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S IMMARY

Accurate radiative transfer models are used to determine the upwelling

atmospheric radiance and net radiative flux in the entire longwa.ve spectral

range. The validity of the quasi-random band model is established by com-

paring the results of this model with t,:e results of line-by-line formula-

tions and with available theoretical and experimental results. Existing

radiative transfer models and computer codes are modified to include various

surface and atmospheric effects (such as surface reflection, nonequilibrium

radiation, and cloud effects) . The program is used to evaluate the radia-

tive flux in clear atmosphere, provide Oensitivity analysis of upweliing

radiance in presence of clouds, ano determine the effects of various clima-

tological pa y-ameters on the jjpwelling radiation and anisotropic function.

The program is used a l so *_j evaluate homogeneous and nonhomogeneous gas

emissivities under different conditions and the results are presented in a

supplement to this report entitled "Accurate Evaluation of Homogeneous and

Nonhomogeneous Gas Emissivities."
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1. INTRODUCTION

Extensive study of the radiative transfer phenomena in the Earth's at-

mospheric system has been carried out in the last two decades (refs. 1 to

4). This is important for the understanding of the meteorological process

on all scales and the spatial variation in surface temperature in the Earth

atmosphere. Techniques for measuring the Earth's surface temperature in-

clude airborne instruments and satellite-mounted radiometers. In order to

understand and interpret the instrument performance and readings, it t;

desirable to develop radiation models and numerical techniques that account

for the absorption and attenuation of actual atmospheric radiation. Devel-

opment of accurate models for radiative transfer in the atmosphere is ex-

tremely important for Earth radiation budget studies ana climate modeling

(refs. 4 to 6). These models have to be used for simulation and interpreta-

tion of Earth radiation budget measurements as well as for retrieval of

various surface and atmospheric parameters from satellite -measured radiances

(ref. 7). Since the radiation budget of the planet has been identified as

an important element of the climate system, its measurements are being at-

tempted with increasing accuracy (refs. 8 and 9). As a result, considerable

improvement is warranted in the accuracy of the theoretical models dealing

with atmospheric radiation transfer.

Marty models for radiation absorption by molecular gases are available in

the literature. The simplest one is the gray gas model (or the emissivity

a pproximation) and the most sophisticated and accurate one is the line-by-

line (LBL) model (or the direct integration procedure). Between the emis-

sivity approximation and direct integration method lie several narrow-and

wide-band models and band model correlations which vary greatly in complex-

2



i accuracy. A comprehensive review of various line and band models is

nvaiianle in reference 4. use of diner a LBL model or a narroe ,-band mod-

el is suggested for most atmospheric applications. The narrow -band models

!usually recommended for atmospheric studies are the Elsasser (or regular

model, statistical (Meyer-Goody or Goody) model, and quasi-random band (QRB)

model. The QRB is probably the best band model to represent accurately the

absorption of a vibration-rotation band and is suitable for calcula-

ting the atmospheric transmittance and upwelling radiance. The fundamental

features of the QRB are discussed, in detail, in references 10 to 12, and

the procedure for calculating the atmospheric transmittance and upwelling

radiance is given in reference 12. In spectral ranges where both line ab-

sorption and scattering are important, a widely used approximation for cal-

culating spectrally integrated radiative flux is the exponential-sum fitting

of transmissions (ESFT) method. The basis for this method is that the

transmission function for a given spectral interval is fit by a sum of ex-

ponentials. The method is described in reference 13_

Radiative transfer models used in earlier climatic investigations em-

ployed radiation charts, generalilzed absorption coefficients, and Elnissiv-

ity approximations (refs. 5, 14-16). Rodgers (ref. 17) has indicated that

the use of multi-interval narrow-band radiative transfer schemes in climate

modeling studies wi^l const ; tute a significant step forward and result in

improved accuracy of the model output. Fels and Kaplan (ref. 18) have in-

vestigated the effects of using different radiative transfer schemes on the

thermal structure o` the atmosphere and its consequences to atmospheric dy-

namics. They employed two different radiative absorption models, the emis-

sivity approximation and Goody's statistical band formulation, and performed

3



numerical experiments with the NCAR general circulation model. They ob-

served a significant difference in the cooling rates in the two experiments

which resulted in significan'ly different mean temperature fields and merid-

icnal circulation.

Very high accuracy can be achieved in the radiation computation by

using the LBL integration procedure in the radiative transfer models (ref.

19). However, the procedure is too cumbersome and makes excessive demands

on computer time. Tiwari and Gupta (ref. 20) have shown that the QRB model

can be used for computing atmospheric transmittances with accuracy compara-

ble to that of the !BL method and with computer usage more than an order of

magnitude smaller. Kunde (ref. 11) has also used this model to compute out-

going infrared radiances fro,.i planetary atmosrheres. However, before use of

the QRB model can be recommended for Earth radiation budget and climate

modeling st idi es, further work needs to be done to validate the model on a

sound basis. This model should be used for absorption bands of different

species in different spectral ranges. It is quite possible that the model

is not justified at shorter wavelengths and smaller pressure path lengths.

Furthermore, under realistic atmospheric conditions, the model may give good

results in certain spectral ranges, but is poor in other range!-,.

For critical applications, it is essential to validate the quasi-random

band model under as many different but realistic conditions as possible by

comparing the results of this model with available experinicotal and theoret-

ical results. For several molecular species, experimental results for spec-

tral transmittance a9d total band absorpance are given by Burch et al.

(ref. 21) under different pressure and path length conditions. Thus it is

highly desirable to compare the results of the QR B model with these exneri-



mental results. For cases where experimental results are not available, it

is important to compare the QRB results with LRL results,. For certain spec-

tral ranges and atmospheric conditions, results of atmospheric transmit-

tances are available in the literature which have been obtained by using a

sophisticated program called LOWTRAN (ref. 22). It is therefore desirable

to obtain the QRB results exactly for these conditions for comparison with

the LOWTRAN results. Another model ised freq:;, +tly in atmospheric studies

is the K-distribution approximation (refs. 23-27). it has been applied suc-

cessfully only to water vapor bands (refs. 24 and 25), but there are indica-

tions thi;t it could be usad wi ,.n reasonable accuracy for other bands also

(refs. 26 and 27). It is therefore important to compare the results of the

QRB model with the K-distribution formuiation for different bands under

varying conditions. Recently (refs. 28 and 29), another model and computer

code called FASCODE ( Fast Atmospheric Signature Code) has ; een developed t

the line-by-line calculation of radiance and transmittance with particular

applicability to the Earth's atmosphere. In this model, an algorit ►rn ;or

the accelerated convolution of line shave furctions (Lorentz, Voigt and

Doppler) with spectral line data is used. The contribution from continuum

absorption is also ',ncluded in the model. The program is applicable to

spectral regions from the microwave to the visible. It may, therefore, be

desirable to compare the results of this model with the results of QRB for-

mu'! ation.

The objective of this study is to validate the QRB model for a few real-

istic conditions by comparing the results of this model with the LBL, exper-

imental, and LOWTRAN results. Detailed verification of the QRB model re-

suits with the results of ether formulations is beyond L : ,e scope of this

5
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study. After the model validations, the aim of this study is to use the QtB

model for evaluating the gas emissivities in several important spectral

ranges and also in the entire lungwave range. The Q R formulation is espe-

cially useful for this when a mixture of several molecullar species are in-

volved. This study could provide benchmark solutions for gas emissivity

under different pressure and temperature conditions. Such information are

useful not only in atmospheric studies, but also in the fields of infrared

signature work, combustion processes, and fire research. Another important

aim of this study is to use the Q2B model for evaluating the upwelling at-

mospheric radiance under different realistic surface and atmospheric condi-

tions. Such formulations (and relevant information) are very useful in de-

veloping an accurate data reduction scheme for the measurement of atmospher-

ic pollutants by remote sensing (refs. 4 and 30), and for Earth radiation

budget and climate modeling studies (refs. 5-9, 31-33).

