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l. INTRODUCTION

This report is the fourth semi-annual report of a research
project concerned with the optimal design of helicopter rotor
blades. The goals of the project and tte approach adopted have
been described in previous reports, and these descriptions will
not be repeated here. The present report will be confined
primarily to describing several studies comparing the forced
responses of an initial (i.e., non-optimized) blade to those of a
final (optimized) blade,

At the 39th Annual Forum of the American Helicopter Society
last spring, we presented a paper describing our work on optimal
rotor biade design. 1In the ensuing discussion, several questions
were raised about the manner in which the optimal design problem
had been formulated. One question was whether or not the forced
response of the blade can be adequately contrnlled, as we héve
assumed, by our approach of "frequency placec.went", that is, of
restricting the natural freguencies of the blade to lie within
narrow intervals located away from certain integer multiples of
the rotor speed. A second question was whether or not aerodynamic
damping substantially reduces the resonant peaks, in which case
concern about avoiding resonances through proper selection of
frequency windows would be unnecessary. Similar questions had
been mentioned in the original proposal for this project, when it
was stated that the sensitivity of the optimal design to the
choice of frequency window would be studied, and if it was found
that frequency placement did not in fact reduce vibrations, then

some other objective such as minimizing root shear would be



explored. Because of the timely coincidence of the questions
raised at the Forum and the intent expressed in our original
proposal, we decided the tﬁme had arrived to investigate the
appropriateness of "frequency placement".

The investigation of this question was carried out through
two, somewhat overlapping, problems. First, the forced
responses of an initial (i.e., non-optimized) design were
compared to those of a final (optimized) design as the frequency
of the forcing function was changed; cases with and without
aerodynaiic damping were considered. Next, the responses of
initial and final designs were evaluated as one natural frequency
was varied (the cthers were held fixed), and a forcing function
containing harmonics of the rotor speed was applied., Again, cases
with and without aerodynamic damping were considered. The general
finding from these studies is that frequency placement is a
viable means of reducing vibration, although it is by no means
the only method and should be used in conjunction with others.

In the pesnultimat2 section of the report, several topics are
briefly described in which studies have heen initlated during the
reporting period, but not yet completed. The final section of the

report contains a sketch of plans for future work.

2. RESPONSE OF STARTING AND OPTIMAL DESIGNS FOR VARYING FORCING

FREQUENCIES

In this section of the report, the response of both the
initial and final (optimal) designs to an external forcing
function is studied as the frequency of the forcing function is

varied. Blades both with and without aerodynamic damping are
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considered, To formulate these problems, consider the forced
behavior of a rotor-blade,

The equation of motion for the finite-element representation
of a rotor blade subjected to an external excitation may be

written in matrix form as

(MI{X(t)} + [CH{X(t)} + [KI{xX(t)} = {F(B)},
where

[M] = mass matrix,

{X(t)} = column vector of nodal displacements,

(C]

(K]

{F(t)} = forcing function column vector.

damping matrix,

stiffness matrix, and

The forcing function may in turn be expressed as

(F(t)} = {v,} eiWt,

where

= forcing frequency, and

W
Vo = forcing amplitude.

After some calculation, it can be shown that the amplitude
of the response -- written as {X}, independent of t -- can be

given as

{x} = [K + iwCc - wM]~1{v_}

In the present section, the flapping respunse is considered.

The in-plane response is inferred from the results without

= .



damping, since there is little aerodynamic dariping in the inplane
direction.

Fig. i shows a plot of the forcing amplitude V., [Ref.l]
used in the study. Given the forcing amplitude, we can calculate
the response of each node of the finite-element representation of
the blade as the value of the forcing frequency, W, is varied.
The tip (finite-element node farthest from the hub) response is
of special interest. Before the results obtained from this study
are presented, it is useful to examine the frequency placement
resul ts which are described in the Third Semi-Annual Report
(pp.21-26)., The results for the frequencies (in units of

cycles/rev) are, for flapping mode only,

MODE INITIAL DESIGN FINAL DESIGN
lst 1.18 L.18
2nd 3.22 3.09
3rd 5.89 5.67

Blade dimensions are given in Table 8, p. 26, of the Third Semi-

- Annual Report.

