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1.0 INTRODUCTION

For a small class of reliability models, this report shows how to just look at
the model and write down a convenient approximation for the answer.

The models considered are appropriate for redundant reconfigurable digital
equipment that operates for a short period of time without maintenance and that
collects only permanent faults. The models are pure death Markov processes where
all the fault occurrence rates are low and all the system recovery rates are high.
A discussion of the numerical bounds for the parameters is in the text. For such a
model the method gives a formula in terms of fault rates, recovery rates, and
operating time. The approximation formulas are simple enough that a.pocket calcu-
lator yields reliability estimates and an examination shows the relative influence
on reliability of each of the parameters. The simple formulas have easy partial
derivatives that give the change in reliability with respect to a change in any
parameter.,

The first half of the report describes the approximation procedure and pre-
sents several examples. The interested reader can sample the illustrative computa-
tions until he feels comfortable with the methods. Because there is no analysis of
error bounds, the examples also compare the approximate solutions to exact numeri-
cal solutions to establish confidence in the approximation,

To avoid the formulas appearing completely mysterious, the section on paths in
pure death processes derives the approximations for two short paths. Unfortunate-
ly, the inductive procedure suggested by these derivations proved too hard for the
author. After several induction steps to guess the formula, material from the
theory of matrix differential equations is used to show that the obvious answer is
the correct answer. The explanatory material in the sections on paths shows the
first two induction steps while the section on matrix series in the second part

presents the material needed to tackle the general case.

The second half of the report contains all the interesting material. The
approximation is actually derived from an exact solution and the first two sections
in the second half give the algebraic and analytical parts of the derivation for
this exact solution. Two of the three elements that generate the approximation



formutas from the exact solution are easy: the exponential of a largefne§étiye
number is nearly zero, and a very large number plus or minus a very shé]l humber is
nearly equal to the very large number. The third element is the approiimétion of a
multinomial Taylor series, where all the terms are small, by the first'nohzerq term
in the series. A separate section presents the matrix Taylor series éé]ufion éna
identifies its first nonzero term, The last section derives the approiimétion
formula from the exact solution in a bookkeeping proof -- the only chai]ehge'is
keeping the notation straight.
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2.0 PATHS IN A PURE DEATH PROCESS

Events in a pure death Markov process move from the initia} state to an
absorbing state along paths. In the Markov process

there is one path from state 1 to state 4

and two paths from state 1 to state 7

A




The probability of being in state 4 at time T is the probability of
traversing the first path by time T. Even though the second and third paths have
some states in common, they are distinct paths. The probability of being in state
7 by time T 1is the probability of traversing the first path to state 7 by time T

plus the probability of traversing the second path to state 7 by time T. In all
cases, the probability of traversing a path by a certain time includes the
probability of events following that path.

Without attaching any meaning to the Markov process, the probabilities of
traversing the path to state 4 and the first path to state 7 will be estimated.
The estimations involve computing the probability of going from one state to the
next on the path and computing the probability of the transition occurring within
the specified time.

The A's are low fault occurrence rates, the p and &'s fast system
recovery rates. o

To begin, consider




Given the system is in state 3 at time to the probabilities of being in state 4
and state 6 by time t, are, respectively,

-(la + 62)(t1 - to)
= _L -
P4l3(t1't0) }\3 T 62 (1 e

“(g + )ty - tg)
Pjaltafte) = gy (oo PTG

Of course events will go from state 3 to one of the states 4 or 6, but not to

both, In these equations the probability of going to state 4 or 6 is given by the
first factor in the expression on the right. The probability of having made the
transition by time t, - t; is given by the second factor in the expression, which
is the same in both equations. Since 8, 1is large, the second factor in both

expressions rapidly approaches 1 as t; increases. Hence, the holding time in state
3 is negligible, and

A A
p4|3 i var AL

)
82
P6'3 A3 + 8, 1

where the second approximation comes from
A3+62~620

To continue working backwards on the path from state 1 to state 4, consider




Similar reasoning gives

and the holding time in state 2 is negligible.

By independence, the probability of going from state 2 to state 4 is

A2y (A
) G
Because of the large transition rates, the transition time from state 2 to state 4
is negligible. Hence, the computation of the probability of going from state 1 to

state 4 by time T can be finished by multiplying the expression above and the
probability of going from state 1 to state 2 by time T. To this end, consider

and get

-(x T
I(TIO) . ll___ (l-e(1+k7)

P2| Al 4+ 29



Since (x; + a7)T 1is small, the approximation

-(Al + 17)1‘

1 -e '(AI+A7)T

gives
| A)

Notice that the approximation does not involve the low rate leading off the path.

