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INTRODUCTION

Propellernoise transmittedthroughthe fuselagesidewallis an important

source of interiornoise in twin-engineturpopropaircraft. One method of reduc-

ing such noise is the use of acousticalmaterialsattachedto the inner side of

• the sidewall. These treatmentsshould have maximum acousticinsulationbut mini-

mum weight to avoid aircraftperformancepenalties.

The developmentof treatmentconfigurationsis not a straightforwardmatter,

but usually requiresa combinationof design and testingof severalconfigura-

tions. If this developmentcould be carriedout using laboratorytests and theo-

reticalpredictions,there would be potentialfor better acousticperformanceof

the treatmentat lower cost comparedto aircraft flighttesting. However,in

order to use the laboratoryapproach it must be shown that the performanceof the

acoustictreatmentin flightcan be predictedbased on the laboratorytest

results.

A substantialamount of researchhas been done on sidewallacoustictreatment

for aircraft. This researchhas inc]udedtheoreticaland laboratoryexperimental

studies; however,no resultsappear to be availablein the literatureon the

behaviorof acoustictreatmentin flightor on flightmeasurementtechniquesfor

investigatingacoustictreatmenteffectson cabin noise. The f)ighttests

describedhere were undertaken,therefore,as an initialattemptto investigate

sidewall acoustictreatment,using an aircraftfor which paralleltheoreticaland

experimentallaboratorystudieswere underway.

In the study reportedhere, the abilityto predicttreatmentperformanceis

examined by comparingacoustic resultsfor three treatmentconfigurationsmeasured

in flight and measured in laboratorytransmissionloss tests. The aircraft used

is a modern, high-performance,twin-engineturbopropaircraftwith a pressurized

cabin, and was operatedat a representativecruise conditionfor the acoustic
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tests. The treatmentconfigurationsare typicalexamplesof designsthat might be

consideredto providehigh transmissionloss for propellernoise. In order to

focus attentionon the treatment,resultsare presentedin terms of insertion

loss, definedas the reductionof cabin noise level that occurswhen a treatment

is added to the sidewall. Laboratorystudiesused a speciallydesigned panel

structureand acoustictreatments (fiberglass,dampingtape, and mass-loadedvinyl

septa) that closely representthe aircraftconfigurations.

ACOUSTICTREATMENTPERFORMANCEIN FLIGHT

Aircraftand Test Conditions

The aircraft,illustratedin figure 1, has a maximumtake-offweight of

about 11,200 Ibs, a standardcabin layout for a pilot and seven passengersand is

poweredby two turbo shaft engineswhich are flat rated to a maximumof about 800

HP. The synchrophased,three bladed propellersincorporatesupercriticalairfoil

sectionsand have a fuselageclearanceof approximately.14 times the prop

diameter. Operatingat 1500 RPM during cruiseconditions,the blade passagefre-

quency is calculatedto be 75 Hz and the tip speed 692 ft./sec. This particular

aircraftmodel has provisionsfor a 6.8 psi differentialcabin pressureto allow

for a 10,000 ft cabin environmentat its 35,000 ft operationalceiling. The com-

binationof this pressuredifferentialtogetherwith a rectangularshaped cross

sectionof the fuselagestructuredictateda relativelythick aluminumskin of

.064 in. The passengercabin includesfive double windowson each side of the

fuselagewith the outer pane having an outwardcurved surface. The cabin height

is 4.76 ft, and the length is 17.5 ft.

To determinethe insertionloss of a particularacoustictreatmenttwo sepa-

rate flightswere required,one flightwithoutthe treatmentand a second flight

with the treatmentinstalled. In order to attributethe change of interiornoise
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level betweenthe two flightsto the acoustictreatment,an attemptwas made to

hold constantother factorsthat could influencemeasured interiornoise level.

Such factorsincludeengine power and RPM, air speed, altitude,cabin pressure,

. aircraftweight,microphoneposition,and cabin configuration(otherthan sidewall

acoustictreatment).

For the tests reportedhere, the aircraftwas operatedat 16,000ft altitude

with both engines set at maximumcontinuouspower and 96 percent RPM. These

settingsresultedin an indicatedairspeedof 214 knots and blade passagefre-

quency of 76.35 Hz. The cabin pressurewas set at a value equivalentto an alti-

tude of 2300 ft. Acousticinstrumentationto verify repeatibilityof the exterior

acoustic sound pressurelevels was not includedon these flights. However,pre-

vious tests with a similaraircraft (ref. 1) indicatethat propellerexterior

noise is repeatablefrom test to test using only pilot instrumentssuch as air-

speed, engine power, and propellerRPM indicatorsto establishtest conditions.

The propellersynchrophaserwas operatingin its normal cruise condition.

