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APPLICATION OF THE METHOD OF LINES FOR SOLUTIONS OF
THE NAVIER-STOKES EQUATIONS USING A NONUMiFORM GRID DISTRIBUTION
By

J. S. Abglhassanil! and S. N. Tiwari?

SUMMARY

The feasibility of the method of lines is investigated for solu-~
tions of physical problems requiring nonuniform grid distributions. To
attain this, it was also necessary to investigate the stiffness charac-
teristics of the pertinent equations., For specific applications, the
governing equations considered are those for viscous, incompressible,
two-dimensional and axisymmetric flows. These equations are trausform
ed from the physical domair kaving a variable mesh to a computational
domain with a uniform mesh. The two governing partial differential
equations are the vorticity and stream function equations. The method
of lines is used to solve the vorticity equation and the successive
over relaxation technique is used to solve the stream function equa-
tion.

The method is applied to three laminar flow problems. These are:
the flow in ducts, curved-wall diffusers, and a driven cavity. Results
obtained for different flow conditions are in good agreement with
available analytical and numerical solutions. The viability and
validity of the method of lines are demonstrated by its application to

Navier-Stokes equations in the physical domain having a variable mesh.

! Graduate Research Assistant, Department of Mechanical Engineering and,
Mechanics, Old Dominion University, Norfolk, Virginia 23508.

2 Eminent Professor, Department of Mechanical Engineering znd Mechanics
Old Dominion University, Norfolk, Virginia 23508.
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Chapter 1
INTRODUCTION

In engineerity and sciences, most physical phenomena may be de-

scribed by a set of differential equations and boundary condition equa-

tions. These equations are mostly nonlinear in nature, and in a major-

ity of cases, they can be solved only by numerical approaches. In
particular, the field of fluid dynamics is governed by a specific set
of nonlinear partial differential equations called the Navier-Stokes
equations, In certain cases, flow fields may be described accurately
by the incompressible form of the Naviar-Stokes equations. For the
present study, the incompressible form of the Navier-Stokes equations
is expressed in terms of the stream function and vorticity. The
resulting equations are two coupled nonlinear partial differential
equations. The boundary conditions for the dependent variables, stream
function and vorticity, are expressed by a set of coupled linear
equations which depend on the nature of physical applications.

In the field of computational fluid dynamics, finite difference
and finite element methods have a well developed history. Another
method called "The Method of Lines (MOL)" has also received special
attention for the numerical solution of certain partial differential
equations. Detailed discussions on the method of lines are available
in [1-8]*. If the governing equations contain both time and space
variables, the procedure is to discretize the space variable components
and treat the time varying component as a continuum., This leads to a

system of coupled ordinary differential equations (ODE'S) which can be

*The number 1n brackets indicate references.
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integrated with sophisticated oxdinary differential equation software
[9] having automated time-step control. The advantages of this
approach are that the techniques can be applied quickly and the magni-
tude of knowledge about ordinary differential equation solvers can be
utilized for obtaining specific solutiszas,

The early development of the method of lines was in the Soviet
Union, Liskovet's article [1] is a reQiew of 154 papers which date up
to the mid-sixties. This review has considered linear partial differ-
ential equations of elliptic, parabolic, and hyperbolic types. leser
and Harrison [2], and Hicks and Wei [3] showed extensively the
viability and validity of the method for linear partial differential
equations. Later, Klunker et al. [4] used the method of lines to
calculate nonlinear conical flows. It was concluded that the method of
lines is a useful and versatile procedure for structuring the numerical
4viuvions to nonlinear equations. Jones et al. [5] presented an
extensive discussion for application of the method of lines in elliptic
systems. 1t was concluded that a large nuaber of lines may cause
nonconvergence. However, this conclusion was based on results obtained
from linear systemg. Loeb and Schiesser [10] presented an elegant way
to analyze the stability of the method of lines. It was concluded that
higher order finite difference approximations to the spatial deriva-
tives would improve the accuracy, stability and computational cost.
Madsen and Sincovec [6] applied the method of lines for solution of
several nonlinear partial.differential equations. These problems were
the diffusion of electrolytes, flow through porous media, and global
atmospheric transport with kinetics. It was concluded that the method

of lines gives satisfactory and reliable results which could not be
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obtained by using the finite difference schemes. Hamilton [7)] obtained
solutions of axisymmetric and two-dimensional inviscid flow over blunt
bodies using the method of lines and observed very accurate solutions
using just a few lines. Kurtz et al. [8] applied the method of lines
to the viscous stream function - vorticity equations in a rectangular
coordinate system. Tlie particular problem discussed was the flow in a
driven cavity. It was concluded that ~he method of lines is capable of
producing solutions to the stream function - vorticity equation at very
high Reynolds numbers where standard finite difference techniques fail
(11].

The literature survey indicates that the method of lines has been
applied by several investigators in numerical experimentations using
only the uniform grid distribution. For many physical problems,
however, it becomes essential to have irregular grid distributioms.
This may be due to the complexity of the physical boundary geometry,
and/otr local grid resolution. Therefore, there exists a strong need
for investigating the feasibility of the method of lines for physical
domains that are covered with variable grids which conform to the
boundary contoure and may be concentrated in specified regions.

The objective of this study is to establish the validity and via-
bility of the method of lines where there is an arbitrary grid distri-
bution. Also, this study investigates the effects of grid concentra-
tion, Reynoclds number, boundary conditions, and differencing schemes on
stiffness and stability by using a one-dimension2’ advection - diffu-

sion fluid flow equation and heat equation.
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It s et s

For viscous inccmpressible flow, the equations of motisi are
derived in two-dimensional and axisymmetric coordinate systems in
Chap. 2. These equations are transformed from the physical domain
having a variable grid to a computational domain with a uniform grid.
The resulting equations are solved numerjcally. The method of lines is
used to solve the vorticity equation and successive overrelaxation is
used to solve the stream function equation. The computation procedure
is presented in Chap. 3. The stiffness analysis is presented in
Chap. 4. A discussion on appropriate boundary and initial conditions

is given in Chap. 5. Information on grid generation is presented in

" Chap. 6. In this study, the grids are generated by an algebraic method

which transforms the irregular physical domain into a uniform
computational domain. For physical applications, specific problems
considered are: the flow between horizontal ducts, curved-wall diffus-
ers, znd flow in a driven cavity. The applications are described in
Chap. 7. Results are obtained for different flow conditions and are
compared with available analytical and numerical solutioms in Chap. 8.
The viability and validity of the method of lines are illustrated by

its applications to the incompressible Navier~Scokes equations.
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Chapter 2
THEORETICAL FORMULATION
The theory of fluid dynamics is based upon a set of governing
equations called the Navier-Stokes equations, Por multi-dimensional
flow, the equations are second order nonlinear parabolic-elliptic
partial differential equations. The first-order boundary-layer forms
of the Navier-Stokes equations are parabolic in nature and offer some
computational conveniences. Thesz equations, however, are not
applicable in many realistic flow conditions such as reverse and
separated flows. Therefore, it becomes esseritial to make use of the
full Navier-Stokes equations in many flow situations of practical
interest. A brief discussion of the bzsic governing equations used in
this study is presented in this chapter.
2.1 Governing Equations
For viscous incompressible flow the equations of motion can be

written in tensor notation as

Momentum : DU, - 30, 80, | (2.1)
p—tel. 2 g |
Dt axl QXj 3XJ 38X,
Continuity:
83U, (2.2)
— =0
9X,
i