Combining all the material above gives the probability of being in state 4 by
time T as

.
Pa(T) =~ (MT) (32 (32 = %;-}g—*aTl) .

Next, the probability of going from state 1 to state 7 by time T along the
path

will be estimated to show what happens when there is a sequence of low rate
transitions.

The trapsitions from state 2 to state & and from state 6 to state 7 take a
negligible amount of time and contribute a factor of

G+ 69)




Collect the transitions from state 1 to state 2 and from state 5 to state 6 to form
the diagram

O OsnO
A7 ’ s
and get

-(Ap +29)7
e
PC|A(T|0) SUTER My +2g =21 =27)(=x1 = A7)

C=(Ay +2g)T
+ e
—(Al + 17 - A“ - XsY(-M. - A87

+ 1
(1 + 250 +3) }

A Ay
(A1 + 27)(Ay +2g) (A1 + 29 = Ay = 2g)

-(a AT - T
x {(ay +2g)e i+ 3) -(A1 +27)e (e * %)

+(X1+17-X“-X8)} .
Since (A + a,)T and (A, + Ag)T are small, the approximations

-(Al + A7)T
- l-e = (Ay +2)T -

(Xl + Ay )ZTZ
2

-(X“ +XB)T
l-¢ '(A].*'AQ)T-

(X:,. + Ag )ZTZ
Z



can be used which gives

- A Ay
pcIA(T|0) A+ 2000 + X)X, + X7 - X, - Ag)

x {01 +27) [( +ag)T - 202 27)2 72] }

S ) [ +ag)T - (1 #2902 Py

. AL Ay T2
2 + A7)0 + Xg )X ¥ A7 - Xy - 3p)

x

=0+ 27) (00 +2g)2 + (A +2g)(A; + 2y)2)

Ay Ay T?
= A T,

Notice that the terms linear in T vanish, and that once again the low rates
Teading off the path do not appear in the approximation. The expressions above
combine to give the probability of traversing the path by time T as approximately

12, 6
A=) () 69 .

The last derivation ends the illustrative development, and it's now possible
to guess the general formulas presented in the next section although two comments
are in order before proceeding. First, since the low rates that lead off the path
do not appear in the approximation, these low rates can be adjusted to insure that
no zeros appear in the denominators of the exact solution. Second, the
approximation formulas are given for binary nodes with one rate for the transition
on the path and one rate for the transition off the path. Any complex node can be
changed to a binary node by adding the rates that lead off the path,

10




3.0 DESCRIPTION OF THE APPROXIMATION METHOD

A Markov process model of redundant reconfigurable electronic equipment with
permanent faults consists of two types of transition rates -- low rates for
component failure and high rates for system recovery. Any path through the Markov
model from the initial state to an absorbing state such as

Bn-l

PG R (WG

has four classes of transitions:

YL

A A<<l, po>>1
p

S y<<1l, &§>1
Y

11



s
' E§M»1 , M1
P

In the diagrams above, A and § are special cases of the a's. They represent
transitions that stay in the chosen path, The transitions y and p are special
cases of the B's. They represent transitions that lead off the path.

Since the arrival time at the end of the path is the sum of waiting time for
independent processes, the path can be rearranged.

To get an approximation for the probability of traversing the path by time T,
first collect all transitions of the class

A
' ALKl , vy«1
Y

to get, supposing there are k of them,

O OB
Y Y2 Y

This group contﬁibutes a factor of

Al Az ces Ak Tk
k!




to the probability of traversing the path by time T.

Any transition of the class

A

contributes a factor of

O[>

Any transition of the class

contributes a factor of 1.

Any transition of the class

contributes a factor of

A K1

§ 1

§>»1

p 1

vy<«1°

p M1

13



At the moment there is no error analysis, but the approximations appear to be
accurate for the parameter bounds

1 <T<10

AT € 10-2 all A's
YT < 10-2 all y's
§ > 102 all &'s
p > 102 all p's

The next sections compare the approximation to a numerical solution for a variety
of reliability models. These sections assume familiarity with Markov models of
fault tolerant computers. The reference on reliable system design gives an
engineering presentation of this material.

14




4.0 APPLYING THE FORMULA

To apply the approximation method, it is necessary to identify the paths to an
~absorbing state and then separate the states on a path into two classes--the states
with at least one high exiting rate and the states with all low exiting rates. The
system spends a negligible amount of time in states that have at least one high
exiting rate, and these states can be considered individually. The system spends

an appreciable amount of time in states that have only low exiting rates, and these
states must be considered as a group.