Acoustic Treatment

Flight test results are reported here for three acoustic treatment configura-

tions. These tests were carried out using an engineering support aircraft for the

purpose of evaluating various acoustic treatment configurations; therefore, the

cabin did not contain standard sidewall treatments or cabin furnishings. Con-

figuration I is referred to as untreated or bare, and had no acoustic or thermal

treatment on the cabin walls and no carpet on the floor. The cabin contained four

seats (pilot, copilot, and two passenger seats) for the 'untreated' as well as the

• 'treated' tests. Configuration 2 had two layers of one inch thick AA fiber fiber-

. glass of .072 Ib/ft 2 each, with a silvered-mylar septum on the side facing the

cabin interior, applied to all sidewall surfaces except the floor, windows,
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firewall,and instrumentpanel. The third treatmentconfigurationselectedfor

test for referencepurposesis referredto as the 695A treatment. This

configurationused a combinationof layers of dampingtape, fiberglass,

mass-loadedvinyl septa, and a foam-and-rubbersandwichnoise barrier. The

combinationused varied with locationon the sidewall. Figure2 illustratesthe

treatmentused in the propellerplane regionof the cabin, and figure 3 indicates

the treatmentused in varioussidewallregions.

Data Measurementand Analysis

Cabin noise in flightwas measured using two entirelyseparate instrument

systems. Microphonepositionsfor system 1 are shown in figure 4. These posi-

tions correspondto the passengerpositionsin a furnishedcabin, and the micro-

phones were all locatedat ear level for a seatedpassenger. System 2 included

microphoneslocatedabout 3 inches inboardof positions3, 4, 5 and 6. For the

bare cabin configurationboth systemswere operatedat the same time, and data was

recordedon both systemsduring the same few minutes of stabalizedflight condi-

tions. For the 695A treatmentconfigurationeach system was used on a separate

flight test, separatedby a few days. System2 was not used for the fiberglass

treatmentconfiguration. For both systems,the microphonesignalswere recorded

on tape and analyzedlater in the laboratory. The two systemsused different

microphones,signalconditioning,tape recorders,and data analysesequipment,and

were operatedby differentpersonnel.

For system 1, the conditionedmicrophonesignalswere recordeddirectlyon an

8-channelFM recorderwith no frequencyweighting. The tape recordeddata was

analyzed using a commerciallyavailablenarrowbandspectrumanalyzer. Analyzer

settingsresultedin a 6 Hz bandwidthover a frequencyrange from 0 Hz to 1000 Hz

using a Hanningwindow and 64 averages. Typicalrecord lengthwas 30 seconds.



5

For the data presentedhere the frequencyspectrawere A-weightedjust prior to

plotting. Examinationof calibrationinformationindicatesthat the instrumenta-

tion noise floor is at least 10 dB below the data at the frequenciesconsidered

here.

' For system 2, acousticdata were recordedon six channelsof a 7-channelFM

tape recorder,and the seventhchannelwas used for voice annotation. Tape speed

was 7.5 inches per secondand bandwidthwas 5 kHz. For some tests instrumentation

amplifierswere used to provideswitchablegain and signal level indicators. Data

were reducedin one-thirdoctave or narrowbandsusing a commerciallyavailable,

single channel, spectrumanalyzer. One-thirdoctave band analysiscoveredthe

frequencyrange to 20,000 Hz. Narrowbandanalysiswas performedin the frequency

range 0 Hz to 1000 Hz, with a frequencyresolutionof 2.5 Hz and an effective

noise bandwidthof 3.75 Hz._'Data samplelengthswere usually32 seconds.

For this report,initialdata analysesconsiderednarrowbandspectraof A-

weightednoise level such as shown in Figure 5. The two spectrain figure 5 were

measured in two separateflights,each flight havinga differentsidewalltreat-

ment. The microphoneswere installedat fixed positionsand flightconditions

were carefullyestablishedin an attemptto maintainthe same test conditionsfor

both flights,so that the differencein level betweenthe two spectrawould result

only from the differencein treatment. For this study, then, the treatmentsare

characterizedby their insertionloss, which is definedas the reductionof noise

level that resultsfrom _he insertionof the treatmentwhen all other factorsare

held constant. Insertionloss was determinedgraphically,as indicatedin

figure 5, and is a functionof frequency,microphoneposition,initialconfigura-

, tion, and final treatment. Note that insertionloss is positivewhen the treat-

ment reducesthe level, but can also be negative,as it is at the 150 Hz tone in

figure 5.
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Insertion Loss in Flight

Insertion loss values calculated from flight measurements for six microphone

positions and three treatments are shown in figures 6, 7, and 8. Values deter-

mined at the distinct peaks, corresponding primarily to propeller tones at about

75 Hz and multiples, are indicated by the symbols, and the values determined at

frequencies between the tones are shown by the lines. Occasionally, tones at the

propeller shaft frequency (25 Hz) and the engine frequency (670 Hz) also appear.