It should be noted that in Eq. (2.1), W is constant in the case of
laminar flow. For the gcake of generality, Eqs. (2.1) and (2.2) can be

nondimensionalized by introducing the following variables:
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s . 5
Ui --—1- R xi a.—l. ’ P B — »
g, L g
u t
no= t = — (2.3
uw ’ L/Um

DU au. aU.
P 9 i i
DE 55t (@ e taed (2.4)
i j i
X,
i
where a = U /Re (2.6)

Equations (2.4) and (2.5) can be written in two~dimensional cartesian

or cylindrical coordinates as

%%'+V %%-+ U’%%-= - %§-+ 2 %E-(a %%J+

R T .7
TEtVIEtUsT e -se ¢ 257 (e g

7 oG 5 G- @9
§

(D (P +F =0 (2.9

Equations (2.7) to (2.9) are applicable to plane two-dimensional flows

if 6§ =0 and to axisymmetry flows if § 1.
2.2 Stream Function and Vorticity Formulations
There are now three equations, Eqs. (2.7) - (2.9), and three

unknowns U, V, and P. Introducing the definitions of the stream
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function and vorticity it is possible to reduce the number of equa-

tions to two and this eliminates the pressure. The definitions of the

stream function and vorticity are:

0w =¥ _3U (2.10)
Z dr
§
U = (%) g}_l'; (2.11)
8
-~ (1) 3V
ve-(39 5% (2.12)

where w is the vorticity and ¢ is the stream function.

A combination of Eqs. (2.7) through (2.12) results in

3w _ [3%w 32w 5 [22 .Y
5t " sZ taZ tS Ly ~H/r|

(el 2o tva 2 2] fon 1y e 320

92’ 32 dr dr .}
2a  32ay 3V L 3U 32a 3V _ U
sz -52 iz *5d * 2w [‘;'—z]] 2.13)

2 2
g,_zlzb_ grép__s_.a_w_q.rs(u:o (2.14)

Equation (2.13) is the non~conservative form of the vorticity equation.
The conservative form can be obtained by multiplying the continuity

equation by ®w and adding it to Eq. (2.13) as

R
9t 52 8;.2 or r r
2(w) (W) _,rda | dw 4 da, du
92 ar 9 9Z 3r dr
. (_S_(i sa [32 32(!] [_3_! + g_ll]
r 8r Z "3t L3z odr
3%a AV AU
+ 2.573-2 ["" -a—z']} (2.15)
7
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The preceding equations are nonlinear parabolic-elliptic partial dif-
ferential equations which can be solved numerically along with appro-
priate boundary and initial conditionms.
2.3 Coordinate Transformations
The governing Eqs. (2.13) through (2.15) are expressed in

physical coordinates. For many problems, the boundaries may be quite
irregular (Fig. 2.la). This requires special consideration for the
application of boundary conditions such as interpolation or some kind

of approximations. Also a local grid resolution is required in most

practical problems, which makes it extremely difficult to solve the

governing equations in the physical coordinates. Therefore, it becomes
advantageous to transform Eqs. (2.13) through (2.15) into new
computational coordinates, The computational domain is an idealized
rectangular coordinate system where a uniform grid is speci-

fied (Fig. 2.1b). In other words, this transformation maps the z, r
domain of the physical coordinates (Fig. 2.la) into the &, n domain of
the new computational coordinates (Fig. 2.1b). This transformation,
however, adds considerable complexity to the equations of motion. The

following chain rules are used in the transformation process:

f =€t f +n f (2.16)
z z E z N

f =t £ +n £ (2.17)
T r & r n

=2 + +2 + + 12 .
frr %% fEE Er:r fE Ex: e fEn Mre fn " fnn (2.18)
= £2 + + 2
£z =% fEE Ezz 3 25;znz fen + Nz £y + 7, fnn (2.19)
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Fig. 2.1 Coordinate systems.
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fzr =Ez€r fg +£" fg + (Eznr+5rnz) fEn + L fn + (2.20)

Equations (2.13) through (2.15) now can be written in terms of the

transformed variables as

wt=Ale€ +Blm€ +Clw5n+D1wn+E1wnn+F1 (2.21)

o-"ewEE*BZ‘Pg+°2¢’gn+h‘i/n+52¢'nn+?2 (2.22)

For the non-conservative form of the vorticity equation, Eq. (2.21),

the coefficients are defined as follows:

4 =a@2 +g2)

B o=als +f_ 4 /e €] - [v-2 € ap+n )],
4 v-2 (El_ocE +nr0tn)]5r

G =2 (Eznz+€rnr)

D o=aln_+n 4 G/oyn ] - [u-2 G ap +n, o]
{ v-2 (ErozE +nran)]nt

B =a@m +n)
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@/ [V o+ € g +n o) - 6/D] + [(€2 - E)ay,

+(EZZ ~€l‘l‘) ag v (Eznz -‘El‘nl‘) aEn * (nzz - nrr) Gn

2 .2
+02 nr)ann] [52"5 #n Vo +E_Gen Un]

+2{€z€ra65 +€zra5 * (Eznr+grnz) O‘En

+ a  + a v, + v U, - U
nzr n nz:“r: nn] [Et 13 r\1:' n -{z E nz T)]

laminar flow these coefficients will be reduced to the following:
= 2 2
=a .+ 13 r)

=ale +& +G/D)E] -vE -

r

i

ZI@ZHZ +Ernr)

=a __ 4"

§ - -
zz + "\r/r) un_-vn,

rr

a2 +n?)

Bw/r)(V - /1)

K

the conservative form of the vorticity equation, Eq. (2.15), the

corresponding coefficients are

2 , g2
4 =a €, +5)
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El =Q mzz +n2r) *

aws 9 (w) 9 (w) 9 () 9 (Uw)
F, +E + N e b e b ——
! {12 14 T 14 Z J

The coefficients for the stream functinn equation, Eq. (2.22), are

defined as follows:
=2 2
gz + é;z:

=Ezz +Err - (5/1')51_

= 2(5.'.‘171z + Ernr)

¥ e F &

=N, N (5/r)nr

an2 . n2
B =n% +n%

)
Equations (2.11) and (2.12) are written in the transformed coordi-

nates as
U= /e €y +n_v) (2.23)
ve=-a/’ € Ve TN,V ) (2,24)

The next step is to establish relations between the physical and compu-

tational coordinates such that

2(E3n)

r &, n) (2.25)
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The above relations should be unique, single-valued and have continuous
derivatives. This will be true if the determinant of the Jacobian
matrix of Eq. (2.25) exists and is nonzero. The Jacobian matrix of the

transformation is expressed as

I % %
T T, (2.26)

The inverse transformation of Eq. (2.25) and its Jacobian matrix can be

written as

el [, 0

[n] = [z, r)] (2.27)

. A Er-‘ (2.28)
an Ne

Equations (2.26) and (2.28) are related by

J=[J¥-1 , (2.29)

The relations between derivatives of the physical coordinates can be

deduced from Eq. (2.29) as

. A oo r
2 ]ﬂ z |J]
Z Z
I - &
gr = !ﬂ ﬂr |3-I (2.30)
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The relations between the second derivatives can be obtained by using

Eqs. (2.16), (2.17) and (2.30) as

= -~ E2 -
Ezz (gzr5n+“zrnn, E’zJE E’z"an)/‘Jl

E =-(nz_ +E& 2

2
rr rnn r &n +ErnrJn +€rJE)/'J|

Sez ™ -(Ezzﬁn "1 2%n 4'.gr:e"z'.”#i +‘Eran"l)/IJl

n = -(¢

5 .
zz erE +nzrﬁﬂ *EzanS +ann)/lJ|

= - - 1l
Mer (nrzin+grz€§ ErnrJE nrJn)/lJl

nrza—(n T, +Err§g +ﬂzﬂrJn+5ran€)/'Jl

(2.31a)

