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CRYSTAL CROWTH OF DEVICE QUALITY GaAs IN SPACE
I. SUMMARY

GaAs device technology has recently reached a new phase of rapid
gdvancement, made possible by the improvement of the quality of GaAs bulk
crystals. At the same time, it has become apparent that the transition to
the next generation of GaAs integrated circuits and optoelectronic systems
for commercial and government applications hinges on new quantum steps in
three interrelated oyeas: crystal growth, device processing and device-related
propertiés and phenomena. Our GaAs research program continues to be aimed at
radical advances in device quality GaAs bulk crystals, and it evolves about
these key thrust areas. Special emphasis is placed cn the establishment of
quantitative relationships among crystal growth parameters-material properties-
electronic properties and device applications. The cverall program combines
(1) studies of crystal growth on novel approaches to engineering of semiconductor
material (i.e., GaAs and related compounds); (2) investigation and cc.: :lation
of materials properties and electronic characteristics on a macro- and microscale;
(3)’investigation of electronic properties and phenomena controlling device appli-
cations and device performance.

We believe that this extensive ground program is a necessary step for
insuring successful experimentation with and eventually processing of GaAs in
a space environment. We further believe that this program addresses in a
unique way materials engineering aspects which bear directly on the future
exploitation of the potential of GaAs and related materials in device and
systems applications. We will summarize below the last two-year developments
of our program. An overall summary of the major developments in the course
of this investigation is given in Table I.

We consider our discovery that stoichiometry is a fundamental factor

affecting structural and electronic properties of melt-grown GaAs the most
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significunt and promising result of our most recent research., Thus, we have
established that deviation from stoichiometry controls dislocation density,

3 concentration of point defects, related deep levels, and the amphoteric behavior '
of impurities. This discovery has also led to identification of the causes

of irreproducible growth and of the lack of precise control of the electronic

-

properties of bulk GaAs. We have shown for the first time that these processes

FETT s

are linked directly to stoichiometry-induced defects and their interactions

Hhad
"d

during the post-solidification cooling. We have advanced substantially the

T e

BN Aal Sl A AR

1

, understanding of the role of oxygen in the melt growth of GaAs and the origin
of the major deep donor level (EL2). Our microscopic model of this level
(i.e., arsenic on gallium site plus arsenic vacancy) enabled for the first time

the consistent explanation of unique electronic properties of the EL2 and a

X E SAab AN

sensitivity to the growth conditions. The above results bear directly on pro-

cesses leading to semi-~insulating behavior of GaAs, and thus they are of funda-

v i i

mental importance in’ the pursuit of significantly improved quality GaAs for

high~speed IC applications. . E
We have discovered that atomic hydrogen (introduced into GaAs by exposure

to a hydrogen plasma) eliminates the dominant deep level (EL2). This finding

offers a new means for studying and controlling electronic characteristics of

ééAs and GaAs devices:

In electroepitaxial growth we have completed the development of a unified

b e e o on = e

theoretical treatment which explains quantitatively the unique growth kinetics,
the segregation behavior and the morphological stability. We have also intro- .
duced new growth configurations and demonstrated the feasibility of electroepi- ;ff

taxial growth of bulk GaAs crystals and of the in situ monitoring of growth B

L]
it pr A oY ek e o A3

kinetics. Utilizing the advantages of electroepitaxy in achieving abrupt

o
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acceleration (or deceleration) of'growth we showed that recombination centers d
are formed as a result of growth acceleration. This finding underlines the

importance of the dynamics of crystal growth, which has not been explicitly

considered in most investigations.

Our electronic characterization facility was extensively utilized to

assess the quality of bulk and epitaxial GaAs and to study the relationships :
: of electronic properties and growth parameters. Characterization techniques
i’ based on analysis of free carrier mobility were extended to semi~insulating
i‘ (SI) GaAs and also to p-type material, i.e., to cases particularly important
ET ; for IC applications.
§> We have completed the study of electrical and photo-electrical properties ]
g of GaAs—anodic oxide interfaces. Our interface-state model involving discrete :;
? degp and shallow levels (originating from oxidation-induced defects) made it jj,
; possible to consistently explain the gigantic photoionization effect and "&
g anomalous hysteresis and frequency or temperature'responses of GaAs MOS structures. ﬁl
;‘ INTRODUCTION e
;l Since the initiation of this investigation we have succeeded in the
g development of uniyue crystal growth approaches, new effective techniques for ; %ﬁ
?;.' a macro- and microscale characterization of key electronic properties and :\
gﬁ in the discovery of new phenomena and processes relevant to (GaAs device applica- ;!f
% | tions. Growth-property relationships established for the first time have led i
g ;f us to defining stoichiometry as a fundamental factor controlling structural and ?E
? %Z electronic properties of GaAs and to the growth of bulk GaAs of improved quality :é