Insertion loss of 2 inches of fiberglass relative to no treatment is shown in

figure 6. Figure 6 shows that the insertion loss at the propeller tones can vary

widely for different positions in the aircraft. For example, at the 150 Hz tone

the insertion loss varies from about 8 dB at positions I and 6 to about minus 8 dB

at position 4. A similar amount of variation is observed at the 225 Hz tone.

Note that the negative value of insertion loss means that the noise level at that

position and frequency was higher when measured with the fiberglass treatment,

whereas the intent of adding fiberglass is to reduce the noise level. The tones

at 150 and 225 Hz are important because they are major contributors to the overall

noise level, as suggested by figure 5. The insertion loss at the other tones are

positive, in general, but also vary in magnitude by substantial amounts.

The magnitude of the variability was not anticipated in planning the tests,

therefore, no special instrumentation or procedures were used to ensure precise

repetition of test conditions or instrument settings such as synchrophaser knob

position. The reasons for the variability are not fully understood, therefore,

but may include interactions between the noise fields of the two propellers,

changes of the acoustic-modal characteristics of the cabin associated with the

wall impedance of the inserted treatment, or variations in the contribution from

structureborne noise. The reasons should be sought out and understood so that the
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treatment can provide maximumbenefit for all passenger seat positions. Investi-

gation of the variability is outside the scope of this paper because the emphasis

here is on the treatment and not on the other factors. Treatment insertion loss

will be studied using average tone values and broadband values between the tones.

, The insertion loss given by the lines represents values associated with the

broadband component of the spectrum. The broadband cabin noise is thought to

result from the fuselage boundary layer noise transmitted through the fuselage

sidewall. This conclusion is based on observed variations of the broadband level

with test condition and acoustic treatment, and comparisons with predicted exteri-

or noise levels due to boundary layer flow (Appendix A). Figure 6 shows that the

variation of broadband level with position is generally much less than for the

tones. Superposition of the broadband curves suggests that the variability is

generally within + 4 dB, compared with the tone variability of about + 8 dB. The

broadband insertion loss in figure 6 suggests a reasonably well defined trend of

increasing insertion loss with frequency.

Figure 7 shows the insertion loss of the 695A treatment relative to the un-

treated sidewall configuration. The variability of the tones and the well defined

trend of broadband insertion loss with frequency are similar to the results shown

in figure 6 for the fiberglass treatment. However, figure 7 shows that the broad-

band insertion loss tends to be lower at the two forward positions than at the aft

positions.

Figure 8 shows the insertion loss of the 695A treatment relative to the

fiberglass treatment. Results for the six positions shown in figure 4 are super-

, imposed in this figure. Figure 8 shows that the large variability of the tone

values is still present, which indicates that the variability does not result

solely from the lightly damped and reverberant acoustic properties of the bare

cabin.
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It is of interestto examinethe insertionloss of the tones and broadband

componentsseparately,and in one-thirdoctavebands, for the followingreasons.

The tones are of primaryinterestbecausethey dominatethe low frequencyspec-

trum, and the acoustictreatmentwas designedto take advantageof the localized

space distributionof the propellerfield. However,the tones providevalues only

at discretefrequencies,and have such scatteras to make reliablecomparisons

with lab data difficult. The broadbandnoise providesvalues at most frequencies,

has less scatter,and would dominatethe cabin noise if controlmethodswere used

that reducedonly propellertone noise. One third octavesmore accuratelyrepre-

sent subjectiveresponse,and the lab is calibratedto provideacousticdata only

in one-thirdoctave form.

The separationof tones from broadbandwas accomplishedgraphically,as indi-

cated in figure 9. A curve was drawn throughthe broadbandpart of the spectrum,

cutting off the tone peaks, and the curve was integratedover each one-third

octave band. Resultinginteriornoise levelsare shown in figure 10 for the bare

cabin and in figure 11 for the 695A treatment. The data for system 1 show the

broadbandvalues at four cabin positions. The data shows a systematicvariation

with frequency,with relativelysmall variationwith position. The vertical lines

indicateone-thirdoctave cabin noise levelsobtained from data system 2. The

horizontaltic marks on each line indicatevaluesmeasuredabout 3 inches inboard

of system 1 microphonesat positions3-6 shown in figure4. For the bare aircraft

both systemswere in operationat the same time and data was recordedvirtually

simultaneously. Examinationof the narrow band spectrashowedthat each one-third

octave band marked with an arrow does not containany propellertones. Figure 10

shows that data system2 values are about 3 dB higherthan system 1 values in

these bands.
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The relative contributions of propeller and boundary layer noise sources can

be seen in figure I0. Comparing the data from the two measurement systems indi-

cate that the propeller dominates the frequency bands at 80 Hz and from 160 Hz to

315 Hz, whereas the boundary layer noise dominates at 400 Hz and higher. The

• noise levels in the propeller dominated bands are only slightly higher than in the

boundary layer bands. This suggests that control techniques that reduce only the

propeller noise (such as propeller source noise reduction) would result in rela-

tively small reductions of overall A-weighted cabin noise level.