(2.31b)

(2.31¢)

(2.31d)

(2.31e)

(2.31€)

Equations (2.30) and (2.31) relate derivatives of physical coordinates

to computational coordinates; these derivatives should exist,
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Chapter 3

COMPUTATIONAL PROCEDURES

The governing equations, Eqs. (2.13)-(2.15), are derived in
Chap. 2 for incompressible flow in physical coordinates. These
equations are transformed to new computational coordinates, as Fgs.
(2.21) and (2.22). As mentioned before, these zre full parabolic-
elliptic partial differential equations, which are controlled by the
boundary conditions for all variables along a surface which encloses
the domain of interest. In case of turbulent flow, the equations are
completed by supplying some auxiliary transport property relations.
Because of the complexity of the equations there are only few
analytica. solutions. However, the equations can be solved using
numerical techniques such as finite difference method or finite element
method. There is also the method of lines (MOL). In the present
study, the stream-function equation is solved by the successive
overrelaxation (SOR) method and the vorticity equation is solved by the
method of lines,

3.1 Stream Function Equatiws

The stream-function equation, Eq. (2,22), is a two-dimensional
elliptic partial differential equations. Discretization of Eq. (2.22)
yields a system of linear equations which should be solved at each
iteration. There are several methods available to solve this equation
some of which are listed below:

1. Direct methods
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2. Richerdson's method (point iteration)

3. Liebman's method (Gauss-Seidel)

4. Successive overrelaxation (extrapolated Liebman method)

S. Alternating directions implicit methods

6. Hopscotch methods

Since only the right hand side of this linear system, Eq.
(2.22), changes at each iteration, it can be solved by the inversion
methecd., This method sometimes is called the direct method. This is an
efficient method for small systems, but the round off error destroys
the accuracy of solution for large systems.

The Richardson's method is also known as the Gauss iteration or
point iteration method. As mentioned before, discretization of Eq.
(2.22) yields a system of linear equations which can also be solved
iteratively. The computation is based on values computed in the

previous iteratiom, i.e.,

MR I TCRS) (3.1)

where k is the iteration number. This iterative computation is carried
out until some convergence c¢riteria is satisfied.
Liebman's method is like Richardson's method except it uses all

updated -values at each iteration step, i.e.,

w:ﬂ = £ [y (N, k,k+1)] (3.2)
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For better accuracy and efficiency, the results from Liebman's method
may be extrapolated as

k+l

VErh = p* v £y (8, ke ) (3.3

N
where wy; > 0

In the preceding equation, wo is a relaxation parameter. If the value
of w, is between one and two (1<m°<2), it represents overrelaxation,
and ifwo is less than one (o<wo<1), it represents und2rrelaxation.

Use of the over-relaxation method usually is not recommended for those
equations which contain strong source terms. It has been found
experimentally [12] that @, is inversely proportional to Reynoids
number. Therefore, underrelaxation is required as the Reynolds number
is increased.

Extensive discussions on alternating directions imnlicit (ADI)
and hopscotch methods are available in [11-13] and are not discussed
any further here.

3.2 Successive Overrelaxation Formulation

In this study the successive overrelaxation (SOR) technique is
formulated in such a way that a one-dimensional array is used to
compute and store each variable. A typical node arrangement for SOR is

shown in Fig. 3.1. By using second order differencing, Eq. (2.22) is

expressed as

k k+l k+l B .k k+1
G .k _ak k+1 _ okl
* 2 D ermer " Vyern-1 * Vnotnen T Yntnel)
k k+l k k+l k+1
*D [Wyery “Vy-iw * % [Vyery = 2%y * Vyornl* F2 0 | (3.4)
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INXIN

& 4& @ INx(IN-1)

1 G & ﬁ}zxm

IN-1 IN

Fig. 3.1 Node numbering scheme.
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Note that the coefficients are evaluated at the Nth node point.

Rearrangement of Eq. (3.4) results in

Residual (k, k+l, N)
N 2 (4 + Ep) (3.5)

where the Residual (k, k+l, N) is defined as

(2 +B) 24, - B,

. k+l
Residual (k, k+l, N) = 5 _—'WN+1 t— wN-l
G [y k _uk k+l _ gkl
+ r[w N+IN+1 ~ YNeIN-1 * YN-IN-1 WN-INH]
ZQ +D k 252 - D k k
* 7 ¥yery * 57— VYn-my - A+ Ep) vytF2 3.6

‘Equation (3.5) is Liebman's method, which can be improved by appropri-

ate extrapolation

w
gl Lk ° Residual (k,k+1,N) (3.7)
N N K +5)

There is no amalytical way to find the optimal relaxation factor (wo)
for this case. However, one may use the optimal relaxation factor for

the Possion's equation with Dirichlet boundary conditions [12]. This

is given by

w, =71 Vi< /¢ | (3.8a)

19




2

where, cos ( _1) + COS (j%:iﬁ

w
IN (3.8b)

2

In Eq. (3.8h), IN and JN are the number of grid points in the axial and
the vertical (radial) directions respectively.
3.3 Application of the Method of Lines to the Vorticity Equation
@i the vorticity equation, the spatial derivatives are replaced
by a corresponding set of second order difference equations. Also, the

vorticity is considered to be continuous in time. This gives

dw
N
ge 4 (Wyer ~ Wy ooy * Bi(bgag ~ ¥y-1) /2

+q (v N+IN+1” ¥ NeIN-1 Y N-IN-1 T "’N-Iml) /4

D (Ve Vn-1y /2 + B (Uyepy = 2y * Vy-1n) * FI (3.9)

Equation (3.9) is a set of coupled ordinary differential equationms,
which should be integrated simultaneously.

The method of lines is used for solving the system of partial
differential equations. As mentioned in the introduction, the method
was developed and used originally in the Soviet Union. Liskovet's
review aréicle [1] is a review of 154 papers which date up to the mid-
sixties. This review has considered linear partial differential
equations’ of elliptic, parabolic, and hyperbolic types.

The method of lines basically changes a partial differential e-
quation to a set of ordinary differential equation which can be
integrated numerically. In the case of time dependent partial

differential equations, the procedure is to discretize the spatial

variable and treat the temporal variable as continuous in time. This
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semi~discretization results in a set of ordinary differential equa-

tions, which can be integrated along the lines of time.

3.3.1 Advantages and Disadvantages of the Method of Lines

Finite difference and finite element techniques are well-develop-
ed and in general they are more attractive in terms of efficiency.
Solutions of partial differential equations using these two methods
lead to a system of linear algebraic equations which can be solved
by direct or iterative methods. However, the nonlinear terms in the
equations must be linearized. In the method of lines, there is no need
for linearization. Other advantages are as follows: (1) possible
establishment of convergence and stability criteria for a wide class of
problems [3, 14], (2) accurate solutions by using higher order
approximations for the derivatives and with less computational costs in
comparison to the finite difference method, and (3) more efficient due
to a better time-step control and easier implementation even for non-
linear systems.

There are certain limitations in the method of lines such as the
number of lines. Jones and et al. [5] estimated that error is equal to
exp[ 4N*ﬁrﬂ , where N is the number of lines and b is the characteris-
tic length. This means that using a large number of lines (for better
resolution) may bring significant instability. The former conclusion
is valid for elliptic systems.

