The plot indicates that stiffness in-

creases with the magnitude of the stretching factor.	 Also, the slope

of the stiffness characteristic curve is "nigher near the fixed boundary

(x-0) than near the derivative boundary (x=1).

$ 4.2	 Effects of Differencing Scheme on Stiffness

In the finite difference approach, convergence and stability of a

{
dependsolution	 an the differencing scheme used. 	 Similarly, the

differencing scheme affects the stiffness of the resulting ordinary`_t'

differential equation system in the method of lines. 	 To investigate ,.

the effects of differencing schemes on stiffness, consider the .`tF

i
linearized one-dimensional advection-diffusion fluid flow equation:

(e.	 I	 .t

1
t  

aw	 aw	 1	 a2 w ^' t^ °
—t = - u a x + Re	 ^(4.10)a

27
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W (O,t)	 0

W (l, t) = 1

N

a

y

where 0 < x< 1

In Eq. (4.10), the spatial derivatives can be discretized by using the

backward,,, central, or forward differencing scheme. 1hus, Eq . (4.11)

can be expressed: as

di) 
i = a w i-1 + b w i+ c w i+l	

(4.12a)

This equation is a set of ordinary differential equations which can be

expressed also in matrix form as

d = [ A^ w +Cd]	 (4.12b)

where

c
b c

a b c
a b

n= The values of elements a, b, and c of matrix [A] are functions of the

number of grid points (N) and the Reynolds number (RP.).	 For forward

differencing, they are
p. f

}T
.	 II
's#..i`'TI	 S

a	 142 /Re	 b N-2N2 /Re,	 c	 142 Re-N

y

^

,

^	 a

For backward differencing, they are x

r	 E
a	 142 / Re + N b	 -N-2142 / Re	 c	 N2 / Re,	 ,

29
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w^e

t

For central differencing, they are

a - N2 /Re + N/2, b - -2W /Re , c - N' /Re-N/2

The: eigenvalues of matrix LA) can be computed analytically, and they

are

X n- b+ 2 ac COS N+l	 (4,14)

A system of ordinary differential equations (e.g., Eq. 4.10 is

unstable if the real parts of its eigenvalues are positive. 1h erefore,

backward and central differencing are inherently stable, whereas

forward differencing is conditionally stable, provided Re < 2 N. It is

shown later that forward differencing is not useful for solution of Eq.

(4.10) .

Stiffness ratios for these differencing schemes are computed and

are plotted on Fig. 4.2. The plots show that the equations become

stiff as the number of grid points is increased (curves 1-3), and the

stiffness ratios do not depend on the differencing scheme at low

Reynolds number (curves 4 and 5)

A specified integration step size is required for the integration

of ordinary differential equations. Maximum allowable step size

depends on the eigenvalues and the applied integration techniques. 'Ih e

step size should be selected such that Ah is located in the stability

region (Fig. 4.3). For instance, the stability region is shown in Fig.

4.3 for the Adams-Bashforth method (first order) where h is the step

size and a is the eigenvalue. Generally, the integration step size

is inversely proportional to the distance between the location of the

eigenvalue 1 and the stability region._ For example, if XA , XB , and

30^"



f AN

.uation.

31	
Ii

ORIGINAL
OF POOR Qu

ALI Tly



ORIGIVIIAL

OF POOR

Ur.-

cRE (X)

Fig. 4.3 Stability region for Adams-Bashforth (first order).
x.

^11

%, 1 n

Y.

ic

32



A	 are the largest eigenvalues of three different systems of ordinary

differential equations ( Fig. 4.3), system A requires the smallest step

size, because X 
A has the farthest distance from the stability region.

The maximum allowable step size can be computed analytically for the

Adams-Bashforth technique (first order). Consider eigenvalue X  
[XA =

REQI) + i IM(7X)1, where RE is the real part and IM is the imaginary

part, the step size should be selected such that the point A in the

complex plane can be moved to the stability region. This requires

hMa. [ 14odulus of X A] = [ Modulus of ;' a ]	 (4.15)

where from Fig. 4.3 Modulus of a A = A0, Modulus of as = a0.

After some algebraic manipulation, the maximum step size is found to be

_	 -2RE	 _

hMax	 [ Modulus of XA]2
(4.16)

Using chis equation, the step size can be computed for the different

differencing schemes. In case of forward differencing, the step size

is positive if Re > 2N, and the system is unstable. Therefore, it is

impossible to solve Eq. (4.11) using forward differencing along with

the Adams-Bashforth ( first order) integration technique. Similarly,

step size for central differencing is

hMax - 1/Re.	 (4.17)

r	 The step size is inversely proportional to Reynolds number for Re > 2N.

