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Introduction:

is
Synthetic aperture radars are of great current interest in the remote sensing

community M . In order to expand the utility of SARs when used to performj	

remote sensing functions such as sea ice monitoring, sea wave spectra measure-

'	 ments, geological studies, crop inventories and other functions, future SARs

will be multipolarization and multifrequency.

This report is a review of three multifrequency, dual polarization SAR antenna

designs.

i	 4
The SAR antenna design specifications were for a "straw man" SAR which would

approximate the requirements for projected shuttle-based SAR's. Therefore,

the physical dimensions were constrained to be compatible with the space

shuttle. The electrical specifications were similar to those of SIR-A and

` IL ^ k	SIR-B, with the addition of dual polarization and the addition of C and X band

`n	 operation. Early in the antenna design considerations, three candidate

technologies emerged as having promise. They were:

t

3	 1.	 Microstrip Patch planar array antennas 	 !'±

2. Slotted Waveguide planar array antennas

3. Open-ended waveguide planar array antennas.

Three companies were selected to perform design studies based on these techno-

logies. Hughes Aircraft studied the slotted waveguide array, Ball Aerospace

studied the microstrip patch antenna, and Goodyear Aerospace studied the

I 

L

:Q	
open-ended waveguide array and any other antenna type which might be applicable

to the SAR requirements.

Each contractor's antenna design was to try to meet or exceed the straw man SAR

antenna design goals. Table 1 shows the NASA design goals for these designs.

The antenna radiation pattern beam widths were determined by examining the

required swath widths, orbit altitude, and applying the SAR design equations

outlined in 
(2)

. These calculations are not included in this report. Due to

differences in interpretations of the design goals, the antenna dimensions and

beam widths proposed by the three contractors were not identical.

l

(..	 . ...	 ,._.	 ..	 - .	 " --:.,-»:,-... ,.,..^,-..--v. .^.^.	 ter.• ...-.. ^..+ ^...,	
r ...	 .r .	 .......	 :w`:rn. .._.,._...3'6CH''fi____	 ...	 ...... ..	 .ter. 

4—



The conclusion of this report will provide a detailed comparison of the three

technologies and recommendations with respect to the "best" technology for

particular missions.
I

r.

it
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Frequencies
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Table 1. Functional Requirements for

MSAR Antennas

L, C, and X band

(1.275, 5.2 and 9.6 G11z)

r

Polarizations	 -	 HH, VV, and HV

(H = horizontal, V = vertical)

Polarization Isolation - 	 20 dB minimum
r

Bandwidth

Y

F
Power (Peak)	 - 1.5 kW (L-Band),	 10 kW (X & C Band)

t	 M Integrated Sidelobes	 - -15 dB maximum

Maximum Range Sidelobe	 - -18 dB

Maximum Azimuth Sidelobe - -14 dB

Range HPBW	 - 6.0° L-Band
a

6,0° C-Band

6.0 0 X-Band
r

Azimutn HPBW

	

	 - 0.85 1 L-Band

0.22° C-Band

	

z	
0.",20 X-Band

Incidence Angles for operation	 15 to 70 degrees

s
Swath Width	 100 to 500 km

Orbit Altitude	 250 to 400 km

t

w
r

	

A ' 

{I

	

3

[ C1
4 +

50 MHz L-Band

150 MIiz C-Band

300 MHz X-Band
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Microstrip Patch Array Design

Three options for microstrip patch planar array antennas have been proposed by

Ball Aerospace (3) . They are;

1. Stacked radiators (mechanical steering)

2. Side-by-side (mechnical or electronic steering)

3. Distributed (mechnical or electronic steering)

Each of these options is based on the technology used in SEASAT, SIR-A and

SIR-B. The array is constructed using a printed circuit radiating patch fed

by a microstrip printed circuit feed network separated from a ground plane by

a dielectric honeycomb layer or a solid dielectric.

The stacked radiator option has dual polarized X band radiators next to dual

polarized L band radiators, next to C-over-L band radiators. This arrangement

has efficient antenna real estate utilization but suffers from extra complexity

in the feed network and in assembly.