3.3.2 Convergence, Accuracy, and Stability

Convergence exists when the solution approaches the solution of
original continuum differential equations as step size or grid size
approaches zero. But, instability occurs when round off error or any

other computational errors become unbounded. There are extensive
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discussions about convergence and stability by Jones et al. [5], and
Loeb and Schiesser [10]. Their results show that using higher order
finite difference approximations for derivatives improves the accuracy
and the stability, and reduces computer cost. They have also shown
that using more grid points improves the accuracy, but makes the
solution become less stable, Stability may be related to the stiffness

of the equations. This effect is investigated in the next chapter.
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Chapter 4
STIFFNESS ANALYSIS

In engineering problems, stiffness may arise due to the physics
of the problem or be introduced to the problem because of the type of
approach applied for obtaining solutions. An example is a problem in-
volving chemical reactions where time scales span from 1076 to 10°
seconds, simultaneously. This system is referred to as a stiff system
when the processes are coupled and when all time scales must be resolv-
ed. In mathematical terms, when the eigenvalues of a system of
differential equations have a large variation, the system is referred

to as a stiff system. For example, consider the following equaticn:

-1 49 0
Y =Ay, where A = 0 -50 0 (4.1)
L 0 1150  =1200

This equation has a solution of the form

Yy (x) = e X 4 e-'50x
Y, (x) = e-SOx

The eigenvalues of this system vary from -1200 to -i. The degree of

stiffness is measured by the stiffness ratio which is the ratio of the
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largest eigenvalue to the smallest eigenvalue of the system. For

example, the stiffness ratio for Eq. (4.1) is 1200. Stiffness may be a
local problem in which case the equations are stiff in some regions and
nonstiff in other regions. Numerical integraticn of Eq. (4.1) requires
a specified integration step size h which is determined only by the
components ¢f the eigenvalues, Ai and the stability region of the inte-
‘gration scheme. The stability of numerical integration of Eq. (4.1) is
governed by the maximum absolute value of Ai. For example, using
Euler’'s method for the integration, it is necessary that {Max (Ai)}'h<2
(15]. This implies that the maximum stable step size is 1/600, meaning
that 600 integration steps are required to reach x = 1,

There are only a limited number of numerical methods available to
solve ordinary differential equations which utilize the stiffness char-
acteristic [9, 14-17]. A popular method is the Gear's method [9, 14,
17].  Subroutine VOADAM [9] has been used to solve Eq. (3.9), which
has the options for stiff and nonstiff systems. Stiff and nonstiff
options differ in storage and computer time. The computer memory
required for a stiff solver is of order N2 (N number of equations),
whereas for a nonstiff solver it is of order N. However, the stiff
option generally requires much less computer time. As an example,
Madsen and Sincovec [6] observed a 400% computer time saving by using
a stiff integrator,

4,1 Effect of Grid Concentration on Stiffness

In many physical problems, one desires to have an arbitrary grid

distribution with concentration at any location in the physical domain.

In particular in flow field computation, concentrations are required

24




to capture rapid changes in flow conditions such as boundary layer,
shock, and separation. Ccncentrations affect the stiffness
characteristics of a system, and it is essential to investigate the
effects of grid concentration on stiffness. For this purpose, a simple

one-dimensional heat equation is considered. The equation is given

a'r (4.2)

Equation (4.2) is transformed from the physical coordinate (x) into a

computational coordinate (n)

3_1 e n2
at n .];'m xxTn (4.3)

where n =n(x), o< n<1l (4.4)

In Eq. (4.3), the spatial derivatives are discretized using a second-

order finite-difference approximation and T is assumed to be continuous

in time. This results in

-:-:-—-al'l‘_’_ld-bi T e, T 4.5)
where

a, =(n_An)2 +n_ /[ 2n) (4.6a)

b, = 2n x/An)2 (4.6b)

c; = (n xx/?t\n) (4.6¢)




Equation (4.5) represents a set of ordinary differential equations

which can be written in matrix form as

dT
rrl %.7)
- 7
b c
) b, , )
where [A] =
a b c
N=-1 N-1 N-1
aN bN
| i

Eigenvalues of matrix [A] are determined in order to analyze the stiff-
ness characteristics. Eigenvalues of matrix [A} depend on boundary
conditions and the relation between physical and computational coordi-
nates.

Consider the following relation between x and n, and the boundary

conditions:

x = b(eKn -1) (4.8a)

K
b=(e-1)"t (4.8b)
1) =3 =g (4.80)

In the above equation, K 1is a stretching factor which determines the
degree and location of the grid concentration. A large positive value
of K results in a high grid concentration near x = 0, whereas a large

negative value of k results in a high grid concentration near the x = 1

boundary. A substitution of Eq. (4.8) into Eq. (4.6) results in
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-2K11 =iR

a, = - = (4.9a)
(AnKb)2  2KbKPAn
-zm i -
-2e
bi = (4.9b)
(An Kb)?
=21 . =2Kn .
e 1 e 1
c; = + (4.9¢c)

@nKb)2  2KERAn

Eigenvalues of matrix [A] are found numerically using subroutine REQR
(18], and the stiffness ratios are computed for different values of
stretching factors. Figure 4.1 shows a plot of the stretching factor
versus the stiffness ratio. The plot indicates that stiffness in-
creases with the magnitude of the stretching factor. Also, the slope
of the stiffness characteristic curve is higher near the fixed boundary
(x=0) than near the derivative boundary (x=1).
4.2 Effects of Differencing Scheme on Stiffness

In the finite difference approach, convergence and stability of a
solution depend on the differencing scheme used, Similarly, the
differencing acheme affects the stiffness of the resulting ordinary
differential equation system in the method of lines. To investigate
the effects of differencing schemes on stiffness, consider the
linearized one-dimensional advection-diffusion fluid flow equation:

W w1 3%w

= - b - (
3t Usx " Re 02 (4.10)

27

§

.

.

e
. .
-

L e
-
o w A
- ;
Bl -
o

(3



LOG ( STIFFNESS RATIO )
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Fig. 4.1 Stiffness characteristic for heat equation.
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w(0,t) =0 oF

w(l,t) =1 (4.11)

where 0¢< x< 1

In Eq. (4.10), the spatial derivatives can be discretized by using the

backward, central, or forward differencing scheme. Thus, Eq. (4.11)

can be expressed as

%rawxl«rbmzd»cwnl _ (4.122)

This equation is a set of ordinary differential equations which can be

expressed also in matrix form as

(4w +[;] (4.12b)

where

a b c (4.13)

PP
’

The values of elements a, b, and ¢ of matrix [A] are functions of the ff'
»","{, .
nunber of grid points (N) and the Reynolds number (Re). For forward ,2%}
differencing, they are lé&_
S
S
a=N/Re , b=N-2¥/Re, c = N/Re-N L
o
L

For backward differencing, they are

a=M/Re+N , b=-N-2/Re , c = N2/Re
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For central differencing, they are

a=MN/Re + N/2, b =~2/Re , c = Nt/Re=N/2

The eigenvalues of matrix [A] can be computed analytically, and they

are

An=1L + 2 Yac COS -g—t:l (4,14)

A system of ordinary differential equations (e.g., Eq. 4.1Z) is
unstable if the real parts of its eigenvalues are positive. Therefore,
backward and central differencing are inherent]y stable, whereas
forward differencing is conditionally stable, provided Re < 2 N, It is
shown later that forward differencing is not useful for solution of Eq.
(4.10).

