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1.0 INTRODUCTION

For a small class of reliabilitymodels, this reportshows how to just look at

the model and write down a convenientapproximationfor the answer.

The models consideredare appropriatefor redundantreconfigurabledigital

equipmentthat operatesfor a short period of time withoutmaintenanceand that

collectsonly permanentfaults. The models are pure death Markov processeswhere

all the fault occurrencerates are low and all the system recoveryrates are high.

A discussionof the numericalbounds for the parametersis in the text. For such a

model the method gives a formulain terms of fault rates, recovery rates,and

operatingtime. The approximationformulasare simple enough that a pocket calcu-

lator yields reliabilityestimatesand an examinationshows the relativeinfluence

on reliabilityof each of the parameters. The simple formulashave easy partial

derivativesthat give the change in reliabilitywith respectto a change in any

parameter.

The first half of the reportdescribesthe approximationprocedureand pre-

sents severalexamples. The interestedreadercan sample the illustrativeComputa-

tions until he feels comfortablewith the methods. Becausethere is no analysisof

error bounds,the examplesalso comparethe approximatesolutionsto exact numeri-

cal solutionsto establishconfidencein the approximation.

To avoid the formulasappearingcompletelymysterious,the sectionon paths in

pure death processesderivesthe approximationsfor two short paths. Unfortunate-

ly, the inductiveproceduresuggestedby these derivationsproved too hard for the

author. After severalinductionsteps to guess the formula,materialfrom the

theory of matrix differentialequationsis used to show that the obviousanswer is

the correctanswer. The explanatorymaterial in the sectionson paths shows the

first two inductionsteps while the sectionon matrix series in the second part

presentsthe material needed to tackle the generalcase.

The second half of the reportcontainsall the interestingmaterial. The

approximationis actuallyderived from an exact solutionand the first two sections

in the second half give the algebraicand analyticalparts of the derivationfor

this exact solution. Two of the three elementsthat generatethe approximation



i;

formulas from the exact solutionare easy: the exponentialof a large negative

number is nearly zero, and a very large numberplus or minus a very small number is

nearly equal to the very large number. The third element is the approximationof a

multinomialTaylor series,where all the terms are small, by the first nohzerot_rm

in the series. A separatesectionpresentsthe matrix Taylor series S61utionana

identifiesits first nonzeroterm. The last sectionderivesthe approxlmation

formula from the exact solutionin a bookkeepingproof -- the only challehgeis

keepingthe notation straight.
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2.0 PATHS IN A PURE DEATH PROCESS

Events in a pure death Markov processmove from the initialstate to an

absorbingstate along paths. In the Markov process

there is one path from state 1 to state 4

and two paths from state 1 to state 7

7 p _2 8 _ 63
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The probabilityof being in state 4 at time T is the probabilityof

traversingthe first path by time T. Even though the second and third paths have

some states in common,they are distinct paths. The probabilityof being in state

7 by time T is the probabilityof traversingthe first path to state 7 by time T

plus the probabilityof traversingthe second path to state 7 by time T. In all

cases, the probabilityof traversinga path by a certaintime includesthe

probabilityof events followingthat path.

Withoutattachingany meaning to the Markov process,the probabilitiesof

traversingthe path to state 4 and the first path to state 7 will be estimated.

The estimationsinvolvecomputingthe probabilityof going from one state to the

next on the path and computingthe probabilityof the transitionoccurringwithin

the specifiedtime.

The },'s are low fault occurrencerates, the p and 6's fast system

recovery rates.

To begin, consider



Given the system is in state 3 at time to the probabilitiesof being in state 4

and state 6 by time tI are, respectively,

"(}`3+ 62)(ti - to)
I J }`_ (I - e )

62 "(_3 + 62)(ti - to)
P613(tl(tO)- _3 + 62 (I - e ) .