The frequencies in the above table correspond to the
symmetric modes of a teetering rotor. Thus, only even harmonics
of the rotor speed have been considered as forcing frequencies.
As a result, the optimized blade (Final Design) finds the third
mode moved away from the critical 6.0/rev (from 5.89 to 5.67).
Similarly, the movement of the second mode to 3.09/rev removes it
from 2.0 and 4.0/rev. In the comparison study to follow, however,
we will apply the entire spectrum of frequencies to this blade

(not just even harmonics). Thus, the "Final Design" can no longer



be considered optimum. A comparison of the two blades, howuver,
does indicate the strong effect of resonance because each case
has a distinct resonance (6 and 3/rev)

We shall now consider the results of the present study. Fig.
2 shows the tip responses of both the initial design and final
(i.e., optimized) design as functions of the forcing frequency,
Aerodynamic damping has been neglected (Alternatively, the
results can be interpreted as giving the inplane response.,). It
can be seen that near 1.18 cycles/rev, the responses of the two
designs are very similar. However, the responses corresponding
to the second and third modes differ significantly. For example,
in the second mode the peak of 3.22 cycles/rev (initial dgsign)
moves to 3.09 cycles/rev (final design). Similarly, the peék of
the third mode moves from 5.89 cycles/rev to 5.67 cycles/rev,
which is especially important since it is highly desirable to
keep the frequency away from the integer frequency of 6
cYcles/rev. We conclude from these reshlts that the frequency
placement approach does have a significant effect on the forced
tip response when damping is not considered.

Next, the effect of aerodynamic damping is considered, that
is, the results to be presented correspond to flapping.
Mathematical details of the damping formulation are available in
the thesis by Ko [Ref.2]. The effect of aerodynamic damping on
reducing the resonant peaks of the tip response of the initial
blade is shown in Fig. 3. Fig. 4 shows the damped responses of
both the initial and optimized blades so that the effect of

frequency placement can be studied., It is interesting to observe



here that when damping is included, no apparent advantage is
gained by optimizing the blade, at least in terms of reducing the
tip response, except in the range of 3-4/rev, in which a thirty-
five percent reduction occurs., However, we must also examine the
effect of optimization when the response is measured by the
average shear force existing in the blade.
Consequently, the shearing force in the blade is considered

next. As a measure of the average shear in the rotor, we consider

the sum of the squares of the shear force (abbreviated SSS),
SS8S = le + Y22 + eee + Ylﬂz

In this equation, Y; represents the shear force at node i in

the (ten-element) finite-element model. Note that the root shear
is necessarily included as one of the terms on the right-hand
side of the equation, so that a large value of root shear will
cause SSS to also be large,

Fig. 5 shows the variation of SSS with respect to the forcing
frequency for the initial design with and without aerodynamic
damping. Fig. 6 shows the same quantities for the final
(optimized) design., Fig. 7 compares the quantity SSS corresponding
to initial and final designs when aerodynamics is considered.
Inspection of these figures shows that, in contrast to behavior
of the tip response, the shear response is significantly affected
by optimizing the blade, even when aerodynamic damping is
included. The 3/rev loads are increased by fifty percent due to
the movement of wo from 3,22 to 3.09/rev. Similarly, the 6/rev

loads are reduced by seventy percent due to the movement of Wq



from 5.89 to 5.67/rev. Thus, even with damping, frequency
placement is a powerful driver of loads. It follows that
frequency placement can be justifiably considered an important

part of blade optimization,
3. BLADE RESPONSE TO HARMONICS OF ROTOR SPEED

In the study just described, the response of the blade to
changes in the forcing frequency was considered. Now we consider
a different approach. In effect, we examine how the blade
responds to a forcing function "during the optimization
procedure" -- in the sense that during optimization, the
optimization algorithm varies the natural frequency of the blade
(to force it to satisfy the fregquency constraints). In obtaining
the results to be presented next, we simulated the optimization
procedure by vérying the natural frequency. Thus we can observe

what happens to the forced response during frequency placement.