The side-by-side radiator option is a side by side arrangement of L, C, and X

band arrays. This option is less complex but not quite as efficient in real

estate usage.

r

t2
t	

k
f

C

The distributed option is a phased array version of the side-by-side option.

Multiple transmit/receive modules which either do or do not contain programmable

phase shifters are distributed throughout the array. This option provides

better noise figures for the receiver system, a possibility for beam steering

and warpage correction and graceful degradation of the array if electronic

components fail. The disadvantages are increased complexity and cost in the

antenna. This type of SAR is currently under study at PSL under another

contract, at JPL (4) and at Ball Aerospace.

Figures 1 through 4 show the relative dimensions and the construction of the

microstrip options. The distributed option would add to the thickness of a

panel patch array.
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Slotted Waveguide Planar Array Design

Hughes Aircraft has proposed a BAR antenna design using slotted waveguide

techniques	 , The technology used in the design has been proven in smaller

planar arrays.
k

}	 The slotted waveguide array proposed is side-by-side arrays of single frequency,

single polarization radiators. The waveguide in the C and X band portions of

the array would be manufactured using standard aluminum dip brazing techniques.

The waveguide used in the L band portion would be formed aluminum sheet metal

bonded by using a continuous ultrasonic welding technique. They slots in the

'	 array would be machined using EDM techniques, Figures 5 through 9 show the

physical layout of the array and a detail of the waveguide forming technique.
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Open Ended Waveguide Array Design

After considering various options other than planar array, Goodyear Aerospace

settled on a planar array of open-ended waveguide radiating elements (6),

They proposed to build this array using graphite-epoxy waveguide components.

This would provide a structure with a high strength to weight ratio and a low

thermal expansion coefficient.

The radiating elements are completely interleaved in this design -that is- the

X and C band elements are placed between L band elements. This interleaving

results in very efficient antenna real estate utilization. Table 2 and Figures

10 through 15 show the various options considered by Goodyear before the

interleaved open-ended waveguide array was selected as the most viable

candidate. Figures 16 through 20 show the physical layout of the array and

its elements.
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Table 2

Antenna Concepts Considered

by Goodyear

(1) Reflector	 Prime focus fed paraboloid

Cylindrical parabola with line source feed

Near field cassegrain with cylindrical wave feed

Dual shaped reflector

i
(2) Log Periodic Array

(3)Quad-Ridged Radiators (array)

(4) Stripline Notch Radiator Array 	 i

(5) Space Fed Lens

Main Reasons for Discarding

1

3

(1) Aspect ratio required for SAR too great and restorage too difficult

and risky

(2) Very thick array - requires too much room, difficult to deploy, 	 }

high losses

(3) Must be dielectrically loaded, difficult to manufacture, cross

polarization isolation problems.

(4) Complex with high losses

(5) Aspect ratio makes illumination difficult, lens very thick.
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Analysis and Comparison of SAR Antenna Designs

F

	 The three proposed antenna technolgies for shuttle-borne synthetic aperture

radars are:

w

1. Microstrip patch planar array

2. Slotted waveguide planar array

3. Open ended waveguide planar array.

n

x

t

r

Due to differences in interpretation of NASA's antenna requirements the three

investigations assumed slightly differing antenna principal plane half power

beam widths. To make the antenna designs strictly comparable, the antenna

dimensions would have to be adjusted to some nominal antenna size. Even

though the antenna beam widths are different, important comparisons may be

made with the proper ass.tmptions about scaling to the nominal size. Figure 21

illustrates the differences in size between the antennas as designed. As

shown in the figure, the differences between the designs are primarily in the

overall antenna length. This can be seen by noting that the widths of the

singly polarized L-band radiating areas are almost identical for each antenna.

However, the Hughes slotted waveguide array antenna must be twice as wide, due

to the single polarized elements. This is a major drawback of this antenna

type.

The three antenna design results are summarized in Tables 3, 4, and 5.

