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ORIGINAL PAC' 50
OF POOR QUALI'F'Y

CRYSTAL CROWTH OF DEVICE QUALITY: GaAs IN SPACE

I. SUMARY

GaAs device technology has recently reached a new ph,ise of rapid

advancement, made possible by the improvement of the quality of GaAs bulk

crystals. At the same time, it has become apparent that the transition to

the next generation of GaAs integrated circuits and optoelectronic systems

for commercial and government applications hinges on new quantum steps in
F

three interrelated e,eass crystal growth, device processing and device-related

properties and phenomena. 	 Our GaAs research program continues to be aimed at

radical advances in device quality GaAs bulk crystals, and it evolves about

these key thrust areas.	 Special emphasis is placed on the establishment of

quantitative relationships among crystal growth parameters-material properties-

electronic properties and device applications.	 The overall program combines

(1) studies of crystal growth on novel approaches to engineering of semiconductor
.ti

f^,f

material (i.e., GaAs and related compounds); 	 (2) investigation and cu- .slation

of materials properties and electronic characteristics on a macro- and microscale;

(3) investigation of electronic properties and phenomena controlling device appli-

cations and device performance.

We believe that this extensive ground program is a necessary step for

insuring successful experimentation with and eventually processing of GaAs in y.
..

,. a space environment.	 We further believe that this program addresses in a
,f

•'

s
unique way materials engineering aspects which bear directly on the future

exploitation of the potential of GaAs and related materials in device and
p	 e^

systems applications.	 We will summarize below the last two-year developments r.
,̂y

of our program.	 An overall summary of the major developments in the course a`

of this investigation is given in Table I.

We consider our discovery that stoichiometry is a fundamental factor

affecting structural and electronic properties of melt-grown GaAs the most
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significant and promising result of our most recent research. Thus, we have

established that deviation from stoichiometry controls dislocation density,

concentration of point defects, related deep levels, and the amphoteric behavior

of impurities. This discovery has also led to identification of the causes

of irreproducible growth and of the lack of precise control of the electronic

properties of bulk GaAs. We have shown for the first time that these processes

are linked directly to stoichiometry-induced defects and their interactions

during the post-solidification cooling. We have advanced substantially the

understanding of the role of oxygen in the melt growth of GaAs and the origin

of the major deep donor level (EL2). Our microscopic model of this level

(i.e., arsenic on gallium site plus arsenic vacancy) enabled for the first time

the consistent explanation of unique electronic properties of the EL2 and a

sensitivity to the growth conditions. The above results bear directly on pro-

cesses leading to semi-insulating behavior of GaAs, and thus they are of funda-

mental importance in'the pursuit of significantly improved quality GaAs for

high-speed IC applications.

We have discovered that atomic hydrogen (introduced into GaAs by exposure

to a hydrogen plasma) eliminates the dominant deep level (EL2). This finding

offers a new means for studying and controlling electronic characteristics of

GaAs and GaAs devices:

In electroepitaxial growth we have completed the development of a unified

theoretical treatment which explains quantitatively the unique growth kinetics,

the segregation behavior and the morphological stability. We have also intro-

duced new growth configurations and demonstrated the feasibility of electroepi-

taxial growth of bulk GaAs crystals and of the in situ monitoring of growth

kinetics. Utilizing the advantages of electroepitaxy in achieving abrupt
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acceleration (or deceleration) of growth we showed that recombination centers

are formed as a result of growth acceleration. This finding underlines the

importance of the dynamics of crystal growth, which has not been ex,"Plicitly

considered in most investigations.

Our -electronic characterization facility was extensively utilized to

assess the quality of bulk and epitaxial GaAs and to study the relationships

of electronic properties and growth parameters. Characterization techniques

based on analysis of free carrier mobility were extended to semi-insulating

(SI) GaAs and also to p-type material, i.e., to cases particularly important

for IC applications.

We have completed the study of electrical and photo-electrical properties

of GaAs-anodic oxide interfaces. Our interface-state model involving discrete

deep and shallow levels (originating from oxidation-induced defects) made it

possible to consistently explain the gigantic photoionization effect and

anomalous hysteresis and frequency or temperature responses of GaAs XOS structures.

