General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Kansas University Center for Research, Inc.

The University of Kansas Center for Research, Inc.
2291 Irving Hill Drive-Campus West
Lawrence, Kansas 66045
Progress Report for
"A Research Program to Reduce Interior Noise in General Aviation Airplanes"
(NASA Cooperative Agreement NCCI-6)

MEASUREMENT OF TRANSMISSION LOSS CHARACTERISTICS USING ACOUSTIC INTENSITY TECHNIQUES AT THE KU-FRL ACOUSTIC TEST FACILITY

KU-FRL-417-22

Prepared by: Ramasamy Navaneethan, Project Manager
Brian Quayle

Approved by: Jan Roskam, Principal Investigator

Flight Research Laboratory
University of Kansas Center for Research, Inc.
Lawrence, Kansas 66045
December 1983
SUMMARY

In this report, the work carried out at the University of Kansas Flight Research Laboratory (KU-FRL) to measure the transmission loss characteristics of panels using the acoustic intensity technique is presented. The report describes the theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures. A listing of all the programs is also provided.

The initial test results indicate that the acoustic intensity technique can be easily adapted at the KU-FRL test facility to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.

Based on the experience gained so far, several improvements to the test facility and test procedures are also identified.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF SYMBOLS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. THEORETICAL ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>2.1 ACOUSTIC INTENSITY</td>
<td>3</td>
</tr>
<tr>
<td>2.2 ESTIMATION OF ACOUSTIC INTENSITY USING TWO-MICROPHONE METHOD</td>
<td>4</td>
</tr>
<tr>
<td>2.3 LIMITATIONS</td>
<td>9</td>
</tr>
<tr>
<td>2.4 CORRECTIONS FOR PHASE MISMATCH</td>
<td>14</td>
</tr>
<tr>
<td>3. EXPERIMENTAL SET-UP</td>
<td>18</td>
</tr>
<tr>
<td>3.1 HARDWARE DESCRIPTION</td>
<td>18</td>
</tr>
<tr>
<td>3.2 SOFTWARE DEVELOPMENT</td>
<td>24</td>
</tr>
<tr>
<td>4. TEST RESULTS</td>
<td>36</td>
</tr>
<tr>
<td>4.1 SOURCE INTENSITY MAP</td>
<td>36</td>
</tr>
<tr>
<td>4.2 INTENSITY MAP WITH ALUMINUM PANEL</td>
<td>37</td>
</tr>
<tr>
<td>4.3 TRANSMISSION LOSS OF PANELS</td>
<td>40</td>
</tr>
<tr>
<td>5. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>47</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>49</td>
</tr>
<tr>
<td>APPENDIX A: ACOUSTIC INTENSITY TEST OPERATOR'S MANUAL</td>
<td>51</td>
</tr>
<tr>
<td>APPENDIX B: LISTING OF COMPUTER PROGRAMS</td>
<td>75</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>A</td>
<td>Maximum input range of the analyzer volts</td>
</tr>
<tr>
<td>C</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>E</td>
<td>Energy flux</td>
</tr>
<tr>
<td>E()</td>
<td>Expected value function</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
</tr>
<tr>
<td>F</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>G</td>
<td>One-sided spectrum</td>
</tr>
<tr>
<td>H</td>
<td>Transfer function</td>
</tr>
<tr>
<td>i</td>
<td>Integer</td>
</tr>
<tr>
<td>I</td>
<td>Intensity</td>
</tr>
<tr>
<td>j</td>
<td>$\sqrt{-1}$</td>
</tr>
<tr>
<td>k</td>
<td>Integer</td>
</tr>
<tr>
<td>k</td>
<td>Wave number</td>
</tr>
<tr>
<td>K</td>
<td>Calibration constant</td>
</tr>
<tr>
<td>n</td>
<td>Integer</td>
</tr>
<tr>
<td>n</td>
<td>Number of ensemble averages</td>
</tr>
<tr>
<td>N</td>
<td>Number of ensemble averages</td>
</tr>
<tr>
<td>N</td>
<td>Array size of the analyzer</td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>r</td>
<td>Distance</td>
</tr>
<tr>
<td>R</td>
<td>Correlation function</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>S</td>
<td>Spectrum</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>u</td>
<td>Particle velocity</td>
</tr>
<tr>
<td>U</td>
<td>Particle velocity</td>
</tr>
<tr>
<td>V</td>
<td>Output from the analyzer</td>
</tr>
<tr>
<td>x</td>
<td>Sample mean</td>
</tr>
<tr>
<td>z</td>
<td>Test statistic</td>
</tr>
<tr>
<td>Z</td>
<td>Statistic</td>
</tr>
</tbody>
</table>

(Greek)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Difference between test mean and population mean</td>
<td>-</td>
</tr>
<tr>
<td>δr</td>
<td>Incremental distance</td>
<td>-</td>
</tr>
<tr>
<td>Δf</td>
<td>Incremental frequency</td>
<td>Hz</td>
</tr>
<tr>
<td>τ</td>
<td>Time increment</td>
<td>sec</td>
</tr>
<tr>
<td>ω</td>
<td>Circular frequency</td>
<td>rad/sec</td>
</tr>
<tr>
<td>γ</td>
<td>Square root of coherence</td>
<td>-</td>
</tr>
<tr>
<td>ϕ</td>
<td>Phase difference</td>
<td>rad</td>
</tr>
<tr>
<td>ε</td>
<td>Relative statistical error (= \left(\frac{\text{var}(1)}{L} \right)^{1/2})</td>
<td>-</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation</td>
<td>-</td>
</tr>
<tr>
<td>μ₀</td>
<td>Population mean</td>
<td>-</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td>Dimension</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>A</td>
<td>Location A</td>
<td></td>
</tr>
<tr>
<td>av</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Location B</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Calibration</td>
<td></td>
</tr>
<tr>
<td>cal</td>
<td>Calibration</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Test or sample</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>Integer</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>Particle velocity</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Probability of committing Type I error</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Probability of committing Type II error</td>
<td></td>
</tr>
</tbody>
</table>

(Subscript)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Switched</td>
</tr>
<tr>
<td>*</td>
<td>Conjugate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>KU-FRL</td>
<td>University of Kansas Flight Research Laboratory</td>
</tr>
<tr>
<td>MPD</td>
<td>Microphone positioning device</td>
</tr>
<tr>
<td>NR</td>
<td>Noise reduction</td>
</tr>
<tr>
<td>TL</td>
<td>Transmission loss</td>
</tr>
<tr>
<td>TV</td>
<td>True value</td>
</tr>
<tr>
<td>VAR</td>
<td>Variance</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2.1</td>
<td>Acoustic Intensity Measurement Apparatus</td>
</tr>
<tr>
<td>3.1</td>
<td>General Arrangement of the Acoustic Intensity Test Set-Up</td>
</tr>
<tr>
<td>3.2</td>
<td>Description of Microphone Positioning Device</td>
</tr>
<tr>
<td>3.3</td>
<td>Test and Analysis Flow Diagram</td>
</tr>
<tr>
<td>3.4</td>
<td>General Arrangement of the Microphone Calibration</td>
</tr>
<tr>
<td>4.1</td>
<td>Source Intensity Map at 300 Hz</td>
</tr>
<tr>
<td>4.2</td>
<td>Source Intensity Map at 1000 Hz</td>
</tr>
<tr>
<td>4.3</td>
<td>Intensity Map with 0.032" Aluminum Panel at 300 Hz</td>
</tr>
<tr>
<td>4.4</td>
<td>Intensity Map with 0.032" Aluminum Panel at 1000 Hz</td>
</tr>
<tr>
<td>4.5</td>
<td>Transmission Loss Characteristics of 0.032" Aluminum Panel</td>
</tr>
<tr>
<td>4.6</td>
<td>Transmission Loss Characteristics of 40 oz/sq yd Leaded Vinyl</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

This report is a continuation of the documentation of the research accomplished under continuing NASA Cooperative Agreement NCCI-6. The progress of the research accomplished during the period November 1982 through April 1983 of the previous project year (May 1, 1982, through April 30, 1983) was included in the previous report, KU-FRL-417-21 (Reference 1).

The present report covers the period from May 1, 1983, through November 30, 1983. In this reporting period, the measurement of transmission loss characteristics of panels using acoustic intensity techniques is being investigated. The characteristics and the limitations of the present measurement techniques are described in Reference 2. Most of the limitations mentioned in Reference 2 are due to the small size of source and receiver sections of this test facility and the use of acoustic pressure levels instead of acoustic sound power levels as a measure of sound power. Also, in the present method, the sound pressure levels are measured at only one location. Even though this location had been chosen after a careful experimental study, it is possible that this location may not be ideal for some cases. Measurement of the sound power by the integration of the acoustic intensity levels over the entire panel will eliminate a few of these limitations. The direct measurement of the acoustic intensity has now been made possible by the development of the two-microphone, cross-spectral method. This report describes the adoption
of this measurement technique at this test facility to measure panel transmission loss values.

Theoretical developments for the calculation of the acoustic intensity from the pressure measurements by two microphones separated by a known distance is given in Chapter 2. In the same chapter, some of the limitations of this method and ways to reduce some of the errors encountered are also described. The present test set-up had to be changed to introduce the intensity method at this test facility. The modified test set-up is presented in Chapter 3. Also presented in this chapter is the description of the computer programs and the modified test procedures. A typical test result from this test facility obtained using the acoustic intensity technique is given in Chapter 4. The comparison of the present test results with the previous results, and the modifications that will be required to improve test time and memory requirements are presented in Chapter 5.
CHAPTER 2
THEORETICAL ANALYSIS

2.1 ACOUSTIC INTENSITY

The acoustic intensity at any point is defined as the rate of acoustic energy flow across a surface of unit area (Reference 3). By definition:

\[
I_{r, \text{inst}} = \frac{\delta E_r}{\delta t A}
\]

(2.1)

This energy flux, \(\delta E_r \), is equal to the amount of work done upon the area \(A \) in the direction \(r \) due to the total force, \(F_r \); i.e.,

\[
\delta E_r = F_r \cdot \delta r = p_t \delta A \cdot \delta r
\]

(2.2)

where \(p_t \) is the total pressure comprising the ambient pressure \(p_a \) and the sound (perturbed) pressure \(\phi \). This gives

\[
I_{r, \text{inst}} = p_a u + p_u
\]

(2.3)

where \(u = \frac{dr}{dt} \) is the particle velocity in the direction \(r \). Both the sound pressure and the particle velocity are functions of spatial coordinates and time. For sinusoidal processes, the time-averaged value of the first term is zero if the averaging time is an integral number of half periods. For other processes, it well be zero if the averaging time is sufficiently long. If the processes are stationary random, the same result can be obtained by

\[
E(I_r) = E(p_a \cdot u_r) + E(p_u_r)
\]

\[
= p_a E(u_r) + E(p_u_r)
\]

\[
= p_a u_r \text{mean} + E(p_u_r)
\]

(2.4)
If the mean flow is zero, then

$$E(I_r) = E(pur)$$ \hspace{1cm} (2.5).

Direct measurement of intensity using pressure-velocity product has proved very difficult in field conditions (Reference 4). An indirect measurement, wherein two microphones are used to measure the acoustic intensity, has gained wide attention in recent years (Reference 4). In the next section, equations required for the measurement of acoustic intensity using this method will be derived.

2.2 ESTIMATION OF ACOUSTIC INTENSITY USING TWO-MICROPHONE METHOD

With zero mean flow of the medium, the time-averaged intensity is given by Equation (2.5). For ease of calculation, let us consider both \(p(r,t)\) and \(u(r,t)\) to be stationary random processes. Fourier transforms of stationary random processes exist if their autocorrelations and cross correlation are aperiodic (Reference 6). In such cases the Fourier transforms of \(p(r,t)\) and \(u(r,t)\) are defined as

$$P(r,ω) = - \int_{-∞}^{∞} p(r,t)e^{-jωt}dt$$ \hspace{1cm} (2.6)

$$U(r,ω) = - \int_{-∞}^{∞} u(r,t)e^{jωt}dt$$ \hspace{1cm} (2.7).

From Euler's equation (Reference 3), the relationship between the particle acceleration and the pressure is obtained as

$$\rho \frac{\partial u}{\partial t} = -\text{grad} \, p$$ \hspace{1cm} (2.8).
In one direction, namely \(r \),

\[
\rho \frac{\partial u_r}{\partial t} = -\rho \frac{\partial \mathbf{p}}{\partial r} \tag{2.9}
\]

In subsequent discussions, it is assumed that the particle velocity is in the direction \(r \), and hence the subscript \(r \) will be dropped.

The particle velocity is obtained by integrating Equation (2.9):

\[
u = -\frac{1}{\rho} \int_0^t \frac{\partial u_r}{\partial r} \, dt \tag{2.10}
\]

To measure intensity using two microphones, an intensity measurement apparatus as shown in Figure 2.1 is used. In practice, the pressure at the center of closely spaced points A and B can be approximated by taking the mean of \(p_A \) and \(p_B \). The pressure gradient, to a first order, can be calculated by dividing the difference in pressures at \(p_A \) and \(p_B \) by the separation distance, \(\delta r \). These approximations give the following estimates for \(p(r,t) \) and \(u(r,t) \):

\[
p(r,t) = \frac{1}{2} \{ p_A(r,t) + p_B(r,t) \}
\]

\[
u(r,t) = -\frac{1}{\rho \delta r} \int_0^t (p_B - p_A) \, dt \tag{2.11}
\]

This approximation can be considered valid as long as the separation is small compared to the wavelength, \(\lambda \) (Reference 5).

Following Laplace Transform procedures, the time integral of the transform can be replaced by

\[
\mathcal{F}[\int_0^t u \, dt] = \frac{\mathcal{U}(\omega)}{j\omega} \tag{2.12}
\]

Reference 5 states that even though this procedure is mathematically incorrect, it gives valid results in practice. Hence Fourier transforms of \(p(r,t) \) and \(u(r,t) \) can be written as
Figure 2.1: Acoustic Intensity Measurement Apparatus
\[P(r, \omega) = \frac{1}{2} \{ P_A(r, \omega) + P_B(r, \omega) \} \] \hspace{1cm} (2.13)

\[U(r, \omega) = -\frac{1}{j\omega \tau P} \{ P_B(r, \omega) - P_A(r, \omega) \} \] \hspace{1cm} (2.14)

From Equation (2.5):

\[I_{r, \text{av}} = E\{p(r, t)u(r, t)\} \] \hspace{1cm} (2.15)

Both \(p \) and \(u \) are functions of the spatial coordinates of \(r \). The cross correlation function of \(p \) and \(u \) is defined by (Reference 6):

\[R_{pu}(t_1, t_2) = E\{p(t_1)u(t_2)\} \] \hspace{1cm} (2.16)

Because of the stationarity, this equation can be written as

\[R_{pu}(\tau) = E\{p(t)u(t + \tau)\} \] \hspace{1cm} (2.17)

At \(\tau = 0 \),

\[R_{pu}(0) = E\{p(t)u(t)\} \] \hspace{1cm} (2.18)

The right hand side of the equation is equal to the averaged intensity. Therefore,

\[I_{r, \text{av}} = R_{pu}(0) \] \hspace{1cm} (2.19)

By definition, the cross-spectrum of these two processes is given by (Reference 6)

\[S_{pu}(r, \omega) = \int_{-\infty}^{\infty} R_{pu}(\tau) e^{-j\omega \tau} d\tau \] \hspace{1cm} (2.20)

and its inverse Fourier transform is

\[R_{pu}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{pu}(\omega) e^{j\omega \tau} d\omega \] \hspace{1cm} (2.21)

With \(\tau = 0 \),

\[R_{pu}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{pu}(\omega) d\omega = \int_{-\infty}^{\infty} S_{pu}(f) df \] \hspace{1cm} (2.22)
If the Fourier transform of $p(t)$ and $u(t)$ exist, the cross spectrum can be written as (Reference 6)

$$S_{pu} = E\{P(f)U^*(f)\} \quad (2.23).$$

Substituting the values for $P(f)$ and $U(f)$ from Equations (2.13) and (2.14),

$$E\{PU^*\} = E\{\left[\frac{1}{2} (P_A + P_B) \right] \left[- \frac{1}{j\omega \delta_p} (P_B - P_A) \right]^*\} \quad (2.24).$$

Simplifying this equation,

$$E\{PU^*\} = - \frac{1}{2\omega \delta_p} \left[E\{P_B^*P_B^*\} - E\{P_A^*P_A^*\} + E\{P_A^*P_B^*\} - E\{P_B^*P_A^*\} \right] \quad (2.25).$$

By definition,

$$E\{P_B^*P_B^*\} = \text{Power spectrum of pressure at } A = S_{AA}^*,$$

$$E\{P_A^*P_A^*\} = \text{Power spectrum of pressure at } A = S_{BB}^*,$$

$$E\{P_A^*P_B^*\} = \text{Cross power spectrum between pressure at } B \text{ and } A = S_{AB}^*,$$

$$E\{P_B^*P_A^*\} = \text{Cross power spectrum between pressure at } B \text{ and } A = S_{BA}^*.$$

Because $S_{BA}^* = S_{AB}^*$,

$$2\text{Im}(S_{BA}) = j(S_{AB} - S_{BA}).$$

Substituting these relations in the equation,

$$E\{PU^*\} = \frac{1}{2\omega \delta_p} \left[-j(S_{AB} - S_{BA}) + 2\text{Im}(S_{BA}) \right] \quad (2.26).$$

If the cross correlation is real, which normally is the case, the real part of the cross spectrum will be even and the imaginary part of the cross spectrum will be odd. Hence, when integrated from $-\infty$ to $+\infty$, the odd part integrates to zero. Using only the real part,
Fourier analyzers use only one-sided spectrum. The values on the positive frequency side are doubled to keep the energy the same. One-sided cross spectrum is normally denoted by \(G_{BA} \).

\[
I_{r,av} = \int_{-\infty}^{\infty} \frac{1}{\omega} \text{Im}(S_{BA})d\omega
\]

(2.27).