In case of backward differencing, the step size is

C
hMax = 2/0odulus of X)	 (4.18)

^I

Figure 4.4 shows variations of step size with Reynolds number (Re) and
a..

j : the number of grid points W. The figure shows that the step size de-
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	 creases as the number of grid points increases (ccirves 1 and 2). This

is compatible with the finite difference techniques [12]. On the same

figure, step size is plotted versus Reynolds number. For backward

differencing, the step size increases with increasing of the Reynolds

number. The converse is true for central differencing.

For inviscid flow ( Re + -), forward differencing is inherently

unstable. For central differencing, step size is zero which makes it

impossible to integrate the equations. The step size for backward dif-

ferencing is

h = 2/N	 (4.19)

The step size is inversely proportional to the number of grid points;

this result is similar to the result of viscous flow.
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Chapter 5

s,

BOUNDARY AND INITIAL CONDITIONS {^

s

r For a particular flow problem, selection of proper boundary
R{

conditions depends upon the nature of the flow and the computational
n

i
r

procedures employed. 	 The application of certain conditions may cause

,f
numerical instability in the solution even though the flow is physic-

ally stable.
s

Equations (2.21) and (2.22) are parabolic-elliptic partial dif-

ferential equations.	 The dependent variables in these equations should

be defined by some relations along the boundaries. 	 There are three

general types of boundary conditions for a dependent variable and they

can be stated as follows: }

1.	 Specifying values of the dependent variables at the boundar-

ies.

2.	 Specifying first or higher derivatives of the dependent vari-

ables at the boundaries.

3.	 Specifying algebraic relations which relate dependent vari- r'

ables . to independent variables or to their first or higher f

order derivative si.

Two points should be noted in choosing the above conditions.^,i^'a

First, the second condition cannot be applied at all boundaries because

uniqueness considerations. 	 Second, a combination of the above ,rt;}^>

conditions can be applied to various parts of one boundary.,'' "'

:	 f

k

34c
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In the selection of boundary conditions, four important factors

that should be considered are: convergence, stability, computer time,

and above all, the physical justification. Extensive discussions of

these factor are given by Roache [12].

For the confined flow geometry, Fig. 5.1a, there are four types

of boundary conditions inlet: outlet, wall, and symmetry. Whereas, in

the driven cavity, Fig. 5.1b, there are two types of boundary condi-

tions: wall and moving wall. Also, in each case, it is necessary to

specify some initial conditions.

5.1 Inlet Condition

For problems involving duct flow, the inlet conditions are

usually specified. 1h roughout this study, the inlet conditions are

fixed. In general inlet velocity profile for duct glow is given by

U(r) - 1 - AI• rNI ,	 (5.1)

V(r) = 0.0	 (5.2)

The stream function is computed from Eqs. (2.11) .and (2.12) by

= r +1	 rNI+d +1	
(5.3)(r) 9+1 - AI Nom-+1

x

x

r

k
i
The vorticity is computed similarly from Eq. (2.10) as

w = AI • NI . rNI-•1	 (5.4)

In the preceding equations, NI and Al are the inlet distribution para-

meters and they can be selected to produce desired inlet conditions.

For example, AI = 0 corresponds to a uniform distribution of velocity

across the inlet; AI = NI = 1 corresponds to a linear distribution of

3

,
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Fig. 5.1 Boundary conditions for various geometries.
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condition, the velocity profile is given by

U(r) U 
max 

U—AIrNI) .

M ^ ^

1. to

yy

	 F ' e

{h

(5.5)

(5.6)

39
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Le. .

inlet profile; AI = 1, NI - 2 corresponds to a parabolic inlet profile.

In this study, a uniform inlet profile is selected for flows in pipe

and parallel ducts, and a parabolic profile for flows in a curved-wall

diffuser.

5.2 Outlet Condition

For flow between parallel plates and in pipes, the riost realistic

outlet condition would be no profile changes in the flow direction far

from the entrance point; provided there is no change in the wall

conditions. This makes it impossible to use realistic conditions for

such cases. Roache [12] points out that numerical experiences show

that catastrophic instability may be propagated upstream from the

application of improper outlet conditions and this may destroy the

solution completely.
s

The Reynolds number is an important criteria for selection of an

outlet condition. For high Reynolds number flows, the derivatives with 	 R"''H^

respect to flow direction are generally small compared to the deriva-

tives with respect to normal direction. Therefore, the governing equa- s

It

N

2

F.,

tions tend to be parabolic in nature (boundary-layer equations).