INTRODUCTION

Since the initiation of this investigation we have succeeded in the

development of unique, crystal growth approaches, new effective techniques for

a macro- and microscala characterization of key electronic properties and

in the discovery of new phenomena and processes relevant to GaAs device applica-

tions. Growth-property relationships established for the first time have led

us to defining stoichiometry as a.fundamental factor controlling structural and

electronic properties of GaAs and to the growth of bulk GaAs of improved quality

(dislocation-free and electron trap-free material). Table I summarizes the
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major achievements. Detailed discussion is given in our reports and publica-

tions. This year's preprints and reprints of publications are attached.

Accordingly, in this section of this report a brief outline of the most sig-

nificant recent developments will be prer:i,,nted.

CRYSTAL GROWTH

In our crystal growth studies we have thus far concentrated on two

approaches: liquid phase electroepitaxy and Bridgman-type growth from the melt.

The original selection of these techniques was made on the basis of their compati-

bility with a space environment and also because they lend themselves to con-

trolling th,% growth process and thus to studylag growth-property relationships.

Electroepitaxy

Most basic developments in electroepitaxy (LPEE) were accomplished in previous

stages of our research. These developments were extensively discussed in our annual

reports. We will outline briefly here only some of our recent results. During the

last year we have completed the development of a comprehensive theoretical model

of LPEE. This model provides adequate explanation for the unique advantages of

LPEE in achieving ideal surface morphology, reducing density of defects generated

during the growth and/or outdiffusing from the substrate. Very high growth

rates (up to 25 um/min) render this process comparable to melt growth; thus

LPEE offers a unique possibility for obtaining sizeable "bulk" crystals of

epitaxial quality.

Our current research on LPEE is devoted to practical refinements of this

technique as applied to growth of GaAs .-related quarternary compounds and to

growth of bulk crystals. These approaches require quite different experimental

systems, i.e., a multiwell horizontal sliding boat and a vertical Czochralski-

type conf4 guration, respectively. These systems were constructed, tested (as

discussed in our 1981 Annual Report) and are currently employed for electroepi-

taxial growth.
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Our most recent efforts were addressed to the theoretical limitations

provided by constitutional supercooling. We have theotatieally predicted a

significant enhancement of interface stability in liquid phase electroepitaxy

(LPEE) and we have explained the experimentally attained stable growth with

velocities as high as 25 um/min (close to two orders of maSv tude higher than

growth rates obtained by thermal LPE). We have defined the geometry of the

LPEE configuration and the growth parameters (current density and polarity,

temperature and substrate characteristics) which lead to the optimization of

surface morphology. These conditions are listed in Table I'I, and they should

be considered of key importance for future extension of LPEE to the growth of

	

c,	 high quality bulk crystals.

	

'c	 Melt-Growth Appai atus

A precision Bridgman-type apparatus was

	

w=	 designed and constructed for the investigation of relationships between crystal

growth parameters and the properties of GaAs crystals. Key features of the

	

'	 system are the use of a heat pipe for precise arsenic vapor pressure control

and seeding without the presence of a viewing window. Pertinent growth para-

meters, such as arsenic source temperature, thermal ,gradients in the growing

crystal and in the melt, and the macroscopic growth velocity can be independently

controlled. 'During operation, thermal stability better than ±0.02% is	
k

realized; thermal gradients can be varied up to 30°C/cm in the crystal regionz- .,

and up to 20°C/cm in the melt region; the macroscopic growth velocit can be

varied from 50 um/hr to 6.0 cm/hr. A schematic representation of this growth

'u
Y	 apparatus is given in Fig. 1. Photographs of the system arranged to operate

in a horizontal and vertical configuration are shown in Figures 2a and 2b, 	 {

'`'	 respectively.
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During the last two years we have grown about 70 GaAs crystals utilizing

this unique Bridgman-typa apparatus. The results of these studies have sur-

passed our ecpectation, as they led for the first time to the establishment of

growth-property relationships of fundamental importance for obtaining undoped

dislocation-free GaAs and electron trap-free shallow donor doped GaAs. These

relationships made it possible to resolve the origin of the dominating deep

level and elucidate the role of oxygen in obtaining undoped semi-insulating GaAs.

Growth-Property Relationships--Critical Role of 13toichiometry

In our growth experiments the stoichiometry was varied by varying the arsenic

source temperature, TAs , which in turn controls the arsenic pressure over the

melt and thus the melt composition. A typical range of T om , 610-628°C, corres-

ponded to melt composition (determined by arsenic to gallium ratio) changes

from 0.52 to 0.485.

