General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
USER MANUAL OF THE CATSS SYSTEM
(VERSION 1.0)
COMMUNICATION ANALYSIS TOOL FOR SPACE STATION

PREPARED FOR
NASA LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TX 77058
TECHNICAL MONITOR: WILLIAM E. TEASDALE
CONTRACT NO. NAS 9-16868

(NOAA-CR-171728) USER MANUAL OF THE CATSS
SYSTEM (VERSION 1.0) COMMUNICATION ANALYSIS
TOOL FOR SPACE STATION Interim Report
(LinCom Corp., Los Angeles, Calif.) 45 p
HC A03/MF A01 CSCL 17B G3/32 11638

NOVEMBER 1983

TR-1183-8314

LinCom Corporation
P.O. BOX 15697, LOS ANGELES, CALIFORNIA 90015
USER MANUAL OF THE CATSS SYSTEM
(VERSION 1.0)

COMMUNICATION ANALYSIS TOOL FOR SPACE STATION

PREPARED FOR

NASA LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TX 77058

TECHNICAL MONITOR: WILLIAM E. TEASDALE
CONTRACT NO. NAS 9-16868

PREPARED BY

C. S. TSANG
Y. T. SU
W. C. LINDSEY

LINCOM CORPORATION
P.O. BOX 15897
LOS ANGELES, CA 90015-0897

NOVEMBER 1983

TR-1183-8314
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Design Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>3. Link Models and Performance Capability</td>
<td>8</td>
</tr>
<tr>
<td>3.1 RF Link Budget</td>
<td>9</td>
</tr>
<tr>
<td>3.2 RF Single Access with PN/BPSK</td>
<td>10</td>
</tr>
<tr>
<td>3.3 RF Single Access with FH/MFSK</td>
<td>14</td>
</tr>
<tr>
<td>3.4 RF Multiple Access with FH/MFSK</td>
<td>23</td>
</tr>
<tr>
<td>3.5 Space optical communication</td>
<td>24</td>
</tr>
<tr>
<td>4. Instruction for Accessing and Running CATSS</td>
<td>29</td>
</tr>
<tr>
<td>Appendix: CATSS Sample program</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Space Station/TDRSS Communication Network.</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Current CATSS Software Architecture (Link Oriented).</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Space Station System Design Procedure by Using CATSS.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4</td>
<td>RF Single Access with PN/BPSK Modulation.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 5</td>
<td>RF Single Access PN/BPSK Jamming Model.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 6</td>
<td>A FH/MFSK System.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 7</td>
<td>RF Single Access FH/MFSK Jamming Model.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 8</td>
<td>A General Noncoherent MFSK Receiver.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Four FH/MFSK Receiver Signal Processing Unit Structure Used in CATSS.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Optical Communication Link Model.</td>
<td>25</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>CATSS Models Relative to Current Space Station Links.</td>
<td>3</td>
</tr>
<tr>
<td>Table 2</td>
<td>RF Single Access FH/MFSK System Parameters in CATSS.</td>
<td>19</td>
</tr>
<tr>
<td>Table 3</td>
<td>Optical Communication Link Parameters in CATSS.</td>
<td>26</td>
</tr>
</tbody>
</table>
1. Introduction

The Communication Analysis Tool for the Space Station (CATSS) developed for NASA/Johnson Space Center is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system as shown in Fig. 1. It is an interactive software package currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. Table 1 shows the CATSS models relative to the current SS links.

CATSS is a C & T system engineering tool for SS design. It can be used to predict and analyze the system performance for different link environment. Identification of system weaknesses can be achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters can be made based on the performance prediction. With all these functional capabilities, CATSS serves as an essential and inevitable design and operation computer-aided tool for the SS, as what the CLASS (Communications Link Analysis and Simulation System) does currently for the TDRSS.

In the chapters to follow, the design concept of the CATSS, the link models and performance capability, instruction for accessing and running CATSS, and the CATSS output will be discussed. Sample run of CATSS is also included in the Appendix.
Fig. 1. SPACE STATION/TDRSS COMMUNICATION NETWORK

- CATSS
- LinCsim/CLASS
- TDRSS
- EVA/FREE-FLYER
- SS
- SSO
- LinCsim/CLASS
- WSGT
- JSC
Table 1. **CATSS MODELS RELATIVE TO CURRENT SPACE STATION LINKS**

<table>
<thead>
<tr>
<th>Link</th>
<th>Modulation Scheme</th>
<th>CATSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energy Section - Relay Satellite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Forward (TDRS to SS)</td>
<td>PN/QPSK</td>
<td></td>
</tr>
<tr>
<td>1.2 Return (SS to TDRS)</td>
<td>PN/QPSK, convolutional code</td>
<td></td>
</tr>
<tr>
<td>2. SS - Relay Satellite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Forward (TDRS to SS)</td>
<td>BPSK</td>
<td>✓</td>
</tr>
<tr>
<td>2.2 Return (SS to TDRSS)</td>
<td>BPSK/QPSK convolutional code</td>
<td>✓</td>
</tr>
<tr>
<td>3. SS - SSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Forward (SS to SSO)</td>
<td>BPSK, convolutional code</td>
<td>✓</td>
</tr>
<tr>
<td>3.2 Return (SSO to SS)</td>
<td>BPSK, convolutional code</td>
<td>✓</td>
</tr>
<tr>
<td>4. SS - OTV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Forward (SS to OTV)</td>
<td>PN/BPSK, convolutional code</td>
<td>✓</td>
</tr>
<tr>
<td>4.2 Return (OTV to SS)</td>
<td>PN/QPSK, convolutional code</td>
<td>✓</td>
</tr>
<tr>
<td>5. SS - EVA/Free-Flyer Multiple Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Forward (SS to EVA/FF)</td>
<td>FH/MFSK, convolutional code</td>
<td>✓</td>
</tr>
<tr>
<td>5.2 Return (EVA/FF to SS)</td>
<td>FH/MFSK, convolutional code</td>
<td>✓</td>
</tr>
<tr>
<td>6. SS - EVA/Free-Flyer Wideband</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1 Forward (SS to EVA/FF)</td>
<td>BPSK, convolutional code</td>
<td>✓</td>
</tr>
<tr>
<td>6.2 Return (EVA/FF to SS)</td>
<td>BPSK, convolutional code</td>
<td>✓</td>
</tr>
</tbody>
</table>
2. **Design Philosophy**

 When the CATSS was designed and developed, the following guidelines were followed:

 (1) CATSS will serve as both a design tool in the system design stage and performance analysis tool in the system operation stage.

 (2) It will possess a maximum flexibility for any system change and expansion.

 (3) It should be easy to use and maintain.

 (4) The output data of CATSS should be arranged in the form suitable for design and evaluation purposes.

 (5) Computation time should be kept as a minimum.

 In view of the above requirements, the CATSS software is coded in a logical and structural modular form so that software maintenance and expansion do not require excessive effort. Fast algorithms, e.g. recursive iterations, are applied for computation whenever it is possible. In the present stage, CATSS makes use of analytical results only and no simulation is involved. In the future, simulation may be necessary for the cases no analytical results are known. However, since computer simulation (Monte Carlo type of simulation) requires very long computation time, it is in general not a very attractive method. A compromise technique, termed analytic simulation, is one which combines the analysis and simulation together. In this case, the advantage for both analysis and simulation will be available. This analytic simulation technique is widely used in the CLASS system developed for TDRSS.
Graphical display is an option provided by the CATSS to yield a clear and instant overview of the system performance. Due to facility constraint, the graphic display capability is developed only for terminals (CRT or hard copy). In the next phase of CATSS development, higher resolution graphic display will be developed for graphic plotter.