this case, the outlet condition has little effect on the solution

In
9

4

Rut, low Reynolds number flows require a physically well justifiable	 k

outlet condition. Generally, the outlet condition can be described

to be fixed or to be time dependent. A fixed outlet condition is the

easiest to apply from a computational viewpoint. For a fixed outl e t ► i,s' . ]'
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The stream function and vorticity can be computed in the same way as

described in Sec. 5.1. They are

t

d +1	 NI+B +1

U	
^r	 r

(r)	 max d +1 - AI NI+6 +1

W (r) _ U
max 

AI • NI • rNI-1

(5.7)

(5.8)

f

In the absence of suction and/or blowing, the stream function should be

constant along the wall. This is given by

{* (1)) Eq. (5.3) _ {^ (r2 )} Eq. (5.7)	 (5.9)

A combination of equations (5.7) and ( 5.9) results in

U	 s	 1/(6+1)  - AI / (NI + 6+0	 (5.10)
max	 6 + 1	 N046 +1

r2 1(6 +1)-AO( rz	 ) / (NO+d +1)

where r 2 is the outlet radius.
t

A fixed outlet condition is not suitable for separated flows or

any flows with a viscous wake [ 12]. Paris and Whitaker [19] solved a

confined flow using zero gradient conditions. This showed improvement

in solution over,specified conditions. Later, Thoman and Szewczyk [20)

used physically less restricted conditions for the stream function and

zero gradient on the vorticity as

9
2 *	 aw w 0
	

(5.11)

aT-aZ

Briley ( 21) took a different approach by considering the following re-

lat ion

k
w
f

Y
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i

1 _ AI
s d +1	 NI46 +1

(5.14)

s

Lw.-

A substitution of Eq. (5.12) into Eq. (2.14) results in

w	 (1 /r)d l a2^	
d 3*	 (5.13)

L

La	 r a rJJ

Equations (5.12) and (5,13) represent two ways of computing vorticity

at an outlet. This technique is referred to as maltreatment of outlet

condition by Roache [22]. Throughout this study, Eq. (5.11) is

considered for the outlet condition.

5.3 Wall Condition

An impermeable wall assumption allows the stream function to have

a fixed value along a wall regardless of its geometry. The stream

function may be computed from the inlet condition, Eq. (5.3),

The vorticity can be computed by applying Eq. (5.14) to Eq.

(2.22) , i. e.

D2 ^'n + E2 'inn + 
F2 — 0	 (5,15)

i

E a y

i

n
,

'	 ,Also, zero velocity at the wall allows

-`	
0	 (5.16)	 3.^

Upon combining Eqs. (5.14) and (5.15), one obtains

2 + 2

W _	
n z	 r	 (5.17):.°

'	 r	 nn	 i-

•	 ^	 1

!J
t	 ^i41

^^	
.^	 _ ^•,	 Imo'
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Equation (5.17) describes variations of vorticity along a horizontal

wall. A similar expression can be derived for a vertical well in the

case of a driven cavity, i.e.,

g2+ g r	 (5.18)
W d

r

Equation (5.17) is applied to the boundary Al shown in Fig. 5.1a and to

boundary B3 shown in Fig. 5.1b. Equation (5.18) is applied to bound-

aries B2 and B4 in Fig, 5.1b.

5.4 Symmetry Condition

Selection of a symmetry boundary condition depends on the nature

of the flow. In this study, since there is no center body, the

symmetry condition along the centerline requires that

	

au s 0	 (5.19)
8r

	

V - 0	 (5.20)

By comparing Eqs. (5.18) and (2.12), it can be concluded that the

stream function has a fixed value along the line of symmetry which can

be chosen to be zero. Similarly, it can be concluded that the

'	 vorticity is zero along the line of symmetry.

Z,
5.5 Moving Wall Condition

In Fig. 5.1b, the B1 boundary moves with a uniform velocity U=-1.

This means that the boundary can be chosen as a streamline. The value

of the stream function can be selected to be zero to match with the

value of the stream function at boundaries B2 and B4. Using uniform

velocity at the boundary, Eq. (2.23) can be written as

(5.21)

42



By using the value of the stream function along the boundary	 0),

this equation reduces to

*n - -1/n r
	(5.22)

Vorticity can be obtained from Eq, (2.22) by using the value of the

stream function along the boundary and Eq. (5.22) 0 i. e.,

w _ D2 /n r - E2 *nn	 (5.23)

