General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
REFRACTORY MATERIALS FOR HIGH-TEMPERATURE THERMOELECTRIC ENERGY CONVERSION

CHARLES WOOD* AND DAVID EMIN**
*Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; **Sandia National Laboratories, Albuquerque, NM 87189.

INTRODUCTION

The maximum efficiency (η) for the conversion of heat to electrical energy using a thermoelectric couple with a hot junction at temperature T_1 and a cold junction at temperature T_0 is given by [1]

$$\eta = \frac{\text{electrical energy delivered to external circuit}}{\text{energy consumed from heat source}}$$

$$= \frac{(T_1 - T_0)}{T_1} \left(\frac{M-1}{M+T_0/T_1}\right)$$

$$= \left(\frac{T_1 - T_0}{T_1}\right) \left(\frac{M-1}{M+T_0/T_1}\right)$$

where

$$M = [1 + Z_c (T_1 + T_0)/2]^{1/2}$$

Z_c is a materials parameter called the figure of merit of the thermocouple. It is a function of the Seebeck coefficients, α_1 and α_2, the electrical resistivities, ρ_1 and ρ_2, and the total thermal conductivities, κ_1 and κ_2, of the two respective legs of the thermocouple:

$$Z_c = \frac{(\alpha_1 - \alpha_2)^2}{[(\rho_1 \kappa_1)^{1/2} + (\rho_2 \kappa_2)^{1/2}]^2}$$

The thermodynamic efficiency of an ideal reversible engine, the first factor of Eq. (1), is reduced by the irreversible losses of heat conduction and Joule heating in the thermocouple, accounted for in the second factor. Obviously, increasing the hot junction temperature, T_1, and the figure of merit, Z_c, both increase the conversion efficiency. For the purpose of comparing individual materials, it is convenient to define a figure of merit for a single material:

$$Z = \frac{\alpha}{\rho \kappa} = \frac{\sigma}{\kappa},$$

where σ is the electrical conductivity. The dimensions of Z are deg$^{-1}$. Thermoelectrics are generally characterized by the value of the dimensionless parameter ZT, since the efficiency is a function of $(T_1 + T_0)Z$.

Semiconductors, as distinct from metals or insulators, have the highest Z values. Therefore they are used for thermoelectric energy conversion. As illustrated in Fig. 1, metals are excellent conductors but their Seebeck coefficients are too low. Insulators can have high Seebeck coefficients but are too electrically resistive. A good compromise can be made by choosing highly-doped semiconductors with α and σ values intermediate between the properties of insulators and metals.

In the search for refractory semiconductors for high-temperature thermoelectric devices, materials with both itinerant and hopping-type charge transport are under study. With itinerant motion the charge carriers are generally viewed as quasi-free particles which undergo occasional...
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
scattering events. These carriers are associated with mobilities greater than or comparable to 1 cm²/V-sec. In the hopping-type semiconductors, the charge carriers are localized at atomic sites [2]. The equilibrium positions of the surrounding atoms are displaced to positions that are consistent with the presence of the localized carrier. That is, the carriers form small-polarons. Small-polarons move between sites via multi-phonon assisted hopping. The resulting mobilities tend to rise with temperature to a maximum which is typically comparable to 1 cm²/V-sec. Both classes of semiconductor have yielded promising candidates for high-temperature thermoelectric devices. We shall review the distinguishing features of promising materials of both classes: Itinerant motion in rare-earth chalcogenides and small-polaron hopping in boron-rich borides.

![Fig. 1. Typical Variation of Thermoelectric Properties with Charge-Carrier Concentration.](image)

Rare Earth Chalcogenides: Structure

One class of refractory materials receiving considerable attention for high temperature thermoelectric energy conversion is the rare-earth chalcogenides. Rare-earth chalcogenides generally form the following binary compounds: RX, R₂X₃, RX₂, where R represents the rare-earth and X the chalcogenide atoms S, Se, or Te. The RX compounds crystallize in a fcc NaCl structure, the R₂X₃ form solid solutions in a bcc (Th₃P₄) tetragonal or orthorhombic structure, and the RX₂ compounds usually are found in either cubic or tetragonal structure [3].

Only compounds in the homogenous range R₃X₆ – R₂X₃ have been extensively investigated for high-temperature thermoelectric applications. There are often two and sometimes three polymorphic modifications of the solid solutions R₃X₆ – R₂X₃. (i) A low-temperature (< 900 – 1000°C) orthorhombic α-phase; (ii) an intermediate temperature (900 to 1300°C) tetragonal β-phase; and (iii) a high temperature (> 1300°C) cubic (Th₃P₄) metastable γ-phase. It is not clear whether these polymorphic forms occur over the whole compositional range from R₂X₃ to R₃X₆. Furthermore, with the exception of La₂S₃ it is not yet resolved whether β-phase R₂X₃ is truly a polymorph or is representative of a ternary compound involving oxygen [4].
In the cubic Th3P4 structure it is convenient to designate the unit cell as 4(R3-VX4) where V is a rare-earth vacancy. For R2X3 compounds 1/3 of the 12 rare-earth sites are vacant, i.e., x = 1/3. For the R3X4 compounds there are no vacant sites, i.e., x = 0. Each R3-VX4 unit provides (1-3x) electrons for conduction. Hence R2X3 (x = 1/3) is an insulator and R3X4 (X = 0) is a metal.