The negative sign in the equation can be avoided if the microphone closest to the source is connected to channel B of the analyzer (see Equation 2.11). For this case, the intensity can be written as

\[
I_{r,av} = \int_{0}^{\infty} \frac{1}{\omega} \text{Im}(G_{BA})d\omega
\]

(2.28).

In practice, the digital form of the estimate will be used:

\[
I_{r,av} = \frac{1}{2\delta f} \sum_{n=1}^{N/2} \frac{\text{Im}G_{AB}(n\Delta f)}{n\Delta f}
\]

(2.30),

where \(\Delta f \) is the calculation bandwidth and \(N \) is the block size of the analyzer. Intensity as a function of frequency is

\[
I_r(n\Delta f) = \frac{1}{\rho \delta r} \frac{\text{Im} G_{AB}(n\Delta f)}{n\Delta f}
\]

(2.31).

2.3 LIMITATIONS

References 3 through 5 discuss the inherent limitations of the two-microphone cross-spectral method to estimate the acoustic intensity. The limitations arise due to two types of error that occur:
a) a systematic error and b) a statistical error. The systematic error is due to the finite difference approximation used in the formulation.
of acoustic intensity. The statistical errors are due to the random source excitation and other random variations in measurement. In addition there are some more limitations that are specific to the KU-FRL acoustic test facility. All these limitations are discussed below.

2.3.1 High Frequency Limitation

At the KU-FRL acoustic test facility there are two possible sources of error in the high frequency region. The first limitation is due to the finite difference approximation for pressure and pressure gradient. This produces a systematic error in the estimation of these two quantities. The approximations used are (Equation 2.11)

\[p = \frac{p_A + p_B}{2} \quad (2.32) \]

\[\frac{\partial p}{\partial r} = \frac{p_B - p_A}{\delta r} \quad (2.33). \]

By the mean value theorem, these approximations tend to the actual values only when the separation distance tends to zero. Otherwise, they produce a systematic error in the entire frequency range. However, the error is most severe in the high frequency range. For a plane sinusoidal wave, the estimate of the intensity, using this approximate method, is related to the actual intensity by (Reference 5)

\[\frac{\hat{I}}{I_r} = \frac{\sin(k\delta r)}{k\delta r} \]

where \(\hat{I} = \) actual intensity,

\(I_r = \) calculated intensity,

\(k = \) wave number \((w/c)\).
(\sin x/x) tends to 1 when x tends to zero. Otherwise, it is less than 1. Hence at high frequency (high k) and large separation distance, the acoustic intensity will be underestimated. At the KU-FRL acoustic test facility, this is minimized by limiting the separation distance to 25 mm (1") at frequencies above 500 hz.

The second limitation is due to the band pass characteristics of microphones. Because low frequency noise reduction is the major concern in aircraft noise reduction, microphones with higher sensitivity in this region are preferred. Because only the low frequency region is important in aircraft noise control applications, 1/2" B&K microphones were chosen for the measurement of transmission loss of panels at the KU-FRL acoustic test facility. These microphones are accurate only up to 4000 hz. With 1" separation and up to 400 hz, the error due to the approximation will be less than 3 dB for a plane with sinusoidal wave. However, because this is a systematic error, similar error occurs with and without the panel. Hence, when the transmission loss is calculated, these errors tend to cancel each other out.

2.3.2 Low Frequency Limitations

According to Reference 4, there is no evidence of any low frequency limit due to the approximation errors. Reference 5 shows that the estimation of the particle velocity results in the estimation of the phase angle difference between the two microphones. The term "k\delta r" in Equation (2.34) is the phase difference between the microphones. This term is very small at low frequencies because k is small. Hence, at
low frequencies, the measurement error of the phase angle becomes significant. The measurement error is due to the channel mismatch between the two microphone channels. This error can be eliminated (or reduced) either by using phase-matched microphones or by correcting for the difference in the phase angles when both the microphone channels are exposed to the same sound field. While the use of phase-matched microphones will make measurement easier, it cannot account for the phase mismatch in the rest of the measurement channels (like signal amplifier, etc.). Because of this, a phase calibration procedure is being adopted at the KU-FRL acoustic test facility. These procedures are discussed in detail in Chapter 3.

2.3.3 Near Field Limitations

The third limitation occurs when this method is used in cases where the intensity changes rapidly along the probe. When this occurs, the intensity is very different at the two microphone locations. A similar situation arises when the measurements are made in near field. Several expressions have been derived to estimate the effect of near field for simple sources such as monopole, dipole, and quadrupole. Table 2.1, taken from Reference 5, gives the following criteria for limiting this error.

<table>
<thead>
<tr>
<th>Source type</th>
<th>Proximity error less than 1 dB if source is away by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monopole</td>
<td>> 1.1 (\delta r)</td>
</tr>
<tr>
<td>Dipole</td>
<td>> 1.6 (\delta r)</td>
</tr>
<tr>
<td>Quadrupole</td>
<td>> 2.3 (\delta r)</td>
</tr>
</tbody>
</table>
While these results will not be valid for a complex source such as a thin panel, they do provide some guidance in using the acoustic intensity techniques near the sound sources.

2.3.4 **Limitations Due to Statistical Errors**

Because of the random excitation, an estimate of $G_{AB}(f)$ is made. This estimation gives an additional error due to the variance of the quantity being measured. Reference 7 gives the normalized random error, $e(I) = (\text{Var}(I)^{1/2}/I)$, in this type of measurement as

$$e(I) = (n_d)^{-1/2}[1/\gamma^2 + \cot^2 \phi_{AB} (1 - \gamma^2)/2\gamma^2]^{1/2} \quad (2.35),$$

where n_d is the number of ensemble averages for cross spectrum, and γ^2 is the coherence between the acoustic pressure at the two measurement points.

As can be seen, the statistical error can be minimized by selecting a large number of ensemble averages and making sure that the coherence level is high. Since the tests are conducted inside a closed cavity where no other sources exist, the measured coherence values are normally very high. In the KU-FRL acoustic test facility an ensemble average of 256 and acceptable coherence of above .8 are used. For an assumed phase difference of .18 rad, with these values for ensemble averages and coherence, the statistical error ($e(I)$) will be less than .194. For a plane wave, a phase angle difference of .18 rad corresponds to 100 Hz at 4" microphone separation.
2.4 CORRECTIONS FOR PHASE MISMATCH

As discussed in Section 2.3, phase mismatch between the two microphones can be minimized either by using phase-matched microphones or by correcting for the error. One of the disadvantages of using the phase-matched microphone is the error due to phase mismatch of the rest of the measurement channel cannot be corrected. At times these errors may become significant. Hence at the KU-FRL acoustic test facility, phase correction by prior calibration of microphones is used. A literature search was conducted. Based on the results, four promising methods were chosen (References 4, 5, and 8).

2.4.1 Phase Angle Correction

In this method the phase difference between the two measurement channels (including microphones) is measured when the microphones are subjected to the same sound field. The phase angles of the cross spectrum measured during the intensity tests are corrected for this difference. The magnitude correction is done separately. If the same sound field is applied to both the microphones, shown in Figure 2.2, the measured cross spectrum is given by

\[S_{AB} = S_{P_1P_2} \cdot H_A^* \cdot H_B \]

(2.36),

where \(S_{P_1P_2} \) is the cross spectrum of the sound field at the position of the two microphones, \(S_{AB} \) is the measured cross spectrum, and \(H_A \) and \(H_B \) are the transfer functions of the two measuring channels. The phase angle of the measurement channels is the phase angle of the transfer function.
This is one of the methods chosen at the KU-FRL to correct for the phase angle difference. This method is useful at low frequencies. The exact realization is discussed in the next chapter. The magnitude calibration is done separately using B&K Pistonphone 4220.

2.4.2 Transfer Function Method

Reference 5 shows that when two microphones are exposed to the sound field, both magnitude and phase correction for channel mismatch can be done using the relation:

\[
S_{P_1P_2} = \frac{S_{AB}}{(H_A)^2 \cdot H_{AB}}
\]

(2.37),

where \(H_{AB}\) is the transfer function between the measurement channels. Since this method is very similar to the previous method, this was not tried.

2.3.4 Microphone Switching Method

Chung, et al. (Reference 4), originally proposed this method for correcting phase mismatch. In this method, tests are done twice. Tests are first performed with the microphones in normal locations; tests are then repeated with the microphones interchanged. Under these conditions Reference 4 gives the actual cross spectrum as

\[
\text{Im} = \{[G_{AB}^S \cdot G_{AB}^{1/2}] / \rho \delta r_w \cdot |H_A| \cdot |H_B| \}
\]

(2.38),
where G_{AB} = cross spectrum between microphones,

G_{AB}^{S} = cross spectrum with microphones switched,

$|H_{A}|, |H_{B}|$ = gain factors, microphones A and B.

In this method every test has to be done twice; also, therefore, the test section has to be opened for every measurement. For these reasons this method is not being used at the KU-FRL acoustic test facility.

2.4.4 Modified Microphone Switching Technique

This method is a combination of the transfer function method and the microphone switching method. In this method, before the start of the tests, the microphones are exposed to a sound field and the cross spectrum (G_{AB}) is measured. Now the microphones are switched, the measuring system is exposed to the same sound field, and once again the cross spectrum is measured (G_{AB}^{S}). From Reference 8, we get

$$e^{i\phi} = \sqrt{\frac{G_{AB}^{S}(\omega)}{G_{AB}(\omega)}}$$

(2.39),

where ϕ is the phase angle between the measurement channel. By assuming that the magnitudes are the same, the complex root computation is avoided. The phase angle is calculated by dividing the phase angle of the cross spectral division by 2.

This error is used to correct the measured intensity values during the actual tests. The implementation of this method at the KU-FRL acoustic test facility is discussed in the next chapter.

The advantages of this method are 1) the microphones need not be exposed to the same sound field, 2) tests need not be performed twice,
3) the method is valid even at high frequencies. The only requirement is that the sound field should be stationary.
3.1 HARDWARE DESCRIPTION

3.1.1 General Test Set-Up Description

The general arrangement of the acoustic intensity test set-up is shown schematically in Figure 3.1. The system shown was designed to take and process data as quickly and efficiently as possible. Since each TL test requires 324 intensity spectra at 402 frequency values each (325 spectra = 81 points for high and low frequency tests for both the source and receiver side), the need for speed in data processing and efficiency in data storage becomes obvious. The operation of the system is described below.

The heart of the system is the Nicolet 660B dual channel FFT analyzer. The analyzer provides temporary data storage and performs all required FFT calculations. It is controlled by a Zenith Z-100 microcomputer which provides data reduction and permanent data storage capability. The 660B and Z-100 are linked through their respective RS-232C ports at a 9,600 baud rate. At present, the communication software used to transfer data from the 660B to the Z-100 is written in a high-level language and represents one of the limitations to the speed of testing. The development of an assembly language communication program (a future project) will, however, decrease the test time.

In addition to its data acquisition role, the Nicolet 660B also provides the excitation signal that drives the speakers in the Beranek tube. This excitation signal is a band-limited binary white noise
Figure 3.1: General Arrangement of the Acoustic Intensity Test Set-up
output from the analyzer's rear panel. It is passed through a TAPCO
2200 equalizer for purposes of modifying the speaker inputs to achieve
a flat speaker output. The equalizer output is gained up through a
Crown D-150 power amplifier to drive the nine Altec 405-8G loudspeakers.
It may, however, be necessary to insert a high pass filter between the
analyzer and the equalizer when testing panels with large transmission
losses. This would be required to avoid overloading the analyzer
inputs in the low frequency range when attempting to gain up the
microphone outputs in the high frequency range. As yet, this had not
become necessary.

Two B&K 4165 microphones with B&K 2618 preamps are positioned in
the Beranek tube by the microphone positioning device (MPD—described
in the next section). The microphone preamplifier outputs are fed
into the two channels of the 660B FFT analyzer (although tests involving
panels with very high transmission losses may require additional
amplification of microphone signals—such as the KU-FRL Nagra SJS tape
recorder—between the microphone power supply and the analyzer). From
the analyzer, the cross spectrum of the two microphones is transferred
to the Z-100 microcomputer where it is stored on 5 1/4 inch disks.
Data transferred to the Z-100 are cataloged in files by microphone
location, analysis (frequency) range, and source or receiver spectra
so that batch processing of data is simplified. Data reduction routines
are run on the Z-100 to generate point intensity values and overall
panel transmission loss. These data are transferred to a Digital MINC
computer for plotting on a Hewlett-Packard Model 7225B X-Y plotter.
3.1.2 Microphone Positioning Device (MPD) Description

The microphone positioning device was designed and built at the KU-FRL for the purpose of accurately positioning the microphones within the Beranek tube. The design requirements specified that the MPD be able to position two microphones anywhere in a 16 inch by 16 inch plane parallel to and directly behind the test panel without opening the tube. Movement of the mikes had to be done easily and accurately from the outside. In addition, provisions for varying the spacing between the microphones had to be made, and "blockage" due to the device (interference with the sound paths within the tube) had to be kept to a minimum. A later requirement that the MPD provide for easy time-area averaging could not be met, as construction had already progressed too far at that time.

The MPD is shown in Figure 3.2. It is an extension tube constructed of particle board into which the positioning mechanism is built. Vertical and horizontal motion is provided by a system of cross beams. A Lucite block is attached to the vertical and horizontal beams at their intersection and is allowed to slide freely on both. The block is therefore constrained by the cross beams (guide rods) such that when the rods are moved, the Lucite block maintains its position at their intersection. The microphones are attached to the Lucite block through an aluminum beam protruding from it (see Detail A). The microphones can be positioned at different locations along the beam to provide for different microphone spacings.
Figure 3.2: Description of Microphone Positioning Device

View From Rear (Facing Speakers)

Guide Rods

Microphone Mounting Block (See Detail A)

Position Indicator Scales

Side View

Position Cranks

Note: Many hidden lines have been omitted for clarity.
The guide rods in the MPD are controlled externally by a cable and manual crank system. Position information is displayed on scales by a secondary cable system driven off the cranks.

The MPD operates smoothly and positions the microphones with reasonable accuracy. However, due to interference of the microphone cables with the bottom of the MPD at low positions, it is not possible to cover the entire 16 inch by 16 inch sweep area. The solution to this problem is to turn the microphones face down when they are positioned near the bottom of the MPD. This, however, requires that the Beranek tube be opened midway through a test. While this is not a significant problem, it increased testing time.

3.2 SOFTWARE DEVELOPMENT

Because of the large amount of data that will have to be processed, using this method, the computer program had to be split into many subparts before it could be handled by the Z-100 computer. Depending upon the ease of programming and the amount of calculations involved, either Fortran or Basic language was chosen to write these programs. The Flow diagram shown in Figure 3.3 describes the steps involved. The individual steps and the relevant equations are described in subsequent sections.

3.2.1 Magnitude Calibration

A B&K "Pistonphone" is used to calibrate the microphones. Because the 660B outputs unscaled values, the actual output from calibration
Figure 3.3: Test and Analysis Flow Diagram
tests is a function not only of the pressure but also of the input max amplitude setting and number of ensemble averages. In converting the output of the 660B to the actual BNC input volt level and then to pressure, these two additional variables will have to be considered. The B&K 4220 Pistonphone outputs calibrated sound pressure level 124 dB re 20 micro pascals at 250 hz. Hence,

$$20 \log\left(\frac{P_{\text{cal}}}{P_{\text{ref}}} \right) = 124 \text{ dB}$$

$$P_{\text{cal}} = 10^{(\frac{124}{20})} P_{\text{ref}}$$

(3.1)

where P_{cal} = pressure corresponding to pressure level of 124 dB

P_{ref} = reference pressure (20 micro pascals).

At a given input channel maximum amplitude setting and for a given number of ensemble average, at any cell location of 660B, the pressure (P_{i}) will be proportional to the value output by the 660B (v_{i}).

$$P_{i} \propto v_{i}$$

or

$$P_{i} = K v_{i}$$

(3.2)

where K is the calibration constant. The Pistonphone outputs 125 dB sound level at 250 hz. There is a small tolerance about 250 hz.

Also, spectral leakage always exists in digital signal processing. Whenever the energy is concentrated at a discrete frequency which is in between two adjacent cell (filter) locations, the energy is smeared across the neighboring cells. See Reference 9 for discussion on spectral leakage. In order to minimize the effect of spectral leakage during calibration, the power-spectral values of three adjacent cells
on either side are summed to obtain the total energy. The calibrated pressure can be equated to

\[\sum_{i=10^{-3}}^{i_0+3} p_i^2 = K \sum_{i=10^{-3}}^{i_0+3} v_i^2 \quad (3.3) \]

\[p_{\text{cal}}^2 = K \sum_{i=10^{-3}}^{i_0+3} v_i^2 \quad (3.4) \]

where \(i_0 \) is the filter location corresponding to 250 Hz, and \(v_i \) is the value output by the 660B at a given maximum amplitude setting and for a given number of ensemble averages, the calibration constant \(K \) can be calculated. This needs to be done for both channels. The functional relationship between the output and the ensemble averages and the maximum amplitude setting is given in Reference 10. Based on these relationships, the relationship between the true value and the value output from the analyzer 660B during any one test was derived as follows.