The second derivative if the stream function can be approximated

(second order) by

.v 2 41	 + ^^N-iNnn	 N+IN (5.24) x

y

Also, the first derivative of the stream function can be approximated

(third order) by

*_ (2V 
N+IN + 3^ 

N - 
6	

N-IN 
+	 N- 21N )/6
	 -1 /nn	 r (5.25) k

The combination of Eqs.	 (5.24) and (5.25) results in

*nn = (-6/n	 + 8 -IN - ^N-21N - 7 ^N)/2. (.5.26) riN
s=

^	 I

Equation (5.26) is a second order accurate equation [23]. s+;^-t
^S

^^^c^•'.A combination of Eqs.	 (5.23) and (5.26) results in

w	 112 /n r + E2	 (6/1	 - 8 'V N-IN + 
	

N-21N + 7	 H) /2.0 (5.27) 1 `°	 * ^
`	 }	 F ,

A similar approach has been employed for evaluating the vorticity at ;,m

the stationary wall boundaries.
i-

ii

a

{
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5.6 Initial Conditions

In computational fluid dynamics, the initial conditions usually

correspond to a real initial situation for a transient problem or, as a

rough guess, for a steady state problem. In practice, initial condi-

tions are obtained from experiments, empirical relations, or approxi-

mate theories. The initial conditions used in the determination of the

steady -state solution should have no significance in the steady-state

solution of incompressible flows (12), otherwise the solution is not

unique.

r'
Generally, there are two kinds of initial conditions. In the

first one, an impulse motion starts from the rest, and in the second

' ±y<	 kind, the flow has the same initial motion everywhere except the

boundaries. Zn the present stady, the entire flow-field is initially

set equal to the inlet condition for the internal flows. For the case

of driven cavity, the stream function and vorticity arc initially set

equal to zero in the entire flow-field.

r
.4.

r-

^:4 .
h

F+

r.

44

t

4

r



1^
1

It

Chapter 6

GRID GENERATION TECHNIQUES

It is highly desirable to solve partial differential equations in

a rectangular box with uniform grid spacings [25-27). This is espe-

cially true in fluid dynamics where the governing equations are com-

plex. Ideally, a physical domain should be transformed to a computa-

tional domain, where the physical boundaries map into the boundaries of

a rectangle. This transformation has certain advantages. In the first

place, the boundaries can be represented more accurately. Secondly, it

allows better resolution in regions where rapid changes occur, such as

boundary layers, shocks, and separated flows. Above all, computer

codes which are applicable to any geometry can be written without the

need of special procedures for the boundaries. The disadvantages are

that the convergence, stability, and stiffness characteristics of the

equations are affected. Also, the transformed equations are more

complex then the original equations. The transformed governing

equations contain the rate of change of the computational coordi-

nates with respect to the physical coordinates. These derivatives are

computed from the relations of the physical grid to the computational

grid. 'There are, generally, three approaches for grid generations:

classical technique (conformal mapping) [241, differential methods

[251, and algebraic methods [261.

s

a	 R

R

I

. ^	 f

f
i

x ^^ R ^ a	 {
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The classical technique requires the use of complex functions to

define the mapping which is extremely difficult for arbitrary geom-

etries.	 But, conformal map?ing has the advantage of minimizing the

number of terms in the tratisformed equations. 	 The algebraic and

differential methods for grid t ,̂ eneration are outlined in the following

sections.

6.1	 Algebraic Method

In the algebraic method an explicit functional relationship

between	 the computational domain and the physical domain is determin-

ed.	 The computational domain is rectangular and has a uniform grid

distribution.	 7he	 physical domain is defined by

z = Z	 (6.1)

r = r	 (6.2)

A requirement of boundary-fitted cooidinate systems is that the bound-

aries of physical domain map to the boundaries of the computational
If I

domain.	 That is,

jV Z,	 = Zi	 0)	 = Z,	 (6.3)

ri	 = ri	 0) = ri	 (6.4)

z2	 z2	 1)	 = z2	 (6.5)

r2	 r2	 1) = r2	 0	 (6.6)

Equations (6.1)	 and (6.2) can be rewritten using Eqs. 	 (6.3)

through	 (6.6) as

z - z	 z	 (zi	Z^ ' TI	 (6.7)

r = r	 T)	 r	 (rl	 r2	 TI	 (6.8)

The explicit forms of Eqs. 	 (6.7) and (6.8) can be written as a simple

parametric linear or cubic polynomials as [261

46
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(±Y

Linear:

z- r2 ( )n + 
zi ( ) (I -n(6.9)

r-r2 ( )n + r1	 (1-x1)	 (6.10)

Cubic:

z = zi ( ) f1 (ri ) +Z Q ) f2 (n + dn
1 (^) 

f3 (n) +

. 
f4 

(n)	 (6.11)

rn

r=rl ) 
fi (n) + ri ( ) f2 (n) + dd	 f3 (n) +

_ ft (E) fig	 (n)

CK
( 6.12)

a,

In Eqs.	 (6.11) and	 (6.12),	 the f's are the blending functions and are

t
defined as

fi	 21 3	 3n +1 (6.13)
{

c
f2	 = -2n 3 	+ 3n (6.14)

= n 3	 - a12+r1 (6.15)
a

t

44	 = n 3	 - n2 (6.16)

Equations	 (6.9) through (5,12) are called connecting functions.	 If
E.

and n are the computation coordinate functions, then and n(n) can rk4.
^ A

be defined to produce a desired grid spacing distribution. That is !