Stiffness ratios for these differencing schemes are computed and
are plotted on Fig. 4.2. The plots show that the equations become
stiff as the number of grid points is increased (curves 1-3), and the
stiffness ratios do not depend on the differencing scheme at low
Reynolds number (curves 4 and 5)

A specified integration step size is required for the integration
of ordinary differential equations. Maximum allowable step size
depends on the eigenvalues and the applied integration techniques. The
step size should be selected such that Ah 1is located in the stability
region (Fig. 4.3). For instance, the stability region is shown in Fig.
4.3 for the Adams-Bashforth method (first order) where h is the step
size and A is the eigenvalue., Generally, the integration step size
is inversely proportional to the distance between the location of the

eigenvalue A and the stability region. For example, if AA, AB’ and
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Fig. 4.2 Stiffness characteristic for fluid flow equation.
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Fig. 4.3 Stability region for Adams-Bashforth (first order).
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Ac are the largest eigenvalues of three different systems of ordinary
differential equations (Fig. 4.3), system A requires the smallest step
size, because AA has the farthest distance from the stability region.
The maximum allowable step size can be computed analytically for the

Adams-Bashforth technique (first order). Consider eigenvalue A, [A =

A A

REQ ) + i IM(A)], where RE is the real part zand IM is the imaginary
part, the step size should be selected such that the point A in the
‘complex plane can be moved to the stability region. This requires
By, [ Modulus of A,] = [Modulus of A ] (4.15)
where from Fig. 4.3 Modulus of AA = A0, Modulus of Az = a0.
After some algebraic manipulation, the maximum step size is found to be

By = 4.16)
[ Modulus of AAJZ

Using chis equation, the step size can be computed for the different

differencing schemes. In case of forward differencing, the step size
i¢ positive if Re > 2N, and the¢ system is unstable. Therefore, it is
impossible to solve Eq. (4.11) using forward differencing along with

the Adams-Bashforth (first order) integration technique. Similarly,

step size for central differencing is

« I4
hMax 1/Re. “G.17)

The step size is inversely proportional to Reynolds number for Re > 2N.
In case of backward differencing, the step size is

hMax = 2/(Modulus of \) (4.18)

Figure 4.4 shows variations of step size with Reynolds number (Re) and

the number of grid points (N). The figure shows that the step size de-
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creases as the number of grid points increases (crrves 1 and 2). This
is compatible with the finite difference techniques [12]. On the same
figure, step size is plotted versus Reynolds number. For backward
differencing, the step size increases with increasing of the Reynolds
number. The converse is true for central differencing.

For inviscid flow (Re + =), forward differencing is inherently

unstable. For central differencing, step size is zmro which makes it

impossible to integrate the equations. The step size for backward dif-

ferencing is
h = 2/N (4.19)
The step size is inversely proportional to the number of grid points;

this result is similar to the result of viscous flow.
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Chapter 5

BOUNDARY AND INITIAL CONDITIONS

For a particular flow problem, selection of proper boundary
conditions depends upon the nature of the flow and the computational
procedures employed. The application of certain conditions may cause
numerical instability in the solution even though the flow is physic-
ally stable.

Equations (2.21) and (2.22) are parabolic~elliptic partial dif-
ferential equations. The dependent variables in these equations should
be defined by some relations along the bouridaries. There are three
general types of boundary conditions for a dependent variable and they
can be stated as follows:

1. Specifying values of the dependent variables at the boundar-

ies.

2. Specifying first or higher derivatives of the dependent vari-
ables at the boundaries.

3. Specifying algebraic relations which relate dependent vari-
ables.to independent variables or to their first or higher
order derivatives.

Two point§ should be noted in choosing the above conditions.

First, the second condition cannot be applied at all boundaries because
uniqueness considerations. Second, a combination of the above

conditions can be applied to various parts of one boundary.
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In the selection of boundary conditions, four important factors
that should be considered are: convergence, stgbility, computer time,
and above all, the physical justification. Extensive discussions of
these factor are given by Roache [12].

For the confined flow geometry, Fig. 5.la, there are four types
of boundary conditions inlet: outlet, wall, and symmetry. Whereas, in
the driven cavity, Fig. 5.lb, there are two types of boundary condi-
tions: wall and moving wall. Also, in each case, it is necessary tou
specify some initial conditions.

5.1 1Inlet Condition

For problems involving duct flow, the inlet conditions are
usually specified. Throughout this study, the inlet conditions are
fixed. In general inlet velocity profile for duct rlow is given by

U(r) = 1 - AT T, (5.1)

v(r) = 0.0 (5.2)

The stream function is computed from Eqs. (2.11) .and (2.12) by

S +1 NI+ +1
v (r) =3-—-t - AL o (5.3)
+1 NI+ +1
The vorticity is computed similarly from Eq. (2.10) as
w =AL* NI+ V1 (5.4)

In the preceding equations, NI and AI are the inlet distribution para-
meters and they can be selected to produce desired inlet conditionms.,
For example, AL = 0 corresponds to a uniform distribution of velocity

across the inlet; AI = NI = 1 corresponds to a linear distribution of
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inlet profile; AI = 1, NI = 2 corresponds to a parabolic inlet profile.
In this study, a uniform inlet profile is selected for flows in pipe
and parallel ducts, and a parabolic profile for flows in a curved-wall
diffuser.

5.2 Outlet Condition

For flow between parallel plates and in pipes, the most realistic
outlet condition would be no profile changes in the flow direction far
from the entrance point; provided there is no change in the wall
conditions. This makes it impossible to use realistic conditions for
such cases. Roache [12] points out that numerical experiences show
that catastrophic instability may be propagated upstre¢am from the
application of improper outlet conditions and this may destroy the
solution completely.

The Reynolds number is an important criteria for selection of an
outlet condition. For high Reynolds number flows, the derivatives with
respect to flow direction are generally small compared to the deriva-
tives with respect to normal direction. Therefore, the governing equa-
tions tend to be parabolic in nature (boundary-layer equations). In
this case, the outlet condition has little effect on the solution.

But, low Reynolds number flows require a physically well justifiable
outlet condition. Generally, the outlet condition can be described
to be fixed or to be time dependent. A fixed outlet condition is the
easiest to apply from a computational viewpoint. For a fixed outlet

condition, the velocity profile ie given by

_ NI
u(r) = Umax(l-AIr ) . (5.5)
AV
55 " 0 ' (5.6)
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The stream function and vorticity can be computed in the same way as

described in Sec., 5.l1. They are

Ve = U L5 - AT N
NI-1
w(r) U ax AL » NI+ r (5.8)

In the absence of suction and/or blowing, the stream function should be

constant along the wall. This is given by

WWhgq, (5.3 = WENlg, 5.7 (5.9)

A combination of equations (5.7) and (5.9) results in

U = 1/(@+1) - AT/(NI + 8+1) (5.10)

max  O*L s +1)-a0( 0P YY) / (Noss +1)

where r, is the outlet radius.