A major factor influencing the radiation balance and the general circu-

lation of the Earth's atmosphere is the presence of clouds which occupy

about 50 percent of one planet Earth on a global basis. Clouds absorb and

scatter the incomin; solar radiation and absorb and emit terrestrial radia-

tion. Although clouds have been included in the study of transfer of solar

radiation through the Earth's atmosphere for many years, there have been

very few studies which include the effects of clouds on the longwave radia-

tion (refs. 32-40). Clouds vary greatly in thickness, height, liquid water/

ice content, and geometrical shape and size; and ail these factors contrib-

ute in a complicated manner to the large variability of the cloud radiative

properties. Some of these effects are being considered in recent studies

(refs. 41-47). Most of the treatments given to clouds in the long-wave

6
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radiation transfer models have been very simplistic. It is therefore esser.-

tial to modify the existing radiative transfer models appropriately arc in-

vestigate the effects of large variability in the radiative and geometrical

properties of the clouds on the thermal radiances and fluxes.

The basic formulation of the radiative transfer equations and the ex-

pressions for the up wel l ing radiance and flux are presented in the next

chapter, "Basic Theoretical Formulation." The spectral models used in this

study are discussed briefly in chapter 3 entitled "Absorption Models." The

computational procedure and data source for calculating the transmittance,

upwel l i ng radiance, and radiative flux are given in chapter 4. The results

of the entire study pertaining to atmospheric applications are presented in

three separat.: chapters entitled, "Accurate Evaluation of Longwave Radiation

in Clear Atmosphere," "Sensitivity Analysis of tlpwelling Radiance in Pres-

ence of Clouds," an(' "Evaluation of An"sotropic Functions in the Longwave

Region." The results of emissivity calculations are given in a supplement

to tf. ;c report entitled, "Accurate Evaluation of Homogeneous and Nonhomogen-

eous Gas Emissivities.

r
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2. BASIC THEORETICAL FORMULATIONS

Basic governing equations for radiative transfer in the atmosphe

available in the literature. However, many of these equations need

modified for specific applications. For some applications, entirely

lations are needed to express a particular phenomena.

The radiation emergent from the atmosphere may be given by the e

lion (refs. 4, 30):

E(w) = EG (w ) + ER (w ) + EGR (w) + E0 ( w ) + EOR(w)

The various components of the upwelling radiation are pictori lly sh

figure 2.1 and are defined in the list of symbols. In general, thes

functions of surface and atmospheric temperatures, surface emittance

flectance, sun zenith angle, scattering characteristics of particles

transmittance of the atmosphere.

In the spectral region of infrared measurements, the effect of scatter-

ing and solar-reflected radiation is usually omitted. Hence, the expression

for thermal radiation emerging from a plane-parallel atmosphere can bE writ-

ten as

E(w) = F G (w) * E GR (w) = s(w) B(w,Ts ) T(w,O'

(2.2)

h

+ J o B[w,T(z)][dTiw,z)/dz]dz + p(w)F-(w,T) T(w,0)

The first term on the right-hand side of equation (2.2) repress nts the

radiation from the surface; the second term is the radiation from the atmos-

8



phere, and the third term represents the reflected component of the downward

radiation. The contribution of the reflected atmospheric radiati.on from the

surface is usually neglected fo^ surfaces with relatively high values of

surface emittance and for the spectral regions where the downward atmos-

pheric emission is small.

The contribution of the sunlight reflected from the surface from the

surface is important at shorter wavelengths and is g iven by the component

ER (w) as

E R (w) = 1 [1 -e(w)] cos a H s( w ) [T(w)]a
ir

(2.3)

where a is the sun's zenith angle, [1 - e(w)] is the ground reflectance of

the surface, Hs (w) is the sun irradiance on the top of the atmosphere,

a = 1 + f(e) where f(e) = sec a for 0 < e < 60 0 and Ch a for e < 60° with

Ch a denoting Chapman's function, and T(w) = T(w,0) is the transmission

-ertically through the atmosphere.

For radiation budget and cooling rate calculations, however, the

required quantity is the flux density. Upward flux density can be obtained

precisely by integrating the upwelling radiance over the zenith angle 6

and the azimuth 0, such that

2w	 2
F(w,h) = f o d¢ f' /E(w,h) sin a cos a de	 (2.4)

Integration of equation (2.4) by using detailed angular distribution of

radiation is a tedious problem. However, it is simplified considerably for

4



a piane-parallel atmosphere and assuming that the source function in equa•-

tion (2.2) is isotropic. It is possible with the above assumption to adopt

the two-stream approximation whereby the equations of transfer are reduced

to only tho.

For the purpoze of analysis (i.e., radiation mud eling) and measurement

of outgoing flu,;. -,t has been suggested to divide the entire longwave spec-

tral range into the following subregions (ref. 31): (a) 0.7 to 4 u; (b) 4

to8u; W8to12u; (d)9to10u; (e)12to18u;and (f)18to50u.

Spec-fic reasons for suggesting this spectral subdivision are given in ref-

erence 33. The Earth radiation budget experiment (ERBE) proposed by NASA

(ref. .50) consists of two packages designed to provide three spatial resolu-
tion options with three broad spectral bands as: (a) short wave, 0.2 to 5 u;

(b) long wave, 5 to 50 ;,; and (c) total, 0.2 to 50 u. However, for para-

metric studies, it is desirable also to extend the long wave range to 200 u

(i.e., 5 to 200 u).

As discussed in the introduction, it is essential to incorporate an

appropriate model for the cloudy atmosphere in the general radiative trans-

fer model. For this, information on physical characteristics of clouds is

essential. Some of the basic information required is: cloud amount, cloud

height, cloud-top texture, height-width ratios, microphysical properties,

total water content, liquid/ice water content, and cloud base altitude. A11

these factors contribute to the variability of the cloud radiative proper-

ties. As such, a simplistic description of clouds, where they are consider-

ed as opaque/black surfaces, is grossly inadequate. It is essential, there-

fcre, to incorporate into the general radiative transfer schemes appropriate

cicud models which take into account as many physical variables as possible.

E .
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Basic governing equations for radiative transfer through clouds are availa-

ble in the literature (refs. 31-40). The upwelling radiance in the presence

Y

of a cloud layer of thickness Az can be expressed as (ref. 44):

E(w),h) = [Tw (AZ/Tw(,&z)]{es B(w,Ts ) Tw (h,0)	 -

z

+ f ob B[a► ,T(z)]dTw(h,z)]}

+ f z + oz B[ w , T ( z ) ] dTw ( h , z )	 (2.5)

b

Detaiicd discussions of the above equation and the dependence of cloud

transmittance Twc (Az) on its liquid-water content and droplet size distri-

bution is given in reference 44 (a copy of this is attached as Appendix Al).

In addition, radiation models of finite clouds of different geometrical
s

shapes and sizes are becoming increasingly available in the literature

(refs. 45-49). The existing radiative transfer models should be modified to

incorporate other cloud parameters in order to investigate the effects of

their variability on upwelling radiances and fluxes.

During the International Radiation Symposium held at Colorado State Uni-

versity in ;august 1980, it was emphasized that the effect of non-local

thermodynamic equilibrium (NLTE) should be considered in the radiative

transfer formulations for a better interpretation of the Earth radiation

budget experiment (ERBE) data. Inclusion of this effect was emphasized, es-

pecially for the fundamental bands of CO21 03 , and N20.

The monochromatic upwelling radiance under the NLTE condition, in the

presence of a cloud layer of thickness n, may be expressed as (ref. 51):

11
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E(w,h) .. [ TC (Az)/Tw (Bz;]{e S B( w,T s ) Tw (h,0) + E(uo)

+ f0 Jw[T(z)dTw(h,z)}

+ fZb+Az Jw [ T ( z ) ] dT w ( h , z )	 (2.6)

where Jw [T(z) represents the nonequilibrium source function and is given

in terms of the Planck function as

Jw[T(z) _ {EAw[T(z)] + n R(T(z)}/(1 + n)	 (2.7)

where n = n /n . Equation 2.6 can be ulsed as a diagnostic equation to in-
c r

}	 vestigate the influence of NLTE on upwelling atmospheric radiation.