Fig. 2 is a software organization of the current CATSS architecture. It is a link oriented architecture by itself. The user is able to access any one of the five links at any time through the control of the CATSS control routine.

Fig. 3 shows a design procedure of the SS C/T link by using the CATSS as a design and analysis tool. An optimized system with respect to system parameters can be achieved by the recursive process as shown in the design flow chart.
Fig. 2. CURRENT CATSS SOFTWARE ARCHITECTURE (LINK ORIENTED)
Fig. 3. SPACE STATION SYSTEM DESIGN PROCEDURE
BY USING CATSS

- INITIAL SYSTEM CONCEPT
- CATSS ANALYSIS
- MEET SYSTEM REQUIREMENT?
- SYSTEM OPTIMIZED?
- END SYSTEM DESIGN
- SYSTEM RECONFIGURATION/SYSTEM PARAMETER CHANGE

- YES
- NO
- YES
- NO
3. Link Models and Performance Capability

In this section the link models analyzed and evaluated by the CATSS are briefly discussed. Details of these models are discussed in the final report\(^1\). The models of each link are made to be generic in nature so that they possess a high flexibility for any possible system modification and expansion. In the following sections, the models of the transmitters, channels, noise and jamming, and receivers structure are provided for each link so that interpretation of the CATSS output can be made accurately. The dimension and value range of each parameter are also indicated so that meaningless input values can be avoided.

3.1 RF Link Budget

The RF link budget models the radio frequency power gain/loss over the space channel. It models the antennas gain and space loss between the transmitter and the receiver.

3.1.1 System Parameters
1. Distance (kilometer), [≥0]
2. Transmitter (parabolic) antenna diameter (meter), [≥0]
3. Transmitter antenna aperture loss factor [0 to 1]
4. Receiver (parabolic) antenna diameter (meter), [≥1]
5. Receiver antenna aperture loss factor [0 to 1]
6. Carrier frequency (GHz) [≥0]
7. Atmospheric absorption loss (dB/Km) [≥ 0]

3.1.2 CATSS Output
1. Transmitter antenna gain (dB)
2. Receiver antenna gain (dB)
3. Free space loss (dB)
4. Atmospheric absorption loss (dB)
5. Total gain (loss) (dB)

3.1.3 Output Format
1. Printed Value
 All values in Sect. 3.1.2
2. Graphic plot
 Total gain (loss) versus input parameter

Note that the dimension, if there is, of each parameter is given in the bracket, while its value range is provided in the square bracket.
3.2 RF Single Access with PN/BPSK

The RF single access link with PN/BPSK modulation is modeled in Fig. 4. The jamming in this link is assumed to be pulse jamming and its model is illustrated in Fig. 5.

This link can model the following SS links

1. SS/Relay Satellite
2. SS/Space Shuttle Orbiter
3. SS/Orbital Transfer Vehicles
4. SS/EVA, Free-Flyers

3.2.1 System Parameters

1. With or without interleaving
2. With or without coding
3. Convolutional Code
 (3.1) Best (5,1/2) convolutional code
 (3.2) Best (7,1/2) convolutional code
 (3.3) Best (7,1/3) convolutional code
4. Decoding Method
 (4.1) Soft decision with interleaving
 (4.2) Hard decision with interleaving
5. With or without correlation loss of front-end filtering
6. Signal to jammer power ratio (dB), \([\text{see } 3]\)
7. Arbitrary or worst case value of the jammer duty factor \([>0.001]\)

\(^3\) Values of parameters 6, 8, and 10 have to be chosen so that the error bound used in CATSS is acceptable.
Fig. 4. RF SINGLE ACCESS WITH PN/BPSK MODULATION

TRANSMITTER

INTERLEAVER -> C.C. ENCODER -> PSK TRANSMITTER

PN CODE GENERATOR

DEINTERLEAVER -> VITERBI DECODER -> BIT SYNC

PSK DEMOD

PN DESPREADER
Fig. 5. RF SINGLE ACCESS PN/BPSK JAMMING MODEL

- PULSE JAMMING
 - S/J (S = SIGNAL POWER, J = JAMMER AVERAGE POWER)
 - JAMMER DUTY CYCLE ρ

![Diagram of jammer pulse with symbols and parameters.]
8. Bit energy to noise spectral density ratio (dB), [see 3]
9. Chip time - BPF B.W. product [>0.1]
10. Processing gain (dB), [>0]
11. Normalized phase nonlinearity [>0]

3.2.2 CATSS Output
1. BER
2. Performance degradation due to front end filter
3. Performance sensitivity study of system parameters
4. System parameters tradeoff
5. BPSK performance (special case)

3.2.3 Output Format
1. Printed Value
 (1.1) BER
 (1.2) Performance degradation due to front end filter
2. Graphic plot
 (2.1) BER vs related parameter
 (2.2) Performance degradation vs related parameters
3.3 RF Single Access with FH/MFSK

The RF single access link with FH/FMSK modulation is modeled in Fig. 6. The jamming in this link include full band jamming, partial band jamming, and multiple tone jamming. The models of these jamming are illustrated in Fig. 7.

There are four different kinds of receivers modeled in CATSS, with each one applies to the appropriate jamming model. The general noncoherent MFSK receiver is illustrated in Fig. 8. The signal processing unit for each kind of receiver is shown in Fig. 9.

This link can model the SS/EVA, Free-Flyers forward link with the user interference modeled as jammers.

3.3.1 System Parameters

The system parameters are divided into several groups and are illustrated in Table 2. The following lists the parameters along with their limit values.

3.3.1.1 General System Parameters

1. Jamming type
2. With or without thermal noise
3. Bit energy to noise spectral density ratio E_b/N_0, used when thermal noise is included (dB), [see 4]
4. Number of orthogonal signals M in MFSK [2,4,8,16,32]
5. Number of hops per symbol, diversity [1<,<8]
6. Coding type
7. Rate of dual-k convolutional code [<1.0]

4Values of parameters 3 and 9 have to be chosen so that the error bound used in CATSS is acceptable.
Fig. 6. A FH/MFSK SYSTEM

- DATA SOURCE
- MODULATOR
- FREQUENCY HOPPER
- ADDRESS
- FREQUENCY DE-HOPPER
- DE-MODULATOR

$2^k \leq M$ TONES AVAILABLE FOR SIGNALING

$W_I \quad W_c \quad W_c + (2^k-1)W_0 \quad W_F$

N TONES IN TOTAL WITHIN THE HOPPING BAND

$W_F = W_I + (N-1)W_0$
Fig. 7. RF SINGLE ACCESS FH/MFSK JAMMING MODEL

- FULL BAND JAMMING
 - JAMMER UNIFORMLY OCCUPIES THE WHOLE HOPPING BANDWIDTH W
 - EFFECTIVELY RAISES THE BACKGROUND THERMAL NOISE LEVEL

- PARTIAL BAND JAMMING
 - JAMMER OCCUPIES A CONTIGUOUS BANDWIDTH pW ($0 < p < 1$) OF THE TOTAL HOPPING BANDWIDTH W

- MULTIPLE TONE JAMMING
 - JAMMERS' ARE IN THE FORM OF EQUAL POWER CW SIGNALS WITH FREQUENCIES WITHIN THE HOPPING FREQUENCY RANGE
 - CHIP TIME T_c = $1/T_c$