As an example consider state 7 in the diagram below

as

15
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83

where the transitions, respectively, contribute factors of

4
’61

K))

AT ’ F

s 1

which gives the contributions from the first path as

Rearrange the second path to state 7 which is

5\ 8, _/\ 4 3
2 5 6
_/

4) 83

as

16




where the transitions, respectively, contribute factors of
200212 3
2T ™ &5
which gives the contribution from the second path as
30 A3 12

83 *

Since the paths are distinct, they are disjoint events. The probability of being
in state 7 by time T given the system is in state 1 at time 0 is

60x3T1T , 3023712
5 63 5

17



AZ 2
PQ(T)=92T .

In the numerical comparisons note that if

A = 10-2
T=1

then
AT > 10-2 .,

The numerical comparisons for this example, and for later examples, do not adhere

strictly to the parameter bounds mentioned in the section that described the
formulas.

For the examples in this and the next three sections, the model is followed by

the approximation formulas and then tables comparing the approximate and exact
solutions for parameter values that are close to the parameter bounds.

18



5.0 EXAMPLE: THREE-PLEX WITH A TWO STEP RECOVERY

The Markov reliability model is

with A ¢<««1 and p, € > 1.

The approximations are

P3() = (AT) (2 + (aT) (2
_om2r ¢l 1
= 6T (;'* EQ
Py (T) = (9x r HE) + (212 T) (2

€

a3 12 (2 +d)
p €

19
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TABLE I

1
STATE EXACT FORMULA
10-2 3 1.16 x 10-5 1.20 x 10-S
102; ¢ = 102 7 1.64 x 10-7 1.80 x 10-7
9 4.07 x 10-* 4.50 x 10-*
10-2 3 6.44 x 10-6 6.60 x 10-%
102; ¢ = 103 7 9.30 x 10-8 9.90 x 10-8
9 4.22 x 10-" 4.50 x 10-*
10-2 3 6.44 x 10-6 6.60 x 10-%
103; ¢ = 102 7 9.30 x 10-8 9.90 x 10-8
9 4.22 x 10-* 4,50 x 10-*
10-2 3 1.18 x 10-8 1.20 x 10-%
103; ¢ = 103 7 1.75 x 10-8 1.80 x 10-8
9 4,38 x 10-* 4,50 x 10-%




TABLE II

10
STATE EXACT FORMULA
10-3 3 1.18 x 10-6 1.20 x 10-6
102; ¢ = 102 7 1.75 x 10-8 1.80 x 10-8
9 4.38 x 10-* 4.50 x 10-*
10-3 3 1.18 x 10-7 1.20 x 10-7
103; ¢ = 108 7 1.76 x 10-° 1.80 x 10-°
9 4,41 x 10-" 4.50 x 10-*
10-% 3 1.20 x 10-8 1.20 x 10-8
102; ¢ = 10? 7 1.78 x 10-11 | 1.80 x 10-}!
9 4,46 x 10-® 4,50 x 10-°
10-4 3 1.20 x 10-° 1.20 x 10-°
103; ¢ = 103 7 1.80 x 10-12 | 1.80 x 10-12
9 4.49 x 10-% 4.50 x 10-6

21



6.0 EXAMPLE: TRIAD PLUS A COOL SPARE

The Markov reliability model is

with 6 >> 1 and p, x <« 1.

22




The approximations are

662 T
P3(T) =
ol 12
PG (T) s —
S
3 3 T3
Pg(T) = A
2
N2y 72 622 T
P (T) = K 2"
S S
N2y 12 G
CP3(T) = E ;
2 ()
2 2 2 2
by T 3 T
P15(T) = H ~
2 26

