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Simple analytical expressions may be derived for sound

velocities in cubic crystals by using lattice harmonics or

functions which are invariant under the crystal symmetry operations.

Thead expressions are in good agreement with the exact results

for typical crystals such as metallic iron and potassium

fluoride.
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The propagation of sound waves in single crystals is governed

by a set of three simultaneous linear equations known as the

Christoffel equations. [ 1-3] The characteristic equation
relates the sound velocity v to the direction n of sound

wave and to the elastic constants of the crystal. When the

direction n lies along a crystal symmetry axis, simple solutions

may be obtained for the sound-velocities. In many cases, these

simple solutions may be readily reversed so that the measured

sound velocities may be used to calculate the elastic constants.

However, there are many situations where the solution of the

characteristic equation is required for arbitrary crystallographic

directions= for example, an argon crystal grown at low temperatures

may be inaccessible except for sound velocity measurements. [4,51
For these arbitrary directions, it is advantageous to have

simple approximate solutions, preferrably analytical in form.

Many experimental quantities, such as nuclear magnetic

resonance (NMR) second moments and sound velocities, are invariant

under the crystal symmetry operations, thus they may be expanded

in terms of lattice harmonics of the identity representation.

These lattice harmonics are specific linear combinations of

spherical harmonics which are invariant under the crystal symmetry

7	 operations. [6-8]	 The linear expansions are very convenient

for certain experimental quantities such as NMR second moments

where it can be rigorously shown that the expansion is limited

to only the zeroth, second and fourth order spherical harmonics.

[9] However, such limitations may be absent for the sound

velocities, thus the linear expansions many converge rather
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slowly. In this paper, the simple analytical solutions for sound

velocities along the major crystal symmetry axes have been

extended to arbitrary directions for cubic crystals. However,

we have not restricted ourselves to linear expansions alone.

Instead, we have used simple functional forms which are chosen

to fit the experimental data exactly along various directions

with high crystal symmetry. These approximate solutions have

been compared with the exact results, and the agreements are

satisfactory.

By choosing the reference or coordinate axes to be coincident

with the edges of a cubic cull, then the cubic crystal is

characterized by three elastic sti'fness constants, 
c11' c12

and c44 . The Kelvin-Christoffel stiffnesses are given by [ 1 -31

s	
r ii = ni2(c 11 	c44 ) + c44	 (1)

T' i j = nin j ( c12 + c44 )	 for i * j
	

(2)

where n1 , n2 and n3 are the components of the unit vector n.N
The sound velocities v are obtained by solving the characteristic

equation or determinant IT-i j
 - P v2 Sij l = 0 where P is the

density of the crystal. This equation inay be simplified by

introducing the dimensionless variables A=(p v2-c44)/(c11-c44)

and 
P=(c12+c44)/(c11-c44) 

so that the eigenvalue A depends

only on a single parameter P characteristic of the cubic

crystals

'ri se— X	 P n1 n 2	 P "n o *n3

t'	

z

Q -n i 11 2	'n1 '-	 r^2In3	 U
z

(3)

P"1 713	 r r2'n3	 ^3 
_
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On expanding the determinant, we get the cubic equation

,\3 - 2 + P(1 -^3 2 )A - Q(1 -	 2 (1 + 20) = 0.	 (4)

where P = n1 2n22 + n 2 2 n 3 2 + n3 2n1 2 and Q = n1 2n2 2n3 2 are fourth

and sixth order functions which are invariant under the crystal

symmetry operations. These functions are equivalent to the lattice

harmonics [6,71 after orthogonalization and normalization= for

example, the fourth order lattice harmonic is given by
4•

(525/161t)I [P - (115)].	 From (3) or (4), the eigenvalues have

simple forms when n is parallel to one of the three major crystal

axes, the cubic edge [100], the face diagonal [110], and the body

diagonal [1111, [1 -3]

nil [100] s P=O, Q=O, AL
=1

, AT
=0,0.

NI) [110]: P =1/4, Q =O, XL	 '\T=0' '\T=O, (1-0)/2.

nJJ [111] o P=1/3, Q=1/27, XL= (1+2p)/3, XT=(1-P)/3, (1-P)/^.
The largest eigenvalue XL refers to the longitudinal wave wher•as

the other two eigenvalues A T refer to the two transverse or shear

waves. It may also be seen from (3) or (4) that A T=O for one of

the transverse waves when n is perpendicular to one of the cube

edges (Q=0). Furthermore, simple results may also be obtained

when n is perpendicular to one of the face diagonals. By defining

= u(1-P), then (4) may be written as

[1-p]2[(u3- u2+Pu-Q) + R(-u3+Pu-2Q)] = 0.	 (5)

If u is independent of	 then both parentheses in (5) would be

zero. Solving u3-u2+Pu-Q=0 and -u3+Pu-2Q=0 for P and Q, we get

P = 2u - 3u2 ^	 Q = u2 (1-2u).	 (6)

When n is perpendicular to one of the face diagonals, then n
1 =n2N

and n3 2 = 1 - 2n1 2 . Thus we have
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P = 2n1 2 - 3n 1 4 	Q = n14 (1 - 2n 1 2 ) .
	 (7)

Comparison with (6) indicates that u=n 1 2 is one of the solutions.

Thus one of the transverse wave eigenvalues is A T = ni2(1-p).