By following the nomenclature adopted by the International Radition Com-

mission for the Earth Radiation Budget Experiments (ERBE) the expression for

the upwelling radiance reaching the cloud base zb from the underlying sur-

face and atmosphere is given by (refs. 44 and 52)

z
LV ( zb ) = E s BV ('i s )TV (zb ,0) + fo b BV [T(z)dT V (zb ,z)	 (2.8)

where TV (zb ,0) is the clear column transmittance with reference to the

cloud base zh . T 2 radiance reaching the top of the cloud layer at

z  + Az is given by

Lv (zb + Az) = LV (zb 
)T V T (AZ) + [1-TT(A;.)]B^(T^) 	(2.9)

12
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where Tv(ez) represents the total transmittance through the cloud (i.e.,

it is the product of the transmittance due to cloud and the transmittance of

the atmosphere in the cloud) and Bv (Tc ) is the Planck function evaluated

at the cloud average temperature T c . The first term on the right hand side

of equation (2.9) represents the radiance reaching the cloud top from the

underlying surface and atmosphere, and the second term is the radiance due

to the cloud emission. A combination of equations (2.8) and (2.9) results

in

L^(zb +ez) = T^(az) CE(T)(T V (zb , 0)

z
+ T T (,&z) f o b

 
Su[ T ( z ) ] d T (zb 9 z)

+ [1-TT(nz)]B^(Tc)
	

(2.10)

The upwelling radiance reaching the top of the atmosphere (denoted by

h in this study) is expressed as

LV (h) = LV (zb+oz)T^(h, zb +4 z) + f  B^[T(z)]dT^(h:z)	 (2.11)
b

A combination of equations (2.10) and (2.11) results in

L^(h) = TC(Az)T,^(h,0)es8^(Ts)

13



+ Tc(AZ)fo,Bv[T(z)]dTV(h, z)

+ 
TV(h,zb

+AZ)[1-TT(Az)]BVITc)

+ f h 8 [T(z)]dTV(h,z)
b	 (2.12)

where T 	 is the cloud transmittance. It should be noted that equation

(2.12) is a modified form of equation (2.5).

As Az approaches zero, T  (A z) and TT (A z) approach unity, and

equation (2.12) reduces to

Lv (h) = E s Bv
 (

T
s 

) Tv (h,o) + f o Bv [T(z)] dT V (h,z)	 (2.13)

This is an expression for the upwelliing radiance for a plane-parallel clear

atmosphere and can be expresed also in a direction a relative to nadir as

Lv ( ® ) = e 
s 3 (Ts TVs ( 0 ) + 

f Tvh 
Bv (Tz ) dTVz ( 6 )	 (2.14)

In a simplified study, the radiance for an overcast atmosphere is ob-

tained from equation (2.14) by treating the cloud top as the underlying sur-

face and considering only that part of the atmosphere which lies above the
a

cloud. For partly cloudy conditions, the radiance is obtained as the cloud

fraction weighted sum of the overcast and clear radiances.

14



The total outgoing radiance is obtained by integrating the spectral

radiances

L(e) = fAv Lv (9)dv	 (2.15)

By assuming azimuthal symmetry, the spectral outgoing flux can be obtained,

in principle, by integrating equation (2.15) over the nadir angle a from

0 to w/2 as

MV = 27r f o/2 
Lv (e) sin 9 cos e d a	 (2.16)

In practice, huwever, lengthy numerical integration is avoided by using the

diffusivity approximation (ref. 17). The total outgoing flux M can be ob-

tained by integrating MV over the frequency range ev as

M=fevMvMvdv	 (2.11)

The anisotropic function is defined as

R(e) = Tf L(e)/M	 (2.18)

The difference between the largest and smallest values of R(e) is a good in-

dicator of the extent of limb darkening for most atmosphere models. This is

defined as

G = R(emin) - R 
('max)	

(2.19)

where the largest value of R(e) corresponds to the minimum value of e

and vice versa.

15
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3. ABSORPTION MODELS

The greatest problem in computing radiances and fluxes is the integra-

tion of spectral relations over the frequency range of interest. Th e

absorption coefficient (and, hence, the transmittance) is a highly variable

function of the frequency, and for accurate work it should be evaluated at

small frequency intervals. Furthermore, within a band which usually con-

sists of thousands of rotational lines, the absorption coefficient at any

frequency is made up of contributions from many lines. In principle, there-

fore, it is possible to caiculate the absorption coefficient with very high

accuracy by summing the contributions -of all intervening lines. In prac-

tice; however, it is a very tedious and time-consuming process. For a wide

frequency range wit.. several bands, each with a large nuTiber of lines, large

amounts of computer resources are required. As such. use of simplified

models for spectral absorption is highly desirable.

As mentioned in the introduction_ considerable efforts have been spent

in the past in devising simpl ;fied models to overcome the problem of nuneri-

cal integration over the complicated line structure of the atmospheric spec-

true. A complete review on different absorption models is available in ref-

erence 4. Ttie absorption models proposed for the present study are discuss-

ed in references 20, 53 and 54. In these references, the validity of the

QRB model has been investigated by comparing the results of this model with

the LBL, experimental, and other accurate-model results available in the

literature. These comparisons snow that the QRB formulation offers an

accurate and efficient method for calculating the transmittances and radi-

ances in nonhomogeneous nonisothermal systems. Further work, however, is

needed to establish the validity of this model. It would be desirable to 	 .

compare the results of LBL, QRB, LOWTRAN, K- distribution, and FOSCODE models

17
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for selected conditions to establish the validity of the QRB formulation.

However, because of high computational costs, this is beyond the scope of

the present study.
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4. COMPUTATIONAL PROCEDURE AND DATA SOURCE

The numerical procedure for evaluating the spectral atmospheric trans-

mittance and the upwelling radiance and the data source used for V calcu-

lations are described briefl y in this section.

In calculating the atmospheric transmittance, the atmosphere is divided

into a number of layers of equal thickness (in the present case, 1 km). For

the present study, th- top of the atmosphere was considered first to be 10

km, which is approximately the top of the troposphere. Selected -esults

were also obtained by considering the top of the atmosphere at 20 and 30

kilometers. The pressure path length is given by the expression

(4.1)duij= Q ij (P j
/P NTP )TNTP

/T.)dz
J	 j

where Qij is the volume mixing N atio of the ith const i tuent in the jth

layer, dzj	is the thickness of the jth layer, ana ?: and Tj are the

pressure and temperature at the center of the jth layer, respectively. Th e

transmittance at location z in the atmosnhere is given by

T(w, :' = exp[- fu E E kij(w)duij]

j i

(4.2)

Following the procedure for evaluating the atmospheric transmittance,

upwelling radiance is calculated by dividino the nonhomogeneous atmosphere

into a nL.-;:uer of homogeneous sublayers. The complete numerical procedure

and computer programs are available in references 53 and 54.

The line parameters needed for this study (position, strength, line,

width, etc.) were obtained from McClatchey et al. (refs. 55 and 56). The

"McClatchey Tape" is available at the NASA/Langley Research Center. Tile at-
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mospheric temperature and pressure profiles were taken from the U.S. Stan-

dard Atmosphere 1962 (ref. 57). The information on global annual average

model atmosphere is given in table 4.1. The concentration distributions in

the atmosphere for H20, CO2 , N2 0 and 03 were taken from McCI atchey et al.

(ref. 55). The CO2 and N2 0 are assumed to be uniformly mixed in the atmos-

phere. Rotational and vibrational partition functions, required to account

for the temperature dependence of the line strengths, were taken from

McClatchey et al. (ref. 56).