} (dislocation-free and electron trap-free material). Table I summarizes the f}
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major achievements, Detalled discussion is given in our reports and publica-
tions. This year's preprints and reprints of publications are attached.
Accordingly, in this section of this report a brief outline of the most sig-

nificant recent developments will be preginted,

CRYSTAL GROWTH
In our crystal growth studies we have thus far concentrated on two
approaches: liquid phase electroepitaxy and Bridgman-type growth from the melt.
The original selection of these techniques was made on the basis of their compati-
bility with a space environment and also because they lend themselves to con-
trolling th# growth process and thus to studying growth-property relationships.

Electroepitaxy

Most basic developments in electroepitaxy (LPEE) were accomplished in previous
stages of our research. These developments were extensively discussed in our annual
reports, We will outline briefly here only some of our recent results. During the
last year we have completed the development of a comprehensive theoretical model
of LPEE. This model provides adequate explanation for the unique advantages of
LPEE in achieving ideal surface morphology, reducing density of defects generated
during the growth and/or outdiffusing from the substrate. Very high growth
rates (up to 25 um/min) render this process comparable to melt growth; thus
LPEE offers a unique possibility for obtaining sizeable "bulk' crystals of
epitaxial quality.

OQur current research on LPEE is devoted to practical refinements of this
technique as applied to growth of GaAs~related quarternary compounds and to
growth of bulk crystals. These approaches require quite different experimental
systems, i.e., a multiwell horizontal sliding boat and a vertical Czochralski-
type configuration, respectively. These systems were constructed, gested (as
discussed in our 1981 Annual Report) and are currently employed for electroepi-~

taxial growth.

-t
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Our most recent efforts were addressed to the theoretical limitations
. provided by constitutional supercooling. We have theovatically predicted a
significant enhancement of interface stability in liquid phase electroepitaxy
[ (LPEE) and we have explained the experimentally attained stable growth with

; velocities as high as 25 um/min (slose to two orders of magn:tude higher than

growth rates obtained by thermal LPE). We have defined the geometry of the
i LPEE configuration and the growth parameters (current density and polarity,
| temperature and substrate characteristics) which lead to the optimization of
surface morphology. These conditions are listed in Table II, and they should
be considered of key importance for future extension of LPEE to the growth of

high quality bulk crystals.

3

Melt~Growth Appalatus

A precision Bridgman-type apparatus was

designed and constructed for the investigation of relationships between crystal

v oww

growth parameters and the properties of GaAs crystals. Key features of the

system are the use of a heat pipe for precise arsenic vapor pressure control

and seeding without the presence of a viewing window. Pertinent growth para- r

meters, such as arsenic source temperature, thermal gradients in the growing
crystal and in the melt,‘and the macroscopic growth velocity can be independently
controlled. During operation, thermal stability better than i0.02°C is

realized; thermal gradients can be varied up to 30°C/cm in the-crystal region

and up to 20°C/cm in the mélF region; the macroscopic growth velocity can be :

varied from 50 ym/hr to 6.0 cm/hr. A schematic representation of this growth

T ke W

apparatus is given in Fig. 1. Photographs of the system arranged to operate
in a horizontal and vertical configuration are shown in Figures 2a and 2b,

respectively.
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State-of-the Art apparatus for GaAs
crystal growth from the melt designed
and zonstructed by Jona Persey
(graduate student) and Dr. Y. Nanishi.

Above apparatus in the vertical con-
figuration (John Parsey).

Figure 2,
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During the last two years we have grown about 70 GaAs crystals utilizing
this unique Bridgman-typz apparatus. The results of these studies have sur-
passed our e;spectation, as they led for the first time to the establishment of
growth-property relationships of fundamental importance for obtaining undoped
dislocation-free GaAs and electron trap-free shallow donor doped GaAs. These
relationships made it possible to resolve the origin of the dominating deep

levels and elucidate the role of oxygen in obtaining undoped semi~insulating GaAs.

Growth-Property Relationships--Critical Role of Stoichiometry

In our growth experiments the stoichiometry was varied by varying the arsenic
source temperature, TAs’ which in turn controls the arsenic pressure over the
melt and thus the melt composition. A typical range of TAs’
ponded to melt composition (determined by arsenic to gallium ratio) changes

610-628°C, corres-

from 0.52 to 0.485.