23
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TABLE III

STATE EXACT FORMULA
1 3 5.85 x 10-% 6.00 x 10-°
6 8.47 x 10-8 9.00 x 10-8
10-2 8 1.39 x 10-5 1.50 x 10-6
10-3 11 2.94 x 10-° 3.06 x 10-°
102 13 2.88 x 10~ 3.06 x 10-°
15 4,77 x 10-8 5.15 x 10-8
1 3 5.98 x 10-9 6.00 x 10-9
6 8.95 x 10-12 9,00 x 10-12
10-3 8 1.49 x 10-° 1.50 x 10-°
10-4 11 2.99 x 10-13 3.01 x 10-13
103 13 2.99 x 10-13 3.01 x 10-13
15 4,98 x 10-11 5.02 x 10-11
10 3 5.90 x 10~7 6.00 x 10-7
6 8.78 x 10-° 9,00 x 10-°
10-3 8 1.46 x 10-5 1.50 x 10-6
10-% 11 2.94 x 10-10 3.01 x 10-10
102 13 2.93 x 10-10 3.01 x 10-10
15 4,90 x 10-8 5,02 x 10-8
10 3 5.99 x 10-1% | 6,00 x 10-10
6 8.98 x 10-13 9,00 x 10-!3
10-% 8 1.50 x 10-9 1.50 x 10-°
10-5 11 2.99 x 10-1% 3.00 x 10-1*
108 13 2.99 x 10-1* 3.00 x 10-1%
15 4,99 x 10-11 5.00 x 10-!!




7.0 EXAMPLE: CRITICAL TRIPLE SIX-PLEX

The Markov reliability model is

\‘”th A <<1 and 51, 62, 53, 61‘, 65, 66 » 1,

25
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TABLE V

82 = 10°; 63 = 10%; &, = 10%; &5 = 103; &g = 102
STATE EXACT FORMULA

1 4 1.20 x 10-2% | 1,20 x 10-20
8 1.79 x 10-19 | 1,84 x 10-19 |
11 5.96 x 10-!* | 6.18 x 10-1%
14 2.86 x 10-16 | 3.12 x 10-16
16 2.83 x 10-15 | 3,15 x 10-15

10 4 1.16 x 10-1% | 1.20 x 10-1°
8 1.74 x 10-'7 | 1.80 x 10-17
11 5.78 x 10~} | 6,02 x 10-1}
14 2.88 x 10-12 | 3,01 x 10-12
16 2.89 x 10-10 3.02 x 10-19




The approximations are

12023 1

W T
_ 180 A" T2 360 A* T
Pe(l) = =5 % * & 85 5

60 A% T . 180 A% T2 . 180 A" T2 . 360* T
P (n) 55 8385 6 8 8 8 %5

) 5 13 S 13 S 12
Py (T) 3025 T L1202° 10 1202° T 360 A% T

+
8g 83 g 81 g 8, 63 g

155 1™, 1525 T, 600 T

= 5 +5
PIG(T) = 3A° T + 63 51 61 63
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TABLE IV

§2 = 10%; &3 = 10; 6, = 105; &g = 108; &g = 107
STATE EXACT FORMULA
=1 4 1.18 x 10-12 | 1.20 x 10-12
8 1.79 x 10-19 | 1.84 x 10-19
11 5.98 x 10-17 | 6.18 x 10-17
14 2.99 x 10-21 3.12 x 10-21
16 2.99 x 10-15 | 3,15 x 10-15
= 10 4 1.16 x 1011 | 1,20 x 10-1!
8 1.74 x 10-'7 | 1.80 x 10-17
11 5.78 x 10-'* | 6.02 x 10-1%
14 2.89 x 10-17 [ 3.01 x 10-17
16 2.91 x 10-10 3.02 x 10-1°




8.0 EXAMPLE: CRITICAL PAIR FIVE~PLEX WITH POOR RECOVERY

This system may excise one too many components during reconfiguration. The
original Markov reliability model is

The & refers to good recovery, the p to poor recovery.

29




An extended model for purposes of comparison with exact numerical solutions is

30




The approximation formulas for the extended model are

P3(T)

P11 (T)

P12(T)

P1y (T)

P19 (T)

P1g(T)

Pyo(T) =

2022 7
16+p$

30 A3 § T2
(6 +0)?

20 A" §2 T3
LA &
(8 +p)

5% &3 T
2(s + p)§

103 82, T3

(6 +p)3

10)‘36pT3
3(6 +p)?

15 33 , 12
(6 +p)?