The categories of other model atmospheres, as obtained from reference

58, are listed in table 4.2. The information on c..;ud cover and location is

given in pertinent chapters.

PT

W_ =

f

1
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Tahi^ 4.1 Global annual average model atr,.osphere.

f

t

Alt Press Temp Water Vap Ozone
(km) (atm) (Kel) (PPMV) (PPMV)

6

.5 954.61 284.90 .695 7E+04 .2790E-01
1.5 845.59 278.40 .5395E+04 .3078E-01
2.5 746.91 271.91 .3949E+04 .327 7E-01
3.5 657.80 265.41 .2701E+04 .3353E-01
4.5 577.52 258.92 .1801E+04 .3531E-01
5.5 505.39 252.43 .1176E+04 .3891E-01
6.5 440.75 245.94 .888 7E+03 .449 2E-O 1
7.5 382.99 239.46- .4762E+03 .5412E-01
8.5 331.54 232.97 .2692E+03 .7418E-01
9.5 285.84 226.49 .1170E+03 .1104E+00

10.5 245.40 220.01 .5422E+02 .170 7E+00
11.5 209.84 216.65 .2836E+02 .2592E+00

=.	 12.5 179.34 216.65 .1534E+02 .3451E+00
13.5 153.27 216.65 .8613E+01 .4404E+00
14..S 131.00 216.65 .5955E+01 .5726E+00
15.5 111.97 216.65 .5940E+01 .7369E+00
16.5 95.72 216.65 .590 3E+0 l .9991E+00
17.5 81.82 216.65 .5867E+01 .1375E+01
18.5 69.95 216.65 .6291E+01 .179 6E+01
19.5 59.80 216.65 .7358E+01 .2289E+01

'	 20.5 51.13 217.08 .9016E+01 .2793E+01
21.5 43.75 218.08 .1151E+02 .3323E+01
22.5 37.46 219.07- .1471E+02 .3898E+01
23.5 32.09 220.06 .1867E+03 .4391E+01
24.5 2 7.5 2 221.06 .235 -")E+0 2 .486 7E+01
25.5 23.62 222.05 .2734E+02 .5371E+01
26.5 20.28 223.04 .2893E+02 .5901E+01

^.	 27.5 17.43 224.03 .3026E+02 .634ZE+01
28.5 14.99 225.02 .3154E+02 .6628E+01
29.5 12.90 226.01 .3276E+02 .6673E+01

Volume Mixing Ratios
(PPMV)

F
f

N20 CHy CO2

Î .28 1.6 330.

t
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1. Cloudiness Clearsky cases 58

Un%!ercas t 48

2. Diurnal Daytime cases
Coverage (0700 - 1859) 52
(Local Time)

Nighttime cases
(1900 - 0656) 54

3. Climate Type Maritime- 66

Continental 40

4. Latitudinal Tropical (0' - 30') 20
Distribution

Kid-lat (3V - 60") 62

Sub-arctic polar (60' - 90 0 ) 24

5. Seasonal Spring (3/16 - 6/15) 16
Coverage

Summer (6116 - 9/15) 33

Table 4.2 Categories of 106 model atmospheres (ref .58).

Autumn/Fall (9/16 - 12/15)	 27

Winter (12/16 - 3/15) 	 30

22
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5. ACCURATE EVALUATION OF LONGWAVE RADIATION IN CLEAR ATMOSPHERE

In recent studies (refs. 20, 44, 51, and 54), accurate theoretical mod-

els were developed for evaluating the upwelling atmospheric radiance and

radiative flux. The existing computer codes were refined to include detail-

ed information on the LBL and QRB absorption and various surface and atmos-

pheric parameters. The feasibility of the QRB model for atmospheric studies

were made to investigate the influence of various surface and atmospheric

parameters on the upwelling radiances. Some of the important results of

recent investigations are discussed here very briefly, and the details are

available in the cited reference-.

5.1 Evaluation of Atmospheric Transmittance

In the longwave range, atmospheric transmittances were calculated by

employing the LBL and QRB formulations in selected spectral intervals. The

calculations were made for clear sky conditions, and contributions of all

important species were considered in each spectral interval. The results

were compared with available theoretical and experimental results (ref. 54).

Specific Transmittance results for the spectral range from 2,500 to 2,800

cm-1 are shown in figures 5.1 and 5.2. The results calculatred by the LBL

and QRB Mode's and LOWTRAN program (by considering only the 3.17-u water

vapor band) are shown in figure 5.1. The results are found to be in good

agreement. The results presented in figure 5.2 are also for the same spec-

tral range, but, in this case, contributions of other bands (3.57-u 03,

3.85-u CK4 , and 4.5-v N2 0) have been included -in calculating the atmospheric

transmittance. From a comparison of results presented in these figures it

may be concluded that the QRB results are it good agreement with the LBL and

23
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LOWTRAN results and that the transmittance (in this spectral range) is main-

ly due to the 3.17 -11 H2 O band. Results far other spectral ranges are avail-

able in reference 54.

For further study, it is suggested to calculate the atmospheric trans-

mittance, in different spectral ranges, by employing the QRB, K-distribu-

tion, LOWTRAN, and FASCODE models and compare the results with the resuits

of LBL formulation.

5.2 Evaluation of Upwelling Radiance and Radiative Flux

For the standard atmospheric conditions (table 4.1), the results for

upwelling radiance and radiative flux were obtained for sclecteJ spectral

ranges by employing the QRB formulation. I6 each spectral range, contribu-

tions of all important species were considered. For preliminary study, the

top of the atmosphere was taken to be at 10 km; but, later results were ob-

tained also by consijcring the top of the atmosphere at 20 and 30 km. The

contribution of the reflected component of solar radiation was includeu in

the calcuiation of the upwelling radiance for an illustrative case, but the

contribution of atmospheric radiation reflected from the surface was

neglected.

Specific results for the spectral range from 2,500 to 2,800 cm- 1 are

presented in figure 5.3 for the case in which the contribution of reflected

solar radiation was included. For a fixed surface emittance, the upwelling

radiance is seen to increase with i ncreasing surface temperature. This is

because the surface and atmospheric emissions are relatively higher at high-

er surface temperatures. For a fixed surface temperature, the radiance is

seen to increase with decreasing surface emittance. This -;s because, for

lower surface emittance, the reflected component of the solar radiation is
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larger, and this makes the total upwelling radiance relatively higher.

Similar conclusions were drawn also from the results presented in references

28 and 54. The results presented in the rest of this section we ► : obtained

by neglecting the contributions of the reflected solar radiation.

For standard atmospheric conditions, the variation in upwelling radi-

ance and radiative flux at different altitudes is illustrated in figure 5.4

for the spectral range of 5-50 u where most of the longwave radiative proc-

esses occur. The results clearly show that the upwelling radiance and flux

increase with increasing surface temperature and decrease with increasing

altitude. As pointed out earlier, this_is because the surface and atmos-

pheric emissions will be relatively higher for higher surface temperatures;

and the radiative energy will attenuate with increasing atmospheric thick-

ness. It is further noted that the attenuation above 20 km is relatively

small, and the top of the atmosphere can be taken as 30 km for most appli-

cations.

For different longwave spectral ranges, the variations in upwelling

radiance and radiative flux with surface temperature are shown in figures

5.5 and 5.6, respectively. The solid curves represent the results for the

atmospheric top at 10 km and the broken curves for the atmospheric top at 30

km. It is seen that the radiative contributions from different spectral re-

gions add up to give the highest values for the spectral range 5-50 u; the

values for other spectral ranges are relatively lower. As noted earlier,

the results for 30 kT^ are relatively lower than for 10 km. The results for

t; ►e atmospheric window (10.5 - 12.5 u) are the lowest and are identical foe

10 and 30 kilometers. This is because there are only a few weakly absorb-

ing species in this range and they do not contribute to the radiative proc-

25
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ess beyond certain height.