Cabin noise spectra from the two measurement systems are shown in figure Ii

for the 695A treatment. The measurements with each system were made on separate

flights; but with nominally the same test conditions. In the bands without tones

system 2 shows noise levels that are about 3.5 db higher. For this treatment con-

figuration also, the propeller tones dominate only the 80 Hz and 160 to 315 Hz

bands, but in this case the levels are substantially higher than the boundary

layer noise levels in the 400 to 800 Hz bands. This suggests that additional

noise reduction is required in the propeller dominated bands.

Insertion loss of the treatment was determined in one-third octave bands

using the data shown in figures i0 and Ii. For the broadband - only data (the

symbols for system I) the noise level "treated" (fig. ii) was subtracted from the

"untreated" level (fig. I0) for each cabin position. For the broadband plus

propeller (system 2) the noise levels were averaged over cabin position before

subtracting. The resulting insertion loss is shown in figure 12. This figure

shows that in the frequency bands below 500 Hz the treatment provides less inser-

' tion loss for the total noise (propeller and broadband) than for the broadband

component alone. The data of figure 12 and insertion loss of the 2 inches ofw

fiberglass vs bare treatment are compared with laboratory data in a later section

of this paper.
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LABORATORYRESULTSANDCOMPARISONWITH FLIGHT

Laboratory Tests

Noise transmission characteristics of a panel and several treatments repre-

senting the aircraft of this study have been measured in the Transmission Loss

Apparatus at Langley Research Center. The T L Apparatus is described in reference

2 and the test results are presented and discussed in reference 3. A brief

summary is given here.

Test Setup

To experimentally establish the noise transmission loss characteristics of

the test structure and the add-on treatments, the aircraft panel is mounted as a

partition between two adjacent reverberant rooms which are designated source room

and receiving room. A schematic plan view of the transmission loss apparatus is

depicted in figure 13. In the source room, which measures ii by 12 by 12.9 ft, a

diffuse field is produced by two reference sound power sources. Sound from the

source room is transmitted into the receiving room only by way of the test panel,
i

which has a sound exposed area of 45.25 by 57.5 in. The test panel is accommo-

dated by a steel and rubber mounting frame, which is designed for minimum acousti-

cal and structural flanking. A space and time average of the sound pressure

levels in each of the rooms is accomplished by means of a windscreen-covered

microphone mounted at the end of a 35.8 in. long rotating boom which has a rota-

tional speed of 1/16 revolutions per second. The microphones complete two full

rotations during the 32 seconds linear time averaging analysis which is performed

by a digital one-third octave band frequency analyzer.

All tests referred to in this report were carefully monitored to have practi-

cally identical test conditions and results are believed to be accurate within the

range + 2 dB for frequency less than 200 Hz, and within + 0_5 dB for frequency

greater than 200 Hz. The addition of treatments to the panel structure on the
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receiving room side alters the room absorption. To account for this, the treat-

ment was applied to the wall of the receiving room opposite the test panel in a

separate test, thus not changing the transmission loss of the test structure but

only the absorption characteristics of the roomo A correction was needed to

account for the use of one or more layers of fiberglass treatment. Corrections

for other treatments did not affect the transmission loss by more than .5 dB and

for that reason are not applied to the test results. All data reported in this

document are corrected for the additional absorption due to fiberglass applica-

tions.

Test Panel and Treatment

The test panel structure was chosen to be modeled after a fuselage section

that includes the propeller plane and two windows. Due to the small curvature of

the actual fuselage and because of ease of construction and analyses, the labora-

tory model is flat and covers an area of 47.5 in. (the approximate cabin height)

by 59.5 in. Figure 14 shows the designated area and its location on the fuselage,

and figure 15 shows a photo of the test panel with some of the treatment install-

ed. In the aircraft, doublers were used to reinforce the structural members of

the frame in the area near the propeller plane. In the laboratory panel structure

this was achieved by the addition of solid straps with a thickness equal to the

total thickness of the doublers. Windows were not installed in this test panel in

order to study transmission through structure and treatment without other compli-

cating factors. The window bays (A and C in fig. 15) had the same skin thickness

and treatment as the other bays, for most tests• The stiffener members of the

test panel, which have a depth of 2 in, extend onto the supporting frame of the

• transmission loss apparatus.

Candidate treatment packages for designated parts of the fuselage of the air-

craft were tested in the transmission loss apparatus. The thickness and area
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density of each of the elements is given in Table 1. Figure 16 shows the

different layers of the treatment as used in the transmission loss tests where the

first six layers are squeezed into the space between the stiffeners, having a

total depth of 2 in. The total surface mass of the heaviest treatment combination

equals about 2.2 Ib/ft 2. Results including a trim panel (shown in fig. 16) are

reported in reference 3 but not here since the flight configurations did not

include a trim panel.