LinCom
Fig. 8. A GENERAL NONCOHERENT MFSK RECEIVER

THE i-th ENERGY DETECTOR

\[\sqrt{2/T_c} \cos(\omega + (i-1)\omega_0) t \]
Fig. 9. **FOUR FH/MFSK RECEIVER SIGNAL PROCESSING**

UNIT STRUCTURE USED IN CATSS

1. **LINEAR COMBINING FOR FULL BAND JAMMING/NO JAMMING**
 - \(\hat{R}_{i\lambda} = R_{i\lambda} \)

2. **SUBOPTIMAL WEIGHTING UNDER PARTIAL BAND JAMMING**
 - **ASSUME SIDE INFORMATION ABOUT JAMMER’S STATE IS KNOWN**
 - \(\hat{R}_{i\lambda} = \begin{cases} W_u R_{i\lambda} & \text{if jammer absent} \\ W_o R_{i\lambda} & \text{if jammer present} \end{cases} \)
 - where \(W_u \gg W_o \)

3. **HARD DECISION COMBINING FOR MULTIPLE TONE JAMMING**
 - \(\hat{R}_{i\lambda} = \begin{cases} 1 & \text{if } R_{i\lambda} > \gamma > 0 \\ 0 & \text{if } R_{i\lambda} \leq \gamma \end{cases} \)

4. **(LINCOM PROPOSED) RANK-RATIO FOR PARTIAL BAND & MULTIPLE TONE JAMMING**
 - \(R_{i\lambda} = f_{i1}(\overline{R}_\lambda)W_1 + f_{i2}(\overline{R}_\lambda)W_2 \)
 - \(\overline{R}_\lambda = (R_{1\lambda}, R_{2\lambda}, \ldots, R_{M\lambda}) \)
 - \(W_1 \) & \(W_2 \) are weighting (\(> 0 \))

 where

 \[f_{i1}(\overline{R}_\lambda) = \begin{cases} 1 & \text{if } R_{i\lambda} = m_{i1} = \max_k \{R_{k\lambda}\}; k=1,\ldots,M \\ 0 & \text{otherwise} \end{cases} \]

 \[f_{i2}(\overline{R}_\lambda) = \begin{cases} 1 & \text{if } R_{i\lambda} = m_{i2} \text{ and } m_{i1}/m_{i2} > \theta > 1 \\ 0 & \text{otherwise} \end{cases} \]

 where \(m_{i2} = 2nd \max_k \{R_{k\lambda}\} \)

LinCom
Table 2. RF SINGLE ACCESS FH/MFSK SYSTEM PARAMETERS IN CATSS

<table>
<thead>
<tr>
<th>GENERAL SYSTEM PARAMETERS</th>
<th>PARTIAL BAND JAMMING PARAMETERS</th>
<th>MULTIPLE TONE JAMMING PARAMETERS</th>
<th>RANK-RATIO TEST PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• JAMMING TYPE</td>
<td>• RECEIVER STRUCTURE (SUBOPTIMAL WEIGHTING/RANK-RATIO TEST)</td>
<td>• RECEIVER STRUCTURE (HARD LIMITER/RANK RATIO TEST)</td>
<td>• THRESHOLD VALUE θ OF THE RATIO TEST</td>
</tr>
<tr>
<td>• FREQ. & TIMING OFFSET</td>
<td>• E_b/N_j</td>
<td>• E_b/N_j</td>
<td>• WEIGHT OF RANK TEST W_1</td>
</tr>
<tr>
<td>• THERMAL NOISE E_b/N_0</td>
<td>• $N_j =$ TOTAL JAMMER POWER/W</td>
<td>• ARBITRARY/WORST CASE OF p</td>
<td>• WEIGHT OF RATIO TEST W_2</td>
</tr>
<tr>
<td>• # OF ORTHOGONAL SIGNALS (M) USED IN MFSK</td>
<td>• ARBITRARY/WORST CASE OF $J_b = \text{JAMMER BIT ENERGY}$</td>
<td>• S/J</td>
<td></td>
</tr>
<tr>
<td>• # OF HOPS PER SYMBOL</td>
<td>• FOR ALL E_b/N_0</td>
<td>• $S = \text{SIGNAL POWER}$</td>
<td></td>
</tr>
<tr>
<td>• RATE OF DUAL-K CONVOLUTIONAL CODE</td>
<td>• FOR HIGH E_b/N_0</td>
<td>• $J = \text{JAMMER POWER PER TONE}$</td>
<td></td>
</tr>
</tbody>
</table>
8. With or without timing and frequency offset

9. \(\frac{E_b}{N_J} \) (dB) [see 4]

 where \(E_b \) = bit energy
 \(N_J \) = total jammer power/hopping BW

3.3.1.2 Parameters for full Band Jamming or No Jamming

1. No additional parameter is required

3.3.1.3 Partial Band Jamming Parameters

1. Receiver structure

2. Arbitrary or worst case value of \(\rho \)

3. \(\rho \) value \([0.01 < \rho < 1.0]\), (used when arbitrary value is desired)

*3.3.1.4 Multiple Tone Jamming Parameters

1. Receiver structure

2. Arbitrary or worst case value of \(S/J \)

3. \(S/J \) value (dB) \([>10]\)

 where \(S \) = signal power
 \(J \) = jammer power per tone
 (used when arbitrary \(S/J \) is desired)

3.3.1.5 Rank-Ratio Test Parameters

1. Arbitrary or optimal value of threshold

2. Threshold value \([>1.0]\)

 (used when arbitrary threshold is desired)

3. Arbitrary or optimal value of weighting \(w_1, w_2 \)

4. Weighting \(w_1 \) for ranking test \([>0]\)

Options marked with a "" are not fully developed in the software, and will be provided when it is ready.
(used when arbitrary \(w_1 \) is desired)

5. Weighting \(w_2 \) for ratio test \([>0]\)
(used when arbitrary \(w_2 \) is desired)

3.3.2 CATSS Output

3.3.2.1 With No Jamming
1. BER for M-ary orthogonal coding
2. BER for dual-k convolutional coding

3.3.2.2 With Full Band Jamming
1. BER for M-ary orthogonal coding
2. BER for dual-k convolutional coding

3.3.2.3 With Partial Band Jamming
1. BER for M-ary orthogonal coding
2. BER for dual-k convolutional coding

3. In case optimal or worst case values provided by the CATSS are used, the following output are given:

(3.1) Worst case \(\rho \) value
(3.2) If suboptimal weighting receiver is used
 (3.2.1) Optimal diversity for orthogonal coding with worst case \(\rho \)
 (3.2.2) Optimal diversity for dual-k convolutional coding with worst case \(\rho \)
(3.3) If rank-ratio receiver is used
 (3.3.1) Optimal diversity for orthogonal coding with worst case \(\rho \)
 (3.3.2) Optimal threshold of the rank-ratio test with worst case \(\rho \)
 (3.3.3) Optimal weight \(w_1 \) with worst case \(\rho \)
(3.3.4) Optimal weight w_2 with worst case p

*3.3.2.4 With Multiple Tone Jamming

1. BER for M-ary orthogonal coding
2. BER for dual-k convolutional coding
3. If rank-ratio receiver is used, the following is also available
 (3.1) Worst case S/J value for orthogonal code
 (3.2) Worst case S/J value for dual-k conv. code

*3.3.2.5 Performance Degradation Due to Timing and Frequency Offset.

The analysis here is independent of all the analysis above.