These tables compare the gains, loss budgets and other parameters as functions

of frequency for the three antenna types. As usual in antenna designs and

measurements, the determination of the actual gain of a large antenna is

subject to different interpretations. For example, the loss in the waveguide

structure at X band frequency is estimated by Hughes to be 6.5 dB and by

Goodyear to be 4.3 dB even though the total number of waveguide joints and

length of waveguide run in the two antennas is very comparable. This discrep-

ancy is due to difference in engineering judgement and degree of optimism

between the two organizations. On the other hand, Ball Aerospace estimates a

3.7 dB loss total for their micr)strip antenna, a figure even lower than that

used in the waveguide technologi°, :. What figure is correct? The answer

is - we don't know because measurements of these high gain, narrow beam width
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physically large antennas are difficult. The conclusion from this is: Do

not base your technology selection very heavily on the relative projected

efficiencies of the antennas.

When the antenna losses, gains, beam widths, efficiencies, mass and other

parameters are normalized from the design studies dimensions to a nominal

antenna length of 14 meters and a constant range half power beam width of 6.3°

then Table 6 may be used to directly compare the performances of the antennas.

q

Several major conclusions can be drawn from this table. First, the waveguide

technologies have almost identical loss figures for all frequencies. This

should be expected since the radiator-to-source distance in the feed network

is almost identical for both types of antennas. Second, the microstrip antenna

has a slightly higher losses when compared to the waveguide antennas. This

r	 also agrees with intuition since the average distance to a microstrip radiator

e	 is slightly shorter than that to a waveguide radiator (due to the series feed

arrangement), but the losses in microstrip transmission lines are slightly

higher due to the dielectric layer under the microstrip patches and distrib-

ution lines.
r

r	 Third, the antenna patterns are easily synthesized by all three technologies

71

	

	 no problems encountered in attaining the sidelobe specifications. Fourth,

the antennas have almost identical masses with the open-ended waveguide antenna

being slightly heavier due to the large quantity of waveguide required in the

feed network. Fifth, the electrical efficiencies of the antennas are slightly

higher for the waveguide technologies when compared to the microstrip technology.

rr 
9	

This is due to the higher losses associated with the microstrip antenna technology.
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Ball Aerospace

X-Band (V&H)

L-Band (V&H)

C-Band L-Ban V&H
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Hughes Aircraft

L	 Vertical

L	 Horizontal

C	 Vertical

C	 Horizontal
X	 Vertical
X	 Horizontal

Goodyear Aerospace

L Band (V&H)

X-Over - L-Band (V&H)

C-Over - L-Band (V&H)
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Figure 21. Physical Configuration of Study Antennas as
Designed (Relative Scale Correct; for Absolute
dimensions see Tables 3,4 & 5).
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Table 3

L Band Antenna Comparison

A = 23.45 cm

PARAMTER	 BALL MTCROSTR3P	 HUGHES SLOTTED	 GOODYEAR OPENENDED

L

k
a

a
t

^a

^n

a

r^

r

29r

u ° d

n	 ^

u

4	 (

Antenna 37.4 dB 38.4 dB 38.7 dB
Directivity ±0.4 dB ±0.4 dB ±0.4 dB

Antenna
Gain

34.9	 ,4R 36.5 dB 36.8 dB

Antenna Losses
(Total)

2.45 dB 1.3 dB 1.9 dB

Antenna Area
24 m2 60 m2 34 m2(Single	 ol)