The variation of upwelling radiance and radiative flux with surface

emittance is shown in figures 5.7-5.9. The results presented in figures 5.7

and 5.8 are for the spectral range 5-50 u, and the results in figure 5.9 are

for the window region. The results show that for a given surface tempera-

ture the radiance and flux increase with increasing surface emittance. This

is true, in general, for all nonreflecting radiating surfaces. For the

earth-atmosphere system, however, the trend exhibited in figures 5.7 - 5.9

's true only if the contribution of reflected solar radiation is neglected.

From the results presented in this-section, it may be concluded that

the QRB formulation is quite suitable for most atmospheric applications.

The procedure for calculating the upwelling radiance and radiative flux has

been developed by using the QRB model and illustrative results have been ob-

tained for the standard atmospheric: conditions. The results demonstrate

that for a fixed surface emittance the upwelling radiance and flux increase

with increasing surface temperature and decrease with increasing height.

The radiative attenuation above 20 km is small and the top of the atmosphere

can be considered as 30 km for most applications. The radiative ccntribu-

tions from different spectral ranges add up to give the total upwelling

radiance. The contribution from the window region is quite small and the

spectral region 5-20 contributes considerably to the entire longwave radia-

tion.

M •
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6. SENSITIVITY ANALYSIS OF M ELLING RADIANCE IN PRESENCE OF CLOUDS

The existing radiative transfer programs were Modified to investigate

the effects of clouds on the upwelling radiance. In order to study the sen-

sitivity of upwelling radiance to variations in cloud height, cloud liquid

water content, and cloud thickness, calculations were made in three differ-

ent spectral ranges. They are the 5- to 10-um, 10.5- to 12.5-um (window),

and 10- to 20-um regions. These spectral regions include most of the strong

absorption and emission bands of H2 O, CO29 03 , and N20. The QRB fonnulation

was employed and results were obtained for the standard atmospheric condi-

tions. The key results are discussed completely in reference 44, and a copy

of this is attached as Appendix Al; the entire results are tabulated in

Appendix B2.

As an example of the sensitivity analysis, the variation of radiance

with cloud height is illustrated in figure 6.1 for different spectral range

and surface emissivity. It is seen that the upwelling radiance decreases
s

with increasing cloud height for all three spectral ranges. This is because

the effective cloud top temperature at which the absorbed radiance is re-

emitted is lower for higher level clouds. It is noted that the maximum im-

pact of the cloud layer is in the window region. Here, the reduction in up-

welling radiance (from the clearsky value) by a cloud at z = 11 km is about

49 percent as compared to about 43 percent in the 5- to 10-u range and 37

percent in the 10- to 20-um range.

Other results of this study presented in Appendix Al indicate that the

difference between the clear and cloudy sky radiances is nearly 36 percent

for the cloud base at 5 km and about 43 percent for the cloud base at 10 km;

this difference increases with increasing surface emissivity and surface

36



temperature. Further sensitivity studies, however, are needed to study the

formation of different types of clouds a ►,, their interaction with the atmos-

phere, study the influence of cloud height variations on the net upwelling

flux, evaluate the total longwave flux and correlate this with the window

flux by varying the cloud droplet-size distribution, and evaluate the vari-

ation of total and window region flux with the cloud liquid water content

and cloud top temperature.
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7. EVALUATION OF ANISOTROPIC FUNCTIONS IN THE LONGME REG .G..

7.1 Introduction

A study of the anisotropic function in the atmosphere has assumed

greater importance recently because of its applicability for the Earth Radi-

ation Budget Experiment (ERBE) . This experiment is designed to measure the

radiation budget of the Earth-atmosphere system at the top of the atmcs-

phere. The scanning radiometer which is an important component of the

instrument complement measures the radiance emanating at the top in a given

direction. These directional radiances can be converted to the total out-

going flux density only if the anisotropic functions for the atmosphere are

known.

In this study, anisotropic functions have been calculate ,' for several

model atmospheres. The effects of variability of various meteorological

parameters on the anisotropic function are investigated. During the initial

phases of this study, the spectral range considered for the longwave radia-

tive transfer was 5-50µ. The results were presented at a national confer-

ence (AIAA Paper 83-0161) and the entire material is included in this report

as Appendix A2. Some specific results discussed in Appendix A2 are tabula-

ted in Appendix B3. Later, the computer code was modified to cover the 	 4

longwave spectral range 5-200µ. Key results of this study are presented

here and are compared with the results presented in Appendix A2.

7.2 Physical Conditions and Computational Procedure

The physical conditions, data source, and computation procedure are es-

entially the sane as given in Appendix A 2 ; these are discussed here

briefly.

39



he top of the atmosphere is considered to be at 30km. For calculation

transmittance and raaiance, the atmosphere is divided into 15

I YjG, a; the first ten layers are LPIC-kilometer thick. The low altitude

cloud is assumed to be at 2 km, middle-level cloud at 6 km, and high-level

cloud at 10 km. The thickness of the cloud layers is assured to be one

k  Iomete-.
E_

Several climatological- average model atmospheres are used to establish

the latitudinal and seasonal variability of the anisotropic functions.

These are tropical, mid-latitude summer/winter, sub-arctic summer/winter in

addition to the U.S. Standard Atmosphere (USSA) which represents the mean-

annual mid-latitude conditions. Pressure, temperature, and ozone profiles

for the above models are taken from McClatchey et al. (refs. 55 and 56). A

climatological mean value for the surface relative hunid :y (RH) of 75%

(ref. 59) is used for all of the above models and verti J distribution of

water vapor is computed using the power law (ref. 60)

wz = wZ (P z/P s )^	 (7.1)

where A is related to the water-vapor scale height and its average value

is taken to be 3. The concentration of water vapor is calculated by

C = A exp(18.9766-14.9595A-2.4388A 2 )	 (7.2)

where A = 273.15/T 
S* 

Upon dividing by the density and multiplying by the

`.	 ratio of air molecular weight to the water vapor molecular weight, the con-

centration of water vapor in ppmV is obtained. Data files are created for

different surface relative humidities.

The computer code developed for this study has the following capabil-
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ities:

1. The upwelling radiance and radiative flux in the longwave range from 5

to 200 u (2000 to 50 cm- 1 ) can be calculated; the program can be used

also in any specified spectral range between 5-200' u.

2. The participating species considered for the calculation of the atmos-

pheric transtrittance are Cho, CO 2 , H2 O, N2 0, and 03 . The effect of any

particular gas (i.e., the radiative contribution of a specific molecu-

lar gas) can be investigated.

3. The atmosphere (with top at 30 km) is divided into 15 sublayers; the

first: ten kilometers is divided into ten equal layers. The cloud base

can be considered anywhere below 10 km. it is assumed that most clouds

lie below 10 Ivri.

4. The parameters that can be changed easily in the program are surface

temperature, surface emissivity (emittance), cloud height and cloud

emissivity.

5. Radiances and fluxes can be calculated for different cloud-cover frac-

tions and zenith angles.

6. Anisotropic functions can be calculated for different atmospheric mod-

els.

For a given atmospheric model, the computer program is capable of com-

puting all results (including all information given in steps one thrcigh

six) in one step. This reduces the computer time considerably as compared

IF

to the individual runs. For parametric and sensitivity studies, therefore,

the present code is very economical. The information on the computer

W 2

program is available it Appendices C1 and C2; Appendix C1 provides the

listing of the program. Comment cards are inserted in the listing to ex-



re I,

k•

plain each stage of the program.

7.3 Results and Discussion

The sensitivity of the anisotropic functions to meteorlogical variables

like cloud cover, cloud hei ght, surface relative humidity, surface emittance

and temperature is examined for the U.S. Standard, Tropical, anu Sub-Arctic

Winter atmospheres.

The results of clearsky radiance and flux are tabulated in table 7.1

for the U.S. Standard Atmosphere for different longwave spectral ranges.