3.3.3 Output Format

1. Printed value
 (1.1) BER
 (1.2) Worst case value
 (1.3) Optimal values
 (1.4) Performance degradation due to timing and frequency offset

2. Graphic plot
 (2.1) BER vs appropriate parameter
3.4 RF Multiple Access with FH/MFSK

In this link analysis is performed assuming no jamming exists, and interference due to other users are dominant compared to the thermal noise. The desired signal power is assumed to be the smallest among the users so that a worst case design exists. Under these assumptions, a worst case BER performance is computed. Rank-ratio receiver is used in the analysis.

3.4.1 System Parameters

1. Number of users [>2]
2. Number of tones available in the total hopping bandwidth [>M]
3. Number of orthogonal signals used [M=2,4,8,16,32...]
4. Number of hops per symbol [>2, <8]

*3.4.2 CATSS Output

1. BER

3.4.3 Output Format

1. Printed value
 (1.1) BER

2. Graphic plot
 (2.1) BER versus parameters in Sec. 3.4.1
3.5 Space Optical Communication

The optical communication link is modeled in Fig. 10. In this link no jamming or interference is considered. The system parameters are classified into four different groups and are shown in Table 3.

3.5.1 System Parameters

3.5.1.1 General System Parameters

1. Design BER \([0, 1]\]
 This parameter is used only for no encoding
2. With or without coding
3. Baseband signaling format
 This parameter is used only for no encoding
4. Data Rate (MBPS), \([>0]\]
5. Coding type
6. Code rate (Bit/symbol) \([0, 1]\]
7. Code word length for block code or constraint length for convolutional code \([>1]\]
8. Decoding method, soft or hard decision
9. Symbol size \([2, 4, 8, 16, \ldots]\)

3.5.1.2 Transmitter Parameters

1. Optical carrier wavelength (nanometer), \([>0]\]
2. Average transmitting optical power (dBW), \([\text{any}]\)
3. Transmitter antenna gain (dB), \([>0]\]
4. Transmitter optical transmission loss (dB), \([<0]\)

3.5.1.3 Channel Parameters

1. Channel model, Gaussian or Poisson
2. Distance (km), \([>0]\)
3. Atmospheric absorption loss (dB), \([<0]\)
Fig. 10. OPTICAL COMMUNICATION LINK MODEL

- SOURCE
- ENCODER
- MODULATOR
- LASER
- CHANNEL
- CHANNEL NOISE
- IDEAL PHOTODETECTOR
- DARK CURRENT
- PHOTODETECTOR IMPULSE RESPONSE
- RECEIVER
- DECISION DEVICE
- PREAMPLIFIER THERMAL NOISE
Table 3. OPTICAL COMMUNICATION LINK PARAMETERS IN CATSS

<table>
<thead>
<tr>
<th>GENERAL SYSTEM PARAMETERS</th>
<th>TRANSMITTER PARAMETERS</th>
<th>CHANNEL PARAMETERS</th>
<th>RECEIVER PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DESIGN BER</td>
<td>• OPTICAL CARRIER</td>
<td>• CHANNEL MODEL</td>
<td>• EXTINCTION RATIO</td>
</tr>
<tr>
<td>• WITH/WITHOUT CODING</td>
<td>WAVELENGTH</td>
<td>• GAUSSIAN</td>
<td>• RECEIVER ANTENNA</td>
</tr>
<tr>
<td>• BLOCK CODE</td>
<td>• AVERAGE TRANSMITTING</td>
<td>• POISSON</td>
<td>DIAMETER</td>
</tr>
<tr>
<td>• CODE RATE</td>
<td>OPTICAL POWER</td>
<td>• DISTANCE</td>
<td>• RECEIVER OPTICAL</td>
</tr>
<tr>
<td>• WORD LENGTH</td>
<td>• TRANSMITTER ANTENNA</td>
<td>• ATOMIC SPHERIC</td>
<td>TRANSMISSION LOSS</td>
</tr>
<tr>
<td>• CONVOLUTIONAL CODE</td>
<td>GAIN</td>
<td>ABSORPTION LOSS</td>
<td>• QUANTUM EFFICIENCY</td>
</tr>
<tr>
<td>• CODE RATE</td>
<td>• TRANSMITTER OPTICAL</td>
<td></td>
<td>• MEAN APD GAIN</td>
</tr>
<tr>
<td>• CONSTRAINT LENGTH</td>
<td>TRANSMISSION LOSS</td>
<td></td>
<td>• OPTIMAL</td>
</tr>
<tr>
<td>• DECODING METHOD</td>
<td>• DECODING METHOD</td>
<td></td>
<td>• ARBITRARY</td>
</tr>
<tr>
<td>• SOFT DECISION</td>
<td>• EFFECTIVE RATIO OF</td>
<td></td>
<td>• EFFECTIVE RATIO</td>
</tr>
<tr>
<td>• HARD DECISION</td>
<td>IONIZATION COEFFICIENTS</td>
<td></td>
<td>OF IONIZATION COE F</td>
</tr>
<tr>
<td>• DATA RATE</td>
<td>• PREAMPLIFIER</td>
<td>• PREAMPLIFIER</td>
<td>COEFFICIENTS</td>
</tr>
<tr>
<td>• BASEBAND SIGNALING</td>
<td>TEMPERATURE</td>
<td>IMPEDANCE</td>
<td></td>
</tr>
<tr>
<td>• FORMAT</td>
<td>• EQUIVALENT PRE-</td>
<td>• AVERAGE SIGNAL</td>
<td></td>
</tr>
<tr>
<td>• NRZ</td>
<td>AMPLIFIER INPUT</td>
<td>COUNT PER SYMBOL</td>
<td></td>
</tr>
<tr>
<td>• BIPHASE</td>
<td>IMPEDANCE</td>
<td>TIME</td>
<td></td>
</tr>
<tr>
<td>• SYMBOL SIZE</td>
<td>• AVERAGE NOISE COUNT</td>
<td>• AVERAGE NOISE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PER SYMBOL TIME</td>
<td>COUNT PER SYMBOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIME</td>
<td></td>
</tr>
</tbody>
</table>
3.5.1.4 Receiver Parameters

1. Extinction ratio \([>0, <1]\)
2. Receiver antenna diameter (m), \([>0]\)
3. Receiver optical transmission loss (dB), \([<0]\)
4. Quantum efficiency \([>0, <1]\)
5. Arbitrary or optimal APD gain
6. Mean APD gain \([>0]\)
 This parameter is used when arbitrary APD gain is chosen.
7. Effective ratio of ionization coefficients \([>0, <1]\)
8. Preamplifier temperature (degree k) \([>0]\)
9. Equivalent preamplifier input impedance (ohm) \([>0]\)
10. Arbitrary or computed signal count value
11. Average signal count per symbol time \([>0]\)
12. Average noise count per symbol time \([>0]\)

3.5.2 CATSS Output

3.5.2.1 Uncoded Case

1. Received optical power
2. Optical power required at receiver

3.5.2.2 Coded Case

1. BER

3.5.3 Output Format

1. Printed value
 (1.1) Received optical power
 (1.2) Optical power required at receiver
 (1.3) BER

2. Graphic plot
(2.1) Received optical power vs related parameter
(2.2) Optical power required at receiver vs related parameter
(2.3) BER vs related parameter
4. Instruction for Accessing and Running CATSS

The CATSS system is designed to yield simplicity in accessing and running. It will provide a step by step guidance to the users so that a proper procedure can be followed. All system parameters are defaulted to some values and the users can change any of them for their design purposes. The range of the parameter values are discussed in Section 3 for each link.