Degenerate semiconductors for thermoelectric applications are produced from hot-pressed powders or single crystals of R3-X4 compounds with varying degrees of excess rare-earth atoms. These stoichiometries have been found to yield degenerate wide band-gap semiconductors, with electrical conductivities of -10^3 ohm^-1 cm^-1, carrier concentrations greater than -10^20 cm^-3 and charge carrier mobilities of -1 to 10 cm^2/volt sec.

Thermal Conductivity

Lattice thermal conductivities (kph) of the R3-X4 compounds are generally low, in the range 0.005 to 0.01 watt/cm-deg. [5] This results from three factors. First, the Debye temperatures, OD, are anomalously low fractions of the melting temperatures, BD -200-400 K, with kphBD. Secondly, these are complicated crystal structures with a fairly large number of atoms (28) per unit cell. Since there are 3 acoustic modes per unit cell the number of optic modes, is N ~3(28)-3. Examination of the dispersion curves, w versus k, shows that these optic modes of vibration have very low propagation velocities. Therefore, the majority of phonons are optical and have low velocities. Thirdly, the rare-earth ion vacancies produce disorder which inhibits thermal transport.

Electronic Transport

Rare-earth chalcogenides behave as highly-degenerate n-type semiconductors over most of the composition range R3X4 to R2X3. However, the large values of effective mass and the small values of the mobility suggest that the conduction band is somewhat narrow.

For itinerant motion a material's figure of merit is essentially determined by a simple combination of its transport parameters. Namely, Z=m*3/2_u /k, where m* and u are, respectively, the carrier's effective mass and mobility and k is the material's thermal conductivity [6]. Since the thermal conductivities of the R3-xX4 materials are close to one another it is only the numerator of this expression for Z which varies much between materials. The values of m* and u for various R3-X4 compounds have been tabulated [7]. In Table I these values and the m*3/2_u-product are listed.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mobility, μ (cm^2/v-s)</th>
<th>Effective Mass, m*</th>
<th>m*3/2_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>La3S4</td>
<td>3.5</td>
<td>3.6</td>
<td>23.9</td>
</tr>
<tr>
<td>Ce3S4</td>
<td>3.1</td>
<td>2.8</td>
<td>14.5</td>
</tr>
<tr>
<td>Nd3S4</td>
<td>3.2</td>
<td>2.7</td>
<td>14.2</td>
</tr>
<tr>
<td>Pr3Se4</td>
<td>2.6</td>
<td>2.6</td>
<td>10.9</td>
</tr>
<tr>
<td>La3Te4</td>
<td>11.5</td>
<td>1.8</td>
<td>27.8</td>
</tr>
<tr>
<td>Ce3Te4</td>
<td>4.2</td>
<td>2.1</td>
<td>12.8</td>
</tr>
<tr>
<td>Pr3Te4</td>
<td>6.2</td>
<td>1.6</td>
<td>12.5</td>
</tr>
<tr>
<td>Nd3Te4</td>
<td>5.0</td>
<td>2.0</td>
<td>14.1</td>
</tr>
</tbody>
</table>

It is seen that La3-xTe4 has the greatest potential for high Z values.
This is supported by the work of Golikova and Rudnik [8] who claim that La$_3$Te$_4$ has the highest Z of the R_2-X$_4$ compounds: 0.91 x 10^{-3} deg$^{-1}$ at 1150 K. Zhuze et al. [7], quote a Z of 0.53 x 10^{-3} at 1400 K. From Luguev and Smirnov's data [10] on higher conductivity La$_3$Te$_4$ (-3000 ohm$^{-1}$cm$^{-1}$ at 300 K) it appears that Z -2.5 x 10^{-4} deg$^{-1}$ at -700 K. This and other thermoelectric data on rare-earth chalcogenides [7]-[13] is illustrated by the plot of ZT versus T in Fig. 2.

![Figure 2: ZT Values for Rare-Earth Chalcogenides.](image)

BORON-RICH BORIDES: SMALL-POLARON HOPPING

In the discussion so far we have considered materials which conduct by the itinerant motion of charge carriers. However, in other materials, electronic conduction is by the phonon assisted hopping of charge carriers from site to site, i.e., small-polaron hopping.