,

t

{ We have found that the dislocation density is a very sensitive function

of Tom . Typical results are shown in Fig. 3a. They demonstrate that dislocation

etch pit density (revealed by etching in a molten KOH) exhibits minimum concen-

atration for TAs = 617°C. In a number of crystal growth experiments we have

h	
confirmed the importance of these optimum stoichiontor,ry conditions. Thus, undoped

crystals routinely grown under these optimum conditions exhibited dislocation

density below 500. Doping at the level of 10 17 cm-3 with shallow donors suppressed

dislocation density to values below 100 cm-2 , i.e., to values referred to as

corresponding to "dislocation free" material.

Dislocations are commonly known to play a detrimental role in GaAs inte-

grated circuits. Accordingly, the establishment of growth conditions yielding

minimum dislocation density can be considered as a significant step toward the

growth of improved device quality GaAs bulk crystals. We also believe that this

finding will become of critical importance in future stages of crystal growth
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developments as other factors contributing to dislocation formation during

post-solidification (e.g., thermal stress during cooling) are addressed in

conjunction with large diameter crystals.,

The optimum arsenic source temperature 617% was also found to yield

the lowest compensation ratio and the highest electron mobility value of n-type
s

'	 GaAs crystals. Thus, these results showed that deviation from stoichi.ometry
t;

is a contributing factor to the amphoteric behavior of shallow impurities in

y
melt-grown GaAs crystals. in earlier studies we haire observed unique spacial

variations  which could not be explained on the basis of classic se renationp	 g a

kinetics controlled by the microscopic growth rate. Representative results are

shown in Fig. 3b where the carrier concentration undergoes significant variations,

whereas the concentration of the dopant impurity (N
D
 +NA) remains essentially

constant. As seen in Fig. 3c, similar behavior is caused by changes in arsenic

pressure.
s

The arsenic pressure was also found to control the concentration of a major

deep level EL2. Typical dependence of the EL2 concentration on TAs obtained

x
for unintentionally doped GaAs is presented in Fig. 4. It is seen that the

concentration of the EL2 decreases in going from arsenic-rich to gallium-rich

growth conditions. This finding proves that the arsenic-rich conditions are

,.i

most desired for the growth of undoped semi-insulating GaAs which requires a

high concentration of EL2. Such behavior has been indeed confirmed by a recent

study of Liquid-Encapsulated Czochralski gro^_th of semi-insulating GaAs.
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Post-Solidification Processes; Role of Impurities

The stoichionetry effects discussed above are caused by native defects

generated during the solidification process. Upon post-solidification cooling of

the crystal these defects interact and form other defects and defect complexes

which determine the final properties of the as-grown crystal and also its

behavior during subsequent heat treatment involved in device processing.	 In

our study we have employed intentional doping in order to distinguish between

solidification effects and the post- solidification phenomena (dtYring cooling

of the crystal).	 It is a general feature of the post-solidification defect

interactions in GaAs that they are affected by shallow donors or acceptors,

irrespective of the lattice-site the dopant occupied. 	 Furthermore, the

z
threshhold dopant concentration determines the critical temperature range

at which the post-solidification interactions take place.	 fr

_ The annihilation-of the EL2 level by shallow donors shown in Fig. 5 	
A

and the basically similar suppression of the dislocation density by shallow

donors shown in Fig. 6 provide unique evidence of the above behavior. 	 The	 t

post-solidification defect interactions leading to the suppression of dis-

location density are currently under study. 	 The effects of doping on the
L

Q ' EL2 level were adequately explained by our recently formulated microscopic

model of this center identifying the EL2 with a complex consisting of an

rt'
` antisite defect (arsenic on a gallium site) and an arsenic vacancy, As 	 V	 I

Ga As
This complex (shown in Fig. 7) is formed during the migration of a gallium

vacancy VGa to a neighboring arsenic site. The pertinent reaction of charge 	 6

defects is VGa+As_IAsGa+VAS +4e; thus the concentration of the EL2 center 	 ;e

n [As 
GaVAsI is proportional to n 4 where n is the electron concentration at

elevated temperature. By increasing n above the intrinsic concentration, the

a
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EL2 level is effectively suppressed and annihilated as demonstrated by the

results of Fig. 5. From the threshold value of electron concentration, it

is concluded that the formation of the 0.82 eV deep level takes place at

temperatures below about 1050 K, i.e., during the post-growth cooling in the

case of melt-grown GaAs.