4.1 CATSS Running

To access the CATSS, a user simply needs to type the system command

$ RUN CATSS

and the CATSS will respond with an introductory paragraph of the system. A choice of one of the five links will allow the user to access that link. In each link an introduction paragraph will show the user the capability and functionality of the link.

A user can get out of a specific link by choosing the "END" parameter and return to the main control routine. In this stage, another link can be accessed similarly.

4.2 CATSS Termination

To terminate CATSS properly, a user only needs to choose the "End of CATSS Analysis" command in the main control routine.

5 Refer to the Appendix for the CATSS introductory paragraph.
APPENDIX

CATSS SAMPLE RUN
WELCOME TO CATSS

CATSS (COMMUNICATION ANALYSIS TOOL FOR SPACE STATION) IS AN INTERACTIVE COMPUTER ANALYSIS AND SIMULATION TOOL DEVELOPED BY LINCOM CORP. FOR THE SPACE STATION COMMUNICATION AND TRACKING SYSTEM. IT MODELS AND ANALYSES THE VARIOUS COMMUNICATION AND TRACKING LINKS FOR THE SPACE STATION. PLEASE REFER TO THE USER MANUAL FOR FURTHER DETAIL IN USING THIS ANALYSIS SYSTEM. THANK YOU.

0 = END OF CATSS ANALYSIS
1 = RF LINK: POWER BUDGET
2 = RF SINGLE ACCESS (PN SPREAD) LINK
3 = RF SINGLE ACCESS (FH/MFSK) LINK
4 = RF MULTIPLE ACCESS (FH/MFSK) LINK
5 = SPACE OPTICAL COMMUNICATION LINK

SELECT ONE OF THE ABOVE

RF LINK: POWER BUDGET ANALYSIS

THE FOLLOWING IS A LIST OF PARAMETERS TO BE DETERMINED

1: TRANSMITTER PARABOLIC ANTENNA DIAMETER = 1.000 M
2: TRANSMITTER ANTENNA APERTURE LOSS FACTOR = 0.700
3: RECEIVER PARABOLIC ANTENNA DIAMETER = 1.000 M
4: RECEIVER ANTENNA, APERTURE LOSS FACTOR = 0.700
5: DISTANCE BETWEEN TRANSMITTER AND RECEIVER = 2000.000 KM
6: CARRIER FREQUENCY = 30.000 GHZ
7: ATMOSPHERIC ABSORPTION = -0.0100 DB/KM

ENTER THE PARAMETER NUMBER FOR THE ONE TO BE REDEFINED
ENTER 0 FOR NO PARAMETER CHANGE

0

ENTER 1=END, 2=RESULT PRINT OUT, 3=SENSITIVITY CURVE

2

TRANSMITTER ANTENNA GAIN = 48.394 DB
RECEIVER ANTENNA GAIN = 48.394 DB
FREE SPACE LOSS = -100.005 DB
ATMOSPHERIC ABSORPTION LOSS = -20.000 DB
TOTAL GAIN/LOSS = -111.217 DB
ENTER 1=END, 2=RESULT PRINT OUT, 3=SENSITIVITY CURVE
3
ENTER THE PARAMETER NUMBER TO BE VARIED
6
ENTER THE LOWER, UPPER LIMIT, AND NUMBER OF POINTS IN PLOTTING
20. 40. 21

<table>
<thead>
<tr>
<th>PARAMETER & VALUE</th>
<th>TOTAL GAIN/LOSS (DB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.000</td>
<td>-114.739</td>
</tr>
<tr>
<td>21.000</td>
<td>-114.315</td>
</tr>
<tr>
<td>22.000</td>
<td>-113.911</td>
</tr>
<tr>
<td>23.000</td>
<td>-113.525</td>
</tr>
<tr>
<td>24.000</td>
<td>-113.155</td>
</tr>
<tr>
<td>25.000</td>
<td>-112.800</td>
</tr>
<tr>
<td>26.000</td>
<td>-112.460</td>
</tr>
<tr>
<td>27.000</td>
<td>-112.132</td>
</tr>
<tr>
<td>28.000</td>
<td>-111.816</td>
</tr>
<tr>
<td>29.000</td>
<td>-111.511</td>
</tr>
<tr>
<td>30.000</td>
<td>-111.217</td>
</tr>
<tr>
<td>31.000</td>
<td>-110.932</td>
</tr>
<tr>
<td>32.000</td>
<td>-110.656</td>
</tr>
<tr>
<td>33.000</td>
<td>-110.389</td>
</tr>
<tr>
<td>34.000</td>
<td>-110.130</td>
</tr>
<tr>
<td>35.000</td>
<td>-109.878</td>
</tr>
<tr>
<td>36.000</td>
<td>-109.633</td>
</tr>
<tr>
<td>37.000</td>
<td>-109.395</td>
</tr>
<tr>
<td>38.000</td>
<td>-109.164</td>
</tr>
<tr>
<td>39.000</td>
<td>-108.938</td>
</tr>
<tr>
<td>40.000</td>
<td>-108.718</td>
</tr>
</tbody>
</table>

END OF RF POWER BUDGET
RF SINGLE ACCESS LINK: WITH PN SPREAD MODULATION.

IT APPLIES TO THE FOLLOWING CASES:
1. SPACE STATION / RELAY SATELLITE
2. SPACE STATION / SPACE SHUTTLE ORBITER
3. SPACE STATION / ORBITAL TRANSFER VEHICLES
4. SPACE STATION / EVA, FREE-FLYERS WIDE BAND

THE ANALYSIS IN THIS SECTION PROVIDES
1. BER VS Eb/No
2. BER PERFORMANCE IN THE PRESENCE OF PULSE JAMMING
 (BER VS Eb/N0 AND JAMMER DUTY CYCLE)
3. PERFORMANCE DEGRADATION DUE TO FRONT END FILTER
 CORRELATION LOSS
4. PERFORMANCE WITH OR WITHOUT CONVOLUTIONAL CODE
 (HARD/SOFT DECISION, INTERLEAVING)
5. PERFORMANCE SENSITIVITY OF SYSTEM PARAMETERS
6. BER PERFORMANCE OF STANDARD BPSK (WITH 0 DB PROCESSING GAIN)

THE FOLLOWING IS A LIST OF PARAMETERS TO BE DETERMINED

1: CHOICE FOR CORRELATION LOSS (CL) = 3
 (1 = PERFORMANCE WITHOUT TAKING CL INTO CONSIDERATION)
 (2 = ONLY THE CL IS DESIRED)
 (3 = PERFORMANCE TAKING CL INTO CONSIDERATION)
2: CHOICE OF DECODING DECISION / INTERLEAVING = 2
 (1 = HARD DECISION WITH INTERLEAVING)
 (2 = SOFT DECISION WITH INTERLEAVING)
 (3 = NO INTERLEAVING, WORST CASE)
3: CHOICE OF CONVOLUTIONAL CODE (CONSTRAINT LENGTH, CODE RATE) = 2
 (1 = BEST (5,1/2) C.C.)
 (2 = BEST (7,1/2) C.C.)
 (3 = BEST (7,1/3) C.C.)
 (4 = UNCODED)
4: CHOICE OF JAMMER DUTY FACTOR = 1
 (1 = WORST CASE)
 (2 = USE VALUE IN PARAMETER 12)
11: SIGNAL TO JAMMER POWER RATIO = -20.0000 DB
12: DUTY FACTOR OF THE JAMMER (>0.001) = 0.5000
13: BIT ENERGY TO NOISE SPECTRAL DENSITY RATIO = 10.0000 DB
14: PRE-SPREADING BPF BW/CHIP TIME = 2.00
15: PROCESSING GAIN = 30.00 DB
16: NORMALIZED PHASE NONLINEARITY (>0.0) = 0.01