The mobility associated with the (adiabatic) hopping of a small polaron between equivalent sites at temperatures above (or comparable to) the phonon temperature is [14]

$$\mu = \frac{e\gamma}{kT} a^2 \exp\left(-\frac{E_A}{kT}\right)$$

(5)

Here γ is the characteristic vibrational frequency, a is the intersite separation, and E_A is the hopping activation energy. The Seebeck coefficient associated with the hopping of a small polaron is [15][16]

$$\alpha = \frac{k}{e} \left\{ \ln\left(\frac{2(1-c)}{c}\right) + AT \right\}$$

(6)

where c is the fraction of sites which are occupied by a carrier; α is a constant.
The first term is just the entropy per charge associated with the carrier concentration \(c \). The second term arises from the heat transported with a carrier as it hops between inequivalent sites \([11] [12]\). For hopping between equivalent sites it vanishes. With a temperature independent carrier concentration, as in mixed valence semiconductors, the Seebeck coefficient and the electrical conductivity can both increase with temperature for hopping between inequivalent sites. Consequently, \(Z \) can increase significantly with temperature. In fact, \(Z \) is often considerably larger than the upper limit set by Heikes and Ure \([17]\) from considerations of hopping solely between equivalent sites.

The boron-rich borides are materials in which the charge carriers form small polarons \([12]\). We will consider below the performance of some boron-rich borides as high temperature thermoelectric materials.

Boron and Borides Structures

Boron forms refractory compounds with a large number of elements. Several of these compounds have been investigated for high-temperature thermoelectric conversion. Elemental boron is also highly refractory (m.p. \(-2500^\circ\text{C}\)). Boron is generally accepted to have at least three and possibly four allotropic forms \([18]\): \(\alpha \)-rhombohedral \((R\bar{3}m, a = 5.075 \text{ Å}, \alpha = 58^\circ 06')\); \(\beta \)-rhombohedral \((R\bar{3}m, a = 10.145 \text{ Å}, \alpha = 65^\circ 17')\); \(\alpha \)- or I- tetragonal \((P4_2m, a = 8.75 \text{ Å}, c = 5.06 \text{ Å})\) which may not correspond to an allotropic form of pure boron and \(\beta \)- or II- or III- tetragonal \((P4_122, a = 10.12 \text{ Å}, c = 14.14 \text{ Å})\). Boron also occurs in the amorphous form. Many boron-rich borides are structural analogs of one of these four boron crystalline modifications. These structures are characterized by arrangements of boron icosahedra bound either to one another or to isolated atoms by directed bonds.

Four borides have been the object of intense investigation for thermoelectric applications, i.e., \(\beta \)-boron (105 atoms/unit cell), \(B_{14}\text{Si} \) (isostructural with \(\beta \)-boron and with 105 atoms/unit cell), \(B_x\text{C} \) (an analog of \(\alpha \)-boron with 15 atoms/unit cell) and \(\alpha \)-\(\text{AlB}_12 \) (same space group as \(\beta \)or II tetragonal boron with from 187 to 208 atoms/unit cell). \(ZT \)-data \([19]-[23]\) for these materials is shown in Fig. 3.

![ZT Values for Boron and Boron-Rich Borides](image)

FIG. 3. ZT Values for Boron and Boron-Rich Borides
Thermal Conductivity

The low values for the high temperature thermal conductivity of boron and boron-rich borides has been attributed to the complexity of the crystal structure [24] [25]. In β-boron, for example, with 105 atoms/unit cell there are 3 acoustic branches and 312 optical branches. As the temperature is increased the relative contribution of the high frequency (optical) modes to the thermal conductivity increases and can exceed the contribution by the acoustic modes. The group velocity of optical vibration is much lower than the sound velocity so that their contribution to the thermal conductivity is low. Because of the structural complexity of boron and its analogues, groups of atoms in equivalent positions are widely separated. For an optical wave to propagate a definite phase relation must exist between these like groups of atoms. Perturbations arising from other groups of atoms in the path of propagation cause a breakdown of phase relationships i.e., independent local vibrations occur. Thus, the nature of phonon propagation in boron-rich borides closely approaches that in amorphous solids with correspondingly low values.

Electronic Transport

Boron and all of the boron-rich borides described above display a common striking and significant feature. Namely, the Seebeck coefficients and the electrical conductivities both rise with increasing temperature over a wide temperature range. This appears only to be interpretable as due to the hopping of charge carriers between inequivalent sites. This conclusion is supported by experiments showing that the Hall mobility in measured borides is low (\(\approx 1 \text{ cm}^2/\text{V-sec} \)) and increases as the temperature increases. The spin densities obtained from E.S.R. and magnetic susceptibility measurements in boron carbides [26] [27], also indicate carrier densities whose magnitudes are consistent with the low mobilities associated with hopping motion. The values of the hopping activation energies (e.g., 0.15 eV in B\(_x\)C) generally indicate that the hopping is multiphonon, i.e., that due to small polarons. The inequivalence of the sites involved in the hopping in the borides is readily understandable in terms of the structures of these borides. That is, sites in the icosahedra and those in the intericosahedral linkages have different coordinations.

CONCLUSIONS

The excellent theoretical work carried out two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with \(ZT = 1 \) in the temperature range 300 K to 1200 K.

It was also shown that \(ZT = 1 \) is not a theoretical limitation although, experimentally, values in excess of one were not achieved.

In the recent years work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that \(ZT > 1 \) is realizable. These materials can be divided into two classes: (i) the rare-earth chalcogenides, which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (ii) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.
REFERENCES

26. L. Azevedo and E. Venturini, private communication.