These results are similar to those presented in chapter 5; but now the spec-

tral range has been e^.tended to cover 5-200u. The results show that the ra-

,fiance and flux for 5-200 u range are only about three-and-one-half percent

higher than the values for 5-50 u range. This is not a significant in-

crease, but this information may be essential for some specific applica-

tions.

For the standard atmosphere and spectral range 5-200u, figure 7.1 shows

the upwelling radiance as a function of the cloud cover fraction for differ-

values of the Zenith angle. The cloud top is assumed to be at 5 km and the

cloud emissivity is taken to be unity. As would be expected, the results

clearly show that the upwelling radiance decreases with increasing cloud

cover and zenith angle. The radiance values for 9 = 0° and 15" are seen to

be quite close, but considerable decrease in radiance is noted for e-values

larger than 45% As explained in Chapter 2, the difference between the max-

imum and minimum values of radiance represents the extent of limb darkening

for most atmospheric models.

The significance of the anisotropic function and importance of the

Ow
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Table 7.1 Clearsk radiance and flux for U.S. standard (mid-lat.
average) atmosphere, Atm Top = 30 km, 	 E = 1.0, T = 288.15 K

s	 s
surface relative humidity (RH) = 75%, 6 = 0.

Spectral Range, Clear Atm.
Radiance, W/m2 _sr

16.63

Clear Atm. Flux,
W/m2

45.585 - 10

10 - 20 42.16 12494

5 - 20 58.79 170.52

10.5 - 12.5 14.79 45.58

5 - 50 78.59 229.10

5 - 200 81.41 237.85
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limb-darkening work are illustrated in figures 7.2 and 7.3. It is noted

that the radiance emerging from the top of the atmosphere can be highly ani-

sotropic (non Lambertian). For a given Earth- atmosphere system, if the radi-

ation leaving the atmosphere is isotropic (Lambertian), the satellite in-

strument will receive the same radiation for all nadir viewing angle. How-

ever, because of the directional dependence of the upwelling radiation, dif-

ferent radiative energy is received by the instrument at different viewing

angle. The extent of the limb darkening is expressed by the value of G

which is the difference between the maximum and minmum values of tha aniso-

tropic function for a given atmospheric model. The results for anisotropic

functions are tabulated in Appendices B3 and B4 for the spectral ranges

5-50 u and 5-200 u, respectively. The results for the spectral range 5-50 u

are discussed in Appendix A2 and some specific results for the spectral

range 5-200 u are discussed in this section.

The latitudinal variability of the anisotropic functions for the c!ima-
{

tological-average model atmospheres is shown in figure 7.4; the values of G

F. for different models are given within the parentheses. In comparison to the

results for the mid-latitude average model, the values of the anisotropic

function are found to be '-igher for the tropical atmosphere and lower for 	 i

the sub-arctic winter atmosphere for lower nadir viewing angles; hcwever,

the reverse trend is observed for viewing angles greater than 50 0 . The val-

I/	 ue of G for the mid-latitude average cicir atmosphere was found to be 0.2386

(instead of 0.2444 for the spectral range 5-50u) and is used as a reference

value in the following discussions. The values of G for the tropical and

sub-arctic winter models were found to be 0.3073 and 0.1622, respectively.

Similar latitudinal variability in anisotropic functions was observed when
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radio-sonde-measured model atmospheres were used instead of the climatolog-

ical-average models (see Appendix A2).

The sensitivity of the isotropic functions to changes in the values of

various meteorological parameters was examined in detaiT for the U.S. stan-

dard (mid-latitude average), tropical and sub-arctic winter atmospheres.

For all case considered, the top of the atmosphere was taken to be 30 km.

The entire results are presented in Appendix B4, selected results are given

in tables 7.2 and 7.3, and some specific results are illustrated in figures

7.5-7.8.

The effects of cloud height on the anisotropic functions were examined

for the overcast (100% cloud cover) conditions and the results for the stan-

dard and tropical atmospheres are shown in figures 7.5a and 7.5b, respect-

ively. It is seen that R(e) decreases with a sharply for the lower

cloud heights than for the cloud at zc = 10 km; the variation is steeper

for the tropical atmosphere than the standard atmosphere. The value of G

varies from 0.2013 (zc = 2 km) to 0.0186 (zc = 10 km) for the standard

atmosphere and from 0.2646 (zc = 2 km' to 0.1050 (zc = 10 km) for the

tropical atmosphere. The results clearly indicate that the anisotropic

atmosphere functions are quite sensitive to the location of clouds in the

atmosphere.

The sensitivity of the anisotropic function to cloud covers is illus-

trated in figures 7.6a and 7.6b for the standard and tropical atmospheres,

respectively. The results are obtained for a cloud height of 6 km and the

cloud emissivity is taken to be unity. It is noted that the value of G

varies from 0.2386 (clear sky) to 0.1265 (overcast sky) for the standard at-

mosphere and from 0.3073 (clear sky) to 0.1958 (overcast sky) for the trop-

^ a 4
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Table 7.2 Sensitivity of anisotropic functions to various meteorological
parameters for a mid-latitude average atmosphere, Atm Top =
30 km.

No. Meteorological	 Parameter
G-values

5-50 u 5-200 u

1. Surface relative humidity, %
50 0.238 0.2331
75 0.244 0.2386

1C0 0.249 0.2430

2. Water vapor scale-height
parameter, a

2 0.258 0.2490
3 0.244 0.2386
4 0.233 0.2280

3. Surface emittance, es
 s 0.201 0.1966

0.9 0.223 0 '1Q„
1.0 0.244

4. Cloud height	 (overcast),	 km

2 0.205 0.2013
6 0.128 0.1265

10 0.014 0.0186

5. Cloudu cover (zc= 6 km), %

0 0.244 0.2386
50 0.195 0.1906

100 0.128 0.1265

6. High-cloud emissivity, cc

0.5 0.162 0.1586
1.0 0.04 0.0186
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Table 7.3 Sensitivity of anisotropic functions to various
meteorological parameters for a tropical atmosphere,
Atm Top = 30 km.

No. Meteorological Parameter -	 ---- 1
5-50u	 5-200 v

1. Surface emittance, es

0.8 0.2590
0.9 0.2837
1.0 0.3073

2. Cloud height (overcast), km

2 0.2646
6 0.1958

10 0.1050

3. H49h-cloud emissivity, cc

4. 0.5 0.2318
1.0 0.1050
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ical atmosphere. The results show that the anisotropic functions are also

quite sensitive to the changes in fractional cloud cover.

The sensitivity of the anisotropic function to the high-cloud emissiv-

ity is shown in figures 7.7a and 7.7b; the results are- obtained for an over-

cast sky. The value of G is seen to vary from 0.1586 (c c = 0.5) to 0.0186

(Ec = 1.0) for the standard atmosphere and from 0.2318 (cc = 0.5) to 0.1050

(c = 1.0) for the tropical atmosphere. The anisotropic function is seen to

be quite sensitive also to the high-cloud emissivity.

The strong dependence of G on cloud height is a combination of two

effects. Firstly, the lower temperature of the cloud top reduces the

temperature difference between the underlaying surface (cloud top) and top

layers of the atmosphere. Secondly, there is much less water vapor above

the cloud top. Variation of G with fractional cloud cover is simply a

combination of the effects for clear and overcast cases. The large increase

in G as the high-cloud emissivity decreases from 1.0 to 0.5 can be attri-

buted to the fact that for the partly transmitting cloud, considerable part

of the -adiation emanating at the top originated at the surface. It should

be noted that the values of G for 50% cloud cover and s c = 1.0 I s equal

to that for 100% cloud cover and c c = 0.5; this demonstrates that cloud

emissivity and fractional cloud cover are equivalent pa r ameters (i.e., the

effective cloud cover is c c x actual cloud cover).