Of course events will go from state 3 to one of the states4 or 6, but not to

both. In these equationsthe probabilityof going to state 4 or 6 is given by the

first factor in the expressionon the right. The probabilityof havingmade the

transitionby time tI - to is given by the second factor in the expression,which

is the same in both equations. Since 62 is large,the second factor in both

expressionsrapidlyapproaches1 as tI increases. Hence, the holdingtime in state
3 is negligible,and

}`3 }`

P4J3 " },3+ 62 " _'2

67I

P613 }`3 + _2

where the second approximationcomes from

}`3 + 62 " 62 •

To continueworking backwardson the path from state 1 to state 4, consider

_2
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Stmtlar reasoning gives

P312 . x_p + 61

P812" pp + 61

and the holdingtime in state 2 is negligible.

By independence,the probabilityof goingfromstate2 to state4 is

(p l? (_2, _z) ) •

Because of the large transition rates,the transitiontime from state 2 to state 4

is negligible. Hence, the computationof the probabilityof going from state 1 to

state 4 by time T can be finishedby multiplyingthe expressionabove and the

probabilityof going from state 1 to state 2 by time T. To this end, consider

, Xl

and get

-(lZ + 17)T
Xl (1 - e ) .

P21z(TIo) l _1 "4" _'_



Since (11 + 17)T is small,the approximation

-(11 + 17)T (11 + 17)T1 - e

gives

p21z(Tio). (X1_17)(I_+xT)T= 11T .

Notice that the approximationdoes not involvethe low rate leadingoff the path.

Combiningall the materialabove gives the probabilityof being in state 4 by
time T as

P4(T) - (I!T) _ ( ) =(p+81) 82(p*81)

Next, the probabilityof going from state 1 to state 7 by time T along the
path

will be estimatedto show what happenswhen there is a sequence of low rate
transitions.

The traositionsfrom state 2 to state 5 and from state 6 to state 7 take a

negligibleamount of time and contributea factor of

(p+8z)(83)"
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Collect the transitionsfrom state I to state 2 and from state 5 to state 6 to form

the diagram

and get

-(xz+ x_)T
m { e

I

-(X_ + EB)T
e

* (xz + _ - x_ - _81(-_ - _e)

1
+ (xz* _7)(x,,* xs) }

= Xl 14

(xz + xv)(x,.+ Xe)(Xz+ x7 - x,. - Xe)

-(X1 +X 7)T -(_._, + X8)T
x {(X_, *X 8)e -(X1 +X 7)e

* (xl*_7-_.-xs)}•

Since (XI + x7)T and (X_ + XB)T are sma11, the approximations

-(Xl + 'X7)T
- 1 - e - (X1 + X?)T - (Xl + '-_7)2Tz

&,,,

"()'w + },,e)T
! - e " (Xw,+ XB)T _ l,_\,,_+ xB_"r_'2--2



can be used which gives

x {(II + 17)[(Xw + XB)T - (11+ X_)2 T2] }2

-(IW + 18)[(I I + 17)T- (11 + 17)2 T2] }

= 11 ;k4 T2
2(xl + x7)(14 +XB)(X1 +X7 - X,, - XB)

x +xT)(x.+xs)z + (x. +Xs)(Xl+ xT)2}

= I! 14 T2
2

Notice that the terms linear in T vanish,and that once again the low rates

leadingoff the path do not appear in the approximation. The expressionsabove

combineto give the probabilityof traversingthe path by time T as approximately

(11 14 T2

The last derivationends the illustrativedevelopment,and it's now possible

to guess the general formulaspresentedin the next sectionalthoughtwo comments

are in order before proceeding. First, since the low rates that lead off the path

do not appear in the approximation,these low rates can be adjustedto insure that

no zeros appear in the denominatorsof the exact solution. Second,the

approximationformulasare given for binary nodes with one rate for the transition

on the path and one rate for the transitionoff the path. Any complexnode can be

changedto a binary node by adding the rates that lead off the path.

10



3,0 DESCRIPTIONOF THE APPROXIMATIONMETHOD

A Markov processmodel of redundantreconfigurableelectronicequipmentwith

permanentfaults consistsof two types of transitionrates -- low rates for

componentfailureand high rates for system recovery. Any path throughthe Markov

model from the initialstate to an absorbingstate such as

has four classesof transitions:

X _@ _ << 1 , y << 1

"1

X _ _ << 1 , p >> 1

11



8 >> 1 , p >> 1
P

In the diagrams above, X and 6 are specialcases of the :'s. They represent

transitionsthat stay in the chosen path. The transitions y and p are special

cases of the B's. They representtransitionsthat lead off the path.