O	 Oc< 1	 Ucc l (6.17)

n	 = n (n)	 04T)< 1	 0cn < 1 ( 6.18) h	
Y'

{

1

^ke y

^ A

^b r !

kk

>}'A°''.

For example, contracting the physical .grids towards one boundary can be-
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accom lished b usin the followin funct i onp	 y	 _g	 g 

_	 Kn-1	 (6.19)

n	 eK-1e

where K is a stretching parameter which determines the location and

degree of concentration.

This method (i.e., the algebraic method) requires relatively few

computations.

6.2 Differential method

If the computational coordinates ^(z,r) and n(z,r) are harmonic

then the Jacobian does not vanish [27]. This allows a computation of

and n from an elliptic system (Laplace's equation), i.e.,

02^ = 0	 (6.20)

V2 n = 0	 (6.21)

The spacing of the coordinate lines can be controlled by adding

inhomogeneous term to the right sides of Eqs. (6.20) and (6.21) as

p2E = P (E n)	 (6.21a)

V2  = Q (E, n)	 (6.21b)

In Eqs. (6.21a) and (6.21b), n and 9 are known, and the unknowns are z

and r. In order to be able to solve for z and r, the dependent

variables of Eqs. (6.20) and (6.21) should be interchanged. Thus,

a z C -20 
2^n + Y . nn = -J2 [ Pz9 +Qzn ]	 (6.22)

a r 
^ 
9 -20 r, n + Y rn n = -.l2 [ Pr  +Qrn I	 (6.23)

	

"	 Y

	

r	 ^

	

^ 1	a xa

P e .%.

r`

t^.



Y

where

a _ ZZ +	 (6.24a)

S	 z, zn + rn r,	 (6.24b)

Y = 2 + 2
	

(6.24c)

J = Z,: n - z
n

r,	 (6.24d)

There are four boundary conditions for Eqs. (6.22) and (6.23). The

quantities P and Q are the forcing functions which are selected to have

a desired grid distribution and orthoganality at the boundaries [27).

The disadvantage of this method is that it is inefficient compared to

the algebraic method.
z
b	 i

y

a

r

a

k	 '^

j

p	 cr i
^.	 y

s

e
.t

}	 r	 f

i^

`[	 Y	 1

1 t(+,. ;^ ,

47

3^	 w



i

.,

v
t

Chapter 7

PHYSICAL APPLICATIONS

This study investigates the validity and viability of the method

of lines for solutions of the Navier -Stokes equations with arbitrary

boundary geometry and grid spacing. For incompressible viscous flows,

the pertinent equations are derived in two-dimensional and axisymmetric

coordinate systems, Eqs. (2.13) -(2.15). These equations are trans-

formed from the physical domain with arbitrary boundaries and grid
t

spacings to a rectangular computational domain with. uniform grid

spacings. The resulting equations, Egs.(2 . 21) and (2.22), are solved

numerically. The method of lines is used to solve the vorticity equa-

tion, Eq. (2.22), and the successive overrelaxation technique is used

for solving the stream function equation, Eq. (2.21). Boundary

conditions at a solid stationary wall are no-slip conditions which

corresponds to a fixed stream function and requires that the vorticity

'

	

	 be computed from the stream function by Eqs. (5.17) and (5.26) . For

the internal flow computation, the stream function and vorticity are

 equal to zero along the line of symmetry. 9h a inflow boundary

-	 condition is kept fixed throughout this otudy.. The outflow condition

'^-	 is used to enforce no-change in the stream function and vorticity with

respect to flow direction, Eq. (5.11). In the case of the driven 	 .,

cavity, the vorticity at the moving wall is computed from Eq. (5.28).,.r

e R 	For internal flow, the initial conditions are the inflow conditions for
^p

y	 the entire domain, and no flow in the case of the driven cavity. Grid

50T	
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distributions are generated by the algebraic method which makes it

possible to handle any boundary geometries [26]. Specific solutions

are obtained for internal flows (pipe, parallel plate and curved wall

diffusers) and a driven cavity. These problems are discussed briefly

in this chapter.

7.1 Internal Flows

The entrance regions of ducts are used usually to compare numeri-

cal procedures, because of the availability of analytical solutions.

Most of these solutions are based on parabolic forms of Navier-Stokes

equations which are called boundary-layer equations. Assumption of the

boundary layer (neglecting the axial diffusion) makes it possible to

obtain analytical solutions [28-31].