The formulation of the approach is as follows., Through
appropriate transformations (described in the Appendix), the

system mass matrix can be written as
M} = [o3~Trog-1
and the system stiffness matrix as
[K] = [M][U] diag[ (w;?) J(UlT(M]

in which w; are the natural frequencies of the system, [U] is a
matrix whose columns are eigenvectors and the notation "diag"

indicates a diagonal matrix (all off-diagonal terms vanish). From



examination of these expressions, it can be seen that the
stiffness and mass matrices can be considered functions of the
natural frequencies, Thus it becomes possible to fix all
frequencies but one, and then study the response of the system as
that one frequency is varied. In partifular, the response to the

following forcing function will be studied:
(F(£)) = (v )it 4 (v, )el2WE 4 4 {y )elnWt

where

W = the rotor speed, and
{vn} = (l/n) {VO} ’

and {V,} was defined previously in Fig. l. Sipce the arguments of
the exponentials are integer multiples of W, resonance will occur
at harmonics of the rotoxr speed. The particular forcing function
given above is known from empirical observation to provide an
approximate, but physically realistic representation of the
radial and harmonic variations of the amplitude of the load on a
real blade., As in Section 2, the blade response will be defined
through the tip displacement and the sum of the squares of the
shears, except that, here, the n = 1 term has been omitted from
the expressions for calculating tip displacement and shears
because this term represents a tip-path plane tilt that is
controlled by the pilot for trimming purposes, It is not part of
the true vibratory loads we are considering.

Results for the problem just formulated are shown in Fig. 8,
where the sum of the squares of the shears is plotted as a

function of w,, the second natural frequency, with the other
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natural frequencies being fixed, This figure corresponds to the

initial blade design (Blade dimensions are given in Table &, p.

26, of the Third Semi-Annual Report.) Fig. 9 shows the same
quantity for the case where the third natural frequency is
varied, It is interesting to note that the response curve for the
damped case in Fig., 9 lacks resonant peaks -~ apparently the
damped response is so completely dominated by the resonance of
the second natural frequency, which is fixed near 3/rev, that the
(damped) resonant peaks for the third frequency are negligible by
comparison, It is worth mentioning, in passing, that the value
of the damped response corresponding to wy = 1.18, wp = 3.22, and

wy = 5.89 can be read from Fig., 8 25 well as Fig. 9 and can be

n

een to be the same (approximately 6.8 lbs). This observation
provides a re-assuring check that the figures represent actual
behavior and not a programming error,

For the final (optimal) design, the analogous gquantities are
plotted in Figs. 1¢ and ll. Again, no resonant peaks are present
in the damped response when the third natural frequency is
varied., Comparison of magnitudes of ordinates in Figs. 8 and 1¢
(no damping) shows that the overall shear measure is reduced in
the final design in the regions away from resonance. Also, the
choice of scale on the vertical axis in Fiygy. 10 highlights the
effect of frequency placement. Note that by inspecting Figs. 8-
11, a designer may select the design frequency which minimizes
the average shear as measured by the SSS.

One of the most interesting results of Fig. 10 is

information about the width of valleys and peaks, since



this gives design information, First, let us examine the no-
damping curve (inplane response), Here, the minimum points are
nearly at the centers of the regions (2.55/rev) and (3.55/rxev).
The frequency windows to maintain no more than thirty percent
increase in loads are 2.40 - 2,7@0/rev and 3.40 - 3.70/rev (plus
or minus 0.15/rev) -- a fairly narrow window, For the damped
curves (flapping response), minima are also near the one-half
points, but the window for thirty-percent increases are much
wider -- 2.20 - 2.90/rev and 3,20 to 3.8¢/rev (plus or minus
g.30/xev)., Stated another way, inplane frequencies should be no
closer than a 0.4/rev from integers, but flapping frequencies may
be as close as .2 from an integer., It should be emphasized that
these observations apply to this particular example and may not
be generalized for other frequency constraints. In future work,
we will apply similar reasoning to optimized articulated rotors
for which the frequency spectrum is more meaningful.

Another conclusion to be drawn from the above results is
that the undamped response curve has verxy flat-~bottomed "valleys"
when one of the fixed frequencies is near an integer value (cf.