PROPERTIES AND PHENOMENA

Electronic Properties of Bulk GaAs

Since 1980 we have been actively involved in detailed analysis of the

electronic properties of commercially available melt-grown GaAs. Represen-

tati+.re results of our study were given in the previous Annual Report. We have

recently extended our study to microscale characterization of semi-insulating
k

GaAs, Commonly present electrical inhomogeneities of SI GaAs are considered

highly undesirable and limit the transition into the next generation of GaAs

integrated circuits.

Free Carrier Mobility

Free carrier mobility values are commonly

taken as an overall measure of perfection and purity. We have completed a

•	 rigorous theoretical and experimental study of carrier mobilities in GaAs which

led to the development of a practical means for fast quantitative characterization

of GaAs using computed values of mobility conveniently tabulated as a function

T	 of free carrier concentration and compensation ratio. More recently we have

succeeded in developing a straightforward (but rigorous) procedure for the 	 j

W	 ^	 ^

characterization of Semi-Insulating GaAs from Hall mobility values measured	 1

at slightly elevated temperatures. Thus, the mobility curves presented in 	 !

figures 8a and 8b permit the determination of the total concentration of

ionized impurities (ND+NA) in semi-insulating GaAs.	 a
d

r x
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Passivation of the EL2 by Hydrogen

We have discovered that atomic hydrogen pnssivates the EL2 level in GaAs.

We consider this finding extremely promising for device-related studies. Accor-

ding to our results plasma hydrogenation of GaAs (i.e., 2-hour exposure of GaAs

to hydrogen plasma at 300°C) constitutes an effective low temperature process

for controlling (or completely pass.ivating) the EL2 level and its effects on

the electronic characteristics of GaAs and, possibly, GaAs devices.

The results obtained with hydrogenated samples, employing deep level

transient spectroscopy (ALTS) and analysis of Schottky barrier capacitance

transients are shown in Table III together with results obtained with as-grown

samples and with samples heat-treated at _100% for two Tours in an H 2 ambient.

It is seen that in the as-grown samples the concentration of the 0.82 eV trap

exceeds that of the other commonly observed traps (EL4, EL5, and EL6) by about

one order of magnitude. Exposure of GaAs to hydrogen plasma leads to a sig-

nifant Aecrease of the concentration of the dominant EL2 level, i.e., by a

factor of 10 in sample 1, and by a favor of 5 and 4 in samples 2 and 3, respec-

tively. The hydrogen-induced changes in the concentration of EL4, EL5, and

EL6 are much less pronounced than those in that of EL2; these changes are within

the rangec .of the observed variations of the concentration of these levels caused

by inhomogeneities in GaAs. It is also seen that the 300% heat treatment had

no effect on the concentration of the deep levels. We attribute the EL2

passivation process to thefinteraction of hydrogen with the unshared electrons

of the antisite AsGa defect leading to the formation of stable As-H bonds.
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Current Oscillations in SI GaAs

We have discovered a new type of current oscillations which are controlled

by the thermal release of electrons from deer levels. Such oscillations associ-

htec'with electron traps at Ecv0.34 eV and E.-O. 40 eV are shown in Fig. 9,

Oscillations due to the dominant deep level EL2 are presented in Fig. 10. Both

types of oscillations require that a sufficiently high electric field is applied

to the v ample. We believe that they are due to electric field"-enhanced capture

of ele,;Gxons by the EL2 which leads to a negative resistance, The effect of an

electric field on the capture rate of the EL2 is caused by a configurational

barrier characteristic for this level. This barrier (about 70 meV) becomes

readily penetrable to hot electrons accelerated by the electric field.

We believe that thermally stimulated current oscillations constitute an

effective means for studying the dynamic properties of deep levels. It should

also be noted that in view of the nearly three orders of magnitude change of
ti

the frequency for a temperature change of about 80 K (see Fig. 10 ) these oscilla-

tions might provide a means for high precision temperature measurements.