The vibration damping tape is designed to damp resonant vibrations in sheet

metal by converting vibrational energy to heat. The damping tape used here is a

pressure sensitive, compounded polyurethane damping foam with an aluminum foil

laminate backing. It is resistant to moisture, solvents, aging and fatigue.

The acoustic blankets are composed of glass fibers with a nominal diameter of

I micron. They provide sound attenuation partly by acting as a reflective surface

and partly by conversion of the acoustic energy of the sound that penetrates the

material to heat by viscous losses in the interstices. They are also used for the

purpose of thermal insulation.

The vinyl septa are made of a mass loaded vinyl fabric, reinforced with

fiberglass to provide noise transmission loss in a limp material. It is corrosion

resistant to acids, mild alkalis, oils and greases.

The noise barrier is a composite of a loaded urethane elastomer chemically

bonded to a decoupler foam. The urethane elastomer functions as the noise barrier

while the decoupler foam serves to isolate the barrier from the vibrating sur-

face. It features a broad operating temperature range and is resistant to aging.

The barrier layer is covered with a 2 mils. thick protective polyester film

facing.

Figure 15 shows the test panel mounted in the supporting frame of the trans-

mission loss apparatus with part of the acoustic treatment installed. Panels A,



13

B, and E show vinyl septum 2, panel D is covered with vinyl septum 1, acoustic

fiberglass blankets are installed behind panels C, F, G, and H, and the aluminum

foil of the damping tape is visible on panels K and L.

' The type of material, dimensions and installed configuration of the treat-

, ments used in the lab were the same as in flight with the following exceptions.

The vinyl septa used in flight were both of .31 Ib/ft 2 density, but the septa used

in the lab were of slightly different density as shown in Table I. The fiberglass

blankets used in flight had lightweight silvered-mylar glued on one face; the lab

tests did not include this mylar. In the aircraft, the fiberglass blankets are

wrapped around the vinyl septa leaving a space between the ends of the septa and

the fuselage frame, as shown in the sketch in figure 2. In the lab, each layer of

fiberglass or septum was cut to lay flat and to fill the space between the frames,

as sketched in figure 17.

Laboratory Results

Laboratory results from five configurations were used for comparison with

flight results. Transmission loss for four configurations is shown in figure 18.

For the bare structure the T L was calculated from field incidence mass law.

These values were used instead of measured data because the measured T L exhibited

several "dips" that are thought to be associated with the boundary conditions of

the panel in the lab setup, and would not be expected to occur on the aircraft.

Whendamping tape was applied to the skin panels the "dips" disappeared and the TL

followed the mass law for mass of skin plus damping tape (ref. 3). The curve

labeled "roof" in figure 18 is intended to represent the roof region in figure 3,

"aft sidewall" the region aft of station 154.5 in figure 3 and "prop-plane side-

wall" the region between stations 78 and 154.5. The treatment elements described

in Table I were arranged for these configurations as shown in figure 17. The TL

of the fifth configuration, "2 inches of fiberglass," was determined from tests



14

using the panel with damping tape applied. The change of TL was determined by

comparison of results with and without the fiberglass present. As shown in figure

20, the fiberglass provides increased TL only above 400 Hz. The values above

400 Hz are felt to be within 2 dB of values appropriate for use when the

fiberglass is added to the bare panel (as in the aircraft).

Prediction of Insertion Loss

The insertion loss of a treatment is composed of two parts; the change of

sidewall noise transmission and the change of absorption of the noise in the

cabin. For a sidewall having different treatments on different sidewall areas

such as shown in figure 3, the effective TL of the total sidewall is calculated

from

-TL ROOF -TLAFT -TLpROP

TLEFF =-i0 Iog[ARooF 10 10 + AAFT 10 I0 + ApRoP 10 i0 ], (1)

where the areas are a proportion of the total area. For the 695A treatment

AROOF= roof area/total area = .106

AAFT = area of aft sidewall/total area = .447

ApRoP= area of sidewall in prop plane/total area = .447,

and the TL values of the different regions are taken from figure 18. For this

calculation the windows are ignored, so there is an implicit assumption that each

window has the same TL as the adjacent wall. Windows are discussed further in a

later section of this paper.

The treatment insertion loss, IL, is found from

IL = ATL + AABS.
€

The change of transmission loss, ATL, is found by subtracting the TL of the bare
w

structure from the effective TL, TLEFF, of the treated sidewall. The change of

absorption, AABS, is found from
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AABS= 10 log[ _e' treated ] (2)_e, untreated

where the effective absorption, _e, is found from
0

Ai ai
a : , (3)• e

ATOTAL

where Ai = area of individual surface

ai = absorption of individual surface

ATOTAL = total area

For the aircraft of this study, with absorption treatment on the sidewalls, roof

and aft bulkhead but not on the floor or forward wall (the cockpit and windshield)

the effective absorption is given at each frequency by

ee = .26 _i, untreated + .74 _i, treated.