Vrentas et al. [321 investigated the effects of axial diffusion

of vorticity on flow development in circular ducts. It was concluded

that at very low Reynolds numbers (Re<20), the axial diffusion causes

the velocity development to be spread out in the downstream region, and

this results in a larger entrance length than that predicted by the

boundary-layer analysis. It was also concluded that the converse is

true for Re>20. The flow in parallel ducts may, in general, be divided

into three regions (Fig. 7.1). Region I, is a region of potential

flow. This flow interacts with region II which is a region of

boundary-layer flow. The third region (region III) is the region of

fully-developed flow. Using these concepts, Schlichting [28) obtained

an approximate solution by using Blasius' solution for the inlet

regions between parallel ducts and a perturbation of the fully-develop-

ed solution in the region far from the entrance. The solution for the

intermediate regions was obtained by patching together the upstream and
i

ro
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downstream solutions. A similar approach was implemented by Atkins and

Goldstein [331 for a circular tube. Later, Van Dyke [311 improved

Schlichting's solution by using more terms in the perturbation expansion.

Another common method is the linearization of the convective term in the

boundary-layer equations; this allows the velocity to be continuous along

the axial coordinate. Using this concept, Sparrow et al. [30] developed

solutions for circular tubes and parallel plates using boundary-layer

equations. In the present study, results obtained from the method of lines

are compared with results of Sparrow et al. (30].

In the case of curved-wall diffusers, the outer wall geometry is

based on the following equation:

r = { 1 + (r2 - 1) L [ 1 + a-(1 - L)]} H(X-L) + X H(L-X)

inhere

	

	
(7.1)

r2 _ L tang + 1

k-0.

Figure 7.2 shows a typical curved-wall diffuser geometry. It is a

bell-type diffuser for a>0 and a trumpet type diffuser for a<0. The

value of (7 has been set equal to unity for the present study. By using

the method of lines, solutions are obtained for different diffuser

angles (0) and for a Reynolds number of 200.

7.2 Driven Cavity

The flow in a driven cavity has been used as a test case for

evaluating the numerical procedures for solving the Navier- Stokes equa-

tions. It serves as an example of closed stream lines which represent

i{s
53
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interesting characteristics such as vortex development in the core and

boundary-layer development on the walls of the cavity.

Kawaguti [34) performed one of the earliest calculations for flow

in a driven cavity and satisfactory results wera obtained with Reynolds

number up to 64. Later, Burggraf [35) obtained solutions for Reynolds

numbers up to 400. An underrelaxation method was used to solve the

governing equations, and a relaxation factor of 0.4 was used for a

Reynolds number of 400. Burggraf was not successful in obtaining

solutions for higher Reynolds numbers. This may be due partially to

the form of the governing equations (non-conservative form) used.

^	 Bozeman [36) solved the same problem using the conservative form of the

°F..	 Navier-Stokes equations. Solutions were obtained successfully up tor,

s

	

	 Reynolds numbers ut 4000. Bozeman used a strongly implicit procedure

which is unconditionally stable. Smith and Kidd {11) obtained

solutions up to a Reynolds number of 5000 by solving the vorticity

equation using alternating-direction implicit (ADI) methods and the

stream function equation by the Buneman direct method (BDM). Using

^.	 the method of lines, Kurtz et al. [8] were able to obtain solutions up

to Reynolds numbers of 50,000. In this study, solutions are obtained

for three Reynolds numbers ( 100, 1000, and 10000) with two different

16x16 grid distributions.
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boundary-layer assumptions.	 There is a sharp drop in the stream
1.x
tier

function in the vicinity of the entrance point which indicates a rapid

flow development in this region. Zh is sharp drop corresponds to a

sharp change in vorticity which can be observed in Figs. 8.2c and 8.3c.

f-	 -

r,. Similar results are obtained for a Reynolds number of 1000 and these

f
are illustrated in Figs.	 8.4 and 8 . 5 for flow between parallel plates

i and in a pipe, respectively.
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Chapter 8

RESULTS AND DISCUSSION

By using the formulation and numerical procedure discussed in the

preceding chapters, solutions are obtained for flow between parallel

plates, circular pipes, curved-wall diffusers, and in a driven . cavity.

Non-conservative forms of the governing equations are used for the

entire internal flow computations,

Figure 8.1 shows the 20x20 grid distribution which is used for

computing the flow field between parallel plates and in pipes. the

grids are concentrated near the walls and the entrance point where

rapid changes occur.