ENTER THE PARAMETER NUMBER FOR THE ONE TO BE REDEFINED
ENTER 0 FOR NO PARAMETER CHANGE

ENTER 1=END. 2=RESULT PRINT OUT, 3=SENSITIVITY CURVE

CORRELATION LOSS = -0.8933 DB
BER = 0.75102E-12
WORST CASE VALUE OF JAMMER DUTY FACTOR = 0.150

ENTER 1=END. 2=RESULT PRINT OUT, 3=SENSITIVITY CURVE
1 = CORRELATION LOSS VS PARAMETER
2 = BER VS PARAMETER
3 = WORST CASE HDD VS PARAMETER

ENTER THE PARAMETER NUMBER (>10 ONLY) TO BE VARIED.
15
ENTER THE LOWER, UPPER LIMIT, AND NUMBER OF POINTS IN FLOATING
20, 30, 21

PARAMETER = PARAMETER IS VALUE
OUTPUT 1 = CORRELATION LOSS (DB)
OUTPUT 2 = WORST CASE VALUE OF JAMMER DUTY FACTOR (RHO)
OUTPUT 3 = BIT ERROR RATE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>OUTPUT 1</th>
<th>OUTPUT 2</th>
<th>OUTPUT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.00 DB</td>
<td>-0.893</td>
<td>1.000</td>
<td>0.1151BE-01</td>
</tr>
<tr>
<td>20.50 DB</td>
<td>-0.893</td>
<td>1.000</td>
<td>0.2231BE-02</td>
</tr>
<tr>
<td>21.00 DB</td>
<td>-0.893</td>
<td>1.000</td>
<td>0.5696BE-03</td>
</tr>
<tr>
<td>21.50 DB</td>
<td>-0.893</td>
<td>0.750</td>
<td>0.2228BE-03</td>
</tr>
<tr>
<td>22.00 DB</td>
<td>-0.893</td>
<td>0.500</td>
<td>0.5893BE-04</td>
</tr>
<tr>
<td>22.50 DB</td>
<td>-0.893</td>
<td>0.250</td>
<td>0.1629BE-04</td>
</tr>
<tr>
<td>23.00 DB</td>
<td>-0.893</td>
<td>0.750</td>
<td>0.4463BE-05</td>
</tr>
<tr>
<td>23.50 DB</td>
<td>-0.893</td>
<td>0.250</td>
<td>0.1245BE-06</td>
</tr>
<tr>
<td>24.00 DB</td>
<td>-0.893</td>
<td>0.500</td>
<td>0.1245BE-06</td>
</tr>
<tr>
<td>24.50 DB</td>
<td>-0.893</td>
<td>0.450</td>
<td>0.2812BE-07</td>
</tr>
<tr>
<td>25.00 DB</td>
<td>-0.893</td>
<td>0.400</td>
<td>0.1180BE-07</td>
</tr>
<tr>
<td>25.50 DB</td>
<td>-0.893</td>
<td>0.350</td>
<td>0.5689BE-08</td>
</tr>
<tr>
<td>26.00 DB</td>
<td>-0.893</td>
<td>0.300</td>
<td>0.1154BE-08</td>
</tr>
<tr>
<td>26.50 DB</td>
<td>-0.893</td>
<td>0.250</td>
<td>0.3539BE-09</td>
</tr>
<tr>
<td>27.00 DB</td>
<td>-0.893</td>
<td>0.250</td>
<td>0.1136BE-09</td>
</tr>
<tr>
<td>27.50 DB</td>
<td>-0.893</td>
<td>0.200</td>
<td>0.5327BE-10</td>
</tr>
<tr>
<td>28.00 DB</td>
<td>-0.893</td>
<td>0.200</td>
<td>0.1131BE-10</td>
</tr>
<tr>
<td>28.50 DB</td>
<td>-0.893</td>
<td>0.150</td>
<td>0.3366BE-11</td>
</tr>
<tr>
<td>29.00 DB</td>
<td>-0.893</td>
<td>0.150</td>
<td>0.1141BE-11</td>
</tr>
<tr>
<td>29.50 DB</td>
<td>-0.893</td>
<td>0.150</td>
<td>0.3910BE-12</td>
</tr>
<tr>
<td>30.00 DB</td>
<td>-0.893</td>
<td>0.150</td>
<td>0.1141BE-11</td>
</tr>
</tbody>
</table>

-1.000
-4.000
-7.000
-10.000
-13.000

20:000 22:000 24:000 26:000 28:000 30:000

1 = END 2 = CONTINUE

*** LOG(BER) VS PARAMETER 15 ***

LinCom
THE FOLLOWING IS A LIST OF PARAMETERS TO BE DETERMINED

1: CHOICE FOR CORRELATION LOSS (CL) = 3
 (1 = PERFORMANCE WITHOUT TAKING CL INTO CONSIDERATION)
 (2 = ONLY THE CL IS DESIRED)
 (3 = PERFORMANCE TAKING CL INTO CONSIDERATION)

2: CHOICE OF DECODING DECISION / INTERLEAVING = 2
 (1 = HARD DECISION WITH INTERLEAVING)
 (2 = SOFT DECISION WITH INTERLEAVING)
 (3 = NO INTERLEAVING, WORST CASE)

3: CHOICE OF CONVOLUTIONAL CODE (CONSTRAINT LENGTH, CODE RATE) = 2
 (1 = BEST (5,1/2) C.C.)
 (2 = BEST (7,1/2) C.C.)
 (3 = BEST (7,1/3) C.C.)
 (4 = UNCODED)

4: CHOICE OF JAMMER DUTY FACTOR = 2
 (1 = USE VALUE IN PARAMETER 12)
 (2 = WORST CASE)

ENTER THE PARAMETER NUMBER FOR THE ONE TO BE REDEFINED
ENTER 0 FOR NO PARAMETER CHANGE

4

ENTER NEW VALUE FOR PARAMETER 4

2

ENTER THE PARAMETER NUMBER FOR THE ONE TO BE REDEFINED
ENTER 0 FOR NO PARAMETER CHANGE

12

ENTER NEW VALUE FOR PARAMETER 12

0.5

ENTER THE PARAMETER NUMBER FOR THE ONE TO BE REDEFINED
ENTER 0 FOR NO PARAMETER CHANGE

0

THE CURRENT VALUES FOR THE RF SINGLE ACCESS PN SPREAD LINK ARE

1: CHOICE FOR CORRELATION LOSS (CL) = 3
 (1 = PERFORMANCE WITHOUT TAKING CL INTO CONSIDERATION)
 (2 = ONLY THE CL IS DESIRED)
 (3 = PERFORMANCE TAKING CL INTO CONSIDERATION)

2: CHOICE OF DECODING DECISION / INTERLEAVING = 2
 (1 = HARD DECISION WITH INTERLEAVING)
 (2 = SOFT DECISION WITH INTERLEAVING)

3: CHOICE OF CONVOLUTIONAL CODE (CONSTRAINT LENGTH, CODE RATE) = 2
 (1 = BEST (5,1/2) C.C.)
 (2 = BEST (7,1/2) C.C.)
 (3 = BEST (7,1/3) C.C.)
 (4 = UNCODED)

4: CHOICE OF JAMMER DUTY FACTOR = 2
 (1 = WORST CASE)
 (2 = USE VALUE IN PARAMETER 12)

11: SIGNAL TO JAMMER POWER RATIO = -20,0000 DB

12: DUTY FACTOR OF THE JAMMER (>0.001) = 0.0010

13: BIT ENERGY TO NOISE SPECTRAL DENSITY RATIO = 10,0000 DB

14: PRE-DESREADING BPF BW+CHIP TIME = 2.00

15: PROCESSING GAIN = 30.00 DB

16: NORMALIZED PHASE NONLINEARITY (>=0.0) = 0.01
LinCom

ENTER 1=END, 2=RESULT PRINT OUT, 3=SENSITIVITY CURVE

1 = CORRELATION LOSS VS PARAMETER
2 = BER VS PARAMETER
3 = WORST CASE RHO VS PARAMETER

ENTER THE PARAMETER NUMBER (1-10 ONLY) TO BE VARIED.