We have found that the dislocation density 1s a very sensitive functionm
of TAs' Typical results are shown in Fig. 3a. They demonstrate that dislocation
etch pit density (revealed by etching in a molten KOH) exhibits minimum concen-
tration for TAs = 617°C. In a number of crystal growth experiments we have

confirmed the importance of these optimum stoichiometry conditions. Thus, undoped

crystals routinely grown under these optimum conditions exhibited dislocation

density below 500. Doping at the level of 1017cm"3 with shallow donors suppressed

dislocation density to values below 100 cm*z, i.e., to values referred to as

corresponding to "dislocation free'" material.

Dislocations are commonly known to play a detrimental role in GaAs inte-~
grated circuits. Accordingly, the establishment of growth conditions yielding
minimum dislocation density can be considered as a significant step toward the
growth of improved device quality GaAs bulk crystals. We also believe that this

finding will become of critical importance in future stages of crystal growth
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developments as other factors contributing to dislocation formation during

post-solidification (e.g., thermal stress during cooling) are addressed in

“a

conjunction with large diameter crystals.

The optimum arsenic source temperature 617°C was also found to yield
the lowest compensation ratioc and the highest electron mobility value of n-type
?‘ GaAs crystals. Thus, these results showed that deviation from stoichiometry

is a contributing factor to the amphoteric behavior of shallow impurities in

- melt-grown GaAs crystals. In earlier studies we have observed unique spacial
éﬂ variations which could not be explained on the basis of classic segregation
kinetics controlled by the microscopic growth rate. Representative results are
shown ia Fig. 3b where the carrier concentration undergoes significant variations,
whereas the concentration of the dopant impurity (ND+NA) remains essentially
constant. As seen in Fig. 3¢, similar behavior is caused by changes in arsgnic
pressure.

The arsenic éressure was also found to control the concentration of a major |
deep level EL2. Typical dependence of the EL2 concentration on TAS obtained
for unintentionally doped GaAs is presented in Fig. 4. It is seen that the
concentration of the EL2 decreases in going from arsenic-rich to gallium-rich
growth conditions. This finding proves that the arsenic~-rich conditions are
most desired for the growth of undoped semi-insulating GaAs which requires a
high concentration of EL2, Such behavio% has been indeed confirmed by a recent

study of Liquid-Encapsulated Czochralski growth of semi~insulating GaAs.
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626°C

Dislncations in segments of

3a

GaAs crystal grown under different As

source temperatures.

610°C

(x 60)
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Figure 3b, Electron ccacentration and
ionized impurity microprofiles of Ge-
doped melt-grown GaAs obtained with
scanning IR absorption spectroscopy.

Note different behavior of ND and NA.

Figure 3c. Stoichiometry-induced
changes in incorporation of
donors and acceptors. Note
similarity to Fig. 2a.
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Post-Solidification Processes; Role of Impurities

The stoichimetry effects discussed above are caused by native defects
generated during the solidification process. Upon post-solidification cooling of

the crystal these defects interact and form other defects and defect complexes

which determine the final properties of the as-grown crystal and also its
behavior during subsequeﬁt heat treatment involved in device processing. In
our study we have employed intentional doping in order to distinguish between
solidification effects and the post~solidification phenomena (dtring cooling
of the crystal). It is a general feature of the post-solidification defect
interactions in GaAs that they are affected by shallow donors or acceptors,
irrespective of the lattice-site the dopant occupied. Yurthermore, the
threshhold dopant concentration determines the critical temperature range
at which the post-solidification interactions take place.

The annihilation.of the EL2 levei by shallow donors shown in Fig. 5
and the basically similar suppression of the dislocation density by shallow
donors shown in Fig. 6 provide unique evidence of the above behavior. The
post-solidification defect interactions leading to the suppression of dis~
location density are currently under study. The effects of doping on the
EL2 level were adequately explained by our recently formulated microscopic
moéel of this center identifying the EL2 with a complex consisting of an

antisite defect (arsenic on a gallium site) and an arsenic vacancy, AsGavAs’