RMS spectrum of channel A:

\[TV = K_A \cdot v_t \cdot \frac{A_t}{A_c} \cdot \sqrt{N_c/N_t} \quad (3.5) \]

Power spectrum of channel A:

\[TV \cdot K_A \cdot v_t \cdot \frac{(A_t)}{A_c}^2 \cdot \frac{N_c}{N_t} \quad (3.6) \]

Cross spectrum:

\[TV = K_{AB}^{(A_t \cdot A_B)} \cdot \frac{N_c}{N_t} \quad (3.7) \]
where \(TV \) = true value,
\(V \) = value output,
\(A \) = maximum input amplitude setting,
\(N \) = number of ensemble averages,
\(K \) = calibration constants defined in Equation (3.3),

and the subscripts \(t, c, A \) and \(B \) correspond to test, calibration, channel \(A \) and channel \(B \), respectively. These relationships were confirmed by experimentation. They are used in obtaining calibration constants. The actual test and analysis procedure developed, based on the above equations, is described in Appendix A. The listings of programs PSP660 and MAGCAL, used for the determination of magnitude calibration constants, are given in Appendix B. The output from these programs are stored in a file named CALDAT.DAT. It stores calibration factor, number of averages, and maximum amplitude setting for both channels. This file is accessed by other routines to convert the test values into true values.

3.2.2 Phase Calibration

As described in Chapter 2, two different calibration techniques are used at the KU-FRL acoustic test facility. Method 1 calculates the phase angle difference between the two microphone channels when both the microphones are exposed to the same field. Method 2 uses the modified transfer function method described in Chapter 2.
3.2.2.1 Method 1

In this method both the microphones are exposed to the same field, and any difference in the phase angle measured is due to the difference in the channels. Subsequent tests can then be corrected for this difference in phase angle. Figure 3.4 shows the schematic diagram for the microphone phase calibration system. In this method, the two microphones are inserted into a long tube with faces of the microphone parallel. A random noise is generated at the other end. Hence both the microphones are exposed to the same sound field. Only the cavity resonance effects affect the actual sound field incident at the microphone. By the tube diameter of two inches, the fundamental circumferential resonance frequency is made to occur at a frequency greater than 5000 hz, which is the maximum frequency of interest. Thus the effect of circumferential resonance frequency is avoided. The effect of longitudinal resonance frequency could not be eliminated fully, but it is minimized by having absorptive fiberglass materials on the ends of the calibration tube.

During the initial determination of the phase angles, it was noticed that a certain amount of scatter was unavoidable in the phase angle differences measured. Since this scatter may affect the results during daily calibration, a statistical approach was taken to minimize the effects of this scatter. It was decided to perform tests many times to cover the entire range of parameters that cannot be controlled exactly during any test. These parameters involve the humidity, temperature, amount of time the calibration speaker has been on, etc.
Figure 3.4: General Arrangement of Microphone Phase Calibration Set-Up
Thirty tests were conducted to cover the range of variables. A mean of the results of these thirty tests can be considered to be a good estimate of the mean of the population of all possible phase angle measurements (see Reference 11). However, thirty calibration tests every day to cover all possible random combinations is not practicable. Hence it was decided to use significance testing to obtain acceptable calibration values. In this procedure, the population mean and standard deviation are first determined only once. Thereafter, only a small number of tests need to be done every day. The mean values of these tests are compared with the population mean values, and the significance tests are used to accept or reject the new values.

An estimate of population mean can be obtained by taking a mean of a large number of tests. If the number of samples is greater than thirty, it can be assumed that the mean and the standard deviation of the sample are equal to the mean and the standard deviation of the population (Reference 11). Hence, thirty tests that are conducted in the beginning of a test series can be assumed to be a very good estimate of the population mean and the standard deviation. Daily calibration values are then compared with these values for acceptability.

Acceptability or rejection of a test sample (in this case daily calibration results) is based on the significance testing. The aim is to minimize both type I and type II errors. A type I error is committed if the null hypothesis is rejected when it is true. A type II error is committed if the null hypothesis is accepted when it is not true. In this case, the null hypothesis will be that the sample mean (\bar{x}) is equal to the population mean (μ_0); i.e.,
HO: $x = \mu_0$ (both means are the same) \hfill (3.8).

The alternate hypothesis is given by

$H_1: x \neq \mu_0$ (the mean of the sample is not equal to the population mean) \hfill (3.9).

The test statistic is given by

$$z_0 = \frac{x - \mu_0}{\sigma / \sqrt{n_2}}$$ \hfill (3.10),

where n_2 is the number of averages of the test sample (during daily calibration) and σ is the standard deviation.

<table>
<thead>
<tr>
<th>HO is true</th>
<th>HO is false</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept H0</td>
<td>Correct decision</td>
</tr>
<tr>
<td>Reject H0</td>
<td>Type I error</td>
</tr>
</tbody>
</table>

Specifically in this case, while committing type I error can be tolerated, committing type II error should be avoided. The probability of committing type II is denoted by β. The probability of committing type I error is denoted by α. This is also known as the level of significance. When the alternate hypothesis is nonspecific, as in this case, it is not possible to compute the probability of committing type II error (Reference 11). However, with higher sample size, both α and β can be reduced. Reference 11 also gives the following equation for the two-tailed test to obtain the power $(1 - \beta)$ for a specified alternative as

$$n_2 = \frac{(z_{\alpha/2} + z_\beta)^2 \sigma^2}{\delta^2}$$ \hfill (3.11),

where n_2 is the number of observations required, σ is the standard deviation, and δ is the difference between the sample mean and the
population mean. For .05 level of significance (α), $z_{\alpha/2}$ is 1.96 for normal distribution, and for .05 probability of computing type II error (β), $z_{1-\beta} = 1.645$. Using Equation (3.11) as a guide and by trial and error, $n = 5$ was observed to be adequate for our calculations.

These equations have been modelled into the computer program. At the beginning of a series of tests, the calibration is performed 30 times, varying the uncontrollable parameters (such as temperature, humidity, etc.) as much as possible. Then a basic program, STAT.BAS, is run. These tests are performed once for low frequency range and again for high frequency range. The outputs (the population mean and the confidence interval at 95% confidence level) are stored into two files. For t distribution, the standard deviation (σ) and confidence interval (c) are related at 95% confidence level by

$$
\sigma = \frac{c \sqrt{n_1}}{2.02}
$$

(3.11),

where n_1 is the number of tests.

During the day of the tests, calibration is done only five times. The analysis program, CALII.EAE, is run to perform the significance tests. During the running of this test, the operator will be asked whether to accept or reject the calibration if the z statistic (Equation 3.10) exceeds 1.96. At this z statistic, the level of significance is 5% and the power is about 95%. Very high values of z statistic should be rejected and the calibration redone. This has to be done for both frequency ranges. The output file from this program is called CALII.DLO, or CALII.DHI. These files contain the cosine and sine of the phase angle correction at each filler. These files are accessed by other routines to correct for phase angles.
3.2.2.2 Method 2

The second method for phase correction uses the modified microphone switching technique described in Section 2.4.4. Equation (2.39) is used to obtain the correction. In this method, the tests are done only at the beginning of a test. First, the microphones are clamped in normal location in the MPD and the cross spectrum is measured. Then the microphones are switched and the switched cross spectrum is measured. From these two cross spectra, the phase angle correction as a function of frequency is obtained using Equation 2.39. The test procedure is described in Appendix A; and the listing of the program INTCAL, which performs the calculations, is given in Appendix B.

3.2.3 Intensity Tests

The test procedure for measuring acoustic intensity values at the KU-FRL acoustic test facility is given in Appendix A. The intensity is calculated from the measured cross-spectral values by Equation (2.31). The program INTSTY performs this calculation. It also performs relevant magnitude and phase corrections. At present, the intensity values are calculated at 81 grid points on an 18-inch-by-18-inch cross sectional area. These intensity values can be made use of to plot either an intensity map or transmission loss. The relevant programs are identified in Figure 3.3. The listing of programs is given in Appendix B.
3.2.4 Plotting

At present, no plotter is available for the Z-100 microcomputer. Hence the plotting is done on a MINC-ll computer with a HP 7225B plotter. Therefore the data values have to be transferred from the Z-100 to the MINC-ll computer. This is achieved through modem communication. The data values are then plotted using plot programs ZPLOT and PLOT (for transmission loss and intensity maps, respectively). The listings of these plot programs are given in Appendix B.
CHAPTER 4
TEST RESULTS

This chapter describes the tests conducted to check out the acoustic intensity procedures developed at the KU-FRL acoustic test facility. At the time of preparation of this progress report, this activity has not yet been completed. The tests described in this chapter are in addition to the tests conducted to verify the accuracy of the programs. In all cases, phase corrections were performed.

4.1 SOURCE INTENSITY MAP

One of the important aspects of the plane wave tube is the behavior of the speaker array. It is desirable for all speakers to produce identical outputs with the same phase angle. Also the spectrum produced by the speakers should be flat for a random white noise excitation. During the initial calibration tests of the test facility, it was concluded (Reference 2) that the incident wave can be considered plane only up to 800 Hz. With the acoustic intensity technique, this aspect can be easily verified. To determine the sound field characteristics of the test facility, an acoustic intensity survey was carried out along the cross section of the plane wave tube. The test facility has a cross section of 18 inches by 18 inches. Tests were conducted to measure intensity every two inches, using the procedures outlined in Appendix A. This gave intensity values of 81 grid points. During these tests, the gain values at the frequency ranges of the equalizer were set to zero.
The results of the tests are plotted in Figure 4.1 and 4.2, for 300 Hz and 1000 Hz, respectively. The results are also available for every 1.25 Hz up to 500 Hz, and for every 12.5 Hz from 500 Hz up to 5000 Hz. The software programs developed seem to work well for the type of analysis being done. From the tests, it was found that the number of grid points needs to be increased at high frequencies to obtain a good quality intensity map.

From Figure 4.1, it can be seen that two speakers (#2 and #6) are producing less power (10 dB lower than the other speakers). This phenomenon was seen at frequencies from 250 to 4000 Hz. Thereafter, these speakers behaved normally. But for these two areas, the result was reasonably flat. At 1000 Hz, the variations were much more severe. This could be due to the cavity resonances present in the test facility.

In general, the intensity was higher around the edges than at the center. The reason for this is not fully understood. However, based on this test, it is concluded that the KU-FRL acoustic test facility cannot be considered a plane wave facility above 1000 Hz.

4.2 INTENSITY MAP WITH ALUMINUM PANEL

At the KU-FRL test facility, a 0.032" aluminum panel is used as the standard panel. The transmission loss (or noise reduction) values obtained with this panel are used for calibration. To determine the acoustic intensity characteristics of this panel, an intensity survey was carried out at the same 81 grid points as before, this time with the 0.032" aluminum panel installed between the source and the
Figure 4.1: Source Intensity Map at 300 Hz
Figure 4.2: Source Intensity Map at 1000 Hz
microphones. Figures 4.3 and 4.4 show the results at 300 Hz and 1000 Hz, respectively. At 300 Hz, the intensity variation was within 10 dB at all points. At 1000 Hz, while the maximum variation was only 20 dB, the actual intensity value was 40 dB. It is anticipated that this low value of transmitted intensity may pose problems in accurate estimation of the intensity, especially if the panel exhibits higher transmission loss characteristics. This aspect was expected. At higher frequencies, the transmission loss will be higher because of the mass law. Several methods are being studied to overcome this problem. They are installation of amplifier in the measurement channel, increasing the input signal strength, and finally filtering away the low frequency in the excitation signal using high-pass filters and then amplifying the signal. The third method will involve performing each test twice: once at low frequency, say up to 500 Hz; and the second time, from 500 Hz to 5000 Hz. This was how the tests were being done with the old measurement procedures.

4.3 TRANSMISSION LOSS OF PANELS

To compare the values of the measured transmission loss values obtained using this procedure with theoretical values, two panels were tested: a 0.032" aluminum panel and 40 oz/sq yd leaded vinyl. These specimens were tested at the KU-FRL acoustic test facility using the test procedures outlined in Appendix A. The resulting transmission loss characteristics are compared with the mass law. The behavior of the test panels is illustrated in Figures 4.5 and 4.6.
Figure 4.3: Intensity Map with 0.032" Aluminum Panel at 300 Hz
Figure 4.5: Transmission Loss Characteristics of 0.032" Aluminum Panel
Figure 4.6: Transmission Loss Characteristics of 40 oz/sq yd Leaded Vinyl
The transmission loss (TL) curve for a particular panel is obtained in the following manner. An intensity level survey is conducted without any panel. The intensity level is integrated over the entire panel area, and the incident sound power level is estimated. Then the tests are repeated with the panel installed between the source and the microphones, and the transmitted sound power level is estimated. The difference in sound power level between these two measurements will give the transmission loss. This test procedure is similar to the measurement of insertion loss. However, because the intensity is measured close to the source and the panel is thin, the difference between this procedure and the two-room transmission loss measurement method is expected to be small. This procedure had to be adopted because the measurement of incident intensity alone on the source side is not possible with this technique. The reflected intensity from the test specimen will affect the intensity being measured. This problem existed even in the old procedure. However, no correction was made for this; and the resulting measurements were termed noise reduction (and not transmission loss).

Mass law values are also plotted in Figures 4.5 and 4.6. The mean square transmission loss measured in each case is approximately 2 to 5 dB lower at 5000 Hz. The integration of the several intensity values for both with and without panels, used in this procedure, is expected to yield an average transmission loss value. This is in comparison to the use of just one microphone situated close to both source and receiving side, which will result in position-dependent transmission loss values. Hence a difference between the two
measurements was anticipated. The results with the old test procedure
gave up to 6 dB higher noise reduction than the calculated noise reduction
values. Hence, one-to-one comparison between the present procedure and
the old single-microphone procedure is not considered valid.

In addition to the lower-than-mass-law values observed at 5000 Hz,
another aspect that will have to be studied is the near-zero transmission-
loss observed around 300 Hz. The reasons for this are not fully
understood and are currently being investigated. The tests will be
performed after modifications have been made to the MPD and the receiver
cavity. These modifications include filling up the cavities with loose
foam, moving wire gauze closer to the MPD, and installation of the
microphone in the MPD in such a way as to reduce the reflections
from the support rod. Also, increasing the signal strength at high
frequencies is expected to increase the dynamic range of measurements.
CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

In this report, the development of a method to measure the transmission loss characteristics of panels using the acoustic intensity technique is presented. This report also describes the theoretical formulation, installation of the hardware, modifications to the test facility, and development of computer programs and test procedures. Initial test results are also presented. Based on the tests conducted so far, the following conclusions have been reached.

- The acoustic intensity technique can be adapted to measure the transmission loss characteristics of panels. Use of this method will give average transmission loss values as opposed to the position-dependent values obtained from single-microphone measurements.
- The same technique and installation can also be used to plot the intensity maps of vibrating panels. Use of the microphone-positioning device greatly simplifies correct grid positioning.
- The acoustic intensity programs can easily be written on a microcomputer. (Total cost of the microcomputer is less than $2500.)
- The initial results indicate that transmission loss values measured using this method are lower than theoretically predicted values.
- This facility cannot be considered a plane wave facility at high frequencies above 800 Hz.
Based on the experience gained so far in using this technique, the following recommendations are made:

- The computer programs should be optimized to lessen the test time and the memory storage requirements. This may require programming in assembly language or in higher level languages like "C."
- The test facility should be modified to eliminate possible reflections from the microphone holding device.
- The test procedure should be modified to increase the dynamic range at high frequency. This can be achieved by performing the tests twice, once at low frequency (~500 Hz) and the second time at high frequency (~5000 Hz). During the high frequency testing, the low frequency component should be eliminated by filtering.
- At present, no spatial averaging is possible. The microphone positioning device can easily be modified to have spatial averaging.
LIST OF REFERENCES

APPENDIX A

ACOUSTIC INTENSITY TEST OPERATOR'S MANUAL

A.1 INTRODUCTION

In this appendix the procedures for performing an acoustic intensity test are presented. All pertinent data are included for calibrating equipment, performing a test, and reducing the resulting data. However, at the time of this writing, the testing procedures are still being developed, and the following is not expected to be the final procedure. This manual will be updated as testing procedures are refined.

The sections presented below are arranged in the order in which they have to be performed, although not all the sections will be required for every test. (For instance, the "infrequent" phase calibration tests are only required when daily calibrations using method #1 do not agree with previous infrequent calibration test results.) The manual presents the procedures in a checklist format and does not dwell on why certain steps are required, as this would require an intimate knowledge of the system (which at this time is not fully developed). The manual is intended to serve as a quick reference guide during testing.

A.2 INFREQUENT MICROPHONE PHASE CALIBRATION PROCEDURE

This section describes the procedures for performing an "infrequent" calibration test of the intensity test set-up for purposes of statistical assurance. That is, the daily calibration tests are compared to the results of an infrequent calibration test to determine the statistical
validity of the daily calibrations. To do this, a large, random sample of calibration tests is required to estimate the calibration values of the population. The sample size required by the STAT.BAS statistics program is thirty tests. It is therefore necessary to generate thirty calibration tests as described below.

1. Connect the 2-inch calibration speaker to the metal calibration test tube with masking tape.
2. Remove the red speaker wires (2) from the speaker panel and attach them to the black wires on the 2-inch speaker.
3. Insert microphone #1 into slot #1 in the wooden microphone support block, and microphone #2 into slot #2 in the block.
4. Insert microphone #1 into slot #1 in the Plexiglas microphone support ring, and microphone #2 into slot #2 in the ring.
5. Insert the Plexiglas ring into the metal test tube. Line up the markings on the ring and the tube, and secure together with masking tape.
6. Attach a cable to the binary noise-out (A) post on the FFT analyzer.
7. Connect the cable from the FFT to the speaker switch cable.
8. Connect the cable from output 1 on the microphone power supply to channel A on the FFT analyzer.
9. Connect the cable from output 2 on the microphone power supply to channel B on the FFT analyzer.
10. Boot the Z-100 with the system/testing disk in drive A, and a working disk in B.
11. Turn on the following equipment:
a. 660B,
b. mike power supply,
c. equalizer,
d. amplifier.