ENTER THE LOWER, UPPER LIMIT, AND NUMBER OF POINTS IN FLOATING

20, 30, 21

PARAMETER = PARAMETER 15 VALUE

OUTPUT 1 = CORRELATION LOSS (DB)
OUTPUT 2 = BER ERROR RATE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>OUTPUT 1</th>
<th>OUTPUT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.00 DB</td>
<td>-0.893</td>
<td>0.35639E-03</td>
</tr>
<tr>
<td>20.50 DB</td>
<td>-0.893</td>
<td>0.1684E-03</td>
</tr>
<tr>
<td>21.00 DB</td>
<td>-0.893</td>
<td>0.19508E-04</td>
</tr>
<tr>
<td>21.50 DB</td>
<td>-0.893</td>
<td>0.44504E-04</td>
</tr>
<tr>
<td>22.00 DB</td>
<td>-0.893</td>
<td>0.20010E-04</td>
</tr>
<tr>
<td>22.50 DB</td>
<td>-0.893</td>
<td>0.83860E-05</td>
</tr>
<tr>
<td>23.00 DB</td>
<td>-0.893</td>
<td>0.32841E-05</td>
</tr>
<tr>
<td>23.50 DB</td>
<td>-0.893</td>
<td>0.11998E-05</td>
</tr>
<tr>
<td>24.00 DB</td>
<td>-0.893</td>
<td>0.40218E-06</td>
</tr>
<tr>
<td>24.50 DB</td>
<td>-0.893</td>
<td>0.12457E-06</td>
</tr>
<tr>
<td>25.00 DB</td>
<td>-0.893</td>
<td>0.35331E-07</td>
</tr>
<tr>
<td>25.50 DB</td>
<td>-0.893</td>
<td>0.91381E-08</td>
</tr>
<tr>
<td>26.00 DB</td>
<td>-0.893</td>
<td>0.21478E-08</td>
</tr>
<tr>
<td>26.50 DB</td>
<td>-0.893</td>
<td>0.45769E-09</td>
</tr>
<tr>
<td>27.00 DB</td>
<td>-0.893</td>
<td>0.88292E-10</td>
</tr>
<tr>
<td>27.50 DB</td>
<td>-0.893</td>
<td>0.15446E-10</td>
</tr>
<tr>
<td>28.00 DB</td>
<td>-0.893</td>
<td>0.42269E-11</td>
</tr>
<tr>
<td>28.50 DB</td>
<td>-0.893</td>
<td>0.88505E-12</td>
</tr>
<tr>
<td>29.00 DB</td>
<td>-0.893</td>
<td>0.47142E-13</td>
</tr>
<tr>
<td>29.50 DB</td>
<td>-0.893</td>
<td>0.57870E-14</td>
</tr>
<tr>
<td>30.00 DB</td>
<td>-0.893</td>
<td>0.66339E-15</td>
</tr>
</tbody>
</table>

*** LOG(BER) VS PARAMETER 15 ***

END OF RF SINGLE ACCESS WITH FN SPREAD
RF SINGLE ACCESS LINK WITH FH/MFSK MODULATION

THE ANALYSIS IN THIS SECTION PROVIDES

1. BER PERFORMANCE WITH NO JAMMING
 * WITH ORTHOGONAL CODE
 * WITH DUAL-K C.C.

2. BER PERFORMANCE WITH FULL BAND JAMMING
 * WITH ORTHOGONAL CODE
 * WITH DUAL-K C.C.

3. PERFORMANCE WITH PARTIAL BAND JAMMING
 * BER WITH M-ARY ORTHOGONAL CODING
 * BER WITH DUAL-K CONVOLUTIONAL CODING
 * IF OPTIMAL OR WORST CASE VALUES ARE USED
 * WORST CASE RHO VALUE
 * SUBOPTIMAL WEIGHTING RECEIVER
 * OPTIMAL DIVERSITY FOR ORTHOGONAL CODING WITH
 WORST CASE RHO
 * OPTIMAL DIVERSITY FOR DUAL-K CONVOLUTIONAL
 CODING WITH WORST CASE RHO
 * RANK-RATIO TEST RECEIVER
 * OPTIMAL DIVERSITY FOR ORTHOGONAL CODING WITH WORST CASE RHO
 * OPTIMAL THRESHOLD OF THE RANK-RATIO TEST WITH WORST CASE RHO
 * OPTIMAL WEIGHT W1 WITH WORST CASE RHO
 * OPTIMAL WEIGHT W2 WITH WORST CASE RHO

4. PERFORMANCE WITH MULTIPLE TONE JAMMING
 * BER WITH ORTHOGONAL CODE
 * BER WITH DUAL-K CONVOLUTIONAL CODE
 * IF RANK-RATIO TEST RECEIVER IS USED, THE FOLLOWING IS ALSO PROVIDED
 * WORST CASE VALUE OF S/J WITH ORTHOGONAL CODE
 * WORST CASE VALUE OF S/J WITH DUAL-K CONV. CODE

5. BER PERFORMANCE WITH IMPERFECT TIME AND FREQUENCY SYNCHRONIZATION
THE FOLLOWING IS A LIST OF PARAMETERS TO BE DETERMINED

A: GENERAL SYSTEM PARAMETERS:
1: JAMMING TYPE = 1
 1 = PARTIAL BAND JAMMING
 2 = MULTIPLE TONE JAMMING
 3 = NO JAMMING/FULL BAND JAMMING
2: THERMAL NOISE CONSIDERATION = 2
 1 = WITHOUT THERMAL NOISE
 2 = WITH THERMAL NOISE
3: BIT ENERGY TO NOISE SPECTRAL DENSITY RATIO = 10,000 DB
 (USED WHEN PARAMETER 2 = 2)
4: NUMBER OF ORTHOGONAL SIGNALS M (MFSK) = 14
5: NUMBER OF HOPS PER SYMBOL = 4
 IF (PARM 1 = 1 AND PARM 32 = 2) OR
 (PARM 1 = 2 AND PARM 42 = 2)
 THEN AN OPTIMAL DIVERSITY VALUE COMPUTED BY CATSS WILL BE USED
6: CODING TYPE = 1
 1 = ORTHOGONAL CODING
 2 = DUAL-K CONVOLUTIONAL CODING
7: RATE OF DUAL-K CONVOLUTIONAL CODE = 0.5000
8: TIMING AND FREQUENCY OFFSET = 1
 1 = WITHOUT INCLUDING
 2 = INCLUDING
 (IT TAKES VERY LONG CPU TIME TO INCLUDE TIMING AND
 FREQUENCY OFFSET. BATCH JOB PROCESSING IS ADVISABLE.)
9: EB/NJ = 10,000 DB
 WHERE EB = BIT ENERGY
 NJ = TOTAL JAMMER POWER / HOPPING BW (RAD)