For ni =n2 , the characteristic equation is obtained by the substitution

of (7) into (4):

A3 - A2 + P(1-j32 ) (2n i 2 - 3n i 4 )X- ni 4 (1-2n1 2 ) (1_^) 2 (1+2.P) = 0.

Since one of the solutions is n i 2 (1-,3), this cubic equation may

be factorized into the product of A-n i 2 (1-p) and the quadratic

equation

^2 - [1+n 1 2y - 1)]A - (P-1) (2P +1)n 1 2 (1 - 2n1 2 ) = 0.	 (8)

The other two eigenvalues may be obtained by solving (8).

We will now extend these simple solutions to arbitrary

directions of n. For the longitudinal wave, the simple functionN
A L = 1 - 2(1-`3 ) P	 (9)

agrees with the eigenvalues for n along any one of the three
.v

major axes (100, 110, 111). The next order correction would be

proportional to an invariant function up to the eighth order.

This function would be a linear combination of P, Q and P 2 . By

imposing the condition that this function vanishes when n isN
along one of the three major crystal axes, the result is

4P 2_P-3Q. Thus we have the result

XL = 1 - 2(1-r )P + K(4P 2 -P-3Q) .	 (10)

The constant K will be chosen so that L agrees with the exact

value when n is along the [112] crystal axis (this crystal axisN
is perpendicular to both a face diagonal and a body diagonal),

where we have n1 2 = n2 2 = 116, n3 2 	 213, P = 1/4, Q = 1/54, and

E
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4P2-P-3Q = -1/18. From (8), we get /\ L = [5+p+(9-6'0+3392)1]/12.

Substitution into (10) gives K = (3/2) ` 1 +5p- (9-613+332)],

Thus we get

XL = 1 - 2(1-'P)P + (312)L1+5P-(9-6P +33 2 ) ^ J(4P 2 -P-3Q)	 (11)

for the longitudinal waves.

From (3) or (4), the sum of the three eigenvalues is always

unity, hence it is necessary to evaluate /\ T for only one of the

transverse waves. We note that /\ T=0 when Q=0 (n perpendicular

to a cube edge) and that T = n1 2 (1-P) when n1 =n2 (n perpendicular

to a face diagonal). Because of these restrictions, it may not

be advant,

harmonics

diagonal,

n1 2 =P-

ageous to expand

or invariant fu

we get P2-3Q =

( P2-30 and it

A T as linear combinations of lattice

nctions. For ^j perpendicular to a face

(n1 2 - 3n14 ) 2 from (7), hence we have

follows that

AT = (1-p)[P- (P2-30 ]	 (12)

This relationship is also exact for n perpendicular to a cubeV

edge	 T=0 when Q =0). We note that from (7), n1 2 may also take

other forms. For example, we may also write n12=(2P2-6Q)/(P-9Q).

However, the expression ^ T = (1-p)(2P2-6Q)/(P-9Q) will not

vanish for Q=O.

The anisotropy (or the variation with the direction of the

sound wave) of the eigenvalues depends only on the dimensionless

parameter P. For A=1, the three eigenvalues are A =1 ,0, 0 for

any direction{ that is, there is no anisotropy for the sound

velocities. Usually (although not always), we have P< 1 for

ionic crystals and 
r 
>1 for metals; the extreme values are 

r 
=0.19
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for SnTe and	 =6 for metallic sodium. ^2, 101	 Typical values

are ^=2 .1866 for metallic iron (c 11 =23.30, c 12=13.92 and c44=11.62

in units of 10 11 dynes/cm 2 ) and 0=0.523 for potassium fluoride

(c 11
=6.58, c 12=1.49 and c 44 =1.28). The exact eigenvalues for these

crystals are shown in Fig. 1 and Fib;. 2 as the solid lines for n

in the (100), (110) and (111) crystal planes by solving (3) or (4)

numerically. The points in the figures are the approximate

eigenvalues obtained from the analytical expressions (11) and (12)

for the longitudinal and transverse waves. For all orientations

of the sound wave direction n, the agreement is quite good between

the exact and the approximate eigenvalues.

In conclusion, it may be seen that simple analytical expressions

may be used with good accuracy for sound velocities in cubic

crystals. These expressions are based on the lattice harmonics

or functions which are invariant under the symmetry operations of

the crystal. Whereas linear expansions can be used for the

longitudinal waves, other functional forms may be necessary for

the transverse waves because of the "cross-overs" of the two

branches. These simple results may be useful for fitting

experimental data of materials of unknown orientations crystallized

at low temperatures or for the inversions of sound velocity data

to obtain the elastic constants. [4,5]

The partial financial support by National Aeronautical and

Space Administration grant NAG-5-156 is gratefully acknowledged.
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FIGURE CAPTIONS

Fig. 1. Eigenvalues X L and	 T of the longitudinal and transverse
waves for metallic iron ( P= 2.1866) when n is in the (100),
(110) and (111) crystal planes. Solid lines are the exact

values from (4). The points are the approximate values

from the analytical expressions (11) and (12).

Fig. 2. Eigenvalues A L and AT of the longitudinal and transverse
waves for potassium fluoride ( P= 0.523) when n is in the (100),
(110) and (111) crystal planes. Solid lines are the exact

values from (4). The points are the approximate values

from the analytical expressions (11) and (12).
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