Since the arrivaltime at the end of the path is the sum of waiting time for

independentprocesses,the path can be rearranged.

To get an approximationfor the probabilityof traversingthe path by time T,
first collectall transitionsof the class

x << 1 , ¥ << I

¥

to get, supposingthere are k of them,

YI ¥2 Yk

(

This group contributesa factor of

_,1 _,2 .-- )'k Tk
k!

12



to the probabilityof traversingthe path by time T.

Any transitionof the class

P

contributes a factor of

x
I

P

Any transitionof the class

_ 8 .Q 6,,1 . ,<<1

¥

contributesa factorof I.

Any transition of the class

P

contributesa factorof

8
8 +0 "

13



At the moment there is no error analysis,but the approximationsappear to be

accurate for the parameterbounds

1 <T<IO

_T < 10-2 all ),'s

yT _ 10-2 all y's

> 102 all 6's

p >_102 all p's

The next sectionscompare the approximationto a numericalsolutionfor a variety

of reliabilitymodels. These sectionsassume familiaritywith Markovmodels of

fault tolerantcomputers. The referenceon reliablesystem design gives an

engineeringpresentationof this material.

14



4.0 APPLYINGTHE FORMULA

To apply the approximationmethod, it is necessaryto identifythe paths to an

absorbing state and then separatethe stateson a path into two classes--thestates

with at least one high exitingrate and the states with all low exiting rates. The

system spendsa negligibleamount of time in states that have at least one hlgh

exiting rate, and these states can be consideredindividually. The system spends

an appreciableamount of time in states that have only low exiting rates, and these

states must be consideredas a group.

As an exampleconsider state 7 in the diagram below

_3

Rearrangethe first path to state 7 which is

as

®_5 Q

15



where the transitions,respectively,contributefactorsof

5_T, 4__.__ 3_
61 , I, _--_

which gives the contributionsfrom the first path as

60 k3 T
_l _3 "

Rearrangethe second path to state 7 which is

as

16



where the transitions,respectively,contributefactorsof

20 Xz Tz 3_

2! , 1, 63

• which gives the contributionfrom the second path as

30 _3 T2

63 •

Since the paths are distinct,they are disjointevents. The probabilityof being

in state 7 by time T given the system is in state 1 at time 0 is

60 L3 T 30 _3 T2+

61 63 63 •

17



9X2 T2
P9(T) - 2

In the numericalcomparisonsnote that if

X = 10-2

T= 1

then

3XT > 10-2 .

The numericalcomparisonsfor this example,and for later examples,do not adhere

strictlyto the parameterboundsmentionedin the section that describedthe
formulas.

For the examples in this and the next three sections,the model is followedby

the approximationformulasand then tables comparingthe approximateand exact

solutionsfor parametervalues that are close to the parameterbounds.

18



5.0 EXAMPLE: THREE-PLEXWITH A TWO STEP RECOVERY

The Markov reliabilitymodel is

Q 3X _ 2X

with )`<< 1 and p, e >> 1.

The approximationsare

P3(T)= (3)`T)(p2____X)+ (3)`T)(€2__XL)

1 1
= 6)`2T (p + _-)

PT(T) = (9)`2 2)` (9)`22T2) 2)`2T_2)(_ -) + _ (_)

1 1
= 9x3 T2 (_ +_-)