Allow equipment to warm up for approximately 10 minutes.

12. While the system is warming up, do the following:
 a. On Z-100:
 1) Type ZBASIC <ret>,
 2) Press F3 and when 'LOAD'' appears, type CAL660 <ret>,
 3) When 'OK' appears on the screen, type RUN <ret>.
 The computer will then ask for a file name. Don't answer this question yet.
 b. On 660B: Make sure that the following lights are on.
 1) mode: Dual 1K,
 2) function: TF,
 3) average: SUM,
 4) display: XPROP, ^MAG,
 5) capture control: CONT,
 6) amplitude units: V/ABS,
 7) scales: AMPL-LOG.

13. Set the number of averages using the following sequence:
 a. 1-2-8,
 b. SET/STORE,
 c. AVGN.

 Check to see if 128 AVGN appears on the screen of the 660B.
 If it does, press CLEAR and repeat step 13. You are now ready to begin testing.
14. On the Z-100, type in the file name in the following format.
Do not hit return.

Denotes Drive B File Name Test number (01 to 30)
B:CALPXX,D(LO or HI)
D for Data HI for High Frequency Calibrations
LO for Low Frequency Calibrations (Up to 5000 Hz)
(Up to 500 Hz)

15. On the 660B:
 a. Set desired frequency range (500 = LO, 5000 = HI).
 b. Turn on the speakers by putting the speaker switch in the "SO" position. (Note: speakers may be turned off whenever data are not being taken.)
 c. Adjust the analyzer channel amplitudes to maximum without overloading.
 d. Press START.
 e. Press RECALL and then AVGN.
 f. When the test is done, the START light will go out.
 Turn off the speakers by returning the speaker switch to OFF.

16. Press RETURN on the Z-100. This will initiate the transfer of data from the 660B to the Z-100. The transfer is completed when the Z-100 asks for a new file name.

17. On the 660B, press RCL D so that the function light goes out.

18. Begin the next test by following the steps from step 14 onward.

19. When finished, turn off:
 a. microphone power supply,
 b. amplifier,
c. equalizer,
d. 660B.

20. On the Z-100, type E <ret>. They type SYSTEM <ret>.
21. Turn off the Z-100 and its monitor.
22. Remove disks.
23. Disconnect all cables and reconnect the speaker wires to the speaker panel.

A.3 PROCEDURE FOR RUNNING STAT.BAS: A PROGRAM TO REDUCE PHASE CALIBRATION DATA USED FOR STATISTICAL ASSURANCE

This section describes the operation of the statistical analysis program STAT.BAS. This program calculates the sample mean and a confidence interval about the mean of thirty tests. The calculations are done such that the probability of the population mean falling within the confidence interval is 95 percent. The program is designed to operate on data files of arbitrary length up to 403 values (that is, thirty files, each up to 403 values in length).

The following is a description of the preparation required to run STAT.BAS.

Thirty calibration tests are required for both the low frequency (0-500 Hz) and high frequency (0-5000 Hz) tests. All thirty of these tests for either high or low ranges will fit on one disk. File names must be sequential, although it is not necessary to have them arranged in order. File name format must be as described in the previous section.
Program STAT.BAS requires a catalog file containing the names of all the calibration tests. For the low frequency tests, this catalog file is FILCAT.LFR; and it must reside on the same disk as the low frequency calibration tests. For the high frequency tests, the catalog file name is FILCAT.HFR; and it must reside on the high frequency test disk.

FILCAT.LFR and FILCAT.HFR are most easily generated by running simple utility programs called CAT1.BAS and CAT2.BAS. CAT1.BAS generates 30 low frequency file names within the FILCAT.LFR file. These take the form

```
B:CALP01.DLO
B:CALP02.DLO
B:CALP03.DLO
...
B:CALP30.DLO
```

Similar file names are generated under FILCAT:HFR for the high frequency tests.

STAT.BAS will open a FILCAT file and read in the calibration file names. STAT.BAS will open each calibration file in turn and read in the data in each file. When finished, the results will be written to a user-defined file in the form

```
1.093 0.023
1.110 0.023
1.023 0.019
0.913 0.006
...
```
The first column represents the mean phase difference between the two microphones (mike #1 with respect to mike #2). The second column represents the confidence interval (the interval is the mean +/- confidence interval value). Each row corresponds to a different frequency. For low frequency tests, the difference between two consecutive rows is 1.25 Hz. For the high frequency tests, the difference is 12.5 Hz. Four hundred two (402) values are stored, starting at 0 Hz.

The following is a step-by-step description of how to run STAT.BAS.

1. Boot Z-100 with the system/testing disk in drive A, and the low frequency calibration test disk in B.

2. Type ZBASIC <ret>.

3. When Z-100 responds with 'OK,' type LOAD"CAT1 <ret>.

4. When Z-100 responds with 'OK,' type RUN <ret>.

5. Z-100 will print 30 file names. When it is finished, type NEW <ret>.

6. Replace the disk in drive B with the disk containing the high frequency tests.

7. Type LOAD"CAT2" <ret>.

8. When Z-100 responds with 'OK,' type RUN <ret>.

9. Z-100 will print 30 file names. When it is finished, type NEW <ret>. The FILCAT files have now been created on their respective disks.

10. Type LOAD"STAT" <ret>.

11. When Z-100 responds with 'OK,' type RUN <ret>.

12. Z-100 will ask 'ENTER NAME OF INPUT FILE CATALOG?'

 Type B:FILCAT.HFR <ret>.
13. Z-100 will ask 'ENTER OUTPUT FILE NAME?'
 Type STATI.DAT <ret>.

14. Z-100 will ask 'ENTER ANALYSIS RANGE?'
 Type 5000 <ret>.

15. Z-100 will now be busy for approximately 20 minutes. As each file is opened, its name will be printed on the monitor. When finished, Z-100 will beep three times.

16. When Z-100 is finished, replace the disk in drive B with the disk containing the low frequency calibration tests. Type RUN <ret>.

17. The answers to the three Z-100 questions asked in steps 12, 13, and 14 are, respectively,

 B:FILCAT.LFT
 STATLO.DAT
 500.

18. When Z-100 is finished, type SYSTEM <ret>.

19. The high and low frequency statistical data now reside on the disk in drive A under the file names STATI.DAT and STATLO.DAT, respectively.

20. Copy files STATI.DAT and STATLO.DAT to Data Disk #1.
 Do this using the following steps.
 a. Insert Data Disk #1 in drive B.
 b. Type STATI.DAT B:*.* <ret>.
 c. Type STATLO.DAT B:*.* <ret> when Z-100 answers with 'A:'.

21. Turn off Z-100 and its monitor.

22. Remove all disks.
A.4 DAILY MICROPHONE PHASE CALIBRATION PROCEDURE: METHOD I

This section describes the procedures for performing a daily calibration test of the two B & K microphones. The procedure should be followed in the order given. Two tests are required: a low frequency test, and a high frequency test. Note that this phase calibration procedure is one of two procedures that may be used.

1. Connect the 2-inch speaker to the test tube with masking tape.
2. Remove the red speaker wires (2) from the speaker panel and attach them to the black wires on the 2-inch speaker.
3. Insert microphone #1 into slot #1 in the wooden microphone support block, and microphone #2 into slot #2 in the block.
4. Insert microphone #1 into slot #1 in the Plexiglas microphone support ring, and microphone #2 into slot #2 in the ring.
5. Insert the Plexiglas ring into the metal test tube. Line up the markings on the Plexiglas ring with those on the tube. Secure the ring and tube together with masking tape.
6. Attach a cable to the binary noise-out (A) post on the FFT analyzer.
7. Connect the cable from the FFT to the speaker switch cable.
8. Connect the cable from output 1 on the microphone power supply to channel A on the FFT analyzer.
9. Connect the cable from output 2 on the microphone power supply to channel B on the FFT analyzer.
10. Boot Z-100 with the system/testing disk in drive A, and Data Disk #1 in drive B.
11. Turn on the following equipment:
 a. 660B,
 b. mike power supply,
 c. equalizer,
 d. amplifier.
 Allow equipment to warm up for approximately 10 minutes.

12. While the system is warming up, do the following:
 a. On Z-100:
 1) Type ZBASIC <ret>,
 2) Press F3 and when 'LOAD'' appears, type CAL660 <ret>.
 3) When 'OK' appears on the screen, type RUN <ret>.
 The computer will then ask for a file name. Don't answer this question yet.
 b. On 660B: Make sure that the following lights are on.
 1) mode: Dual 1K,
 2) function: TF,
 3) average: SUM,
 4) display: XPROP, $MAG,$
 5) capture control: CONT,
 6) amplitude units: V/ABS,
 7) scales: AMPL-LOG.

13. Set the number of averages using the following sequence:
 a. 6-4-0,
 b. SET/STORE,
 c. AVGN.
 Check to see if 640 AVGN appears on the screen of the 660B.
If it does not, press CLEAR and repeat step 13. You are now ready to begin testing.

14. On the Z-100: Type in the file name in the following format. Do not hit return.

Denotes Drive B File Name (Transfer Function Calibration)

\[B:\text{TFNCAL.D(LO or HI)} \]

\[\text{D for Data} \quad \text{HI for High Frequency Calibrations} \]

\[\text{LO for Low Frequency} \quad \text{Calibrations (Up to 500 Hz)} \]

15. On the 660B:

a. Set desired frequency range (500 = LO, 5000 = HI).

b. Turn on the speakers by putting the speaker switch in the "SO" position. (Note: Speakers may be turned off whenever data are not being taken.)

c. Adjust the analyzer channel amplitudes to maximum without overloading.

d. Press START.

e. Press RECALL and then AVGN.

f. When the display reads 128 AVGN, press STOP.

g. At this point, disassemble the microphone/block combination and repeat steps 3 to 5.

h. After completing 15a to 15g, press CONT on the 660B.

i. When the display reads 256 AVGN, press STOP, and repeat 15g to 15h. Do this for 384 AVGN and 512 AVGN also.

j. When the test is done, the START light will go out. Turn off the speakers by returning the speaker switch to OFF.
16. Press RETURN on the Z-100. The transfer is completed when the Z-100 asks for a new file name.

17. On the 660B, press RCL D so that the function light goes out.

18. Begin the next test by following the steps from step 14 onward.

19. When finished, turn off:
 a. microphone power supply,
 b. amplifier,
 c. equalizer,
 d. 660B.

20. On the Z-100, type E <ret>. Then type SYSTEM <ret>.

21. Type CALII <ret>. When Z-100 asks for the frequency range, type 500. <ret>.

22. Z-100 will now do a statistical comparison of the phase values determined in the daily calibration with those from the infrequent calibration tests. Whenever a value is found to be outside accepted limits, the Z-100 will give the frequency value and the value of the test statistic. Accept the calibration value with a <ret> if one of the following conditions is satisfied:
 a. Frequency value is less than 60 Hz or greater than 4000 Hz,
 b. The test statistic is close to 2.0 (within, say, five percent),
 c. The test statistic is less than 2.5 for less than five consecutive frequency values,
 d. The test statistic is considerably greater than 2.0 but is an isolated excursion; that is, a single event, rather than a string of excursions greater than 2.0.
If the test statistic fails, then the calibration will have to be repeated. If a satisfactory calibration test cannot be made within three or four trials, then Section should be redone.

23. If the values are acceptable, repeat steps 1 and 22 but for frequency value 5000 Hz.

A.5 MICROPHONE CALIBRATION USING SWITCHING TECHNIQUE TEST PROCEDURE CALIBRATION METHOD II

This section describes the procedures for microphone channel calibration using the switching technique.

1. Place the microphone positioning device (MPD) between the Beranek tube and the speaker wall.

2. Insert the two microphones through the hole in the top of the MPD.

3. Clamp the microphones into their respective holders (#2 mike closest to the speakers) with a one-inch spacing for high frequency tests, and a four-inch spacing for low frequency tests. The microphones should be inserted so that they are upright in their holder.

4. Position the mikes in the upper left hand side (when facing the speakers) of the MPD, somewhere in the center of the cross section. The exact location is not important; but once it is in place, the MPD should not be moved.

5. Place putty into the hole in the MPD around the microphone cables.
6. Leave the panel space empty. Close the tube and secure the MPD in place with the four "hook" bolts.

7. Attach a cable to the binary noise-out (A) post on the FFT analyzer.

8. Connect the cable from the FFT to the speaker switch cable.

9. Connect the cable from output 1 on the microphone power supply to channel A on the FFT analyzer.

10. Connect the cable from output 2 on the microphone power supply to channel B on the FFT analyzer.

11. Boot Z-100 with the system/testing disk in drive A, and Data Disk #1 in drive B.

12. Turn on the following equipment:
 a. 660B,
 b. mike power supply,
 c. equalizer,
 d. amplifier.

 Allow equipment to warm up for approximately 10 minutes.

13. While the system is warming up, do the following:
 a. On Z-100:
 1) Type ZBASIC <ret>,
 2) Hit F3 and when 'LOAD'' appears, type INT660 <ret>,
 3) When 'OK' appears on the screen, type RUN <ret>,
 4) The computer will then ask for a file name. Do not answer this question yet.
 b. On 660B: Make sure that the following lights are on.
1. mode: DUAL 1K,
2. function: XSPEC,
3. average: SUM,
4. display: XPROP, #MAG,
5. capture control: CONT,
6. amplitude units: V/ABS,
7. scales: AMPL-LOG.

14. Punch the following buttons on the 660B in the order given:
 a. 2-5-6,
 b. SET/STORE,
 c. AVGN.

 Check and see if 256 AVGN appears on the screen of the 660B.
 If it does not, hit CLEAR and redo the above sequence.
 You are now ready to begin testing.

15. On the Z-100: Type in the file name in the following format.

 Denotes Drive B
 B:XSNORM.D(LO or HI)

 XS for Cross-Spectrum Low or High Frequency Calibration
 (LO = 500 Hz, HI = 5000 Hz)

16. On the 660B:

 a. Set desired frequency range (500 or 5000 Hz).
 b. Turn on the speakers by putting the speaker switch in the "SO" position.
 c. Adjust the analyzer channel amplitudes to maximum without overloading.
d. Press START.
e. Press RECALL and then AVGN.
f. Note in the testing log the input channel maximum amplitude settings, microphone spacing, number of averages.

17. When the test is done, the START light will go out. Turn off the speakers by returning the speaker switch to OFF.

18. Press RETURN on the Z-100. This will initiate the transfer of data from 660B to the Z-100. The transfer is completed when the Z-100 asks for a new file name.

19. On the 660B, press RCL D so that the function light goes out.

20. Unscrew the 4 holding bolts. Without changing the position of the MPD, switch the location of the microphones. After switching, #1 microphone should be closer to the source.

21. On the Z-100, type file name:

 B:XXSWCH.D(LO or HI)

Do not hit return. Repeat steps 16-19.

22. Repeat test for the other frequency range (steps 16-21).

23. Type E <ret> and SYSTEM <ret> on the Z-100, and turn off the following equipment:

 a. microphone power supply,
 b. amplifier,
 c. equalizer,
 d. 660B.

24. Type INTCAL <ret>. When Z-100 asks for the frequency range, type 500. <ret>.
25. Z-100 will now calculate the phase correction values and store the result in B:INTCAL.D(LO or HI).

26. Repeat step 24 for frequency range value of 5000 Hz.

A.6 DAILY MICROPHONE MAGNITUDE CALIBRATION TEST PROCEDURE

This section describes the procedures for performing a daily magnitude calibration test of the two B & K microphones. The steps should be followed in the order given. Special note: Microphone #1 corresponds to analyzer channel A, and microphone #2 corresponds to analyzer channel B.

1. Remove the microphone connected to channel A from the MPD.
2. Place the microphone into the connecting ring of the "Pistonphone."
3. Boot Z-100 with the system/testing disk in drive A, and Data Disk #1 in drive B.
4. Turn on the 660B.
5. Turn on the microphone power supply.
6. Allow the system to warm up for approximately 10 minutes.
7. While the system is warming up, do the following:
 a. On the Z-100:
 1) Type ZBASIC <ret>.
 2) Press F3, and when 'LOAD' appears, type PSP660 <ret>.
 3) When 'OK' appears, type RUN.

The computer will then ask for a file name. Do not answer this question yet.

*Brüel & Kjaer, Type 4220
b. On 660B: Make sure that the following lights are on.
 1) mode: DUAL 1K,
 b) function: PWR SPEC,
 c) average: SUM,
 d) display: MAG (either A or B),
 e) capture control: CONT,
 f) amplitude units: V,ABS,
 g) scales: AMPL-LOG.

8. Set the number of averages using the following sequence:
 a. 2-5-6,
 b. SET/STORE,
 c. AVGN.

Check and see if 256 AVGN appears on the screen of the 660B.
If it does not, press CLEAR and redo the above sequence.

9. You are now ready to begin testing. Do the following:
 a. On the Z-100: The Z-100 will ask 'FILE NAME FOR
 CHANNEL A?'. Type in the file name A:CALA.DAT.
 Do not enter a return yet.
 b. On 660B: Set the frequency range to 500 and press RECALL
 and then AVGN.

10. Turn on the Pistonphone.

11. Hit the START button on the 660B.

12. When the test is done, the START light will go out. When
 this happens, turn off the Pistonphone.

13. Hit RETURN on the Z-100.

14. The transfer is complete when the Z-100 asks for a new file name.
15. On the 660B, hit RCL D so that the light goes out.

16. Replace microphone A with microphone B in the Pistonphone, and output from microphone B should be connected to channel B on 660B.