A fixed outlet condition is not suitable for separated flows or
any flows with a viscous wake [12]. Paris and Whitaker [19] solved a
confined flow using zero gradient conditions. This showed improvement
in solution over specified conditions. Later, Thoman and Szewczyk [20]
used physically less restricted conditions for the stream function and

zero gradient on the vorticity as

32y _dw 0 (5.11)
32 dz
Briley (21) took a different approach by considering the following re-
lation
2y _ 22w _ o (5.12)
3 3 Z
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+
kY

Also, zero velocity at the wall allows

N

A substitution of Eq. (5.12) into Eq. (2.14) results in

2
o - (1,,,6[3_;;-%;{.] (5.13)

Equations (5.12) and (5.13) represent two ways of computing vorticity
at an outlet. This technique is referred to as maltreatment of outlet
condition by Roache [22]. Throughout this study, Eq. (5.11) is
considered for the outlet condition.
5.3 Wall Condition
An impermeable wall assumption allows the stream function to have
a fixed value along a wall regardless of its geometry. The stream

function may be computed from the inlet condition, Eq. (5.3),

S B (5.14)
541 T WIS +1

The vorticity can be computed by applying Eq. (5.14) to Eq.
(2.22), i. e.,

D, wn + B \Pnn +Fp =0 (5.15)

e g < Wapra s

wn =0 (5.16)

Upon combining Eqs. (5.14) and (5.15), one obtains

2 2
e * e (5.17)
R T

§ nn
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Equation (5.17) describes variations of vorticity along a horizontal
wall., A similar expression can be derived for a vertical wall in the

case of a driven cavity, i.e.,
W " - 'r wgg (5:18)

Equation (5.17) is applied to the boundary Al shown in Fig. 5.la and to
boundary B3 shown in Fig. 5.1b. Equation (5.18) is applied to bound-
aries B2 and B4 in Fig, 5.1b.
5.4 Symmetry Condition
Selection of a symmetry boundary condition depends on the nature
of the flow. 1In this study, since there is no center body, the

symmetry condition along the centerline requires that

L (5.19)
r
V=20 (5.20)

By comparing Eqs. (5.18) and (2.12), it can be concluded that the
stream function has a fixed value along the line of symmetry which can
be chosen to be zero. Similarly, it can be concluded that the
vorticity is zero along the line of symmetry.
5.5 Moving Wall Condition

In Fig. 5.1b, the Bl boundary moves with a uniform velocity U=-l.
This means that the boundary can be chosen as a streamline. The value
of the stream function can be selected to be zero to match with the
value of the stream function at boundaries B2 and B4. Using uniform

velocity at the boundary, Eq. (2.23) can be written as

Er'llg +nt¢n = -1 (5.21)
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By using the value of the stream function along the boundary (¢ = 0),

this equation reduces to

yn = -1/nr (5.22)

Vorticity can be obtained from Eq, (2.22) by using the value of the

stream function along the boundary and Eq. (5.22), i. e.,

w=D/M_ - Wnn (5.23)

The second derivative «f the stream function can be approximated

(second order) by

0 =y

nn N+IN (5.24)

- 2 +
‘lN #N-IN
Also, the first derivative of the stream function can be approximated

(third order) by

Vo = Grygyy * ¥y -6

f ¥

)/6 = —l/nr (5.25)

N-IN T YN-2IN

The combination of Eqs. (5.24) and (5.25) results in

y o= (—6/nr + 8y

nn v

-7 wN)/z. (5.26)

N-IN ' N-2IN

Equation (5.26) is a second order accurate equation [23].

A combination of Eqs, (5.23) and (5.26) results in

w =D/ +E (6/0 -8V, - +¥ ooy * 7 ¥Y/2.0 (5.27)

A similar approach has been émployed for evaluating the vorticity at

the stationary wall boundaries.
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5.6 Initial Conditions
In computational fluid dynamics, the initial conditions usually
correspond to a real initial situation for a transient problem or, as a
rough guess, fur a steady state problem. In practice, initial condi-
tions are obtained from experiments, empirical relations, or approxi-
mate theories. The initial conditions used in the determination of the
steady state solution should have no significance in the steady-state

solution of incompressible flows [12], otherwise the solution is not

.

unique,

Generally, there are two kinds of initial conditions. In the
first one, an impulse motion starts from the rest, and in the second
kind, the flow has the same initial motion everywhere except the
boundaries. In the present stady, the entire flow-field is initially
set equal to the inlet condition for the internal flows. For the case
of driven cavity, the stream function and vorticity are initially set

equal to zero in the entire flow-field.
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Chapter 6

GRID GENERATION TECHNIQUES

It is highly desirable to solve partial differential equations in
a rectangular box with uniform grid spacings [25-27]. This is espe-
cially true in fluid dynemics where the governing equations are com-
plex. Ideally, a physical domain should be transformed to a computa-
tional domain, where the physical boundaries map into the boundaries of
a rectangle., This transformation has certain advantages. In the first
place, the boundaries can be represented more accurately. Secondly, it
allows better resolution in regions where rapid changes occur, such as
boundary layers, shocks, and separated flows. Above all, compulter
codes which are applicable to any geometry can be written without the
need of special procedures fbr the boundaries. The disadvantages are
that the convergence; stability, and stiffnzss characteristics of the
equations are affected. Also, the transformed equations are more
complex then the original equations. The transformed governing
equations contain the rate of change of the computational coordi-
n;tes with respect to the physical coordinates. These derivatives are
computed from the relations of the physical grid to the computational
grid. There are, generally, three approaches for grid generations:
classical technique (conformal mapping) [24];, differential methods

[25], and algebraic methods [26].
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The classical technique requires the use of complex functions to
define the mapping which is extremely difficult for arbitrary geom
etries, But, conformal mapying has the advantage of minimizing the
number of terms in the transformed equations. The algebraic and
differential methods for grid generation are outlined in the following
sections.

6.1 Algebraic Method

In the algebraic method an explicit functional relationship
between the computational domain and the physical domain is determin-
ed. The computational domain is rectangular and has a uniform grid
distributien. The physical domain is defined by

z=2z E,n) (6.1)

r=r E,n) (6.2)

A requirement of boundary-fitted cooidinate systems is that the bound-
aries of physical domain map to the boundaries of the computational

domain. That is,

3 =z @&, 0 =2z &) (6.3)
n =nE, 00=n ¢) (6.4)
2 =5, 1) =2 ) 6.5)
L =npE, )=np &) (6.6)

Equations (6.1) and (6.2) can be rewritten using Eqs. (6.3)
through (6.6) as
z=2z E,n) =2z (z,2z,) 6.7)
r=rE,n)=r (g ,n,") (6.8)

The explicit forms of Eqs. (6.7) and (6.8) can be written as a simple

parametric linear or cubic polynomials as {26]

46

o5 S e R TSR L A R L s

St T

P

i

TR

J e T e

i T

PR
S
>
H

A LA

-

v ex

aad



Linear:
z=z Eh 4 2z (E)(1) (6.9)
=y EM 4+ nn E)(1-n) (6.10)

Cubic:

1
z=2 ) f () +5 ) £ () +%:—'(5—)'f3(n) +

dz () £ ()
—%F_

(6.11)

r=r; €) () 4+, G) & (n) +%1-(—Elf3 (n) +

dp E) i (M) (6.12)
|

In Eqs. (6.11) and (6.12), the f's are the blending functions and are

defined as

£ = 23 - R+l (6.13)
§ = -n° + 3 (6.14)
i =nd - % (6.15)
g =n3 —n? (6.16)

Equations (6.9) through (6,12) are called connecting functions. If &
and n are the computation coordinate functions, then £ (£) and n(n) can

be defined to produce a desired grid spacing distribution. That is

E=EE€) , oe<l, KE<1 (6.17)

n=n() , OnN<l, 0kn<l (6.18)

For example, contracting the physical grids towards one boundary can be

47

B T TR

-\




accomplished by using the following function

kn_y (6.19)
e .
-1

where K is a stretching parameter which determines the location and

degree of concentration,

This method (i.e., the algebraic method) requires relatively few

computations.