This complex (shown in Fig. 7) is formed during the migration of a gallium

vacancy VGa to a neighboring arsenic site. The pertinent reaction of charge

——

> .
Ga+AsAS-*-AsGa+V +4e; thus the concentration of the EP? center

defects is V
As

[As,_V, ] is proportiocnal to n_4 where n is the electron concentration at
Ga As P

elevated temperature. By increasing n above the intrinsic concentration, the
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EL2 level is effectively suppressed and annihilated as demonstrated by the
results of Fig. 5. From the threshold value of electron concentration, it
is concluded that the formation of the 0.82 eV deep level takes place at
temperatures below about 1050 K, i.e.,, during the post-growth cooling in the

case of melt-grown GaAs,

PROPERTIES AND PHENOMENA

Electronic Properties of Bulk GaAs

Since 1980 we have been actively involved in detailed analysis of the
electronic properties of commercially available melt~grown GaAs., Represen-
tative results of our study were given in the previous Annual Report. We have
recently extended our study to microscale characterization of semi-insulating

GaAs, Commonly presént electrical inhomogeneities of SI GaAs are considered

highly undesirable and limit the transition into the next generation of GaAs

integrated circuits.

Free Carrier Mobility

Free carrier mobility values are commonly:
taken as an overall measure of perfection and purity. We have completed a
rigorous theoretical and experimentai study of carrier mobilities in GaAs which
led to the development of a practical means for fast quantitative characterization
of GaAs using computed values of mobility conveniently tabulated as a function
of free carrier concentration and compensation ratio., More recently we have

succeeded in developing a straightforward (but rigorous) procedure for the

characterization of Semi~Insulating GaAs from Hall mobility values measured
at slightly elevated temperatures. Thus, the mobility curves presented in
figures 8a and 8b permit the determination of the total concentration of

ionized impurities (N;+NZ) in semi-insulating GaAs.
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Passivation of the EL2 by Hydrogen

We have discovered that atomic hydrogen passivates the EL2 level in GaAs,
We consider this finding extremely promising for device~related studies. Accor-
" ding to our results plasma hydrogenation of GaAs (i,e., 2-hour exporure of GaAs
to hydrogen plasma at 300°C) constitutes an effective low temperature process
for controlling (or completely passivating) the EL2 level and its effects on

the electronic characteristics of GaAs and, possibly, GaAs devices,

The results obtained with hydrogenated samples, employing deep level

transient spectroscopy (DLTS) and analysis éf Schottky barrier capacitance

transients are shown in Table III togéther with results obtained with as-grown
samples and with samples heat~treated at 200°C for two hours in an H2 ambient.,
It is seen that in the as-grown samples the concentration of the 0.82 eV trap
exceeds that of the other commonly observed traps (EL4, EL5, and EL6) by about
one order of magnitude. Exposure of GaAs to hydrogen plasma leads to a sig-
nifant Aecrease of the concentration of the dominant EL2 level, i.e., by a
factor of 10 in sample 1, and by a favor of 5 and 4 in samples 2 and 3, respec-
tively. The hydrogen-induced changes in the concentration of EL4, EL5, and

EL6 are much less pronounced than those in that of EL2; these changes are within
_ the range.of the observed variations of the concentration of these levels caused

by inhomogeneities in GaAs. It is also seen that the 300°C heat treatment had

A

o e

no effect on the concentration of the deep levels. We attribute the EL2

passivation process to thelinteraction of hydrogen with the unshared electrons

s v e - ey e

FF oy TR

of the antisite AsGa defect leading to the formation of stable As-H bonds.
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Current Oscillations in 81 GarAs

We have discuvered a new type of current oscillations which are controlled
by the thermal release of electrons from deep levels., Such oscillations assoel~

ated with electron traps at Ec~0.34 eV and Ec~0.40 eV are shown in Tig. 9,

Oscillations due to the dominant deep level EL2 are presented in Fig. 10. Both .

types of osclllations require that a sufficiently high electric field is applied
to the ua@pleh We believe that they are due to electric field-enhanced capturc
of ele.trons by the EL2 which leads to a negative resistance, The effect of an
electric field on the capture rate of the EL2 is caused by a configurational
barrier characteristic for this level. This barrier (about 70 meV) becomes

readily penetrable to hot electrons accelerated by the electric field.

We believe thét thermally stimulated current oscillations constitute an
effective means for studying the _dynamic properties of deep levels. It should !

also be noted that in view of the nearly three orders of magnitude change of

R e ha

the frequency for a temperature change of about 80 K (see Fig. 10 ) these oscilla-

tions might provide a means for high precision temperature measurements. . |

Microscopic Model of the EL2 Center

We have found that the defect responsible for the dominant deep donor

E;—0.76 eV (EL2) in melt-grown GaAs also introduces a shallow doner level at ‘ e

-
-

Ec—0.025 eV. This finding makes possible the refinement of our antisite defect
AsGa model of the EL2:formation in melt growth to a microscopic model which -
accounts for the, thus far, observed electronic behavior of EL2 (including

its metastable state). In addition to the antisite defect ASGa’ the proposed

G DAL N Wi e 3,
e -

defect center involves an arsenic vacancy, VAS, on a neighboring site. This

complex (shown in Fig. 7) is similar to a. DX center exhibiting a large lattice : }

relaxation energy and thus a configurational barrier required to account for electric
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field-enhanced capture rate discussed above, The proposed configurational
representation of the EL2 is given in Fig. 1l.