19



TABLE I

T= 1

STATE EXACT FORMULA

,_= 10-2 3 1.16x 10-s 1.20x 10-s

p = 102;_ = 102 7 1.64x 10-7 1.80x 10-7

9 4.07x 10-4 4.50 x 10-4

= 10-2. 3 6.44x 10-6 6.60 x 10-6

p = 102; € = 103 7 9.30x I0-8 9.90 x I0-8

9 4.22 x 10-4 4.50 x 10-4

= 10-2 3 6.44 x 10-6 6.60x 10-6

p = 103;€ = 102 7 9.30 x 10-8 9.90x 10-8

9 4.22x 10-4 4.50 x 10-4

;k= 10-2 3 1.18x 10-6 1.20x 10-6

p = 103; € = 103 7 1.75x 10-8 1.80 × 10-8

9 4.38 x 10-4 4.50x 10-4

[]
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TABLEII

T= 10

STATE EXACT FORMULA

_,= 10-3 3 1.18× 10-6 1.20x 10-6

p = 102; € = 102 7 1.75× 10-8 1.80 x 10-8

9 4.38 x 10''* 4.50 x 10-'*

_,= 10-3 3 1.18x 10-? 1.20x 10-_

p = 103;€ = 103 7 1.76x 10-9 1.80x 10-9

9 4.41x 10-_ 4.50 x 10-W

_,= 10-_ 3 1.20x 10-B 1.20x 10-B

p = 102;€ = 102 7 1.78x 10-11 1.80x 10-11

9 4.46x 10-6 4.50x 10-6

},= 10J* 3 1.20x 10-9 1.20x 10-9

p = 103;€ = 103 7 1.80x 10-12 1.80 x 10-12

9 4.49 x 10-6 4.50x 10-s

21



6.0 EXAMPLE: TRIAD PLUSA COOLSPARE

The Markov reliabilitymodel is

3X

11 II

Q

with 6 >> 1 and _, L << 1.

22



The approximationsare

6) 2̀ T
P3(T) =

6

9)3̀ T2
PG(T) =

6

3)3̀ T3
PB(T) =

2

Pll (T) = 3)`2 P T2 6 )`2+ g T
6 62

3) 2̀ 1.=T2 6) 2̀ p T
•P13(T) = +

2 62

)`2 g T2 3).2 1_T2
PlS (T) = +

23



TABLE Ill

STATE EXACT FORMULA

T = 1 3 5.85× 10-6 6.00 × 10-s

6 8.47x 10-B 9.00 x 10-B

},= 10-2 8 1.39x 10-s 1.50x 10-6

= 10-3 11 2.94× 10-9 3.06 x 10-9

6 = 102 13 2.88× 10-9 3.06 x 10-9

15 4.77x 10-8 5.15 x 10-B

T = 1 3 5.98x 10-9 6.00 x 10-9

6 8.95 x 10-12 9.00x 10-12

},= 10-3 8 1.49x 10-9 1.50x 10-9

lJ= 10-4 11 2.99 x 10-13 3.01x 10-13

(_= 103 13 2.99 x 10-13 3.01× 10-13

15 4.98x 10-11 5.02x 10-11

T = 10 3 5.90x 10-? 6.00 x 10-?

6 8.78x 10-9 9.00 x 10-9

_,= 10-3 8 1.46x 10-6 1.50× 10-6

lJ= 10-4 11 2.94x 10-10 3.01 x 10-10

6 = 102 13 2.93× 10-l° 3.01x 10-10

15 4.90 x 10-B 5.02x 10-8

T = 10 3 5.99 x 10-I° 6.00 × 10-I°

6 8.98 × 10-13 9.00x 10-13

_,= 10-W 8 1.50x 10-9 1.50x 10-9

= 10-s 11 2.99 x 10-14 3.00 x 10-14

6 = 103 13 2.99x 10-14 3.00 x 10-14

15 4.99× 10-11 5.00 x 10-11

24



7.0 EXAMPLE: CRITICALTRIPLE SIX-PLEX

The Markov reliabilitymodel is

with },<< 1 and 6z, 62, 63, 64, 6s, 66 >> 1.