For a Reynolds number of 200, Figs. 8.2 and 8.3 show velocity,

stream function and vorticity distributions for flow between parallel

plates and in a pipe, respectively. Velocity profiles are compared

with those obtained by Sparrow et al. [30], and are found to be in good

agreement except in the vicinity of the entrance point. This discrep-

ancy may be due to the fact that Sparrow ' s results aie based on the
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tream function contours for flow between parallel
lates, Re = 200.
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Figure 8.6 shows a 20x20 grid distribution for a five-degree

curved-wall diffuser. Again, the grid is concentrated near the en-

trance point and wall region for capturing the boundary layer develop-

ment and separation. Figure 8.7 shows the velocity profiles, stream

function and vorticity distributions for a Reynolds number of 200. The

results show no indication of separation. The next case studied is a

ten-degree curved-wall diffuser. The grid distribution for this case

is shown in Fig. 8.8, end the results shown in Fig. 8.9 clearly

indicate that a separation occurs in this case.

Figure 8.10 shows a uniform 16x16 grid distribution for a driven

cavity. Figure 8.11 shows the the stream function and vorticity

distributions for Reynolds number of 100. These results are obtained

using the non-conservative form of the Navier-Stokes equations with a

uniform grid distribution. The results are in good agreement with the

results obtained by other investigators [8, 11, 23, 35-371. For a

Reynolds number of 1000, the solution does not converge if the non

conservative form of the governing equation is used. For higher

Reynolds numbers, therefore, the conservative form of the governing

equations, Eqs. (2.15), are used to obtain further results. Figure

8.12 shows the strew function and vorticity distributions for a

T.	 Reynolds number of 1000. The rgisults are in good agreement with Kurtz
^R

"^•	 et a1. [8], Smith et al. [11], Ghia et al. [23], Bozeman [36], and
T

`	 Schreiber and Keller [37]. Ghia and Schreiber have used over 10 4 grid

'	 points. Figure 8.13 shows the stream function and vorticity distribu-

tions for Reynolds number of 10,000. The results are in good agreement

k	 with the results of Kurt z, et al. [8], Ghia et al. [23] and Schreiber

and Keller [37). These results suggest that the high Reynolds number
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i

i

t

^ aea ,a y

ks 1.a

a^ t t

9 b	
s

^, r m

At

^S

t

H

r

t'..k

76	
t



OF POOR QUALITY

^f.

CONTOUR FROM	 0.	 TO	
- 
.30000	

.120	 r

IS	 ^innnnE_MCONTOUR TNTFRVAI

Fig. 8.9b Stream function contour for a bell-type diffuser,
a	 1, 8	 10, L	 100 , Lt	40, Re	 200.

jp

77

F_ - ,

T7 --.V' I.- -V
I F^ -



ORIGINAI MjE R'
OF POOR QUALIV

is

^r

k	

• }

^y^ r

CONTOUR FROM	 0.	 TO	 2.0000
MUT(RIS INTFRVAI	 IS	 -?nnnn

Fig. 8.9c	 Vorticity contour for a bell—type diffuser, T= 1,
6	 5, L	 10, Lt	40, Re	 200.

78



uRIGINAL
OF VOOR QUAL0

Fig. 8.10 Uniform grid distribution for a driven cavity.

CF f

mow_

79

of



U+

OF POOR QUALITY

aou	 360-^^"'

Nv

H

..._720

L
-e

CONTOUR FROM	 '0.	 TO	 .90000E-01
CONTOUR INTERVAL 15	 .90000E-02	 LAZELS SCALED BY	 10000.

Fig. 8.11a Stream function distribution for uniform grid
`'-	 distribution, Re = 100.

z 80

1
•	 I



{^	 p

_	 s

x,

I

8

a

OF. 
POOR QUAL11"

t ^,
;s.

o o	 I
4

1100 000

t	 •oaQ	 ^

' 	 CONTOUR FROM	 14.000	 TO	 31.000	 • j
CONTOUR INTERVAL 15	 2.0000

Fig. 8.11b Vorticity distribution for uniform grid 	
rtes°I« i

• , ,'; „p=_	 distribution, Re = 100.	 Z:^

t°

w

r.

81,



^ ril l
	

f AX

0 R 10- 1 N A I I " ME" lil

OF POOR QUAL11"Y

DO

Do

L	
--Too	 -13

-6

	

CONTOUR FROM	 -16.000	 T O 	 38.000
CONTOUR IN

T
ERVAL IS	 2.0000

Fig. 8.12a Stream function distribution for uniform
grid distribution, Re	 1,000.	 1 +f.,;

82



I

F

k

r

OP POOR QUAI"I rf

^ Y
7ry1 1°

T '

i

r.	 }CONTOUR FROM	 0.	 TO	 .93COOE-0:
CONTOUR INTERVAL I S	 IOOOOE-01	 LABELS SCA-E BY	 10000,

Fig. 8.12b Vorticity distribution for uniform grid
distribution, Re = 1,000.