17. Begin the next test by following the steps from step 9a onward. This time the file name will be A:CALB..DAT.

18. Type SYSTEM <ret>. When A: appears, type MAGCAL <ret>.

19. The computer will then ask a series of questions. Answer each of them with the appropriate answer.

20. When A: appears on the screen, type COPY A:CALDAT.DAT B:CALDAT.DAT <ret>.

21. Turn off:
 a. microphone power supply,
 b. 660B,
 c. Z-100 and its monitor.

22. Remove the disks.

23. Place the microphone back in the MPD and put away the Pistonphone.

A.7 ACOUSTIC INTENSITY TESTING PROCEDURE

This section describes the procedures for running an intensity test. Follow these steps in the order given. Note: Each disk will hold only 35 files. You will need several data disks for these tests.

1. Place the microphone positioning device (MPD) between the Beranek tube and the speaker wall.
2. Insert the two microphones through the hole in the top of the MPD.

3. Clamp the microphones into their respective holders (2 mike closest to the speakers) with a one-inch spacing for high frequency tests, and a four-inch spacing for low frequency tests. The microphones should be inserted so that they are upright in their holder.

4. Position the mikes in the upper left-hand side (when facing the speakers) of the MPD, one inch from the left side and top side of the inner surfaces. This represents position (1,1). While holding the positioning cranks fixed, move the position indicators (springs) so that they are centered over the indicator scales at the value (1,1).

5. Place putty into the hole in the MPD around the microphone cables.

6. If a "receiver side" test is to be done, place the panel to be tested in the MPD. If a "source side" test is to be done, leave the panel space empty. Close the tube and secure the MPD in place with the four "hook" bolts.

7. Attach a cable to the binary noise-out (A) post on the FFT analyzer.

8. Connect the cable from the FFT to the speaker switch cable.

9. Connect the cable from output 1 on the microphone power supply to channel A on the FFT analyzer.

10. Connect the cable from output 2 on the microphone power supply to channel B on the FFT analyzer.
11. Boot Z-100 with the system/testing disk in drive A, and an empty working disk in B.

12. Turn on the following equipment:
 a. 660B,
 b. microphone power supply,
 c. equalizer,
 d. amplifier.

Allow equipment to warm up for approximately 10 minutes.

13. While the system is warming up, do the following:
 a. On the Z-100:
 1) Type ZBASIC <ret>;
 2) Hit F3 and when 'LOAD'' appears, type INT660 <ret>;
 3) When 'OK' appears on the screen, type RUN <ret>,
 4) The computer will then ask for a file name. Do not answer this question yet.
 b. On 660B: Make sure that the following lights are on.
 1) mode: DUAL 1K,
 2) function: XSPEC,
 3) average: SUM,
 4) display: XPROP, °MAG,
 5) capture control: CONT,
 6) amplitude units: V/ABS,
 7) scales: AMPL-LOG.

14. Punch the following buttons on the 660B in the order given:
 a. 2-5-6,
 b. SET/STORE,
 c. AVGN.
Check and see if 256 AVGN appears on the screen of the 660B. If it does not, hit CLEAR and redo the above sequences. You are now ready to begin testing.

15. On the Z-100: Type in the file name in the following format.
Do not hit return.

Denotes Drive B Source or Receiver Side
B:XS(S or R)XX(L or H).XXX ← Test number
XS for Cross-Spectrum Low or High Frequency Test
(L = 500 Hz, H = 5000 Hz)
Mike Position

Examples: B:XSS31L.012 or B:XSS78H.005

16. Begin the test by moving the cranks on the MPD so that it reads (1,1). The tests will need to be done in the following order: (1,1) - (1,9), (2,1) - (2,9), etc. After test (6,9), consult the special instructions listed at the end of this section.

17. On the 660B:
 a. Set desired frequency range.
 b. Turn on the speakers by putting the speaker switch in the "SO" position.
 c. Adjust the analyzer channel amplitudes to maximum without overloading.
 d. Press START.
 e. Press RECALL and then AVGN.
 f. For each position, note in the testing log the input channel maximum amplitude settings, microphone spacing, number of averages, and the number of the disk used.
18. When the test is done, the START light will go out. Turn off the speakers by returning the speaker switch to OFF.

19. Press RETURN on the Z-100. This will initiate the transfer of data from the 660B to the Z-100. The transfer is completed when the Z-100 asks for a new file name.

20. On the 660B, press RCL D so that the function light goes out.

21. Begin the next test by repositioning the microphones to the next testing location and repeating steps 15 to 21. Remember that upon reaching position (6,9), the special instructions must be followed.

22. After reaching position (9,9), and if no more testing is to be done, type E <ret> and SYSTEM <ret> on the Z-100, and turn off the following equipment:
 a. microphone power supply,
 b. amplifier,
 c. equalizer,
 d. 660B,
 e. Z-100 and its monitor. (Remove all disks.)

*** Special Instructions ***

These instructions are necessary at the time the microphones are moved past position (6,9). Beyond this location the preamp cables in the MPD begin to interfere with the operation of the device, and the microphones themselves obstruct further progress. To avoid this, the microphones are turned over so that they face down. This operation is described below:
1. Turn off the microphone power supply.
2. Remove the "hook" bolts from the FPD and slide the tube back.
3. Remove the aluminum beam to which the microphones are fastened by removing the bolt that fixes it to the Lucite mount.
4. Turn the mikes face down and reattach the aluminum beam to its mount with the bolt. Make sure the arrangement of the mike cables allows for freedom of movement of the mikes.
5. Position the microphones in the (9,1) position by carefully measuring one inch from the bottom and left side.
6. While keeping the positioning cranks fixed, move the position indicators (springs) so that they are centered over (9,1) on the scales.
7. Crank the mikes into the (7,1) position.
8. Close the tube and bolt it together with the four "hook" bolts.
9. Turn on the mike power supply.
10. Proceed with testing from step 15.
APPENDIX B

LISTING OF COMPUTER PROGRAMS
B.1 LISTING OF PSP660.BAS

5 REM PSP660
10 SCREEN 0,0
20 DEFINT I-N
30 KEY OFF I:CLOSE
40 LOCATE 25,1
50 C$="ZZOA315Y251SY261SY272SWAJ6F1E0=8"
60 PRINT STRING$(60," ")
70 SYNS=CHR$(22)
80 LOCATE 1,1
90 SPEED$="9600"
100 COMFIL$="COM1:"+SPEED$+$,7,1"
110 OPEN COMFIL$ AS #1
120 OPEN "SCRN:" FOR OUTPUT AS #2
130 LOCATE 25,1:PRINT "660B MAGNITUDE CAL TRANSFER PROGRAM";
140 LOCATE 1,1:PRINT STRING$(60," "):LOCATE 1,1
141 JC=1
150 IF JC=1 THEN LINE INPUT "FILE NAME FOR CHANNEL A? < E TO EXIT > ";DSKFIL$
151 IF JC=2 THEN LINE INPUT "FILE NAME FOR CHANNEL B? < E TO EXIT > ";DSKFIL$
152 IF JC=2 THEN MID$(C#$933)="9"
153 IF JC=2 THEN MID$(C#$929)="6"
160 IF DSKFIL$="E" THEN 500
170 LOCATE 1,1:PRINT STRING$(60," "):LOCATE 1,1
180 OPEN DSKFIL$ FOR OUTPUT AS #3
190 FIELD#1,3 AS H1$ AS F1#3 AS E1#3 AS H2$ AS F2#3 AS E2#3 AS H3$ AS F3#3 AS E3#3 AS H4$ AS F4#3 AS E4#3 AS H5$ AS F5#3 AS E5#3 AS H6$ AS F6#3 AS E6$
200 FOR IC=1 TO 33
210 D$=HID$(C#9IC#1)
220 GOSUB 340
222 FOR IK=1 TO 75
224 NEXT IK
230 NEXT IC
240 REM CONTINUE
250 LOCATE 1,1
260 GOSUB 370
320 CLOSE#3:JC=JC+1
330 IF JC =2 THEN GOTO 150 ELSE GOTO 500
340 PRINT #1,D$;
350 IF LOC(1)=0 THEN 350
360 AS=INPUT$(1,1):IF ASC(AS)<>6 THEN RETURN ELSE PRINT #2,"ERROR SENDING DATA":STOP
370 J=0
380 FOR IC=1 TO 86
390 PRINT #1;SYNS;
400 J=J+1
410 IF LOC(1)<72 THEN 410
420 GET #1,72
430 AS=F1#*E+$,E2#*E$+E3#*$+E4#$*E$+E5#$*E$+E6#*E$+E6$
440 IF J>67 THEN GOTO 460
450 PRINT #3,AS
460 NEXT IC
470 IF LOC(1)<2 THEN 470

76
480 A$=INPUT$(2:01)
490 RETURN
500 CLOSE :KEY UN:KEY OFF
PROGRAMMER : R. NAVANEETHAN
DATE : SEPT 83
VERSION : 1

IMPLICIT REAL(0-Z)
IMPLICIT REAL(A-F)
IMPLICIT INTEGER*2 (I-N)
DIMENSION CHA(402), CHB(402)
CHARACTER *1 HA, HB
DATA HA/'A'/
DATA HB/'B'/
IF (IOREAD(6,2,*A:CALA.DAT*)) GO TO 10
IF (IOREAD(7,2,*A:CALB.DAT*)) GO TO 11
J=1
DO 1 I=1,67
READ (6,100) (CHA(J1), J1=J,J+5)
READ (7,100) (CHB(J1), J1=J,J+5)
J=J+6
1 CONTINUE
100 FORMAT(6(E0.0))
IF (IOCLOS(6)) STOP
IF (IOCLOS(7)) STOP
YMCHA = CHA(I)
YMCHB = CHB(I)
DO 2 I=5,400
IF (YMCHA,GE,CHB(I)) GOTO 3
YMCHA=CHB(I)
2 CONTINUE
3 continue
IF (YMCHB,GE,CHB(I)) GOTO 2
YMCHB=CHB(I)
IBMAX=I
4 CONTINUE
YA=0,
DO 4 I=IAMAX-3,IAMAX+3
YA=YA+CHA(I)
IBMAX=I
5 CONTINUE
YB=0,
DO 5 I=IBMAX-3,IBMAX+3
YB=YB+CHB(I)
PCAL=10.*((124./20.)*.00002
AKCHA=PCAL/SQRT(YA)
AKCHB=PCAL/SQRT(YB)
WRITE(1,200)
200 FORMAT(’ ’,’CHANNEL A DETAILS’)
WRITE(1,201)
201 FORMAT(’ ’,’ENTER MAX AMPLITUDE SETTING : ’$’)
READ(1,300) AMPCHA
300 FORMAT(F0.0)
WRITE(1,202)
202 FORMAT(’ ’,’ENTER # OF AVERAGES : ’$’)
READ(1,301) NAVGA
301 FORMAT(IO)
WRITE(1,203)
203 FORMAT(’ ’,’CHANNEL B DETAILS’)
WRITE(1,201)
READ(1,300) AMPCHB
WRITE(1,202)
READ(1,301) NAVGB
IF (IOWRIT (8,2,’CALDAT.DAT’)) STOP
WRITE (8,205) AKCHA,AKCHB
205 FORMAT(’ ’,’2E15.5)
WRITE(8,205) AMPCHA,AMPCHB
WRITE(8,206) NAVGA,NAVGB
206 FORMAT(’ ’,’2I5’)
IF (IOCLOS(8)) STOP
GOTO 6
10 WRITE(1,500) HA
500 FORMAT(’ ’,’ERROR OPENING DATA FILE OF CHANNEL ’’A1)
GO TO 6
11 WRITE(1,500) HB
6 CONTINUE
STOP
END
B.3 LISTING OF TFN660.BAS

If B.3 LISTING OF TFN660.BAS
ORIGINAL PAGE IS OF POOR QUALITY

5 REM TFN660.BAS
10 SCREEN 0:0
20 DEFINT I-N
30 KEY OFF:CLS:CLOSE
40 LOCATE 25,1
50 C$="ZZZA31SY251SY261SY272SWAJJ3EO4ZZZ=8"
60 PRINT STRING$(60," ")
70 SYN$=CHR$(22)
80 LOCATE 1,1
90 SPEED$="9600"
100 COMFIL$="COM1:"+SPEED$+",E,7,1"
110 OPEN COMFIL$ AS #1
120 OPEN *SCRN:* FOR OUTPUT AS #2
130 LOCATE 25,1:PRINT "660B TRANSFER PROGRAM;"
140 LOCATE 1,1:PRINT STRING$(60," "):LOCATE 1,1
150 LINE INPUT "INPUT FILE? <TYPE E TO EXIT > "DSKFIL$
160 IF DSKFIL$="E" THEN 500
170 LOCATE 1,1:PRINT STRING$(60," "):LOCATE 1,1
180 OPEN DSKFIL$ FOR OUTPUT AS #3
190 FIELD#1,3 AS H1$ AS E1$ AS F1$ AS H2$ AS E2$ AS F2$ AS H3$ AS E3$ AS F3$ AS H4$ AS E4$ AS F4$ AS H5$ AS E5$ AS F5$ AS H6$ AS E6$
200 FOR IC=1 TO 36
210 D$=MID$(C$,IC,1)
220 GOSUB 340
222 FOR IK=1 TO 75
224 NEXT IK
230 NEXT IC
240 REM CONTINUE
250 LOCATE 1,1
260 GOSUB 370
270 D$="Z":GOSUB 340
280 D$="Z":GOSUB 340
290 D$="Z":GOSUB 340
300 D$="Z":GOSUB 340
310 GOSUB 370
320 CLOSE #1:CLS
330 GOTO 130
340 PRINT #1,D$;
350 IF LOC(1)=0 THEN 350
360 A$=INPUT$(1,1):IF ASC(A$)=6 THEN RETURN ELSE PRINT #2,"ERROR SENDING DATA";STOP
370 J=0
380 FOR IC=1 TO 86
390 PRINT #1,SYN$;
400 J=J+1
410 IF LOC(1)<72 THEN 410
420 GET #1,72
430 A$="F1$+"E$+E1$+"*+F2$+"E$+E2$+"*+F3$+"E$+E3$+"*+F4$+"E$+E4$+"*+F5$+"E$+E5$+"*+F6$+"E$+E6$;
440 IF J>67 THEN GOTO 460
450 PRINT #3,A$
460 NEXT IC
470 IF LOC(1)<>2 THEN 470
480 A$=INPUT$(2,$1)
490 RETURN
500 CLOSE KEY ON KEY OFF
B.4 LISTING OF STAT.BAS

10 CLS
20 OPTION BASE 1
30 DIM X(513), X2(513), AVMAG(513), VAR(513), TAV(31), CI(513)
40 FOR I = 1 TO 31
50 READ TAV(I)
60 NEXT I
70 DATA 12.71, 4.303, 3.182, 2.776, 2.571, 2.447, 2.365, 2.306
80 DATA 2.262, 2.228, 2.201, 2.179, 2.160, 2.145, 2.131, 2.12, 2.11, 2.101
90 DATA 2.093, 2.086, 2.08, 2.074, 2.069, 2.064, 2.06, 2.056, 2.052, 2.048
100 DATA 2.045, 2.042, 2.02
110 N = 0
120 INPUT 'ENTER NAME OF INPUT FILE CATALOG 'A$
130 OPEN 'I',#1,A$
140 INPUT 'ENTER OUTPUT FILE NAME 'B$
150 INPUT 'ENTER SPECTRAL LINE SPACING 'ILS
160 IF EOF(1) THEN GOTO 390
170 N = N + 1
180 INPUT#1r N$
190 PRINT N$
200 OPEN 'I'#27 N$
210 INPUT#2r M$
220 PRINT M$
230 OPEN 'I'#3r M$
240 T = 0
250 IF EOF(2) THEN GOTO 360
260 I = I + 1
270 INPUT#2,rA
280 INPUT#3xB
290 DEG = ATN(B/A)*(180/3.14159)
300 IF (A < 0) AND (B > 0) THEN DEG = DEG + 180
310 IF (A < 0) AND (B < 0) THEN DEG = DEG - 180
320 X(I) = X(I) + DEG
330 X2(I) = X2(I) + DEG^2
340 PRINT I*ILS-ILS;DEG;X(I);X2(I)
350 GOTO 254
360 CLOSE #3
370 CLOSE #2
380 GOTO 160
390 GOTO 160
400 OPEN 'O'x#1xB$
410 K = N
420 IF N > 31 THEN K = 31
430 FOR J = 1 TO I
440 VAR(J) = (N*X2(J) - X(J)^2)/(N*(N-1))
450 X(J) = X(J)/N
460 CI(J) = TAV(K)*(VAR(J)/N)^2
470 PRINT J*ILS-ILS;X(J);VAR(J);CI(J)
480 PRINT#ixUSIHG'*####•### 'J*ILS-ILSrX(J)rCI(J)
490 NEXT
500 CLOSE #1
510 FOR I = 1 TO 3
520 BEEP
530 FOR J = 1 TO 200
PHASE CALIBRATION PROGRAM FOR INTENSITY
TRANSFER FUNCTION METHOD
TYPE I.