For untreated surfaces _i is taken as 0.I based on data presented in reference

4, therefore the bare aircraft has _e = 0.I. For treated surfaces the absorp-

tion was determined by the thickness of the fiberglass layer exposed to the cabin

interior and backed by either a vinyl septum, the noise barrier, or the sidewall

structure. The absorption values used for the fiberglass are shown in figure 19.

These values, taken from reference 5, were determined by the manufacturers using

standardized test facilities and procedures. As an approximate check, the absorp-

tion values of the fiberglass blankets used in this study were measured in the

receiving room. The values were acceptably close to values presented in reference

5 for a test setup similar to the one used here.

Comparison of Flight and Lab Results

Insertion loss of the 2 inches of fiberglass treatment compared to no treat-

merit was predicted using lab results, and the comparison with measured flight

insertion loss is shown in figure 20. The flight data is presented for four posi-

tions at mid and aft cabin, and was determined for the broadband (boundary layer)
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componentonly, as describedpreviously. Agreementbetween predictedand measured

resultsis shown to be good at frequenciesabove 100 Hz. Below 100 Hz the flight

data may be inaccuratedue to the difficultyof graphicallyfittinga curve to the

steeply slopingnarrow band spectraat these frequencies(fig. 9). In the impor-

tant frequencyrange of 160 to 400 Hz where the highestA-weightednoise compo-

nents occur, figures5 and 11, the contributionof TL is seen to be negligable,

while the absorptionresultsin insertionloss values from 2 to 8 dB.

Predictedinsertionloss for the 695A treatmentcomparedto no treatmentis

comparedwith flight resultsin figure21. Predictedvaluesare given for two

cases, one includingonly roof and prop plane TL in the effectiveTL, and the

second includingaft sidewallin addition. Predictionswere made for both cases

with the thoughtthat cabin absorptionmight restrictthe noise that enters at the

rear of the cabin from reachingthe more forwardpositions3 and 4. However,the

flight data shows that the Insertionloss is about the same for all four cabin

locations. The predictedinsertionloss includingroof, prop plane and aft side-

wall TL is seen to be in good agreementwith the flightdata at frequenciesfrom

125 Hz to 315 Hz. The overpredictionat frequenciesbelow 100 Hz is thoughtto

result from boundaryconditionstiffnessof the panel in its facility

mounting. The reason for the overpredictionat frequenciesabove 400 Hz has not

been determined,but may be due to flankingacoustictransmissionthrough lightly

treated sidewalllocations,or throughwindows.

Possibleapproachesto improvedtreatmentare illustratedin figure 22. The

absorptionassociatedwith the 695A treatmentas tested here is indicatedby the

dot-dashline labeled "1 in,AA." Reference5 indicatesthat substantiallylarger f

values of absorptioncan be obtainedby using fiberglassof a differenttype or

largerthickness. Using the higher absorptionvalues from reference5 the AABS

contributionhas been estimatedand is shown as the dotted line labeled"High _".
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Increases of 3 to 4 dB are shown at frequencies from 160 to 400 Hz. In order to

obtain cabin noise reductions from this approach the fiberglass must be exposed

(in the acoustic sense) to the cabin interior, and not covered with an acoustic

' barrier such as a vinyl layer or a trim panel.

The contribution of the increased effective TL of the 695A treatment is shown

by the dashed line. This curve indicates the effective ATL when the TL contribu-

tions of roof, aft sidewall, and prop-plane sidewalls are combined using equation

(I) and the individual TL value from figure 18. Increased ATL could be obtained

by extending the prop-plane treatment forward and aft so that its larger ATL con-

tribution, indicated by the solid line, would not be reduced by flanking trans-

mission through the more lightly treated forward and aft sidewalls. Other treat-

ment approaches are also possible.

Windows

As previously mentioned, the calculation of the effective TL of the sidewall

using equation (I) assumes that the window TL is equal to the TL of the adjacent

sidewall. This assumption was made because of the difficulty of determining a

reliable TL value for the windows. The window construction, illustrated in figure

23, includes two panes of plexiglass, one of which is curved, with a rubber spacer

between the panes. No experimental data is available for this configuration, and

available theoretical results, reference 6, are for a window of different dimen-

sions and are not in the form of TL required for combination with the test data

for the treated sidewall.

As a rough approximation the window can be modeled as a single pane of thick-

ness equal to the sum of the two panes, or as a pair of parallel panes of infinite

- extent. Theoretical TL for these two models is shown in figure 24. Comparison

with figure 18 indicates that up to 200 Hz the calculated window TL is equal to or
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more than the sidewallTL. Above 200 Hz the window TL can be substantiallyless

than the sidewallTL dependingon frequencyand on which window model is consid-

ered.