B: NO JAMMING/FULL BAND JAMMING PARAMETERS:
NO ADDITIONAL PARAMETER IS REQUIRED

C: PARTIAL BAND JAMMING PARAMETERS:
31: RECEIVER STRUCTURE = 1
 1 = SUBOPTIMAL WEIGHTING
 2 = RANK-RATIO TEST
32: RHO VALUE CONSIDERATION = 1
 1 = USE THE VALUE IN PARAMETER 33
 2 = USE THE WORST CASE VALUE COMPUTED BY CATSS
33: VALUE OF RHO = 0.300
 WHERE RHO IS THE PORTION OF HOPPING BW JAMMED, ASSUMED CONTIGUOUS

D: MULTIPLE TONE JAMMING PARAMETERS:
41: RECEIVER STRUCTURE = 1
 1 = HARD LIMITER
 2 = RANK-RATIO TEST
42: S/J CONDITION = 2
 1 = USE S/J VALUE IN PARAMETER 43
 2 = USE WORST CASE S/J VALUE AS COMPUTED BY CATSS
 PARAMETER 42 IS USED ONLY WHEN PARAMETER 41 = 2
43: SIGNAL POWER / JAMMER POWER PER TONE = 0.00 DB

E: RANK-RATIO TEST PARAMETERS:
51: THRESHOLD OF RATIO TEST = 2
 1 = USE THE VALUE IN PARAMETER 52
 2 = USE THE OPTIMAL VALUE COMPUTED BY CATSS
52: THRESHOLD VALUE = 3.00
53: WEIGHTING = 2
 1 = USE THE VALUES IN PARAMETERS 54 & 55
 2 = USE THE OPTIMAL WEIGHTINGS COMPUTED BY CATSS
54: WEIGHTING FOR RANKING TEST, W1 = 1.00
55: WEIGHTING FOR RATIO TEST, W2 = 1.00

ENTER THE PARAMETER NUMBER FOR THE ONE TO BE REDEFINED
ENTER 0 FOR NO PARAMETER CHANGE

ENTER 1=END, 2=RESULT PRINT OUT, 3=SENSITIVITY CURVE

WITH PARTIAL BAND JAMMING:
BER FOR M-ARY ORTHOGONAL CODING = 0.90418E-02
BER FOR DUAL-K CONVOLUTIONAL CODING = 0.10540E-09
LinCom

0 = END OF CATSS ANALYSIS
1 = RF LINK POWER BUDGET
2 = RF SINGLE ACCESS (PN SPREAD) LINK
3 = RF SINGLE ACCESS (FH/FSK) LINK
4 = RF MULTIPLE ACCESS (FH/FSK) LINK
5 = SPACE OPTICAL COMMUNICATION LINK
SELECT ONE OF THE ABOVE

THIS PART OF LINK ANALYSIS INCLUDES TWO PARTS.
THE LINK BUDGET ANALYSIS AND PERFORMANCE EVALUATION.

1. THE LINK BUDGET ANALYSIS DETERMINES THE OPTICAL POWER AVAILABLE AT THE OPTICAL RECEIVER GIVEN THE PARAMETERS IN THE OPTICAL TRANSMITTER AND THE CHANNEL.
2. PERFORMANCE EVALUATION

2.1 UNCODED CASE
THE RECEIVER DESIGN DETERMINES THE REQUIRED OPTICAL POWER AT THE RECEIVER GIVEN A SET OF RECEIVER PARAMETERS TO ACHIEVE THE DESIRED PERFORMANCE (BIT ERROR RATE). TO MEET THE LINK REQUIREMENT, THE OPTICAL POWER SHOULD BE GREATER THAN (WITH A MARGIN) THE REQUIRED OPTICAL POWER.

2.2 CODED CASE
THE BER VALUES (RANDOM CODING BOUND AND UNION BOUND) ARE EVALUATED.

THE FOLLOWING IS A LIST OF PARAMETERS TO BE DETERMINED

1: DESIGN BIT ERROR RATE (USED IN UNCODED CASE) = 0.10000E-08
2: CODING IN USE (1=NO, 2=YES) = 1
3: BASEBAND SIGNALING FORMAT (NO CODING) = 2 (1=NRZ, 2=BI PHASE)
4: EXTINCTION RATIO = 0.0500
5: DATA RATE = 100.000 MBPS
6: OPTICAL CARRIER WAVELENGTH = 0.550000 NM
7: CHANNEL MODEL = 1 (1=GAUSSIAN, 2=POISSON)
8: DECODING METHOD = 2 (1=SOFT, 2=HARD)
9: SYMBOL SIZE = 2.0
10: CODING TYPE = 2 (1=BLOCK CODE, 2=CONVOLUTIONAL CODE)
11: CODE RATE = 0.3333 BITS/SYMBOL
12: WORD LENGTH (B.C.) OR CONSTRAINT LENGTH (C.C.) = 5.0
13: MINIMUM DISTANCE FOR THE CODE USED = 7.0
31: AVERAGE TRANSMITTING OPTICAL POWER = -10.00 DBM
32: TRANSMITTER ANTENNA GAIN = 80.00 DB
33: TRANSMITTER OPTICAL TRANSMISSION LOSS = -5.00 DB
61: DISTANCE = 200.0 KM
62: ATMOSPHERIC ABSORPTION LOSS = 0.00 DB
91: RECEIVER ANTENNA DIAMETER = 0.250 M
92: RECEIVER OPTICAL TRANSMISSION LOSS = -8.50 DB
93: QUANTUM EFFICIENCY = 0.850
94: CHOICE OF MEAN APD GAIN = 1 (1=OPTIMAL GAIN, 2=ARBITRARY GAIN)
95: MEAN APD GAIN = 200.00
96: EFFECTIVE RATIO OF IONIZATION COEFFICIENTS = 0.03
97: PREAMPLIFIER TEMPERATURE = 300.0 DEG K
98: EQUIVALENT PREAMPLIFIER INPUT IMPEDANCE = 100.0 OHMS
99: SIGNAL COUNT = 1
(1=USE CALCULATED SIGNAL COUNT VALUE
2=USE INPUT SIGNAL COUNT VALUE)
100: AVERAGE SIGNAL COUNT PER SYMBOL TIME = 30.000
101: AVERAGE NOISE COUNT PER SYMBOL TIME = 5.000

ENTER THE PARAMETER NUMBER FOR THE ONE TO BE REDEFINED
ENTER 0 FOR NO PARAMETER CHANGE

-39-
ENTER 1 = END
2 = RESULT PRINT OUT
3 = SENSITIVITY CURVE

2

THE RECEIVED OPTICAL POWER = -73.603 DBW
THE OPTICAL POWER REQUIRED AT RECEIVER = -74.171 DBW

1 = END OF OPTICAL LINK ANALYSIS
2 = CONTINUE OPTICAL LINK ANALYSIS

END OF OPTICAL LINK ANALYSIS

0 = END OF CATSS ANALYSIS
1 = RF LINK POWER BUDGET
2 = RF SINGLE ACCESS (PN SPREAD) LINK
3 = RF SINGLE ACCESS (FH/MFSK) LINK
4 = RF MULTIPLE ACCESS (FH/MFSK) LINK
5 = SPACE OPTICAL COMMUNICATION LINK
SELECT ONE OF THE ABOVE

THANK YOU FOR USING CATSS
HAVE A NICE DAY
LINCOM CORP

FORTAN STOP