VERSION : 1
PROGRAMMER : R.NAVANEETHAN
DATE : 20-MAY-83

CHANGE DIMENSION STATEMENTS DEPENDING UPON THE ANALYSEER

COMPLEX CALA (512)
COMPLEX CMPLX
CHARACTER *15 NAMET,NAMET1,NAMET2,NAMET3,NAMET4,NAMET5
CHARACTER *1 AR
REAL X(512),Y(512)
REAL ABIB(4)
DATA ABIB/4.0/
DATA NAMET/'B:TFNICAL.DLO'/
DATA NAME2/'B:TFNICAL.DHI'/
DATA NAME3/'B:CALII.DLO'/
DATA NAME4/'B:CALII.DHI'/
RAD=180./3.1415926
WRITE(1,600)
600 FORMAT(' ENTER FREQUENCY RANGE : '),SFREQ
READ(1,601) SFREQ
601 FORMAT(F0.0)
IFLAG=1
NAMET=NAMET1
NAMET=NAMET2
IF (SFREQ.GT.1000.) IFLAG=2
IF (IFLAG.NE.2) GOTO 112
NAMET=NAMET3
NAMET=NAMET4
112 CONTINUE

CHANGE N DEPENDING UPON THE ANALYSER

N=402

OPEN DATA FILE CONTAINING TRANSFER FUNCTION DATA

IF(IOREAD(8,2,0,NAMET)) STOP
J=1
DO 1 I=1,67
READ(8,100) (X(J1), J1=J,J+5)
J=J+6
1 CONTINUE
J=1
DO 11 I=1,67
READ(8,100) (Y(J), J=J+1)
J=J+6
11 CONTINUE

C C### CHANGE FORMAT STATEMENT DEPENDING UPON THE ANALYSER C
C
100 FORMAT(6E0.0)
 IF(IOCLO8(8)) STOP
 NAHET="A;STATLO.DAT"
 IF(IFLAG.EQ.2) NAME="A;STATHI.DAT"
 IF(IOREAD(6,2,0,NAMET)) STOP
 READ(6,114) FREQ
114 FORMAT(F0.0)
 IF(FREQ.NE.SFREQ) GOTO 999
 BW=SFREQ*2.56/1024.
 DO 3 I=1,N
 READ(6,110) ALVL
 110 FORMAT(F9.3/1X/F9.3)
 IF(ALVL.LT.1) ALVL=1
 THETA1=4TAN2(Y(I),X(I))*RAD
 IF((IFLAG.EQ.2).AND.(I.GT.280)) GOTO 4
 IF(I.EQ.i) THETA1=0
 SIGMA=ALVL*SORT(30.)
 ZSTAT=(AMEAN—THETAI)/(SIGMA*SORT(1./30.+1./5.))
 987 FORMAT(’F15.2/F15.3)
 IF(ABS(ZSTAT).LE.1) GOTO 4
 WRITE(1,990)
 990 FORMAT(’FREQUENCY CAL VALUE ZSTAT ‘)
 FRQ=FLOAT(I-1)*BW
 WRITE(1,987) FRQ,THETA1,ZSTAT
 989 WRITE(1,113)
 113 FORMAT(’VALUES NOT WITHIN LIMITS! ACCEPT OR REJECT <A/R> ‘)
 READ(1,988) AR
 988 FORMAT(A0)
 IF((AR.NE."A").AND.(AR.NE."R")) GOTO 999
 IF(AR.EQ."R") GOTO 998
 4 CONTINUE
 THETA1=THETAI/RAD
 CALA(1)=CMPLX(COS(THETAI),SIN(THETAI))
 3 CONTINUE
C
C C#### OPEN PHASE CAL DATA FILE C
C
 IF(IOWRIT(10,2,0,NAMEC)) STOP
 ABIB(1)=SFREQ
 ABIB(2)=2.
 WRITE(10,102)(ABIB(J), J=1,4)
102 FORMAT(’4F15.5)
 DO 2 I=1,N
 WRITE(10,101) CALA(I)
101 FORMAT(’2E15.5)

2 CONTINUE
 IF(IOCLOS(10)) STOP
 GOTO 9999
999 WRITE(1,700)
700 FORMA1(' FREQUENCY MIS-MATCH')
 GO TO 9999
998 CONTINUE
9999 CONTINUE
 STOP
 END
B.6 LISTING OF INT660.BAS

ORIGINAL PAGE IV
OF POOR QUALITY

5 REM INT660.BAS
10 SCREEN 0:0
20 DEFINT I-N
30 KEY OFF:CLS:CLOSE
40 LOCATE 25,1
50 C$="ZZ2A31SY251SY261SY272SWAJ2E0E4ZZZ=8"
60 PRINT STRING$(60," ")
70 SYN$=CHR$(22)
80 LOCATE 1,1
90 SPEED$="9600"
100 COMFIL$="COM1:"+SPEED$+,E,7,1"
110 OPEN COMFIL$ AS #1
120 OPEN 'SCRN 0 FOR OUTPUT AS #2
130 LOCATE 25,1:PRINT "660B TRANSFER PROGRAM"
140 LOCATE 1,1:PRINT STRING$(60," "):LOCATE 1,1
150 LINE INPUT 'INPUT FILE? <TYPE E TO EXIT>;';DSKFIL$
160 IF DSKFIL$='E' THEN 500
170 LOCATE 1,1:PRINT STRING$(60," "):LOCATE 1,1
180 OPEN DSKFIL$ FOR OUTPUT AS #3
190 FIELD#1, 3 AS H1#6 AS F1#3 AS E1#3 AS H2#6 AS F2#3 AS E2#3 AS H3#6 AS F3#3 AS E3#3 AS H4#6 AS F4#3 AS E4#3 AS H5#6 AS F5#3 AS E5#3 AS H6#6 AS F6#3 AS E6$
200 FOR IC=1 TO 36
210 D$=MIDS(C$;IC)
220 GOSUB 340
222 FOR IK=
230 NEXT IC
240 REM CONTINUE
250 LOCATE 1,1
260 GOSUB 370
270 D$='Z';GOSUB 340
280 D$='Z';GOSUB 340
290 D$='Z';GOSUB 340
300 D$='Z';GOSUB 340
310 GOSUB 370
320 CLOSE #3;CLS
330 GOTO 130
340 PRINT #1,D$;
350 IF LOC(1)=0 THEN 350
360 A$=INPUT$(1+1):IF ASC(A$)=6 THEN RETURN ELSE PRINT #2,"ERROR SENDING DATA"
1STOP
370 J=0
380 FOR IC=1 TO 86
390 PRINT #1,SYN$;
400 J=J+1
410 IF LOC(1)<72 THEN 410
420 GET #1,72
430 A$=F1$+'E'+E1$+'E'+E2$+'E'+E3$+'E'+E4$+'E'+E5$+'E'+E6$
440 IF J>67 THEN GOTO 460
450 PRINT #3,A$
460 NEXT IC

87
470 IF LOC(1)<>2 THEN 470
480 A$=INPUT$(2,#1)
490 RETURN
500 CLOSE :KEY ON:KEY OFF
This program calculates the phase calibration using the method described in "The Application of Acoustic Intensity for Noise Reduction" by H.D. Croker et al. Presented at the International Conf. on Recent Advances in Acoustics. In this and other programs on acoustic intensity programs, the cross-spectral and intensity data are stored in two arrays:

A. Data array in which data values are stored.
B. Identification array in which the sampling frequency, distance between mics etc are stored.

Dimension statements depending upon the FFT analyser characteristics the dimension values need to be changed.

Complex CALA(402), CALB(402), C1

The following statement is peculiar to SUPERSOFT FORTRAN and should be omitted for other FORTRAN compilers.

Complex COMPLX
Real X(402), Y(402)
Real ABIB(4), BBIB(4)
Character *12 NAME1, NAME2, NAME3
Character*2 STR1
Data NAME1/"BI:XSNNH.DLO"/
Data NAME2/"BI:SSWHCH.DLO"/
Data NAME3/"BI:INTCAL.DLO"/
Data STR1/"HI"/
DATA ABIB/4*0./
DATA BBIB/4*0./
C
C********** READ DATA FROM X-SPECTRUM DATA FROM THE FFT ANALYZER
C********** STORED IN THE DISC
C********** THIS FORMAT FOR OPENING THE DISC FILE IS PECULIAR
C********** TO SUPER SOFT COMPILER
C
WRITE(1,700)
700 FORMAT(' ENTER FREQUENCY RANGE OF ANALYSIS : ')
READ(1,800) SFREQ
800 FORMAT(F9.0)
IFLAG=1
IF(SFREQ,LT.1001.) GO TO 87
IFLAG=2
CALL PUTCHR(NAME1,11,KCHAR(S'R','1'))
CALL PUTCHR(NAME1,12,KCHAR('STR1','1'))
CALL PUTCHR(NAME2,11,KCHAR('STR1','1'))
CALL PUTCHR(NAME2,12,KCHAR('STR1','2'))
CALL PUTCHR(NAME3,11,KCHAR('STR1','1'))
CALL PUTCHR(NAME3,12,KCHAR('STR1','2'))
87 CONTINUE
IF (IOREAD(6,2,0,NAME1)) STOP
C
C********** CHANGE N DEPENDING UPON THE ANALYSER
C
N=402
J=1
DO 1 I=1,67
READ(J,100) (X(J1), J1=J,J+5)
J=J+6
1 CONTINUE
J=1
DO 10 I=1,67
READ(6,100) (Y(J1), J1=J,J+5)
J=J+6
10 CONTINUE
IF (IOCLOSE(6)) STOP
C
C********** THE FOLLOWING FORMAT IS PECULIAR TO SUPER SOFT
C********** FOR FREE FORMAT INPUTS SEPARATED BY COMMAS.
C
100 FORMAT(6E0.0)
C
DO 12 I=1,402
Y(I) = -Y(I)
CALA(I) = COMPLEX(X(I),Y(I))
12 CONTINUE
C
IF(IOREAD(9,2,0,NAME2)) STOP
J=1
DO 2 I=1,67
READ (9,100) (X(J1), J1=J,J+5)
2 CONTINUE
J = J + 6
CONTINUE
J = 1
DO 20 I = 1, J
READ (9, 100) (Y(J1), J1 = J, J + 5)
J = J + 6
20 CONTINUE
IF (IOCLOS(9)) STOP
DO 3 I = 1, N
CALB(I) = CMPLX(X(I), Y(I))
3

C######## END OF DATA READ

C IF (IOWRIT(10, 2, 0, NAME3)) STOP
ABIB(1) = SFREQ
BBIB(1) = SFREQ
ABIB(2) = 2
BBIB(2) = 2
WRITE (10, 102) (ABIB(J), J = 1, 4)
102 FORMAT (' ', 4E15.5)
C
C######## FOR MORE DETAILS SEE REF ABOVE

C DO 21 I = 1, N
C
C########### SEE REPORT KU-FRL-417-22 FOR DETAILS OF THIS REPORT.
C
C1 = CALA(I)/CALB(I)
THETA = ATAN2(IMAG(C1)/REAL(C1))/2.
CALA(I) = CMPLX(COS(THETA), SIN(THETA))
C
C######## WRITE TO DISC NEW PHASE CAL VALUES
C
WRITE (10, 101) CALA(I)
101 FORMAT (' ', 2E15.5)
21 CONTINUE
IF (IOCLOS(10)) STOP
STOP
END
PROGRAM TO CALCULATE THE INTENSITY SPECTRUM

A WORD ABOUT THE WAY THIS PROGRAM IS WRITTEN

DIMENSION STATEMENTS

READ MAG CAL FACTORS

IF(IOREAD(6,2,0,"A:CALDAT.DAT")) GOTO 421
GO TO 422
421 CONTINUE
WRITE(1,423)
423 FORMAT(’ ERROR OPENING FILE A:CALDAT.DAT’)

92
STOP

422 CONTINUE
READ(6,700) ACAL,BCAL
READ(6,700) ARAN,BRAN
READ(6,701) NAVG,NAVGA
700 FORMAT(2E15.5)
701 FORMAT(2I5)
IF (IOCLOSES(6)) STOP
C
C++++++ READ XPS FILENAME AND TEST DETAILS
C
IF (IOREAD(6,2,0,*A:XPCAT.DAT*)) GOTO 671
GO TO 672
671 WRITE(1,673)
673 FORMAT(’ ERROR OPENING FILE A:XPCAT.DAT’)
STOP
672 CONTINUE
J=1
322 CONTINUE
READ(6,323,ENDFILE=324)INAME(J),SFREQ(J),AIN(J),BIN(J),AVG(J)
& SPAC(J),AREA(J)
J=J+1
GO TO 322
323 FORMAT(A12,1X,6F0)
324 JFILE=J-1
CONTINUE
IF (IOCLOSES(6)) STOP
C
C++++++ READ PHASE CAL VALUES
C
NAME=’A:CALII.DLO’
IF (SFREQ(1).GT.1001) NAME=’A:CALII.DHI’
IF(IOREAD(9,2,0,*NAME)) GOTO 961
GOTO 962
961 WRITE(1,963)
963 FORMAT(’ ERROR OPENING A:CALII.DLO OR A:CALII.DHI FILE’)
STOP
962 CONTINUE
READ(9,103) A1,A2,A3,A4
103 FORMAT(4F15.5)
DO 120 I=1,402
READ(9,121) CAL(I)
121 FORMAT(2E15.5)
120 CONTINUE
IF (IOCLOSES(9)) STOP
C
C++++++ CHANGE DISK FOR OUTPUT FILES
C
WRITE(1,800)
800 FORMAT(’ REMOVE PROGRAM DISK IN DRIVE A:; INSERT
& OUTPUT DISK AND HIT RETURN’*)
PAUSE
CONTINUE
IFILE=1

C
C******* CHANGE N DEPENDING ON THE ANALYSER SPEC
C
N=402
C
C******* MAIN LOOP FOR FILES
C
DO 900 IC=1,JFILE
IF (IFIX(SFREQ(IC)+.05),NE.IFIX(A1+.05)) GO TO 1000
752 CONTINUE
IF(IOREAD(9,2,0,INAME(IC))) GO TO 750
GO TO 751
750 CONTINUE
WRITE(1,780)
780 FORMAT(' CHANGE INPUT FILE DISK IN DRIVE B: AND HIT RETURN')
PAUSE
751 CONTINUE
WRITE(1,798) INAME(IC)
798 FORMAT(' ',A0)
J=1
DO 1 I=1,167
READ (9,100) (X(J1),J1=J,J+5)
C
C******* FORMAT STATEMENT DEPENDS ON THE ANALYSER SPEC
C
100 FORMAT(6E0.0)
C
C******* NEXT STATEMENT DEPENDS ON THE ANALYSER OUTPUT SPEC
C
J=J+6
1 CONTINUE
J=1
DO 10 I=1,167
READ(9,100) (Y(J1),J1=J,J+5)
J=J+6
10 CONTINUE
IF(IOCLOS(9)) STOP
BBIB(1)=SFREQ(IC)
BBIB(2)=2.
BBIB(3)=SPAC(IC)*.0254
BBIB(4)=AREA(IC)*.0254*.0254
C
C******* DATA FOR OUTPUT FILE SPEC
C
NAME=INAME(IC)
CALL PUTCHR(NAME,1,KHAR(IN,1))
CALL PUTCHR(NAME,3,KHAR(IN,2))
CALL PUTCHR(NAME,4,KHAR(IN,3))
C
C******* CORRECT FOR MAG AND PHASE CALIBRATION IN DATA CHANNELS
C
94
TEMP=ACAL*BCAL*(AIN(IC)*BIN(IC))/(ARAN*BRAN)/(AVG(IC))
/FLOAT(NAVGA))
DO 111 I=1,402
 X(I)=X(I)*TEMP
 Y(I)=Y(I)*TEMP
 AXPS(I)=CMPLX(X(I),Y(I))
 111 CONTINUE
DO 4 I=1,N
 AXPS(I)=AXPS(I)*CAL(I)
 4 CONTINUE
C### OPEN & WRITE OUTPUT FILE
C IF(IFILE.LE.41) GOTO 775
 WRITE(1,776)
 776 FORMAT(' REMOVE OUTPUT DISK IN DRIVE A: AND INSERT & INITIALIZED DISK AND HIT RETURN'*)
 PAUSE
 IFILE=1
 775 CONTINUE
 758 CONTINUE
 IF(IDCWRIT(10,2,0,NAME)) GO TO 755
 GOTO 756
 755 WRITE(1,757)
 757 FORMAT('CHANGE OUTPUT DISK IN DRIVE A: AND HIT RETURN'*)
 PAUSE
 GO TO 758
 756 CONTINUE
 IFILE=IFILE+1
 WRITE(10,123) (BBIB(I),I=1,4)
 123 FORMAT(1X,4E15.5)
 C### CALCULATE INTENSITY
 C DO 5 I=1,N
 BINT(I)=AIMAG(AXPS(I))
 C### STD SEA LEVEL VALUE FOR DENSITY OF AIR WAS ASSUMED. FOR
 C### BETTER ACCURACY BOTH PRESSURE AND TEMPERATURE MAY BE INPUT
 C### RHO CALCULATED.
 C RHO=1.225
 BINT(I)=BINT(I)/(1.225*BBIB(3))
 C### THE FOLLOWING STATEMENTS NEEDS TO CHECKED WITH ANALYSER SPEC
 C OMEGA=2.*3.1415962*FLOAT(I)*BBIB(I)*2.56/1024.
 BINT(I)=BINT(I)/OMEGA
 WRITE(10,104) BINT(I)
 104 FORMAT(',E15.5)
 5 CONTINUE
IF (IOCLOS(10)) STOP
DO 6 I = 1, 402
SPL(I) = SPL(I) + BINT(I) * BBIB(4)
6 CONTINUE
900 CONTINUE
NAME = INAME(1)
CALL PUTCHR(NAME, 1, KCHAR(OUT, 1))
CALL PUTCHR(NAME, 3, KCHAR(OUT, 2))
CALL PUTCHR(NAME, 4, KCHAR(OUT, 3))
CALL PUTCHR(NAME, 6, KCHAR(OUT, 4))
CALL PUTCHR(NAME, 7, KCHAR(OUT, 5))
WRITE(1, 790)
790 FORMAT(' REMOVE OUTPUT DISK IN DRIVE A: AND INSERT SPL DISK *)
PAUSE
CONTINUE
IF (IOWRIT(9, 2, 0, NAME)) STOP
DO 791 I = 1, 402
FR = FLOAT(I - 1) * SFREQ(1) * 2.56 / 1024.
WRITE(9, 792) FR, SPL(I)
791 CONTINUE
792 FORMAT(' ', 2E15.5)
IF (IOCLOS(9)) STOP
GO TO 999
1000 CONTINUE
WRITE(1, 764)
764 FORMAT(' ERROR IN THE ANALYSIS RANGE SPEC *)
999 CONTINUE
STOP
END
DIMENSION AINT(402)
CHARACTER*12 NAME,NAME1
CHARACTER*1 CHARACTER*1 CHRA,CHRB
WRITE(1,100)