CONCLUDINGREMARKS

This paper describesa flightand laboratorystudy of sidewallacoustic

treatmentfor cabin noise control. To focus attentionon the treatmenteffects,

resultsare presentedas insertionloss (IL),definedas the reductionof cabin

noise level at a specificlocationthat occurswhen a treatmentis added and all

other test conditionsare held constant.

In flight,cabin noise levels were measured at six locationswith three

treatmentconfigurations. The aircraftwas operatedin normal twin engine cruise

at 16,000 ft altitudewith cabin pressurizationequivalentto an altitudeof 2300

ft. IL values at the propellertones were found to vary by + 8 dB dependingon

positionin the cabin, while the broadband(boundarylayer) levels have the

smallervariabilityof + 4 dB. Broadbandnoise levels from narrow-bandanalysis

are reducedto one-thirdoctave format separatelyfrom the tones, and IL values

from this boundarylayer noise componentare shown to be severaldB higher than IL

values of the total noise signal includingboth tones and boundarylayer noise.

Laboratorytests were carriedout using a speciallyconstructedstructural

panel modeled after the propellerplane sectionof the aircraftsidewall,and

acoustictreatmentsrepresentingthose used in flight. Transmissionloss and

treatmentabsorptionvalues for variousconfigurationsrepresentingthe different

treatmentsused on differentaircraftsidewallareas were measured. These lab

values were combined using classicalacousticproceduresto obtain a predictionof

IL. Comparisonwith IL values measuredin flightfor the boundarylayer component

of the noise indicatedgeneralagreement.
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APPENDIXA

ESTIMATIONOF EXTERNALBOUNDARYLAYERNOISE

, In order to evaluate the fuselage boundary layer as a source of the broadband

interior noise, exterior noise spectra were calculated for several flight condi-
o

tions and the variations with flight conditions were compared with measured varia-

tions of interior noise.

The exterior noise was calculated using the method of reference 7 for a posi-

tion 18 ft from the nose of the aircraft. This position is at the same longitudi-

nal station as microphones 5 and 6, shown in figure 4. Aircraft altitude and

indicated airspeed were determined from pilot instruments, and atmospheric proper-

ties (viscosity, density, Reynolds number) were determined using standard atmos-

phere tables, reference 8. Calculated noise spectra are shown in figure 25 for

two flight conditions. The shape of these spectra is quite similar to the shape

of the measured interior spectra shown in figure 5, both being approximately flat

at high frequencies and dropping off sharply at low frequencies (because of the

A-weighting). The measured interior levels drop off slightly at higher frequen-

cies whereas the predicted exterior levels increase slightly at the higher fre-

quencies. This difference could be expected because of the increase of transmis-

sion loss with increasing frequency associated with the fuselage sidewall.

Figure 25 shows that the predicted exterior noise level is lower by about 4

dB at 29,000 ft altitude compared to 16,000 ft altitude. In addition, the cabin

pressure at 29k ft (equivalent to 8,000 ft altitude) is lower than the cabin pres-

sure at 16k ft (equivalent to 2,300 ft altitude). The reduced acoustic impedance
I

inside the cabin at the higher altitude is estimated to reduce the noise radiated

• into the cabin by about 1 or 2 dB. The combined effect of these two factors is a

reduction of 5 or 6 dB of interior noise at the higher attitude. Comparison of
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measured cabin noise levels for the two altitudesfor each of the six microphone

position's indicateda lower level by 6 to 8 dB at the higheraltitude. For

flight at a given altitude,both the predictedexteriornoise and the measured
|

interiornoise indicatedvirtuallyno variationof level with flight speed for the
Q

availablerange of flight speed. In addition,the predictedexteriorlevels are

higher than the interiorlevels,as would be expectedto result from the noise

reductionof the sidewallstructure. In view of the approximationsinvolved,

these resultsare consistentwith the estimatedeffectsassociatedwith the

fuselageboundarylayer noise.
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TABLE I.- ACOUSTICTREATMENTELEMENTSUSEDIN

LABORATORYNOISE TRANSMISSIONTESTS

Element Thickness, in. Area Density, Ib/ft 2

Skin 0.063 0.95

Total Structure 2.31 2.06

Damping Tape 0.25 0.316

Fiberglass 1.0 0.05

Vinyl Septum I 0.04 0.367

Vinyl Septum 2 0.024 0.281

Noise Barrier 0.325 1.016

Heavy Treatment 3.31 2.174

(695A)

.--15.4

43.0 -'

Figure 1.- Aircraft used in treatment study.
Dimensions in feet.
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Figure 2.- Typical section throuoh wall and acoustic treatment
in area of the prop plane.
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Figure 3.- Distribution of treatment in 695A configuration.