The sensitivity of the anisotropic function to the surface er^ittance

(emissivity) is shown in figures 7.8a and 7.8b; the results are obtainea for

the clear-sky conditions. Th e value of G is found to vary from 0.1966

(es = 0.8) to 0.2386 (c s = 1.0) for the standard atmosphere and from 0.2590

E •
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•	 (e = 0.8) to 0.3073 (e s = 1.0) for the tropical atmosphere. It is noted
s

that the anisotropic function is also quite sensitive to the surface emis-

sivity; an increase in surface emittance of 10% results in an increase of G

value of about 11% (see table 7.2). The sensitivity of the isotropic func-

tion to the variation of surface temperature was examined for different mod-

els (see Appendices A2, B3, and B4). A 5 K change in the surfac4 tempera-

ture (without changiing the temperature profile) was found to cause more

than 6% change in the G value. It should be noted that the changes in

surface emittance and temperature effectively amount to a change in tale

lapse rate and this, in turn, causes the change in G values. When atmos-

pheric temperature profile was changed along with the surface temperature,

insignificant charges in G were observed (Appendix B3).

The sensitivity of the isotropic function to the variation of surface

relative huridity (at fixed surface temperature) water vapor scale-height

parameter a, and CO 2 concentration was ex mined for different models (see

table 7.2 and Appendices A2, 63, and 64). It was found that G increased

sharply from 0.091 for a dry atmosphere (no water vapor) to 0.221 for 5%

relative hunidity (Appendices A2 and B3), but increased very slowly there-

after. The variation of the scale-height parameter was found to have a

small effect on G (table 7.2). The variation of carbon dioxide concentra-

tration between zero and twice the standard amount (i.e., 660 ppmV) has very

small effect on G (Appendix 83).

1.4 Conclusions

The existing computer code for the 5-50 u longwave range was modified
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to cover the spectral range 5-200 u. Other modifications were i9ade to

achieve higher efficiency and less computational costs. The revised code

was used to investigate the effects of various meteorological parameters on

the upwelling radiation and anisotropic function. The study shows that in-

clusion of the spectral range from 5J u to 200 u amounts to about 3% change

in final results in most cases. This may not appear to be a significant

change- but for some specific applications this information may be of vital

importance. Other conclusions on "Evaluation of Anisotropic Functions in

the Longwave Region" are essentially the same as given under "Concluding Re-

marks" of Appendix A2.

d i
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8. CONCLUDING REMARKS

Radiative transfer models and computer codes have been developed by em-

ploying the line-by-line and quasi-random band formulations to determine the

gas emissivities, upwelling atmospheric radiance and radiative flux in the

entire longwave spectral range (5-200 u). The program is quite versatile

and can be used to investigate the influence of various parameters and non-

equilibrium radiation on the net radiative exchange.

In this study, the program was used to evaluate the radiative flux in

clear atmosphere, provide sensitivity analysis of upwelling radiance in

presence of clouds, and determine the.effects of various climatological par-

ameters on the upwelling radiation and anisotropic function. The results

show that the QRB formulation is quite suitable for most atmospheric appli-

cations, the top of the atmosphere can be considered at 30 km, and the radi-

ative contribution from the spectral range 50-200 u amounts to about three

percent. For a given surface and atmospheric conditions, the upwelling

radiance and anisotropic function are found to be very sensitive to the

variation in cloud parameters (liquid-water content, thickness, height,

cover, and emissivity). Other studies, however, are needed to further in-

vestigate the specific influence of various cloud parameters. It is estab-

lished that the limb-darkening 71 the atmosphere is caused primarily by the

presence of water vapor and reaches saturation for very low values of water

vapor burden.
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APPENDIX B1

CLEARSKY M ELLING RADIANCE AND RADIATIVE FLUX

TABLES B1.1 - 81.5
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APPENDIX B2

UPWELLING RADIANCE IN PRESENCE OF CLOUDS
TABLES B2.1 - B2.4
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APPENDIX B3

ANISOTROPIC FUNCTIONS FOR SPECTRAL

RANGE 5 - 50	 - Tables B3.1 - 63.12

t w
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Table B3.1 Variation of anisotropic function with cloud cover fraction
for standard atmosphere; Atm Top = 30 km, spectral range = 5-50
u, Ts = 288.15 K, e s = 1.0, a = 3, cc = 1.0, Zc = 6 km, RH

Cloud Cover, %
Zenith
Angle, e 0 50 100

0 1.079 1.062 1.040
15 1.073 1.058 1.037
30 1.056 1.044 1.029
45 1.024 1.019 1.013
60 0.972 0.978 0.985
70 0.919 0.535 0.957
80 0.835 0.867 0.912

G 0.244 0.195 0.128
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Table B3.2 Variation of anisotropic function with cloud height for
standard atmosphere; Atm Top = 30 km, spectral range
= 5-50 u, T S = 288.15 K, e s = 1.0, a = 3, cc = 1.0, RH = 75%

Cloud Height (Zc ), kin
Zenith

50% Cloud Cover 100% Cloud CoverAngle,
e -

2 6 ?o 2 6 10

0 1.073 1.062 1.092 1.067 1.040 1.005
15 1.068 1.058 1.049 1.063 1.040 1.005
30 1.052 1.044 1.037 1.048 1.019 1.004
45 1.023 1.019 1.016 1.021 1.013 1.002
60 0.974 0.978 U.982 0.976 0.985 0.998
70 0.925 0.935 0.946 0.931 0.957 0.995
80 0.848 0.867 0.890 0.862 0.912 0.991

G 0.225 0.195 0.162 0.205 0.128 0.014
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Table B3.3 Variation of anisotropic function with high-cloud emissivity
for standard atmosphere; Atm Top = 30 km, spectral range
= 5-50 u, Ts = 288.15 K, e s = 1.0, a = 3, RH = 75%

Zenith
Angl e,

High Cloud (Zc = 10 km) Emissivity, cc

e 50% Cloud Cover 100% Cloud Cover

0.5 110 0.5 1.0

1.067 1.052 1.052 1.0050
15
30

1.067
1.018

1.052
1.037

1.041)
1.037

1.005
1.004

45 1.021 1.016 1.016 1.002
60 0.976 0.982 0.982 0.998
70 0.931 0.946	 - 0.946 0.995
80 0.859 0.890 0.890 0.991

G 0.208 0.152 0.162 0.014
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Table B3.4a Variation of anisotropic function with surface relative
humidity for standard atmosphere; Atm Top = 30 km, spectral
range6 = ^5-50 u, Ts = 288.15 K, E s = 1.0, a = 3, cc = 1.0,
c

Zenith Surface Relative Humidity (RH), %

Angle,

e Cl ear Sky Overcast sky

25 50 75 100 25 50 75 100

0 1.075 1.077 1.079 1.080 1.036 1.039 1.040 1.041
15 1.069 1.072 1.073 1.075 1.034 1.036 1.037 1.038

30 1.053 1.055 1.056 1.1757 1.026 1.028 1.029 1.029
45 L023 1.024 1.024 1.025 1.012 1.012 1.013 1.013
60 0.974 0.973 0.972 0.972 0.986 0.986 0.985 0.985
70 0.923 9.921 0.919 0.917 0.959 0.957 0.957 0.956
80 0.843