6.2 Differential method

¥

If the computational coordinates £(z,r) and n(z,r) are harmonic ;

then the Jacobian does not vanish [27]. This allows a computation of & !

and n from an elliptic system (Laplace's equation), i.e.,
VZg = 0 (6.20)
vZn = 0 (6.21)

The spacing of the coordinate lines can be controlled by adding

inhomogeneous term to the right sides of Eqs. (6.20) and (6.21) as
v2g

s — e

(6.21a)

2n =Qq (€, n) (6.21b)

In Eqs. (6.21a) and (6.21b), n and & are known, and the unknowns are z

and r. In order to be able to solve for z and r, the dependent

variables of Eqs. (6.20) and (6.21) should be interchanged. Thus,

P (E,n) B

9., "
a . 4+ Z = ..JZ Pz o+ .22 ;"x";f
% B%, *Y 3, [ EQﬁJ (6.22) BE
Yot
fiiiij
o - + - +Qr 6.23 Y
Tee 281:gn Yoo, = 7 [Prg Q n] ( ) R
) t‘} “‘;AQ‘
k‘f',;',a
o =
P
t
{
4
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where
a=2 +2 (6.24a)
B = % 2, + T, % (6.245)
= 2 + .
Y =2 tg (6.24¢)
J = ZErn- zan,' (6.24d)

There are four boundary conditions for Eqs. (6.22) and (6.23). The
quantities P and Q are the forcing functions which are selected to have
a desired grid distribution and orthoganality at the boundaries [27].
The disadvantage of this method is that it is inefficient compared to

the algebraic method.
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Chapter 7
PHYSICAL APPLICATIONS

This study investigates the validity and viability of the method
of lines for solutions of the Navier-Stokes equations with arbitrary
boundary geometry and grid spacing. For incompressible ;iscous flows,
the pertinent equations are derived in two-dimensional and axisymmetric
coordinate systems, Eqs. (2.13) -(2.15). These equations are trans-
formed from the physical domain with arbitrary boundaries and grid
spacings to a rectangular computational domain with uniform grid
spacings. The resulting equations, Eqs.(2.21) and (2.22), are solved
numerically. The method of lines is used to solve the vorticity equa-
tion, Eq. (2.22), and the successive overrelaxation technique is used
for solving the stream function equation, Eq. (2.21). Boundary
conditions at a solid stationary wall are no-slip conditions which
corresponds to a fixed stream function and requires that the vorticity
be computed from the stream function by Eqs. (5.17) and (5.26). For
the internal flow computation, the stream function and vorticity are
equal to zero along the line of symmetry. The inflow boundary
condition is kept fixed throughout this study. The outflow condition
is used to enforce no-change in the stream function and vorticity with
respect to flow direction, Eq. (5.11). In the case of the driven
cavity, the vorticity at the moving wall is computed from Eq. (5.28).
For internal flow, the initial conditions are the inflow conditions for

the entire domain, and no flow in the case of the driven cavity. Grid
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distributions are generated by the algebraic method which makes it
possible to handle any boundary geometrie; [26]. Specific solutioms
are obtained for internal flows (pipe, parallel plate and curved wall
diffusers) and a driven cavity. These probiems are discussed briefly
in this chapter. '

7.1 Internal Flows

The entrance regions of ducts are used usually to compare numeri-
cal procedures, because of the availability of analytical solutionms.
Most of these solutions are based on parabolic forms of Navier-Stokes
equations which are called boundary-layer equations. Assumption of the
boundary layer (neglecting the axial diffusion) makes it possible to
obtain analytical solutions [28-31].

Vrentas et al. [32] investigated the effects of axial diffusion
of vorticity on flow development in circular ducts. It was concluded
that at very low Reynolds numbers (Re<20), the axial diffusion causes
the velocity development to be spread out in the downstream region, and
this results in a larger entr&nce length than that predicted by the
boundary-layer analysis. It was also concluded that the converse is
true for Re>20. The flow in parallel ducts may, in general, be divided
into three regions (Fig. 7.1). Region I, is a region of potential
flow. This flow interacts with region II which is a region of
boundary-layer flow. The third region (region III) is the region of
fully~developed flow. Using these concepts, Schlichting [28] obtained
an approximate solution by using Blasius' solution for the inlet
regions between parallel ducts and a perturbation of the fully-develop-

ed solution in the region far from the entrance. The solution for the

intermediate regions was obtained by patching together the upstream and
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.

downstream solutions., A similar approach was implemented by Atkins and
Goldstein [33] for a circular tube. Later, Van Dyke [31] improved
Schlichting's sclution by using more terms in the perturbation expansion.
Another common method is the linearization of the convective term in the
boundary-layer equations; this allows the velocity to be continuous along
the axial coordinate. Using this concept, Sparrow et al. [30] developed
solutions for circular tubes and parallel plates using boundary-layer
equatiqns. In the present study, results obtained from the method of lines
are compared with results of Sparrow et al., [30].

In the case of curved-wall diffusers, the outer wall geometry is

based on the following equation:
X - X
r={l1+(p -1 F[l+al -P]IHEL) + X HL-X)

where (7.1)

r, = Ltang + 1

Figure 7.2 shows a typical curved-wall diffuser geometry. It is a
bell-type diffuser for a>0 and a trumpet type diffuser for a<0. The
value of @ has been set equal to unity for the present study. By using
the method of lines, solutions are obtained for different diffuser
angles (8) and for a Reynolds number of 200.
7.2 Driven Cavity

The flow in a driven cavity has been used as a test case for

evaluating the numerical procedures for solving the Navier-Stokes equa-

tions. It serves as an example of closed stream lines which represent
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interesting characteristics such as vortex development in the core and
boundary-layer development on the walls of the cavity.

Kawaguti [34] performed one of the earliest calculations for flow
in a driven cavity and satisfactory results werl obtained with Reynolds
number up to 64, Later, Burggraf [35] obtained solutions for Reynolds
numbers up to 400. An underrelaxation method was used to solve the
governing equations, and a relaxation factor of 0.4 was used for a
Reynolds number of 400. Burggraf was not successful in obtaining
gsolutions for higher Reynolds numbers. This may be due partially to
the form of the governing equations (non-conservative form) used.
Bozeman [36] solved the same problem using the conservative form of the
Navier-Stokes equations. Solutions were obtained successfully up to
Reynolds numbers ¢t .000. Bozeman used a strongly implicit procedure
which is unconditionally stable. Smith and Kidd [11] obtained
solutions up to a Reynolds number of 5000 by solving the vorticity
equation using alternating-direction implicit (ADI) methods and the
stream function equation by the Buneman direct method (BDM). Us ing
the method of lines, Kurtz et al. [8] were able to obtain solutions up
to Reynolds numbers of 50,000, In this study, solutions are obtained
for three Reynolds numbers (100, 1000, and 10000) with two different

16x16 grid distributions.
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Chapter 8
RESULTS AND DISCUSSION

By using the formulation and numerical procedure discussed in the
preceding chapters, solutions are obtained for flow between parallel
plates, circular pipes, curved-wall diffusers, and in a driven cavity.
Non-conservative forms of the governing equations are used for the
entire internal flow computations,

Figure 8.1 shows the 20x20 grid distribution which is used for
computing the floﬁ field between parallel plates and in pipes. The
grids are concentrated near the walls and the entrance point where
rapid changes occur.