Figure 4.- Cabin arrangement and microphone positions for
treatment flight study.
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Figure 5.- Cabin noise measured in flight at position 2
for two treatments. °
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Figure 6.- Insertion loss of 2 in. of fiberglass relative to no
treatment. Narrow band flight data.
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Figure 7.- Insertion loss of 695A treatment relative to no
treatment. _arrow band flight data. ,.



27

2O
0

©

INSERTION 10 o o o

• Loss. 6 _ o 6 o _ SdB o o o 8 o0
8 _ o o0v

0 o 0 0 0
0

0
0

0
-101 , , , l , i i i

0 100 200 300 400 500 600 700 800

FREQUENCY, Hz

Figure 8.- Insertion loss of 695A treatment relative to 2 in. of
fiberglass. Flight data, propeller tones only.
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Figure 9.- Curve fit for conversion of narrow-band data to one-
third octave data without tones.
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Figure 10.- Interior noise in flight from two measuring systems,
untreated cabin.
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Figure 11.- Interior noise in flight from two measuring systems,
cabin with 695A treatment.
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Figure 12.- Insertionloss of 695A treatmentrelativeto no treatment,
flightdata in one-thirdoctave bands.
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" Figure 13.- Laboratorytransmissionloss test apparatus.

Dimensionsin feet.
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SIDEWALLTESTSECTION

FRONTBULKHEAD PROPPLANE REARBULKHEAD

Figure 14.- Section of aircraft sidewall modeled for lab study.

Figure 15.- Laboratory test panel in test position.
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Figure 16.- Acoustic treatment elements used in lab study.

B DAMPINGTAPE [] NOISEBARRIER
I VINYL SEPTUM [] FIBERGLASS

a) ROOF b) AFT SIDEWALL c) PROP-PLANE
SIDEWALL

Figure 17.- Acoustic treatment configurations for lab study.
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Figure 18.- Transmission loss of panel and acoustic treatment
measured in the lab.
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Figure 19.- Absorption coefficients of fiberglass used in calculating
insertion loss. Data from reference 5.
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Figure20.- Insertionloss of 2 in. of fiberglassrelativeto no
treatment,compafisonof predictionswith flightsdata.
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Figure 21.- Insertion loss of 695A treatment relative to no treatment,
comparison of predictions with flight data.
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Figure 22.- Componentcontributionto insertionloss
of acoustictreatment.
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Figure 23.- Sketch of typical window section.
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Figure 24.- Calculated transmission loss of approximate
models of windows.

A-WEIGHTED 1_SPLdB

10 dB //29K It.

I I I I I I I I I I t

0 200 400 600 800 1000

FREQUENCY,ZHz

Figure 25.- Predicted spectrum of boundary layer fluctuating
pressure on fuselage exterior.



I. Report No, 2. Government Acc(_ssion No. 3. necipient's C,ltalog No.

NASATM-85122 -
4. Title and Subtitle 5, Re[x)rt Date

Investigation of Fuselage Acoustic Treatment for a Twin - January 1984
EngineTurbopropAircraft in Flightand LaboratoryTests 6.Perfo,mingOzganizationC_de

505-33-53-03

7. Author(s) 8. PerformingOrgamzation Report No.

John S. Mixson, Robert L. 0'Neal*, and
FerdinandW. Grosveld* •

10. Work Unit No.

9. Performing Organization Name and Address
I

NASALangley Research Center 11 Contractor GrantNo.
Hampton, VA 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

NationalAeronauticsand Space Administration 14 SponsoringAgencyCode
Washington,DC 20546

15. Supplementary Notes

*O'Neal -- GulfstreamAerospaceCorp. *Grosveld-- BioneticsCorp.
Bethany,OK Hampton,VA

16. Abstract

This paper describes a flight and laboratory study of sidewall acoustic treatment for
cabin noise control. In flight, cabin noise levels were measured at six locations with
three treatment configurations. Noise levels from narrow-band analysis are reduced to
one-third octave format and used to calculate insertion loss, IL, defined as the
reduction of interior noise associated with the addition of a treatment. Laboratory
tests used a specially constructed structural panel modeled after the propeller p'lane
section of the aircraft sidewall, and acoustic treatments representing those usecl in
flight. Lab measured transmission loss and absorption values were combined usingl
classical acoustic procedures to obtain a prediction of IL. Comparison with IL values
measured in flight for the boundary layer component of the noise indicated general
agreement.

17. Key Words (Sugg_ted by Author(s)) lB. Distribution Statement

Aircraft InteriorNoise Unclassified-Unlimited
SidewallAcousticTreatment Subject Category71 ,
FlightTest

19. Security Classif. (of this report) 20. Security Classif. Iof this page) 21. No. of Pages 22. Price"

Unclassified Unclassified 36 A03

" For sale by the National Technical InformatmnService. Sprm_held V_lg_n_a2216!





'If
I

f

t

t-