Figs. 10 and 1l).
4. OTHER STUDIES CCNDUCTED DURING THE REPORTING PERIOD

As an extension of work reported previously, data were
obtained for six rotor-blades produced by several different
helicopter companies, and considerable effort was exyended in
attempting to choose box-beam dimensions and other stiffness and
maz~ parameters in our finite-element model in order to match the

natural frequencies of these given blades. fThe motivation for

10
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this work is, once a given blade can be properly represented by
the finite-element model, to improve it through the application
of optimization techniques. The task of matching frequencies
necessarily proceeds by a certain amount of trial-and-error and
is, as a result, time-consuming and tedious. The results of this
frequency-matching effort will be described in the final report.

Another study conducted during the reporting period has been
concerned with the application of an alternative optimization
technique ~- the optin.. .ity-criteria method, This method, a
generalization of the traditional stress-ratio approach to
improving a structural design, has received considerable
attention among structural optimizexrs in the last five to ten
years [Refs.3-5), and thus it appears appropriate to make at
least a preliminary investigation of its applicability to rotor-
blade des:yn., At this writing, however, our efforts to implement
the opt mality-criteria method have not been successful; since
there exist a number of different ways of implementing the
method, one should not conclude that it cannot be made to work
for rotor-blade design., Only the particular implementation we
have chosen appears in doubt, At present, we have no plans for
continuing work on this method, since it threatens to divert
effort from more promising topics.

Yet another topic of study during the reporting period was
the effect on natural frequency calculations when secondary
structural items such as shear deformation, restraint of warping
during twist, and filler stiffness are ignored. A simplified

elliptic blade profile, approximating a true helicopter blade,

11



was studied to obtain rough estimates of modelling errors caused
by neglect of the secondary items. It was concluded that the
mathematical model we have been using should be quite accurate
(pexrhaps only a one percent change at most due to the
consideration of secondary items.,). However, it is imperative
that accurate filler properties, dimensions, and locations be
known in order to represent the mass distribution with a
reasonable degree of precision.

A final topic of study during the reporting period has been
the implementation of a faster subroutine for eigenvalne
calculation., Computer code for the subspace iteration algorithm
has been obtained and integrated into our blade analysis program.
Difficulties involving missing eigenvalues have surfaced,

however, and further development is‘required.

v

5. FUTURE WORK

In addition to continuing work in the area described above
(matching data for some actual rotor blades to finite-element
models, and then optimizing the blades), we also plan to work in
another area: that of investigating the validity of the
dimensional constraints we have chosen. In previous reporting
periods, we have described many examples in which constraints on
the thicknesses of thewalls of the box beam have been present.
It can be concluded that such constraints can be handled in an
optimization procedure with little difficulty. Another, less
clearly defined, type of dimensional constraint is that of
constructibility; for example, if an actual blade is to be

constructed, abrupt thickness changes from one finite element to

12



the next present mapufacturing difficulties. In the remaining
year of the research project, one area of investigation will be
to formulate, through consultation with helicopter manufacturers,

realistic constraints for constructibility.
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6., APPENDIX =~ Derivation of Mass and Stiffness Matrices
as Functions of Natural Frequencies

pefine
(k1 = [(M1=1/2 (k) (:)=1/2,

and construct a square matrix [U*] by using the eigenvectors of
[K*] as columns., If the eigenvectors are normalized to the

identity matrix, that is, if
1T’y = (1,
it then follows that
(w*1Tk*11v*) = aiag [ (wiz) 14

2

where w;“ are the eigenvalues of [K*].

Next, let
o] = m1~/21p*],
from which it follows that
1T = (' T2,
-t = (v*1Tm 172,

TORITINED

diag [ (w3?) 1,

and

(w1t Mol = (1.

Finally, then, the stiffness and mass matrices can be

written as functions of the eigenvalues, wiz:

14



M) = [u)~Tru;-t

n

(M)1/2 (172,

and

u

[K] = (v]~Tdiag( (w;?) 1(U)~%

M1172 10" diagl (wi?) 110*)TM)1/2

= (M) (uldiagl (w;?) 1(ul1T[Mm].

Note that the eigenvectors, [U], and eigenvalues, wiz,

appearing on the right-hand side were originally calculated from
the stiffness and mass matrices, [K]) and [M]. If we consider only
relatively small changes in the frequencies, w;, then the
eigenvectors should relatively unchanged. Thus the last two
equations for [M] and [K] with [U] held fixed can be considered
as expressing the mass and stiffness matriges as explicit

functions of the natural frequencies.
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