Aperture Efficiency
57°4 64°/0 61%

(Single	 ol)
Antenna
Dimensions 2 X 12 m 2 X 15 m 2.1 X 16.2 m

Range IIPBW 5.90 6.760 6.590

Az HPBW 1.00 0.850 0.75°

Cross Pol. -25 dB -30 dB -40 dB

Sidelobes Az -14 dB -16 dB -14 dB

Sidelobes El -18 dB -18 dB -20 dB

Electrical Eff 56% 74% 64%

Directivity of a
26.6 dB 30.6 dB 32.76 dBPanel

H Plane Taper Loss 0.2 dB 0.4 dB 0.18 dB

Panel Feed Loss 1.1	 dB 0.02 dB 0.1 dB

Feed to Panel
0.4 dB 0.08 dB 0.4 dBLevel Loss

Radiating Element
0.15 dB -- --Loss

Power Dividers
0.4 dB 0.3 dB 0.6 dB

Loss

Rotary Joint
0.1 dB 0.2 dB 0.2 dBLoss

Array Distortion
0.05 dB 0.05 dB 0.05 dBLoss

Misc.	 loss
0.1 dB 0.25 dB 0.43 dB



Table 4
C Band Antenna Comparison

A = 5.65 cm

PARAMETER	 BALL MICROSTRIP 	 HIIGHFS SLOTTFD	 GOODYEAR OPENENDFD

i

Am-

it
J Antenna 43.7 dB 44.5 dB 45.1 dB

Directivity t0.5 dB ±0.5 dB ±0.5 dB

Antenna
40.5 dB 41.9 dB 36.8 dB

Gain
Antenna Losses

-3.2 dB -3.1 dB -2.53 dB
(Total)

Antenna Area
6 m2 14.4 m2 16 m2

ol)- (Single
Aperture Efficiency

47.5%, 54%/ 45% 58%
(Single pol)

Dimensions 0.5 X 12 m 0.48 x 15 m 0.5 X 16.2 m

Range HPBW 5.90 6.760 6.340

Az HPBW 0.240 0.210 0.18°

Cross Pol. -25 dB -30 dB -40 dB
(measured) (estimated) (estimated)

Sidelobes Az -14 dB -16 dB -14 dB

Sidelobes E1 -18 dB -18 dB -19 dB

Electrical Ef£ 47% 557./ 46% 55%

Directivity of a 32.	 9 dB 36.7 dB 39.1 dB
Panel

H Plane Taper Loss 0.2 dB 0.4 dB 0.18 dB

Panel Feed Loss 1.5 dB 0.3 dB 0.2 dB

Feed to Panel
0.5 dB 0.6 dB 0.6 dB

Level Loss
Radiating Element

0.2 dB -- --
Loss
Power Dividers

0.4 dB 1.1	 dB 0.9 dB
Loss
Rotary Joint

0.1	 dB 0.4 dB 0.2 dB
Loss
Array Distortion

0.05 dB 0.05 dB 0.05 dB
Loss
Misc.	 loss 0.5 dB 0.25 dB 0.6 dB
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Table 5
X Band Antenna Comparison

A = 3.12 cm

PARAMETER	 BALL MICROSTRIP	 HUGHES SLOTTED	 GOODYEAR OPENENDED

Antenna 46.2 dB 47.1 dB 46.2 dB
Directivity ±0.7 dB ±0.7 dB ±0.7 dB

Antenna,
42.0 dB *0.5 40 ± 0.5 db 42 ± 0.5

Gain
Antenna Losses

-3.7 dB 6.5 dB 4.3 dB
(Total.)

Antenna Area
3.6 m2 4.0 m2 4.536 m2

(Single	 ol)
Aperture Efficiency

40% %,20 40%
(Sin le	 ol)

Antenna
Dimensions 0.5 X 12 m 0.48 X 15 m 0.5 X 16.2 m

Range HPBW 5.90 6.760 6.120

Az HPBW 0.1490 0.1190 0.100

Cross Pol. -25 dB -30 dB -40 dB

Sidelobes Az -14 dB -16 dB -14 dB

Sidelobes E1 -18 dB -18 dB -18 dB

Electrical Eff 42% 46%, 44%,

Directivity of a
35.4 dB 39.4 dB 41.8 dB

Panel

H Plane Taper Loss 0.2 dB 0.4 dB 0.5 dB

Panel Feed Loss 0.9 V 0.5 dB 0.4 dB
0.45 H

Feed to Panel
1.1	 dB 3.2 dB 1.13 dB

Level Loss

Radiating Element
0.2 dB -- --

Loss
Power Dividers

0.4 dB 1.6 dB 1.1	 dB
Loss
Rotary Joint

0.1 dB 0.5 dB 0.2 dB
Loss
Array Distortion

0.2 dB 0.2 dB 0.2 dB
Loss
Misc.	 loss 0.4 dB 0.1 dB 0.34 dB
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TABLE 6

j

1

A

Overall	 (1) 2.3 x 14 m 5.4 x 14 m 2.3 x 14 m
Dimensions

Range HPBW 6.30 6.30 6.30

Overall mass 283 Kg 276 Kg 322 Kg
(excluding truss)