25



TABLE V

= 10-3

61 = 107' 62 = 106; 63 = 105; 64 = 10_; _5 = 103; _6 = 102

STATE EXACT FORMULA

T = 1 4 1.20 x 10-20 1.20 x 10-2°

8 1.79x 10-19 1.84 x 10-19

11 5.96x 10-1W 6.18x 10-IW

14 2.86 x 10-16 3.12x 10-I_

16 2.83 x 10-15 3.15 x 10-15

T = 10 4 1.16 x 10-19 1.20 x 10-19

8 1.74x 10-17 1.80x 10-17

11 5.78x 10-11 6.02x 10-11

14 2.88x 10-12 3.01x 10-12

16 2.89x 10-10 3.02x 10-1°

26



The approximationsare

120 X3 T
P_(T) = 61 62

180 X_ Tz 360 Xw T
P8(T) = +63 6_ 61 63 6_

60 X_ T 180 X_ T2 180 X_ T2 360X_ T- + . .
P11(T) 6s 63 6s 61 6s 61 63 6s

30 Xs 1_ 120 Xs T3 120 X5 T3 360 X5 T2
P14(T) = 66 + 63 66 + 61 66 + 61 63 66

15 Xs "1.4 15 Xs T4 60 X5 T3
P16(T) = 3 Xs Ts + + +63 61 61 63

27



TABLE IV

I = 10-3

61 = 102., 62 = 103., 63 = I04; 64 = I05; 65 = 106; 66 = 107

STATE EXACT FORMULA

T = 1 4 1.18x 10-12 1.20x 10-I2

8 1.79x 10-19 1.84x 10-19

11 5.98x 10-17 6.18 x 10-17

14 2.99x 10-21 3.12 x 10-21

16 2.99x 10-15 3.15x 10-15

T = 10 4 1.16x 10-ll 1.20x 10-I1

8 1.74x 10-17 1.80x 10-17

11 5.78x 10-IW 6.02x 10-IW

14 2.89x 10-17 3.01x 10-17

16 2.91x 10-10 3.02x 10-10

28



8.0 EXAMPLE: CRITICALPAIR FIVE-PLEXWITH POOR RECOVERY

This systemmay exciseone too manycomponentsduringreconfiguration.The

originalMarkovreliabilitymodelis

The 6 refers to good recovery,the p to poor recovery.

29



An extended model for purposes of comparison with exact numerical solutions is

p

12

30



The approximationformulasfor the extendedmodel are

20 x2 T
P3(T) = (6+p)

30 )3 6 T2
P6(T) = (6 +p)2

20 ),_ 62 T3
P9(T) - (6+p)3

PI[(T) =
2(6 + p)3

10 x3 62p T3
PI2(T) = (6+p)3

10 _3 6 p T3
pzw(T) -

3(6 + p)2

15x3 p T2
pl?(T) - (6+p)2

T3

P19(T) - 5 }3 p 6)22(6 +p

15x2 p2 T2
P20(T) =

2(_+p)2

31



TABLE VI

STATE EXACT FORMULA

T = 1 3 1.80x 10-7 1.82x 10-7

6 2.38x 10-10 2.48x 10-10

9 1.38x 10-13 1.50x 10-13

11 1.68x 10-12 1.88x 10-12

12 6.40 x 10-I° 7.51x 10-I°

14 2.60x 10-10 2.75x 10-10

17 1.19x 10-11 1.24x 10-11

19 1.95x 10-I° 2.07x 10-I°

20 5.96x 10-8 6.20x 10-8

T = 10 3 1.77x 10-6 1.82x 10-6

6 2.40x 10-8 2.48x 10-8

9 1.45x 10-1° 1.50x 10-1°

11 1.81x 10-8 1.88x 10-8

12 7.23x 10-7 7.51x 10-7

14 2.67x 10-7 2.75 x 10-7.

17 1.20x 10-9 1.24x 10-9

19 2.01 x I0-'/ 2.01x 10-7

20 6.01 x 10-6 6.20 x 10__

32



TABLE VII

X = 10-3

" 6 = 10; p = 102

STATE EXACT FORMULA

T = 1 3 1.80 x 10-? 1.82 × 10-?

6 2.38 x 10-11 2.48 x 10-11

9 1.38 x 10-is 1.50 x 10-is

11 1.68 x 10-ls 1.88 x 10-ls

12 6.40 × 10-11 7.51 x 10-11

14 2.60 x 10-10 2.75 x 10-10

17 1.19 x 10-1° 1.24 x 10-10

19 1.95 x 10-10 2,07 x 10-10

20 5.96 × 10-6 6.20 x 10-6

T = 10 3 1.77 x 10-6 1.82 x 10-s

6 2.40 x 10-9 2.48 x 10-9

9 1.45 x 10-12 1.50 x 10-12

11 1.81 x 10-11 1.88 x 10-11

12 7.23 x 10-8 7.51 x 10-B

14 2.67 x 10-? 2.75x 10-?