4 ^	 •	 A

^1. •ti 

e. t^^r

+ ^ n

I

a

83	
^ s



Lr r

a

nn11^^saCCrr ^,ee Q9 y
,^ ^

qq.

.

e

ri

tt^}^'ryJCr'jGjv"P`-L 4 ^f 1^3 T

OF POOR

CONTOUR INTERVALT
1
5 fRGM BOOOOE-02	 LABELS SCALEDOB 01Y 	 10000.

Fig. 8.13a Stream function distribution for uniform grid
,44  t ib is r	 ut on, Re	 LO,A00 .,

t	 31 .` ^

t.,
e{

w

1

^±	 t

E

84



4

4

ORIGIN' p,4,,,,

OF poo 
QUALITY

K-4
UALITy

CONTOUR FROM	 -10.000	 TO	 12.000

	

CON-OUR INTERVAL 15 	 2.0000
jf.

Fig. 8.13b Vorticity distribution for uniform grid

	

distribution, Re 	 10,000.*;".,

85

N-7



flow consists essentially of a single inviscid core of vorticity with

viscous effects being confined to a thin shear layer near the wall

boundaries. By using a nonuniform grid distribution, Fig. 8.14,

solutions were obtained for Reynolds numbers of 100 and 1000. As shown

in Fig. 8.14, the grids are concentrated near the corners in order to

capture the secondary vorticities. The results are shown in Figs. 8.15

and 8.16 for Re=100 and 1000, respectively. The secondary vorticities

are captured, but the results are not in good agreement with those

obtained previously. 1h a maximum value of the primary streamlines is

30 percent lower than the results obtained with uniform grid distribu-

tion. Accuracy can be gained by using finer grids but this will result

in higher computer costs.
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Chapter 9

CONCLUSIONS

The main objective of this study has been to investigate the

feasibility of the method of M.nes for application to physical problems

with nonuniform grid distributions. To attain this objective, it has

been necessary to investigate the stiffness characteristics of the

pertinent equations.

The following conclusions are drawn from the analysis of stiff

differential equations: (1) equations become stiffer as grids are

concentrated, (2) the slope of the stiffness characteristic curve is

higher near the fixed boundary (x-0) than near the derivative boundary

(x-1), (3) equations become stiffer for a large number of grid points,

(4) use of forward differencing is not feasible, (5) the step size is

inversely proportional to the Reynolds number for central differenc-

ing, and (6) backward differencing is preferable over central differ-

encing at high Reynolds numbers. These conclusions are based on the

analysis of one-dimensional heat conduction and fluid flow equations.

The viability and validity of the . method of lines are illustrated

awith applications to the Navier-Stokes equations. A computer program

is developed to solve Eqs. (2,21) and (2.22), and the details of this

program are av6ilable in [38]. This method is quite convenient

	

rt	 from a programming point of view, but computational costs are re-

latively higher compare to the standard finite difference technique.
r.,

The computational procedure used in this study does not require any

local linearization in the governing equations. The method has been

	

rr"	 applied successfully to obtain solutions for flow in parallel ducts
Ste•
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curved-wall diffusers and a driven cavity. Most solutions have been

obtained by using the non-conservative form of the governing equations.

The results are in good agreement with other available results for flow

in parallel ducts. The solutions also predict the flow development and

separation in the curved-wall diffusers. For the case of a driven

cavity, the results obtained by using the non-conser- vative form of

equations are valid only up to a Reynolds number of 100. At higher

Reynolds numbers the non-conservative equations provide spurious

results. The conservative form of the equations was used to obtain

results up to Reynolds number of 10,000. Both counter rotating

secondary vorticies are captured by using a nonuniform grid distribu-

tion where grids are concentrated near the walls. However, there is a

loss of accuracy in the primary vortex. The results are in good

agreement with results of other investigations.

`	
The analysis of flow in a driven cavity indicates that at a

Reynolds number of 100, the flow is viscous in the primary vortex with

little indication of an inviscid core. The inviscid core region has

filled much of the cavity with viscous regions confined near the walls

at a Reynolds number of 1000. At a Reynolds number of 10,000, however,

' 	 the inviscid core has completely filled the cavity with small viscous

regions very close to the wall. These results indicate that the flow

in a cavity can be characterized by a large vortex adjacent to the

cmoving wall and small counter-rotating vorticies in the corners.

The results show the validity and viability of the method of

lines where the physicaldomain is covered with a variable mesh. For
w

further study, it is recommended to include the following: (1) use a
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larger number of grid points, (2) solve the stream function equation by

a more powerful method, (3) use a higher order approximation for the

vorticity equation, and (4) write the available codes for a vector

computer such as the CYBER 203 so that finer grids can be used.
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