CONTINUE
100 FORMAT(' ENTER FREQUENCY VALUE OF INTEREST')
READ(1,101) FREQ

CONTINUE
1 CONTINUE
ICOUNT = FREQ/1.25+1
IF (FREQ.GT.500.05) ICOUNT =FREQ/12.5+1
IF(FREQ.LE.500.05) CHRB = 'L'
IF(FREQ.GT.500.05) CHRB = 'H'
WRITE(1,103)

3 CONTINUE
JC=0
IF (IOREAD(6,2,0,NAME)) STOP

CONTINUE
4 CONTINUE
READ(6*106,ENDFILE=5) NAME1

CONTINUE
10 CONTINUE
IF(IOREAD(7,2,0,NAME1)) GO TO 8

CONTINUE
8 CONTINUE
WRITE(1,107)

CONTINUE
9 CONTINUE
READ(7*120) B1,B2,B3,B4

CONTINUE
11 CONTINUE
IF (BINT.LE.0.) BINT=1.E-12
AINT(JC)=10.*(ALOG10(BINT/1.E-12))
IF (IOCLOS(7)) STOP

CONTINUE
IF (IOCLOS(6)) STOP
JK=JC
WRITE(1,109)
109 FORMAT(' ENTER NAME FOR OUTPUT FILE')
READ(1,110) NAME
110 FORMAT(A0)
IF (IOWRITE(10,2,0,NAME)) STOP
DO 12 I=1,JK
WRITE(10,111) AINT(I)
111 FORMAT(' ',F15.5)
12 CONTINUE
IF (IOCLOS(10)) STOP
GO TO 1000
999 WRITE(1,200)
200 FORMAT(' SOMETHING IS WRONG IN FILE NAMES!!!')
1000 CONTINUE
STOP
END
B.10 LISTING OF ZPLOT.FOR

TRANSMISSION LOSS PLOT PROGRAM

PROGRAMMER: R. NAVANEETHAN
VERSION I 11-17-83

LISTING OF ZPLOT.FOR

THIS PROGRAM READS THE SOUND POWER DATA FILES TRANSMITTED FROM
Z 100 COMPUTER AND PLOTS THE TL VS FREQUENCY. THIS
PROGRAM IS DEVELOPED ON MINC-11 COMPUTER SYSTEM AND MAKES EXTENSIVE
USE OF USER WRITTEN (KU-FLIGHT RESEARCH LAB) PLOTER SUBROUTINES.
MINC COMPUTER HAS RT-11 OPERATING SYSTEM AND THE FORTRAN USED IS
PDP-FORTRAN. MINC HAS EXTENSIVE FORTRAN CALLABLE IEEE-488
SUB-ROUTINES. THESE SUBROUTINES HAVE BEEN USED IN THIS PROGRAM
THE FOLLOWING SUBPROGRAMS ARE REQUIRED:

TLTEST (SOURCE LISTING GIVEN BELOW)
01PLTLIB (WRITTEN AT KU-FRL)
01IBLIB (SUPPLIED BY DEC)

PROGRAM TLTEST

DIMENSION STATEMENTS

MAX NUMBER OF POINTS 804
TL OR NR = NR(I)
FREQUENCY(Hz)= FRE(I)

DIMENSION ARRAY(9), ARRAY(9), ARRAY(4), VAX(6), FRE(804)
REAL NR(804), J, I
BYTE NAME(20)
COMMON /ONE/ FRE, NR
CONTINUE
DATA ARRAY /'2' '3' '4' '5' '6' '7' '8' '9' '100' /
DATA ARRAY /'2' '3' '4' '5' '6' '7' '8' '9' '100' /
DATA ARRAY /'2' '3' '4' '5' '5' '/
DATA VAX /'0' '20' '40' '60' '80' '100' '/
TYPE *',';
TYPE *,'TURN ON PLOTTER, PLACE PAPER ON PLOTTER,';
TYPE *,'INSERT DESIRED PEN, RETURN WHEN READY. '
PAUSE
CALL PSC(5)
CALL PCLR
CALL IBSEND('IP 1543,1488,9559,7520,'p-lt5)
CALL SCL (ALOG10(20.),ALOG10(5000.)),0.,100.)

4 TYPE 1
1 FORMAT(('/$','DO YOU WANT AXES DRAWN? (YES=1 NO=2) '/)
ACCEPT *,KL
CALL CSIZ(1.5,1.5,0,0)
IF(KL.NE.1) GO TO 21
CALL PLT (ALOG10(20.),0.,-2)
CALL PLT (ALOD10(5000.),0.,2)
CALL PLT (ALOG10(5000.),100.,2)
CALL PLT (ALOG10(20.),100.,2)
CALL PLT (ALOG10(20.),0.,-1)
J = 1.
5 DO 10 II=2,10
 I=II*1.
 CALL PLT (ALOG10(I*10,J),0.,0)
 CALL IPLT (0.,0.,-1)
 IF(I.NE.10) CALL IPLT (0.,1.5,-1)
 IF(I.EQ.10) CALL IPLT (0.,3.5,-1)
 IF(I,N.E.10) CALL CPLT (-4.,-1.5)
 IF(I.EQ.10) CALL CPLT (ALOG10(J*100.)/2.,-2.8)
 IF(J.EQ.1) ENCOD (3,6,GN) ARRAY(I-1)
 IF(J.EQ.10) ENCOD (4,7,GS) ARRAY(I-1)
 IF(J.EQ.100) ENCOD (1,8,CR) ARRAY(I-1)
6 FORMAT(A3)
 IF(J.EQ.10) ENCOD (4,7,GS) ARRAY(I-1)
7 FORMAT(A4)
 IF(J.EQ.100) ENCOD (1,8,CR) ARRAY(I-1)
8 FORMAT(A1)
 IF(J.EQ.1) CALL LBL(GN)
 IF(J.EQ.10) CALL LBL(GS)
 IF(J.EQ.100) CALL LBL(CR)
 IF(J.EQ.100.AND.I.EQ.5) GO TO 20
10 CONTINUE
 J = J * 10.
 GO TO 5
20 CALL PLT (ALOG10(300.),0.,1)
 CALL IPLT (0.,6.5,1)
 CALL CPLT (-7.,-1.5)
 CALL CSIZ (2.0,1.5,0,0)
 CALL LBL ('FREQUENCY', Hz')
 CALL PLT (ALOG10(20.),0.,1)
 CALL CSIZ (1.5,1.5,0,0)
 DO 30 II=0,100,5
 I=II*1.
 PUT TIC MARKS ON VERTICAL AXIS NOW
 CALL PLT (ALOG10(10.),I*1.,1)
 CALL IPLT (ALOG10(1.07),0.,2)
 K=7
 IF(I.EQ.0) K=1
 IF(I.EQ.20) K=2
 IF(I.EQ.40) K=3
 IF(I.EQ.60) K=4
 IF(I.EQ.80) K=5
 IF(K.EQ.7) GO TO 29
 CALL PEN
 CALL CSIZ (-4.,-.3)
 VLBL=VAX(K)
 CALL LBL(VLBL)
29 CALL PLT (ALOG10(20.),I*1.,1)
30 CONTINUE
 CALL PLT (ALOG10(20.),50.,1)
 CALL IPLT (-ALOG10(1.45),0.,1)
CALL CSIZ(2.0,1.5,90.,0)
CALL CPLT(-10.,0.)
CALL LBL('TRANSMISSION LOSS, dB')
21 CONTINUE
TYPE 122
122 FORMAT(' LOW FREQ DATA')
KIMAX=1
IFLG=1
CALL DATRED(KIMAX,IFLG)
KIMAX=KIMAX+0
IFLG=2
TYPE 123
123 FORMAT(' HI FREQ DATA')
CALL DATRED(KIMAX,IFLG)
KIMAX=KIMAX-1
27 CONTINUE
DO 34 II=1,KIMAX
X=FRE(II)
Y=NR(II)
IF(II.EQ.1)CALL PLOT1(X,Y)
IF(II.NE.1)CALL PLOT2(X,Y)
34 CONTINUE
CALL PEN
TYPE*,'WANT LEAST SQUARE LINE? 1= YES'
ACCEPT*,ILSL
IF (ILSL .NE.1) GO TO 42
TYPE*,ENTER MIN FREQUENCY FOR LEAST SQUARE LINE?'
ACCEPT*,AMF
SUMX=0.,
SUMY=0.,
SUMX2=0.,
SUMY2=0.
N1=0
DO 118 II=1,KIMAX
IF(FRE(II) .LT. AMF) GO TO 118
T1=ALOG10(FRE(II))
N1=N1+1
SUMX=SUMX+T1
SUMY=SUMY+NR(II)
SUMX2=SUMX2+T1**2
SUMXY=SUMXY+T1*NR(II)
118 CONTINUE
SLOP=(SUMXY-SUMX*SUMY/N1)/(SUMX2-SUMX**2/N1)
YINT=(SUMY-SLOP*SUMX)/N1
TYPE*,SLOP,YINT
X=ALOG10(AMF)
Y=SLOP*X+YINT
TYPE*,CHANGE PEN'
PAUSE
CALL PLT(X,Y,3)
X=ALOG10(5000.)
Y=SLOP*X+YINT
CALL PLT(X,Y,2)
CALL PEN
CONTINUE
42 TYPE 41
41 FORMAT(‘$’,’MORE CURVES PLOTTED? (YES=1 NO=2) ’)
ACCEPT *,MC
IF(MC.EQ.1) GO TO 4
STOP
END

C
SUBROUTINE PLOT1(X,Y)
CALL PLT(ALOG10(X),Y,3)
RETURN
END

C
SUBROUTINE PLOT2(X,Y)
CALL PLT(ALOG10(X),Y,2)
RETURN
END

C
SUBROUTINE LABEL
C
BYTE LABEL(80)
DATA LABEL/80*’
C
TYPE *,’LABEL DESIRED? YES = 1’
ACCEPT *,IL
IF (IL.NE.1) GO TO 10
TYPE *,’ENTER LABEL (LESS THAN 80 CHARACTERS)’
ACCEPT 5,(LABEL(II),II=1,80)
5 FORMAT(80AI)
TYPE *,’MOVE PEN TO DESIRED LOCATION OF LABEL’
TYPE *,’HIT RETURN WHEN SATISFIED’
PAUSE
CALL CSIZ (1.5,1.5,0,0)
CALL LBL(LABEL)
10 RETURN
END

C
SUBROUTINE DATRED(KIMAX,IFLG)
COMMON /ONE/ FRE,TL
REAL TL(804),FRE(804)
BYTE INAME1(II),INAME2(II)
CONTINUE
87 CONTINUE
TYPE 222
222 FORMAT(‘$’,’ENTER THE NAME OF DATA FILE (TEST W/OUT PANEL? ’)
ACCEPT 23,(INAME1(II),II=1,10)

102
OPEN (UNIT=9, NAME=INAME1, TYPE='OLD', ACCESS='SEQUENTIAL',
FORM='FORMATTED', ERR=87, RECORDSIZE=1024)
387 CONTINUE
322 FORMAT('$',/ 'ENTER THE NAME OF DATA FILE (TEST WITH PANEL)? ')
ACCEPT 23, (INAME2(I), I=1, 10)
OPEN (UNIT=9, NAME=INAME2, TYPE='OLD', ACCESS='SEQUENTIAL',
FORM='FORMATTED', ERR=387, RECORDSIZE=1024)
K=KMAX
K1=17
K2=401
IF(IFLG.EQ.2) K1=41
DO 41 I= 1, 402
READ(9,100) X1, Y1
READ(9,100) X2, Y2
100 FORMAT(2E15.5)
IF ((I.LT.K1).OR.(I.GT.K2)) GO TO 41
TL(K)=10*ALOG10(Y1)-10.*ALOG10(Y2)
IF(IFLG.EQ.1) FRE(K) = FLOAT(I-1)*1.25
IF(IFLG.EQ.2) FRE(K) = FLOAT(I-1)*12.5
K=K+1
41 CONTINUE
CLOSE (UNIT=9)
KIMAX=K
RETURN
END
B.11 LISTING OF INTMAP.FOR

ORIGINAL PAGE 18
OF POOR QUALITY

DIMENSION STATEMENTS

DIMENSION A(9,9), AX(9), AY(9)
DIMENSION B1(810), B2(810), B3(810), IC(810)
BYTE INAME(15), ONAME(15)
DATA INAME, ONAME / 30*'	 '/
TYPE*, 'ENTER INPUT FILE NAME'
ACCEPT 122, (INAME(II), II = 1, 14)
122 FORMAT(14(AI))
TYPE*, 'ENTER OUTPUT FILE NAME'
ACCEPT 122, (ONAME(II), II = 1, 14)
123 TYPE*, 'ENTER CONTOUR INTERVAL IN dB (10, OR 5, OR 2, OR 1.)'
ACCEPT*, CONINT
IF(.NOT., ((CONINT.EQ.10.) OR. (CONINT.EQ.5.) OR. (CONINT.EQ.2.)
& OR. (CONINT.EQ.1.))) GO TO 123
IF(COINT.EQ.10.) ICON = 1
IF(COINT.EQ.5.) ICON = 2
IF(COINT.EQ.2.) ICON = 3
IF(COINT.EQ.1.) ICON = 4

THE FOLLOWING LOOPS ASSIGN THE VALUES FROM THE INTENSITY TESTS
TO AN ARRAY WHICH REPRESENTS THE TEST GRID.

OPEN (UNIT=8, NAME=INAME, TYPE='OLD')
DO 10 J = 1, 9
DO 10 I = 1, 9
READ (8, 300) A(I, J)
300 FORMAT (F15.5)
10 CONTINUE

THE FOLLOWING LOOPS TRANSLATE GRID LOCATIONS INTO LOCATIONS
DEFINED BY THE DISTANCE FROM THE MPD EDGE.

DO 11 I = 1, 9
AX(I) = 1 + 2.*FLOAT(I-1)
AY(I) = 1 + 2.*FLOAT(I-1)
11 CONTINUE
CLOSE(UNIT=8)

THE FOLLOWING LOOPS DO THE INTERPOLATION BETWEEN POINTS IN
A HORIZONTAL DIRECTION. THE LOCATION OF EACH DIVISION OF 10
DECIBELS BETWEEN THE POINTS WILL BE FOUND FOR MAPPING PURPOSES.

OPEN(UNIT=10,NAME='INT1.TMP',TYPE='NEW')
DO 20 J=1,9
 DO 20 I=1,8
 Y2 = A((I+1),J)
 Y1 = A(I,J)
 X2 = AX((I+1)
 X1 = AX(I)
 IF(Y2.EQ.Y1) GO TO 20
 THESE STATEMENTS ENSURE THAT Y2 IS ALWAYS GREATER THAN Y1.
 IF (Y2.GE.Y1) 00 TO 23
 XITEMP = X1
 YITEMP = Y1
 Y1=Y2
 Y2=YITEMP
 X1=X2
 X2=XITEMP
 23 CONTINUE
 SLOPE = (X2 — X1)/(Y2 - Y1)
 CALL INVAL(Y1,Y2,ZCAL,ICON)
 21 CONTINUE
 IF (ZCAL.GT.Y2) GO TO 22
 XLOC = (SLOPE*(ZCAL — Y1)) + X1
 WRITE (10,100) XLOC,AY(J),INT(ZCAL)
 ZCAL = ZCAL + CONINT
 GO TO 21
 22 CONTINUE
 20 CONTINUE

THE FOLLOWING LOOPS DO THE INTERPOLATION BETWEEN POINTS IN A
VERTICAL DIRECTION. THE LOCATION OF EACH DIVISION OF 10
DECIBELS BETWEEN POINTS WILL BE FOUND FOR MAPPING PURPOSES.