17 1.20x 10-B 1.24× 10-B

19 2.01x 10-7 2.07x 10-7

20 6.01 x 10-W 6.20x 10-W

33
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9.0 ALGEBRAICRESULT FOR THE EXACT SOLUTION

The followingtechnicalresult is used in the next section.

. Lemma If ai _ aj for i _ j, then

k
1 1

. _.

i=1 k+l k "
n -a) n - )
j=l (aj i (aj ak+Ij=1
j_i

Proof

The proof is by induction. Only the inductionstep is shown.

Let

k
1 1D= I: +

i=1 k+l k "
n - ai) II )
j=i (aj (aj - ak+Ij=l
jml

By the inductionhypothesis,

1 1 1
k =

(aI - ak+1) k
n ) n )(aj - ak+1 (aj - ak+1j=l j=2

k
I I

: - _.

(al " ak+l) i=2 k+l
n - ai)
j=2 (aj
j_i

35



Hence,

k k
1 1 1 1

D= + F. E
k+l i=2 k+l _(al- ak+l)- i=2 k+l
II - al) II - ai) II (aj - ai)
j=2 (aj j=l (aj j=2

j:#i jri

1
k+l

II (aj - al)
j=2

k
1 1

+ £ [ k+l " k+l ]

i:2 (aI - ai) II (a - ai) (a - II - ai)
j=2 J 1 ak+l) (ajj=2
j_i j_:i

1
k+l

II (aj - al)
j=2

k
aI - aI + ai

+ 11 [ - ak+l k+l ]

i:2 (al - ai)(al - ak+l) j:211(aj - ai)
j_i

1
k+l

II (aj -al)
j=2

k (ak+1 - ai)
- E [ k+1 ]
i=2

(al " ai)(al - ak+l)(ak+l" ai) j=2n(aj - ai)
j_i

36



k
I I

= k+1 " £ k

j_2 (aj - al) j:2 (al " ak+l) j:III(aj - ai)
j_i

k
1

1 I + £ k ]
(ak+I - al) [ k i=2

II - al) II (a - a )
j=2 (aj j=l J i

jmi

Apply the inductionhypothesisto the second term inside the bracketsto get

1 1 1

D : (ak+I . al) [ k " k ]n - n (a -a)
j=2 (aj al) j=2 j i

=0

and the lemma is proved.
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i0.0 DERIVATIONOF THE EXACT SOLUTION

Theorem If ai + Bi _ aj + Bj for i m j, then the Markov process
4

Bz Bn_1 Bn

with the initialconditions

PI(O) = I

PI(O) = P3(O) = ... = Pn(O)= 0

has the solution

n " (ai + 6i)t
e

Pn(t) = aI ... an_I
i=1 n

II (aj + Bj - ai - Bi)j=l
j_i

Proof

The proof is by induction. Only the inductionstep is shown.

The set of differentialequationsfor a Markov processgives

P'(t) = (t) +n an-1 Pn-1 - (an 6n) Pn(t)

or

+ Bn)t )t(an (an + 6n
[ e Pn(t)]' = an.1 e Pn.l(t) .

38



By the inductionhypothesis,

(an + 6n)t n-1 e(an + Bn " ai - Bi)t
= r

[ e Pn(t)]' al "'" an'l i=1 n-1 "
II (aj + Bj - a i - 61)
j=l
jri

Hence,

- (ai + 6i)t
-(an+ Bn)t n-1 e .= I:

Pn(t) c e + al "'" an'l i=I n
II (aj + Bj - ai - 6 i)
j=l
jri

By the initialconditions

n-1
1

C = -aI ... an.I E
i=1 n

II + 6j - ai - Bi)
j=l (aj
jri

By the previous technicallemma,

1
C = aI ...an.I n-i

II (aj + i3j- an - Bn)
j=l

Hence,

n "(ai + Bi)t
e

Pn(t) = aI ... an E
i=1 n

II (aj + 6j - ai - Bi)
j=l
jri

and the theorem is proved.
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11.0 THE MATRIXTAYLORSERIES

Recall that the set of linear differential equations

Pl'(t) all a12 • . . aln Pl(t)

P2'(t) a21 a22 . . . a2n P2(t)

• • m • •

• • m • m

'(t) " " " Pn(t)Pn anI an2 " " • ann

with the initialconditions

n m _ m

PI(O) ci

P2(O) c2

Pn(O) c n

has the solution

PI (t) cI

P2(t) C2
At

• = e .