GaAs-0Oxide Interface

We have cempleted the study of the electrical properties of GaAs-native
oxide interface. In this study we utilized the photoionization discharge of GaAs~
oxide interfaces in order to identify the energy position and the dynamic parameters
of intevface states. We have round two discrete states with energies 0.7 and 0.85 eV
below the conductior band. Furthermore, a new gigantic photionization process was
discovered which leads to photodischarge of the interface surface states (at
EC-Et =0,7 eV) with rates up to three orders of magnitude greater than those
of standard photoionization transitions to the conduction band. It exhibits
a sharp peak at 45 meV below the energy gap with a shape similar to acceptor-
donor transitions and is attributed to an Auger-liké process. This process
involves the ejection of electrons from deep surface states following an
energy transfer from photo-excited donor-acceptor pairs associated with a

14

high density of states (about 10 cmfz) in the interface region. Utilizing

the new process it was possible to confirm the energetics and dynamic parameters
of the deep levels and also, for the first time, those c¢f donor and acceptor
interface levels, consistent with theoretical predictions.

Our interface photodischarge study of p~-type GaAs MOS structures revealed
the presence of deep interface~states and shallow donors and acceptors which
were also observed in n~-type GaAs MOS through subbandgap photoic:ization
transitions. For higher photon energies internal photoemission was observed,
i.e., injection of electrons to the conduction band of the cxide from either
the metal (Au) or from the GaAs valence band; the threshold energies were

found to be 3.25 b 0.1 eV and 3.7 s 0.1 eV, respectively. The measured photo-

emission current exhibites a thermal activation energy of about 0.06 eV

.
o

E
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Figure 1l. Configuration coordinate
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. relaxation energy; (b) large lattice
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which is consistent with a hopping mechanism of electron transport in the

oxide. |
The energy band diagram of the GaAs~native oxide MOS structure determined ”

from our internal photoemission study is shoyn in Fig. 12. t
We have also utilized the photoionization discharge of GaAs-oxide inter-

face in conjunction with capacitance measurements and thermal emission to

establish the origin of C-V hystgresis and anomalous frequency dispersion

inherent to GaAs~MOS structures. It was shown that, for n~type GaAs, discrete

. states at Ec--Et = 0.7 eV present at concentrations of the order of 1013cm—2 ;

- play a major role. Due to the low rate of thermal emission the occupation of

these states does not obey equilibrium characteristics (determined by Fermi

? level position at the surface) which leads at low temperatures to very large i
§. c-v hysterésis. %
_ LITERATURE SURVEY .
? Our updated literature survey covering the period 1971~1981 shows a % { -
g definite ascending trend in research and device development of GaAs. The L é
% number of sicentific publications (which can be considered as a rougb measure ?
é, of the over-all activities in a given area) on GaAs applications (see Fig. 13) i :
%~ guch as lasers, high speed devices, solar cells and integrated optic devices g é_
é; increased roughly by an order of magnitude between 1971 and 1981, and still b ;
@ v
5: exhibits a definite ascending trend. ; i
c
%f In GaAs crystal growth (Fig. 14) a drastic shift of emphasis took place ; i
% from liquid phase epitaxy, dominant in the early seventies, to molcular beam y
? epitaxy and vapor phase growth. This shift is primarily due to the development %\
; and widespread use of metalo-organic CVD techniques. Advancements in the melt Q
f growth were discernible in 1981, and we believe they mark the beginning of a ; '
%fﬁ new stage of extensive research and development on crystal growth in numerous ;

industrial organizations all over the world. This rapid increase in research

.
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and development is motivated by the growing need for bulk GaAs with improved
electrical homogeneity and structural perfection.

Most recent progress in the purity of liquid encapsulated Czochralski

3
i
{
:
:
!
;
i
4
|
:

GaAs achieved through utilization of BN crucibles and advances in Bridgman
growth achieved through ultra- precise control and optimization of growth
conditions have clearly demonstrated the feasibility of dramatic improvements i

in the quality of bulk Gaas. i
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