DO 30 I=1,9
 DO 30 J=1,8
 Y2 = A(I,(J+1))
 Y1 = A(I,J)
 X2 = AX((J+1)
 X1 = AX(J)
 IF(Y2.EQ.Y1) GO TO 30
 THESE STATEMENTS ENSURE THAT Y2 IS ALWAYS GREATER THAN Y1.
IF (Y2.GE.Y1) GO TO 33
XITEMP = X1
YITEMP = Y1
Y1 = Y2
Y2 = YITEMP
X1 = X2
X2 = XITEMP
33 CONTINUE
SLOPE = (X2 - X1)/(Y2 - Y1)
CALL INVAL(Y1,Y2,ZCAL,ICON)
31 CONTINUE
IF (ZCAL.GT.Y2) GO TO 32
YLOC = (SLOPE*(ZCAL - Y1)) + X1
WRITE (10,100) AX(I),YLOC,INT(ZCAL)
ZCAL = ZCAL + CONINT
GO TO 31
32 CONTINUE
30 CONTINUE
CLOSE(UNIT=10)
100 FORMAT (IX,F6.2,1X,F6.2,1X,I3)
C
C SORTING OF DATA INTO SEQUENTIAL DIVISIONS OF 10 DECIBELS
C
OPEN(UNIT=9,NAME='INT1.TMP',TYPE='OLD')
I = 1
40 CONTINUE
READ(9,200,END=45) B1(I),B2(I),IB3(I)
200 FORMAT (1X,F6.2,1X,F6.2,1X,I3)
I = I + 1
GO TO 40
41 CONTINUE
45 NS = I - 1
CLOSE(UNIT=9)
CALL SORT(NS,IB3,IC)
OPEN(UNIT=11,NAME=ONAME,TYPE='NEW')
DO 42 J=1,NS
J2 = IC(J)
WRITE(11,100) B1(J2),B2(J2),IB3(J2)
42 CONTINUE
STOP
END
C
C THE FOLLOWING IS A MODIFIED BUBBLE SORT WRITTEN BY R. NAVANEETHAN.
C
SUBROUTINE SORT(NS,IA,IC)
DIMENSION IA(810),KSORT(810),IC(810)
DO 1 IS=1,NS
IC(IS) = IS
KSORT(IS) = IA(IS)
1 CONTINUE
DO 3 IS=1,NS-1
DO 2 JS=1,NS-IS
IF(KSORT(JS).LE.KSORT(JS+1)) GO TO 2
IT = KSORT(JS)
ITC = IC(JS)
KSORT(JS) = KSORT(JS+1)
IC(JS) = IC(JS+1)
KSORT(JS+1) = IT
IC(JS+1) = ITC
2 CONTINUE
3 CONTINUE
RETURN
END

C
C SUBROUTINE INVAL(Y1,Y2,ZCAL,ICONT)
IF(ICONT.NE.1) GO TO 1
ZCAL=FLOAT(INT(Y1/10.)*10)+10.
GO TO 4
1 CONTINUE
IF(ICONT.NE.2) GO TO 2
DEC=(Y1-FLOAT(INT(Y1/10.0)*10))/10.
IF (DEC.LT.0.5) ZCAL= FLOAT(INT(Y1/10.0))*10.+5.
IF (DEC.GE.0.5) ZCAL = FLOAT(INT(Y1/10.0)/10.)*10.
GO TO 4
2 CONTINUE
IF(ICONT.NE.3) GO TO 5
IDEC=MOD(INT(Y1),2)
IF(IDEC.EQ.1) ZCAL=FLOAT(INT(Y1))+1.
IF(IDEC.EQ.0) ZCAL=FLOAT(INT(Y1))+2.
GO TO 4
5 CONTINUE
ZCAL=INT(Y1)+1.
4 CONTINUE
RETURN
END
LISTING OF PLOT.FOR

ORIGINAL PAGE IS OF POOR QUALITY

PROGRAM PLOT
BYTE XLBL(39), INAME(11), YLBL(37)
TYPE *, *
TYPE *, 'TURN ON PLOTTER, LOAD PAPER, AND SET P1 AND P2.'
TYPE *, 'RETURN WHEN READY'
PAUSE
CALL PSC(5)
CALL PCLR
CALL PEN
CALL SCL(0., 9., 0., 9.)
CALL CSIZ(2., 1.5, 0., 9.)
TYPE*, 'ENTER PEN VELOCITY 1 = 1 CM/SEC ; 2 = NORMAL'
ACCEPT*, IPNVEL
IF(IPNVEL.EQ.1) CALL PENVEL
8 TYPE*, 'DO YOU WANT AN AXIS DRAWN? (YES=1)'
ACCEPT*, AXDRAW
IF(AXDRAW.NE.1) GOTO 30
P1 = 9.
P2 = 9.
PX3 = 0.
PY3 = 0.
PX4 = 9.
PY4 = 0.
program map

IMPLICIT REAL*4(A-H,O-Z)

data p1,p2,p3,p4,p5,p6,p7,p8,p9,py1,py2,py3,py4,py5,py6,py7,py8,py9/xbl,
xpos, ypos, intst, sty /

 CALL XAXX(P1,P2,PX3,PX4,P5,PX6,PX7,P8,PX9,XYBL)
 CALL YAXX(P1,P2,PY3,PY4,P5,PY6,PY7,P8,PY9,YYBL)

 30 IF(IPNVEL,NE,1)CALL PNVELN
 TYPE *, 'WHAT IS THE NAME OF THE INPUT FILE?'
 ACCEPT 97, (INAMF(I), I=1,10)

 97 FORMAT (10(A1))
 1267 FORMAT (1X,F6.2,1X,F6.2,1X,I3)
 OPEN (UNIT=9,NAME=INAME,TYPE='OLD',ACCESS='SEQUENTIAL',
 FORM='FORMATTED',ERR=30)
 ISYM=0
 INT=-999
 CALL SCL(0,18,18,0.)
 56 READ(9,1267,END=57) XPOS,YPOS,INTSTY
 IF(INT.EQ.-999) IVFRST=INTSTY
 IF(INT.NE.INTSTY) ISYM=ISYM+1
 IF(INT.NE.INTSTY) PAUSE
 INT=INTSTY
 CALL PLT(XPOS,YPOS,1)
 CALL PEn
 CALL SYMB(ISYM)
 GOTO 56

 57 IVLAST=INTSTY
 TYPE *, 'DO YOU WANT TO LABEL? (YES=1)'
 ACCEPT *, LAB
 IF(LAB.EQ.1) CALL IDENTC(IVFRST,IVLAST,ISYM)

 667 TYPE *, 'DO YOU WANT TO PLOT ANOTHER MAP? (YES=1)'
 ACCEPT *, MAP
 IF(MAP.EQ.1) GOTO 8
 STOP
 END

SUBROUTINE IDENTC(IVFRST,IVLAST,ISYM)
 DIMENSION NUM(3)
 BYTE NAME(81),NUM
 DATA NAME/81V
 DATA NUM/3*' '/
 DATA NAME/81* '/
 100 TYPE *, 'ENTER LABEL (LESS THAN 80 CHARACTERS)'
 TYPE *, 'ENTER 'ZZZ' IF FINISHED'
 ACCEPT 30, (NAME(J), J=1,80)
 IF((NAME(1).EQ.'Z'),AND.(NAME(2).EQ.'Z'),AND.(NAME(3).EQ.'Z'))
 GOTO 66
TYPE **' ' USE PLOTTER PEN CONTROL TO POSITION LABEL' RETURN WHEN SATISFIED'
PAUSE
CALL CSIZ(1.5,1.5,0,0)
20 CALL LBL(NAME)
DO 50 I=1,80
J=81-I
IF(NAME(J).NE.' ') GOTO 60
50 CONTINUE
60 CONTINUE
CALL CPLT(FLAT(-J),-1,2)
GOTO 100
66 INCRMT=(IVLAST-IVFRST)/(ISYM-1)
IVFRST=IVFRST+INCRMT
DO 112 I=1,ISYM
IV=I
INUM=IVFRST+INCRMT
IVAR=INUM
ENCODE(3+13,NUM) INUM
13 FORMAT(I3)
CALL Symb(IV)
CALL CPLT(1,4)
CALL LBL('=')
CALL CPLT(1,0)
CALL LBL(NUM)
CALL CPLT(1,0)
CALL LBL('DB')
IF(IVAR<100) CALL CPLT(99-1,2)
IF(IVAR.GE.100) CALL CPLT(-10,-1,2)
112 CONTINUE
CALL CSIZ(2,1,5,0,0)
30 FORMAT(80A1)
RETURN
END

SUBROUTINE XAXX (P1,P2,P3,P4,P5,P6,P7,P8,P9,LABEL)
COMMON /ADDRES/ INSTR
COMMON /XYSCLP/ SCLP1,SCLP2,SCLP3,SCLP4
BYTE ARRAY(10),LABEL(39)
DATA ARRAY /10V'/
P15=-.1*P9
P11=.1*P9
P16=0,
SCLP1=P6-P7*P3
SCLP2=P6+(P1-P3)*P7
HGHT=40./P2
CALL CSIZ(2,1,5,0,0.)
CALL SCL(0.,P1,0.,P2)
CALL PLT(P1,0.,-2)
CALL PLT(P1,P2,-1)
CALL PEN
XPLT=P3
YPLT=P4-P11
CALL PLT(XPLT,YPLT,1)
JINT=0
IG3=0
CALL FINTGR(P6,P7,JINT)
IF(JINT.EQ.1)GOTO 201
CALL FINTGR(P6*10,P7*10,JINT)
JINT=JINT+1
IG3=1
201 CONTINUE
IF((P6+P7*P16).GT.10000.)JINT=0
4 CONTINUE
IF(JINT.EQ.0)GOTO 202
15 FORMAT(1I9)
IF(JINT.EQ.1)ENCODE(9,15,ARRAY(1)) INT(P6+P16*P7)
IF(JINT.EQ.2)ENCODE(9,12,ARRAY(1)) P6+P16*P7
GOTO 43
202 CONTINUE
10 FORMAT(1PE9.2)
11 FORMAT(1F9.0)
12 FORMAT(1F9.1)
13 FORMAT(1F9.2)
14 FORMAT(1F9.3)
ENCODE (9,10,ARRAY(1)) P6+P16*P7
IF(ABS(SCLP1).LT.10000. AND. ABS(SCLP2).LT.10000)
ENCODE (9,11,ARRAY(1)) P6+P16*P7
IF(ABS(SCLP1).LT.1000. AND. ABS(SCLP2).LT.1000)
ENCODE (9,12,ARRAY(1)) P6+P16*P7
IF(ABS(SCLP1).LT.100. AND. ABS(SCLP2).LT.100)
ENCODE (9,13,ARRAY(1)) P6+P16*P7
IF(ABS(SCLP1).LT.10. AND. ABS(SCLP2).LT.10)
ENCODE (9,14,ARRAY(1)) P6+P16*P7
43 CONTINUE
IF(ARRAY(1).NE.,'-') GOTO 44
DO 45 IC=1,9
ARRAY(IC)=ARRAY(IC+1)
45 CONTINUE
ARRAY(10)=''
GOTO 43
44 CONTINUE
ISAV=9
DO 666 IA=1,9
IF(ARRAY(10-IA).EQ.,'-') GOTO 666
ISAV=10-IA
GOTO 667
666 CONTINUE
SUBROUTINE YAXX(P1,P2,P3,P4,P5,P6,P7,P8,P9,YLABEL)
COMMON /ADDRES/ INSTR
COMMON /XSCLP/ SCLP1,SCLP2,SCLP3,SCLP4
BYTE ARRAY(10),YLABEL(37)
DATA ARRAY /10*'' '/
P10=.1*P9

C C

SUBROUTINE YAXX(P1,P2,P3,P4,P5,P6,P7,P8,P9,YLABEL)
COMMON /ADDRES/ INSTR
COMMON /XSCLP/ SCLP1,SCLP2,SCLP3,SCLP4
BYTE ARRAY(10),YLABEL(37)
DATA ARRAY /10*'' '/
P10=.1*P9
P14=-1*P9
P16=0,
P19=0,
SCLP3=P6-P7*P4
SCLP4=P6+(P2-P4)*P7
CALL CSIZ(2.,1.5,0.,0.)
CALL SCL(0.,P10.,P2)
CALL PLT(P1,0.,-2)
CALL PLT(0.,0.,-1)
CALL PEN
XPLT=P3-P10
YPLT=P4
CALL PLT(XPLT,YPLT,1)
JINT=0
IG3=0
CALL FINTGR(P6,P7,JINT)
IF(JINT.EQ.1)GOTO 201
CALL FINTGR(P6+P16,P7*P16,JINT)
JINT=JINT+1
IG3=1
201 CONTINUE
IF((P6+P7*P16).GE.10000.)JINT=0
4 CONTINUE
IF(JINT.EQ.0) GOTO 202
15 FORMAT(1H9)
IF(JINT.EQ.1)ENCODE(9,15,ARRAY(1)) INT(P6+P16*P7)
IF(JINT.EQ.2)ENCODE(9,12,ARRAY(1)) P6+P16*P7
GOTO 43
202 CONTINUE
10 FORMAT(1PE9.2)
11 FORMAT(1F9.0)
12 FORMAT(1F9.1)
13 FORMAT(1F9.2)
14 FORMAT(1F9.3)
ENCODE (9,10,ARRAY(1)) P6+P16*P7
IF(ABS(SCLP3).LT.10000.AND.ABS(SCLP4).LT.10000)
ENCODE (9,11,ARRAY(1)) P6+P16*P7
IF(ABS(SCLP3).LT.10000.AND.ABS(SCLP4).LT.10000)
ENCODE (9,12,ARRAY(1)) P6+P16*P7
IF(ABS(SCLP3).LT.1000.AND.ABS(SCLP4).LT.100)
ENCODE (9,13,ARRAY(1)) P6+P16*P7
IF(ABS(SCLP3).LT.10000.AND.ABS(SCLP4).LT.1000)
ENCODE (9,14,ARRAY(1)) P6+P16*P7
43 CONTINUE
IF(ARRAY(1).NE.9') GOTO 44
DO 45 IC=1,9
ARRAY(IC)=ARRAY(IC+1)
45 CONTINUE
ARRAY(10)=9'
GOTO 43
44 CONTINUE
ISAV=9
DO 666 IA=1,9
IF(ARRAY(10-IA).EQ.' ') GOTO 666
ISAV=10-IA
GOTO 667
666 CONTINUE
667 CONTINUE
P18=ISAV
IF(P18.GT.P19) P19=P18
DO 888 JJ=1,9
IF(ARRAY(JJ).EQ.'0') ARRAY(JJ)= '0'
888 CONTINUE
P17=0.
CALL PEN
CW=(P9*(P18/2.+2.)-P18/2.)
CH=-.3
CALL CPLT(CW,CH)
CALL LBL(ARRAY)
CW=-(P18/2.+P9*(P18/2.+2.))
CH=.3
CALL CPLT(CW,CH)
3 CONTINUE
P16=P16+1.
P17=P17+1.
IF(P16.LE.P5) CALL IPLT(P10,0,2)
IF(P16.LE.P5) CALL IPLT(0,1,2)
IF(P16.LE.P5) CALL IPLT(P14,0,2)
IF(P17.LT.P8) GOTO 3
IF(P16.LE.P5) GOTO 4
DELX=0.
DELY=-.5*P5
CALL IPLT(DELX,DELY,1)
DO 5 I=1,37
IF(YLABEL(38-I).EQ.' ') GOTO 5
ISAVE=38-I
GOTO 6
5 CONTINUE
6 CONTINUE
P17=FLOAT(ISAVE)
CW=P9*(P19+2.)+.5
CH=0.
CALL CPLT(CW,CH)
CALL CPLT(-1.,0.)
CALL CSIZ(2.5,1.5,90.,0.)
CW=-P17/2.
CH=0.
CALL CPLT(CW,CH)
CALL LBL(/LABEL)
IF(SCLP1.LT.SCLP2.AND.SCLP3.LT.SCLP4)
CALL SCL(SCLP1,SCLP2,SCLP3,SCLP4)
RETURN
SUBROUTINE SYMB(ISYM)
COMMON/ADDRES/INSTR
BYTE MESSAG(80)
DATA MESSAG/800/
CALL CSIZ(2,5,1.5,0,9,0)
ENCOD(12,2421,MESSAG(1))'SI, 175, 35'
2421 FORMAT(1A12)
CALL IBSEND(MESSAGE,11,INSTR)
IF(ISYM.NE.1)GOTO 1
ENCOD(42,2424,MESSAG(1))'UC-99, -3, -3, 99, 6, 0, 6, -6, 0, 0, -6,
1-99, 3, 3,'
2424 FORMAT(1A42)
CALL IBSEND(MESSAGE,41,INSTR)
GOTO 99
1 CONTINUE
IF(ISYM.NE.2)GOTO 2
ENCOD(38,2425,MESSAG(1))'UC-99, 0, 4, 99, -3, -6, 6, 0, -3, 6, -99,
0, -4,'
2425 FORMAT(1A38)
CALL IBSEND(MESSAGE,37,INSTR)
GO TO 99
2 CONTINUE
IF(ISYM.NE.3)GOTO 3
ENCOD(39,2426,MESSAG(1))'UC-99, -3, 2, 99, 6, 0, -3, -6, -3, 6, -99,
3, 2,'
2426 FORMAT(1A39)
CALL IBSEND(MESSAGE,38,INSTR)
GO TO 99
3 CONTINUE
IF(ISYM.NE.4)GOTO 4
ENCOD(62,2427,MESSAG(1))'UC-99, -1, 3, 99, -2, -2, 0, -2, 2, -2, 2,
0, 2, 2, 0, 2, -2, -2, 0, -99, 1, 3,'
2427 FORMAT(1A62)
CALL IBSEND(MESSAGE,61,INSTR)
GOTO 99
4 CONTINUE
IF(ISYM.NE.5)GOTO 5
ENCOD(43,2428,MESSAG(1))'UC-99, 3, 0, 99, -3, 4, -3, -4, 3, -4, 3,
14, -99, 3, 0,'
2428 FORMAT(1A43)
CALL IBSEND(MESSAGE,42,INSTR)
GOTO 99
5 CONTINUE
IF(ISYM.NE.6)GOTO 6
ENCOD(38,2429,MESSAG(1))'UC-99, 2, 2, 99, -6, 0, 6, -6, 0, 6,
1-99, 2, -2,'
2429 FORMAT(1A38)
CALL IBSEND('MESSAG,37,INSTR)
GOTO 99
6 CONTINUE
99 CONTINUE
RETURN
END

SUBROUTINE PEKVEL
COMMON/ADDRIS/INSTR
CALL IBSEND('VS1';-,1,INSTR)
RETURN
END

SUBROUTINE PNVELN
COMMON/ADDRIS/INSTR
CALL IBSEND('VS';-,1,INSTR)
RETURN
END

SUBROUTINE FINTGR(G1,G2,JINT)
JINT=0
IF(((G1-INT(G1)).EQ.0).AND.((G2-INT(G2)).EQ.0)) JINT=1
RETURN
END