533 p8 T8
2(6 + p)z

15 2% p2% T2
2(6 +p)

31



TABLE VI

STATE EXACT FORMULA
3 1.80 x 10-7 1.82 x 10-7
6 2.38 x 10-10 2.48 x 10-19
9 1.38 x 10-13 1.50 x 10-13
11 1.68 x 10-12 1.88 x 10-12
12 6.40 x 10-19 7.51 x 10-10
14 2.60 x 10-10 2.75 x 10-10
17 1.19 x 10-11 | 1.24 x 10-11
19 1,95 x 10710 2.07 x 10-10
20 5.96 x 10-8 6.20 x 10-8
= 3 1.77 x 10-% 1.82 x 10-%
6 2.40 x 10-8 2.48 x 10-8
9 1.45 x 10-19 1.50 x 10-10
11 1.81 x 10-8 .1.88 x 10-8
12 7.23 x 10-7 7.51 x 10-7
14 2.67 x 10~7 2.75 x 10-7
17 1.20 x 10-9 1.24 x 10-°
19 2.01 x 107 | 2.07 x 10-7
20 6.01  10-° | 6,20 x 10-°




TABLE VII

A = 10-3

§ =10; p = 102

STATE EXACT FORMULA

T=1 3 1.80 x 10-7 1.82 x 10-7
6 2.38 x 10-!1 | 2.48 x 10-!!
9 1.38 x 10-15 | 1,50 x 10-15
11 1.68 x 10-15 | 1.88 x 10-15
12 6.40 x 10-1! | 7,51 x 10-11
14 2.60 x 10-1% | 2,75 x 10-10
17 1.19 x 10-19 | 1.24 x 10-10
19 1.95 x 10-10 | 2,07 x 10-10
20 5.96 x 10-© 6.20 x 10-6

T=10 3 1.77 x 10-® 1.82 x 10-6
6 2.40 x 10-° 2.48 x 10-9
9 1.45 x 10-12 | 1,50 x 10-12
11 1.81 x 10-1! 1.88 x 10-!1
12 7.23 x 10-8 7.51 x 10-8
14 2.67 x 10~7 2.75 x 10-7
17 1.20 x 10-8 1.24 x 10-8
19 2.01 x 10-7 2.07 x 10-7
20 6.01 x 10-* 6.20 x 10-"
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9.0 ALGEBRAIC RESULT FOR THE EXACT SOLUTION

The following technical result is used in the next section.

Lemma If a; # aj for i# j, then
X 1 _ 1
R ) L )
n (a; - a n (a, - a
j=1 J i j=1 J k+1
i
Proof

The proof is by induction. Only the induction step is shown.

Let
k
_ 1 1
EREN ( Y )
n (a; - a I (a; - a
j=i J i jep o 9 k+1
Jj*l

By the induction hypothesis,

1 1 1

n = x

(aj - ak+1) n (aj - ak+1)

J=1

35




Hence,

D= 1 + ; 1 - 1 ; 1
k+ j=p K*1 (@) - 3yy) oo KL
n (a, - a,) n (a, - a;) N n (a;, - a;)
J 1 J i J j
j=2 j=1 =2
j#i Jj#i
_ 1
T ok+l
n (a., - a,)
g2 3
k
1 1
v [ T+ - ) ]
- (a, - a;,) m (a; - ay) (ay = a,,4) T (a; - ay)
1 i j=2 J i 1 k+1 j=2 J i
J#i J#i
_ 1
Tkl
n (a, - a,)
j=2 !
k Q] - a3,y -3 ta,
+ | L ]
i=2 k*l
(ap - ay)(ay - a ) 1 (a5 - ay)
j=2
Jj#i
_ 1
T k+l (
n (a; - a,)
j=2 !
& [ (3, - 23) ]
522 k+1

36




T % - jiz K
=2 (a5 - ay) 3y = ay) i=1 (a5 - 34
J#i
k
1 1 1
= +
(a4 - 3y) : ey ¥ ]
n (a.- a,) n (a, - a.)
. J 1 J i
J=2 j=1
J#i

Apply the induction hypothesis to the second term inside the brackets to get

1
D = -
o T e

j=2

and the lemma is proved.

37



10.0 DERIVATION OF THE EXACT SOLUTION

Theorem If a, + Bi # uj + Bj for i # j, then the Markov process

2 az (-1}

Bl B2 8

with the initial conditions

has the solution

n e" (01 +81)t
pn(t) = al eee an"l 121 n
Il (Gj+6j"a'-81)
J=1
J#i

Proof
The proof is by induction. Only the induction step is shown.
The set of differential equations for a Markov process gives
Pa(t) =a 1 P (t) - (@ +8) P (t)
or

(a +8. )t ' (a
e Pat)]' = a ;e Pap(t) -

38




By the induction hypothesis,

(a, +8.)t n-1 e(an tBymay -8yt
[ e Pn(t)]' = @ eeoap g iEI 1 .
B I (a; +8; -a; - B;)
je1 0 9 J i
J#i
Hence,
(a * B,)t n-1 e (ag +84)t
Pn(t) =ce tag eee a4 izl - .
jzl (aJ tBy-ay - 8;)
J#i