For a Reynolds number of 200, Figs. 8.2 and 8.3 show velocity,
stream function and vorticity distributions for flow between parallel
plates and in a pipe, respectively. Velocity profiles are compared
with those obtained by Sparrow et al. [30], and are found to be in good
agreement except in the vicinity of the entrance point., This discrep-
ancy may be due to the fact that Sparrow's results are based on the
boundary-layer assumptions. There is a sharp drop in the stream
function in the vicinity of the entrance point which indicates a rapid
flow development in this region. This sharp drop corresponds to a
sharp change in vorticity which can be observed in Figs. 8.2c and 8.3c.
Similar results are obtained for a Reynolds number of 1000 and these
are illustrated in Figs. 8.4 and 8.5 for flow between parallel plates

and in a pipe, reszpectively.
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Fig. 8.2b Stream function contours for flow between parallel

plates, Re = 200.
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Fig. 8.2¢c Vorticit}; contours for flow between parallel plates,

ra = 200.
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Fig. 8.3b Stream function contours for pipe flow, Re = 200.
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Fig. 8.3c Vorticity distribution for pipe flow, Re = 200.
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Fig. 8.4b Stream function contours for flow between parallel
plates, Re = 1,000.
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Fig. 8.4c Vorticity contours for flow between parallel plates,

Re

1,000.
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Fig. 8.5b Stream function contours for pipe flow, Re
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Figure 8.6 shows a 20x20 grid distribution for a five-degree

curved~wall diffuser. Again, the grid is concentrated near the en-
trance point and wall region for capturing the boundary layer develop-
ment and separation., Figure 8.7 shows the velocity profiles, stream
function and vorticity distributions for a Reynolds number of 200. The
results show no indication of separation. The next case studied is a
ten—-degree curved-wall diffuser., The grid distribution for this case
is shown in Fig. 8.8, and the results shown in Fig. 8.9 clearly
indicate that a separation occurs in this case.

Figure 8.10 shows a uniform 16x16 grid distribution for a driven
cavity. Figure 8.11 shows the the stream function and vorticity
distributions for Reynolds number of 100. These results are obtained
using the non-conservative form of the Navier-Stokes equations with a
uniform grid distribution. The results are in good agreement with the
results obtained by other investigators [8, 11, 23, 35-37]. For a
Reynolds number of 1000, the solution does not converge if the non-
conservative form of the governing equation is used. For higher
Reynolds numbers, therefore, the conservative form of the governing

equations, Eqs. (2.15), are used to obtain further results. TFigure

8.12 shows the stream function and vorticity distributions for a
Reynolds number of 1000. The r#sults are in good agreement with Kurtz
et al. [8], Smith et al. [l1], Ghia et al. [23], Bozeman [36], and
Schreiber and Keller [37]. Ghia and Schreiber have used over 10% grid
points. Figure 8.13 shows the stream function and vorticity distribu-
tions for Reynolds number of 10,000. 'The results are in good agreement
with the results of Kurtz et al. [8], Ghia et al. [23] and Schreiber

and Keller [37]. These results suggest that the high Reynolds number
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Fig. 8.7b Vorticity conftour for a bell-type diffuser,
T=1,8 =5, L=20, L. = 32, Re = 200.
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Fig. 8.7c. Stream function contour for a bell-type diffuser,

G=1,0=5 L=20,L =32 R = 200.
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Fig. 8.9c Vorticity contour for a bell-type diffuser, o = 1,
6 =5, L =10, L, = 40, Re = 200.
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Fig. 8.10 Uniform grid distribution for a driven cavity.
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Fig. 8.1la Stream function distribution for uniform grid
distribution, Re = 100.

80




w

P
Livy

i€
WY

oriGH. ¥
OF POOR QUA

e e et e o e i s |

- e T o d
DR P PP S B . ]
IS O A -
p T tn el b i 4

o

0 oao

0

34.000

10
2.0000

-14.000

CONTOUR INTERVAL IS

CONTOUR FROM

81

Fig. 8.1lb Vorticity distribution for uniform grid
distribution, Re = 100.

LTI IR T L. Ec



ORIGINAL PAGE 15
OF POOR QUALITY

CONTOUR FROM ~-16.000 T0
CONTCUR INTERVAL IS 2.,0000

38.000

Fig. 8.12a Stream function distribution for uniform
grid distribution, Re = 1,000.
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Fig. 8.13a Stream function distribution for uniform grid
distribution, Re = 10,000.
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flow consists essentially of a single inviscid core of vorticity with
viscous effects being confined to a thin shear layer nesr the wall
boundaries, By using a nonuniform grid distribution, Fig. 8.14,
solutions were obtained for Reynolds numbers of 100 and 1000. As shown
in Fig. 8.14, the grids are concentrated near the corners in order to
capture the secondary vorticities. The results are shown in Figs. 8.15
and 8.16 for Re=100 and 1000, respectively. The secondary vorticities
are captured, but the results are not in good agreement with those
cbtained previously, The maximum value of the primary streamlines is
30 percent lower than the results obtained with uniform grid distribu-
tion. Accuracy can be gained by using finer grids but this will result

in higher computer costs.
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Fig. 8.15a Stream function distribution for nonuniform
grids, Re = 100. .
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Fig. 8.16a Stream function distribution for nonuniform
grids, Re = 1,000,
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Chapter 9

CONCLUSIONS

The main objective of this study has been to investigate the
feasibility of the method of lines for application to physical problems Co.
with nonuniform grid distributions. To attain this objective, it has

been necessary to investigate the stiffness characteristics of the

»

pertinent equations.

b e AP

The following conclusions are drawn from the analysis of stiff
differential equations: (1) equations become stiffer as grids are :
concentrated, (2) the slope of the stiffness characteristic curve is !

higher near the fixed boundary (x=0) than near the derivative boundary

e s e s

(x=1), (3) equations become stiffer for a large number of grid points,

R

(4) use of forward differencing is not feasible, (5) the step size is e

"

inversely proportional to the Reynolds number for central differenc- é-
ing, and (6) backward differencing is preferable over central differ- %
encing at high Reynolds numbers. These conclusions are based on the
analysis of one-dimensional heat conduction and fluid flow equations.

The viability and validity of the method of lines are illustrated : o

with applications to the Navier—~Stokes equations. A computer program

.
=

Jee

is developed to solve Eqs. (2.21) and (2.22), and the details of this

-
. -
-

PR
P
-

-

program are available in [38]. This method is quite convenient

per i

-~

from a programming point of view, but computational costs are re- &
latively higher compare to the standard finite difference technique.
The computational procedure used in this study does not require any

local linearization in the governing equations. The method has been

B4

applied successfully to obtain solutions for flow in parallel ducts
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curved-wall diffusers and a driven cavity, Most solutions have been
obtained by using the non-conservative form of the governing equations.
The results are in good agreement with other available results for flow
in parallel ducts. The solutions also predict the flow development and
gseparation in the curved-wall diffusers. For the case of a driven
cavity, the results obtained by using the non-conser- vative form of
equaticns are valid only up to a Reynolds number of 100. At higher
Reynolds numbers the non-conservative equations provide spurious
results, The conservative form of the equations was used to obtain
results up to Reynolds number of 10,000. Both counter rotating
secondary vorticies are captured by using a nonuniform grid distribu-
tion where grids are concentrated near the walls. However, there is a
loss of accuracy in the primary vortex. The results are in good
agreement with results of other investigatioms.

The analysig of flow in a driven cavity indicates that at a
Reynolds number of 100, the flow is viscous in the primary vortex with
little indication of an inviscid core. The inviscid core region has
filled much of the cavity with viscous regions confined near the walls
at a Reynolds number of 1000. At a Reynolds number of 10,000, however,
the inviscid core has Eompletely filled the cavity with small viscous
regions very close to the wall. These results indicate that the flow
in a cavity can be characterized by a large vortex adjacent to the
moving wall and small counter-rotating vorticies in the corners.

The results show the validity and viability of the method of
lines where the physical domain is covered with a variable mesh. For

further study, it is recommended to include the following: (1) use a
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larger number of grid points, (2) solve the stream function equation by

a more powerful method, (3) use a higher order dpproximation for the
vorticity equation, and (4) write the available codes for a vector

counputer such as the CYBER 203 so that finer grids can be used.
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