P t)

4O



where

air a12 • . , aln

A = a21 a22 . . . azn

a a .,0 a
nl n2 nn

and

- Ak tk
eAt = £ "T!m.k=O

Theorem For the Markov process

with the initialconditions

PI (0) = 1

P2(O) = ... = Pn(O) = 0 ,

the first nonzeroterm of Pn(t) in the matrix series expansionis

XI )'2 --- Xn-1 tn'l

(n-l)!
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Proof

The coefficientmatrix of the set of lineardifferentialequationsfor the

Markov process is

m

-(xl+Y1)

I -(_2+ Ya)

X2 °

A=

-(Xn-1 + Yn-1)

n-1 0

with all the entries not on the diagonalor subdiagonalbeing zero.

denote the entry in row n and column 1 of the matrix M. Now

P1(t) 1

e2(t) 0
At

• = e .

•P (t) 0

which means

 At]Pn(t) : n,1 "
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Since

k_ 0 O<k <n-1
" { _ •

" n,1 _I _2 .-- _n-1 k = n-1

the theoremis proved.
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12.0 DERIVATIONOF THE APPROXIMATIONFORMULA

Given a pure death Markov processplace any path of length n that goes from

the initialstate to a death state in the fom given on the next page where

i __<nI < n2 __<n3 _.<n,4 : n

and

)'1 < < I all i

Yi < < 1 all i

a.>>l all i
1

Pi > > 1 all i

Let

}'i+Pi 1 <--i<--nl

ai +Yi nl + 1 <--i<--n2

ai = 6i + Pi n2 + 1 <_i <__n3

Xi + Yi n3 + 1 <_ i <__nW

0 i=nw+l
,.k

Without loss of generalityassume ai € aj if i _ j.
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The exact solution is

nI n2 n3 n4

n _ n 8j H 8k n _L
Pn+l(t)= i=l i j=nl+l k=n2+l &=n3+l

-a t
n4+l me

x { II n4+1 }m=l
H (aq - am)
q=l
qmm

Most of the terms insidethe braces are set to zero by the approximationthat

the exponentialof a large negativenumber is nearly zero. That is,

-a t
m

e

n4+l - 0

II (aq - am)q=l
q_m

for 1_ m_ n3. Still working insidethe braces, the denominatorsof the

remainingterms are simplifiedby the approximationthat a very large number plus

or minus a very small number is nearlyequal to the very large number. That is,

Pq 1 <__q <__nl

aq - am - { aq nl+l_< q_< n2

8q + pq n2+l<__q _<n3 .

By the approximationsabove

nl n2 n3 r_
Pn+l(t) - II _i II 8. II 8 II X_

i:l j:n1+l J k:n2+l k j&:n3+I

%+1 -amt
e

x { T nl n2 n3 n4+l } .

m=n3+l II Pi II 8i H (8k + pk) II
i=1 j=nI+1 k=n2+l q=n3+1 (aq - am)

q_m
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Since the first three products in the denominatordo not involvethe index of

summation m, they may be pulled outsidethe summation.

n1 Xi " n2 6. n3 6k

Pn+l(t) " i=lll( _ii) II (_j) II (6 + )j=nI+1 " k=n2+1 k Pk

nw . nw+l -amt
x n Xp. x { z e

£=n3+1 m=n3+l nk+l ]
II - am)
q=n3+I (aq
q*m

The last two factorsare the exact solutionof the Markovmodel

rn3+l Tn4

where all X's and y's are small. The first nonzeroterm of the matrix Taylor
series solution is

link X£) (tnk " n3 " 1(
(n_ n3 l)i. •£=n3+I

Hence, the final approximationis

nt Xi n3 6k n_ (tn_ - n3 - 1Pn+l(t)- ( II ) ( n ) ( II
o i=1 _ii 6 + Pk X£) (n_ - n3 - 1)') "k=n2+l k £=n3+1
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