Sidelobe levels -14 dB -16 dB -14 dB
aximuth ...... ^o ...................... -------- ---------------

elevation -18 dB =18 dB -18 dB

Cross Pol -25 dB -30 dB	 t -40 db	 t
isolation

* measured	 T estimated

FREQUENCY DEPENDANT PARAMETERS

L Band 
(2)
	 C Band 

(3)
	 X Band (4)

micro] slot open micro slot open micro slot open

Aximuth
HPBW 0.850 0.210 0.12"

Loss	 (db) 2.5 1.9 1.9 3.2 2.5 2.5 3.8 3.4 3.4

Gain (dB) 35-6 36.2 36.2 41.0 41.7 41.7 43.2 43.6 43.6

Electrical
Efficiency

56% 65 65 47 56 56 42 46 46

Electrical and Mechanical Characteristics of Candidate Antennas (Normalized

to a 14 meter azimuth length).

FREQUENCY INDEPENDANT PARAMETERS

Microstrip	 Slotted	 Open-ended
Waveguide

i

4

x

^t e,

r;

t•
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e

^	 Y

it
fi •	 V

6

i

e

(1) width of antennas	 L = 2.0, C = 0.48, X = 28 meters
(2) F = 1.278 GHz, X = 23.45 cm
(3) F = 5.306	 , A = 5.65
(4) F = 9.608	 , A = 3.12
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Costs

Cost e9timation for these SAR antenna technologies is a risky business. There

are many uncertainties - espically with unproven designs such as the open ended

waveguide technology. In addition, companies which are probably required to

engage in a competative bidding process are in general relunctant to provide

"hard" cost figure projections.

Two of the three investigators did provide estimated costs for a dual polarized

J	 antenna with three frequencies and dimesions of about 2,3 X 14 meters. 	 The

antenna costs did not include electronic beam steering.	 These estimated costs

are summarized in Table 7.	 The costs for the waveguide antenna are presented

as reasonably firm figures by Hughes Aircraft,	 On the other hand, the costs

for the open ended waveguide antenna are very soft.	 Cost estimates for the

microstrip technology were not available.	 It should be noted that the wave-

guide technology antenna requires a very large structure - almost twice as

wide as the other choices.	 This extra area will drive up the costs of support

structures and may even be too large for the Shuttle due to other payload

requirements.'

^ Conclusions:

A definite choice of a technology for SAR antennas is a difficult one to make. 	

^f

The slotted waveguide technology probably has cost advantages but is more

difficult to adapt to electronic beam steering and is probably too large to

use in a dual polarized L-band mission. 	 The open ended wavequide design is

fraught with cost and performance uncertainties. 	 There may or may not be a

large development effort required to realize an operating antenna.	 Microstrip

technology is proven and can be easily adapted to electronic beam steering.

The microstrip technologies only apparent disadvantages are slightly higher

losses (as projected by the contractors) and slightly higher cross coupling

between polarizations. 	 We recommend here that the :Following be done. 	 +

1.	 Test panels of an open-ended array be constructed using the carbon

" filament/epoxy technique to firm the cost figures and the expected

performance of that technology.

^ 33	
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2. A systems and user requirement study be made for the next SAR

mission after SIR-C. Definite antenna requirements should be

established during this study.

3. The SAR antenna should be designed using the best technologies for

each frequency - the antenna does not have to be constructed from

only one technology.

ii
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Table 7

Estimated Costs of SAR Antennas

Slotted	 Open-Ended
Microstrip	 Waveguide	 Interleaved

Array	 Array	 Array

-----	 $300k t $50k	 $1t500k t $500k
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