Microscopic Model of the EL2 Center

We have found that the defect responsible for the dominant deep donor

E^ 0.76 eV (EL2) in melt-grown GaAs also introduces a shallow donor level at

Ec-0.025 eV. This finding makes possible the refinement of our antisite defect

AsGa model of the EL2 , formation in melt growth to a microscopic model which

accounts for the, thus far, observed electronic behavior of EL2 (including 	 1

a

its metastable state). In addition to the antisite defect As Ga , the proposed

defect center involves an arsenic vacancy, Vim , on a neighboring site. This ,.	
{

complex (shown in Fig. 7) is similar to a. DX center exhibiting a large lattice

relaxation energy and thus a configurational barrier required to account for electric

r id IL
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field-enhanced capture rate discussed above. The proposed configurational

representation of the EL2 is given in Fig, 11.
^s

GaAs-Oxide Interface

We have completed the study of the electrical properties of GaAs-native

ti
oxide interface. In this study we utilized the photoionization discharge of GaAs-

oxide interfaces in order to identify the energy position and the dynamic parameters

{ of interface states. We have sound two discrete states with energies 0.7 and 0.85 ey 	 ~

below the conduction band. Furthermore, a new gigantic photionization process was

discovered which leads to photodischarge of the interface surface states (at	 j

q	 EF-Et =0.7 eV) with rates up to three orders of magnitude greater than those

of standard photoionization transitions to the conduction band. It exhibits

a sharp peak at 45 meV below the energy gap with a shape similar to acceptor-

donor transitions and is attributed to an Auger-like process. This process

fi

involves the ejection of electrons from deep surface states following au	
r►

energy transfer from photo-excited donor-acceptor pairs associated with a

high density of states (about 10 14cm- 2 ) in the interface region. Utilizing

the new process it was possible to confirm the energetics and dynamic parameters

of the deep levels and also, for the first time, those of donor and acceptor

interface levels, consistent with theoretical. predictions.

Our interface photodischarge study of p-type GaAs MOS structures revealed

the presence of deep interface states and shallow donors and acceptors which

were also observed in n-type GaAs MOS through subbandgap photoionization

transitions. For higher photon energies internal photoemission was observed,

i.e., injection of electrons to the conduction band of the oxide from either
'.3

the metal (Au) or from the GaAs valence band; the threshold energies were 	 " kk
C

found to be 3.25 ± 0.1 eV and 3.7 ± 0.1 eV, respectively. The measured photo-

emission current exhibites a thermal activation energy of about 0.06 eV 	
r

i

.4
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which is consistent with a hopping mechanism of electron transport in the

oxide.

The energy band diagram of the GaAs-native oxide MOS structure determined

from our internal photoemission study is shown in Fig. 12.

We have also utilized the photoionization discharge of GaAs-oxide inter-

face in conjunction with capacitaz,\ce measurements and thermal emission to

establish the origin of C-V hystereses and anomalous frequency dispersion

inherent to GaAs-MOS structures.	 It was shown that, for n-type GaAs, discrete

states at E c-E
t
 =0.7 eV present at concentrations of the order of 1013 cm2

i

- play a major role.. 	 Due to the low rate of thermal emission the occupation of

these states does not obey equilibrium characteristics (determined by Fermi

level position at the surface) which leads at low temperatures to very large
tt

C-V hysteresis.	 }
q

r	r
LITERATURE SURVEY``_

t Our updated literature survey covering the period 1971-1981 shows a

€ definite ascending trend in research and device development of GaAs. 	 The
E .

number of sieentific publications (which can be considered as a rough measure	 r`

of the over-all activities in a given area) on GaAs applications (see Fig. 13)

such as lasers, high speed devices, solar cells and integrated optic devices
f	 S

increased roughly by an order of magnitude between 1971 and 1981, and still	 i
i

exhibits a definite ascending trend.
IF

In GaAs crystal growth (Fig. 14) a drastic shift of emphasis took place	 E

from liquid phase epitaxy, dominant in the'early seventies, to molcular beam

epitaxy and vapor phase growth.	 This shift is primarily due to the development
1

and widespread use of metalo-organic CVD techniques.	 Advancements in the melt
Y

growth w(r a discernible in 1981, and we believe they mark the beginning of a
f

new stage of extensive research and development on crystal growth in numerous

=; industrial organizations all over the world. 	 This rapid increase in research
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and development is motivated by the growing need for bulk GaAs with improved

electrical homogeneity and structural perfection.

Most recent progress in the purity of liquid encapsulated Czochralski

GaAs achieved through utilization of BN crucibles and advances in Bridgman

growth achieved through ultra- precise control and optimization of growth

conditions have clearly demonstrated the feasibility of dramatic improvements

in the quality of bulk GaAs.
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