By the initial conditions

n-l 1
C = -(!1 ee e an-l ii:l n
.+t B. - a, -
jEI (aj +85 - ay - 8;)
J#i
By the previous technical lemma,
) | 1
C - (11 se e an-l n-l ( )
i a. +tf. ~a_ ~B
j=1 J J n n
Hence,
n -(ai +B.i)t
- e
Pn(t) - 0.1 RN ) (!n _i£=1 n
I (a;, +8, -a;, =B8.)
je1 3 J i
J#i

and the theorem is proved.
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11.0 THE MATRIX TAYLOR SERIES

Recall that the set of linear differential equations

Pl'(t) all a2 o o o aln Pl(t)
Pz'(t) az] daz2 e o s dop Pz(t)
: * . L] L]

Pn (t) anl an2 e ..oa Pn(t)

pl(O) Cl
P2(0) C2
Pn(O) C,

has the solution

Pl(t) Cl

P2 (t) : cy
At

. = e .

Pn(t) <

40




where

a1 a2 e o o din

A= az1 asz2 e o o an
a a o o o a

n ny nn

and

AL Ak ¢k
ka0 K!

Theorem For the Markov process

Az Ay

Y1 Y2

with the initial conditions
P (0) =1

P2(0) = ... =P (0) =0 ,

the first nonzero term of Pp(t) in the matrix series expansion is

Al Az oo An-l tn-l

(n-1)! ¢




Proof

The coefficient matrix of the set of linear differential equations for the
Markov process is

-(A1 + 1)

Ay (A2 +v2)

with all the entries not on the diagonal or subdiagonal being zero.

..,

denote the entry in row n and column 1 of the matrix M.

Let

Now
_Px (t) | BN
Py (t) 0
At
. = e .
pn(t) 0

which means

42




Since

F 1.

the theorem is proved.

0 <k <n-l
k = n-1

43



12,0  DERIVATION OF THE APPROXIMATION FORMULA

Given a pure death Markov process place any path of length n that goes from
the initial state to a death state in the form given on the next page where

and
Ap € <1 all i
Yy < <1 all i
5,>>1 all i
Py > > 1 all i
Let
Ay te, 1<{iln
85 + vy n+tl1<i<nm
a; = 6; +o, ng +1<1<ng
Aj t vy ng +1< ig<n,
0 i=n, +1

Without loss of generality assume aj # aj if i¢#j.
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The exact solution is

n ny n3 ny
Pn+1(t) = I A | . I &y I AL
i=1 jemp+l 3 k=ny+l g=ng+1
ny+1 e'amt
X I nq+1 }
m=1
I (a_ - am)
q=1
q#m

Most of the terms inside the braces are set to zero by the approximation that
the exponential of a large negative number is nearly zero. That is,

e-amt
Ny +1 ~ 0
it a -a
B g2y
g#m

for 1 <m < n3. Still working inside the braces, the denominators of the
remaining terms are simplified by the approximation that a very large number plus
or minus a very small number is nearly equal to the very large number. That is,

1 <« <
pq Lq9sm
a -a = '] m+l < g <
q " % { 8, 1t1 <q<m
s + na+l < g <n .
q” Pq 2t S g8
By the approximations above
n n2 N3 My
Pn+1(t) - ) S W n §. I 6y I AL
i=1 jemp+l 3 k=ny 41 2=ng+1
n“+1 e-amt
x { mEn +1 nl n2 n3 n.,+I } ¢
3 p;y M & (6 +p ) T (a, - a)
i=1 j=n1+1 k=n2+1 q=n3+1
gm
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Since the first three products in the denominator do not involve the index of
summation m, they may be pulled outside the summation.

m A ) S, n3 Gk
P ~ T () T G )
) i=1 1 J=n1+1 J k=n2+1 k k
ny ny,+1 e-amt .
" zgn +1 o {min +1 M, +1 o
3 3 I (a, - am)
q=n3z+l
g*m

The last two factors are the exact solution of the Markov model

A+l A

Yn3+1 Y

Ny

where all A's and y's are small. The first nonzero term of the matrix Taylor
series solution is

Ny ¢y = N3 -1
(T A fr—mTr -

£=N3+1

Hence, the final approximation is

( ( N A, n3 6
P (t)= (N =5 ( m
n+l izl Pi kenpel O

y = N3 -1

n
k* °k) ( -23+1 ) (("“ “Rm -7
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