,^

0.839 0.835 0.831 0.914 0.912 U.912 0.912

G 0.238 0.244 0.249 0.122 10.12710.12 8 0.129
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Table B3.4b Variation of anisotropic function with surface relative
humidity (low range) for standard a tmosphere; Atm Top
= 30 km, spectral range = 5-50u, T s = 288.15 K,
e s = 1.0, a = 3, clear sky

e. Zenith Surface Relative Humidity (RH), %

Angle,
e 0 50 15 20 25

0 1.028 1.068 1.071 1 073 1.074 1.075

15 1.026 1.063 1.066 1 068 1.069 1.069

30 1.020 1. 3/ 1.051 (	 1 052 1.053 1.053
45 1.009 1.022 1.022 1.023 1.023 1.023

60 0,990 0.975 0.914 0.974 0.974 0.974

70 0.970 0.926 0.924 0.924 0.923 0.923

80 0.937 0.847 0.845 0.844 0.843 0.843

G 0.091 0.221 0.226 0.229 0.231 0.232
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Table B3.5 Variation of anisotropic function with water vapor scale-height

parameter for standard atmosphere; Atm Top = 30 km, spectral
range = 5-50 u, TS = 288.15 K, ES = '.u, Zc = 6 km, RH = 75%

n r
Zenith 'dater Vapor Scale-Height Parameter, a

Angle,

Clear Sky Overcast Skye

2 3 4 2 3 4

0
15
30
45
60
70
80

1.084
1.078
1.060
1.026
0.971
0.915
0.826

1.079
1.073
1.056
1.024
0.972
0.919
0.835

1.074
1.069
1.u53
1.023
0.974
0.923
0.841

1.044
1.041
1.031
1.014
0.985
0.956
0.914

1.040
1.037
1.029
1.013
0.985
0.957
0.912

1.035
1.033
1.026
1.011
0.987
0.960
0.915

G 0.258 0.244 0.233 0.130 0.128 0.120

t	 ;^

M
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Table B3.6 Variation of anisotropic function with surface emissivity for
standard atmosphere; Atn Top = 30 km, spectral range
= 5-50 u, Ts = 288.15, a = 3, c c = 1.0, Zc = 6 km, RH = 75%.

Zenith Surface Emissivity, es

Angle,
Clear Sky 50% Cloud Cover

8 0.8 0.9 1.0 0.8 0.9 1.0

0 1.066 1.073 1.079 1.055 1.059 1.062
15 1.062 1.068 1.073 1.051 1.055 1.058
30 1.047 1.052 1.056 1.039 1.042 1.044
45 1.021 1.02 3 1.024 1.017 1.044 1.019
60 0.977 0.975 0.972 0.981 1.019 0.978
70 0.933 0.926 0.919 0.944 0.979 0.935
80 0.865 0.850 0.835 0.886 0.939 0.867

G 0.201 0.223 0.244 0.169 0.182 0.195

Q
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Table 83.7 Variation of an-isotropic function with surface skin temperature
for standard atmosphere; AW Top = 30 kin, spectral range
= 5-50 km, a = 3, RH = 75%, clear sky.

Zenith
Surface Skin Temperature, K

Angle, TS = Ts - 5 Standard, Ts =	 288.15 T' s = Ts + 5

TZ TZ=T7-5 TZ TZ
(CO2 only)

TZ TZ TZ+ 59

0 1.074 1.081 1.079 1.013 1.083 1.077
15 1.069 1.075 1.073 1.012 1.078 1.071
30 1.053 1.057 1.056 1.009 1.059 1.055
45 1.023 1.025 1.024 1.004 1.026 1.024
60 0.974 0.972 0.972 0.996 0.971 0.973
70 0.925 0.917 G.919 0.988 0.914 0.921
80 0.847 0.830 0.835 0.976 0.823 0.839

G 0.227 0.251 0.244 0.037 0.260 0.238
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Table B3.8 Variation of anisotropic function with carbon dioxide
concentration for wet and dry standard atmosphere; Atn Top
= 5-50 u, Ts = 288.15 K, es = 1.0, a = 3, RH = 73%, cleir sky.

Zenith Carbon Dioxide Concentration

Angle,
Dry Atmosphere Standard Water,Vapor

e Zero Stand. Double Zero Stand. Double

0 1.013 1.028 1.027 1.072 1.079 1.077
15 1.012 1.026 1.025 1.067 1.073 1.072
30 1.009 1.020 1.919 1.052 1.056 1.055
45 1.004 1.009 1.009 1.023 1.024 1.024
60 0.995 0.990 0.990 0.973 0.972 0.973
70 0.985 0.970 0.971 0.918 0.919 0.921
80 0.967 0.937 0.938 0.823 0.835 0.838

G 0.046 0.091 0.089 0.249 0.244 0.239

I'

109

S



.

Table B3.9 Latitudinal variation of anisotropic function for
climatological-average model atmospheres; Atm Top = 30 km,
spectral range = 5-50 u, E s = 1.0, a = 3, cc = 1.0,
Zc = 6 km

Zenith Climatological-Average Model Atmospheres

Angle,
tropical Sub-Arctic Winter Mid-Lat. Ave.

e Clear Overcast Clear Overcast Clear Overcast

0 1.097 1.062 1.053 1.025 1.079 1.040
15 1.090 1.057 1.049 1.023 1.073 1.037
30 1.069 1.044 1.038 1.018 1.056 1.029
45 1.030 1.019 1.017 1.008 1.024 1.013
60 0.965- 0.978 0.981 0.991 0.972 0.985
70 0.898 0.933 0.943 0.971 0.919 0.957
80 0.789 0.864 0.882 0.936 0.835 0.912

G 0.308 0.198 0.171 0.089 0.244 0.128

f
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Table 83.10 Variation of anisotropic function for different model
atmospheres; Atm Top = 30 km, spectral range
= 5-50 u, e s = 1.0, A = 3, c c = 1.0, Zc = 6 km.

Zenith Model Atmosphere

Angle, Sub-Arc. Slimmer, Mid-Lat. Winter, Mid-Lat. Summer
e Ts = 288.45 K Ts = 272.59 K Ts = 296.22 K

Clear Overcast Clear Overcast Clear Overcast

U 1.071 1.035 1.065 1.034 1.083 1.050
15 1.066 1.033 1.061 1.032 1.077 1.047
30 1.050 1.025 1.047 1.025 1.059 1.036
45 1.022 1.011 1.020 1.011 1.026 1.016
60 0.975 0.987 0.977 0.987 0.971 0.982
70 0.928 0.963 0.931 0.961 0.914 0.947
80 0.855 0.926 0.859 0.915 0.824 0.892

G 0.216 0.109 0.206 0.119 0.259 0.158

A

i
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Table 83.11 Latitudinal variation of anisotropic function for radiosonde-
measured atmospheric models (Data 106 models, 9/29/58); Atm
Top = 30 km, spectral ranye = 5-50 u, e s = 1.0, clear sky.

Zenich Atmospheric Model

Angle, e
Havana, Cuba Nantucket, Klass. Thule, Greenland

0 1.0834 1.0704 1.05U1
15 1.07176 1,0655 1.0467
30 1.0595 1.0502 1.0360
45 1.0261 1.0220 1.0159
60 0.9703 0.9750 0.9816
70 0.9125 0.9266 0.9448
80 0.8219 0.8500 0.8854

G 0.2615 0.2204 0.1647
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Table B3 A 2 Seasonal variation of anisotropic function for radiosonde-
measured atmospheric models (Data 106 model); Atn Top = 30 km,
spectral range = 5-50 u, e s = 1.0, clear sky.

Zenith Tropical Mid-Lat. Const. Sub-Arctic

Angle, Eureka,Keywest, ;rand J n., Denver,
e Florida Colo. Colo. NWT

08/01/58 02/01/58 08/01/58 01/01/58 08/01/58 03/01/58

0 1.0835 1.0815 1.0718 1.0565 1.0561 1.0322
15 1.0777 1.0759 1.0668 1.0527 1.0522 1.0,301
30 1.0594 1.0581 1.0512 1.0406 1.0398 1.0234
45 1.0260 1.0254 1.0224 1.0179 1.0173 1.0105
60 0.9706 0.9711 0.9746 0.9794 0.9806 0.9875
70
80

0.9134
0.8226

0.9151
0.8278

0.925&
0.8489

0.9388
0.8749

0.9442
0.8906

0.9615
0.9150

G 0.2609 0.2538 0.2229 0.1816 0.1655 0.1172

i,
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APPENDIX B4

ANISOTROPIC FUNCTIONS FOR SPECTRAL

RANGE 5-200 u - Tables B4.1 - B4.16
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Table B4.1 Variation of anisotropic function with high-cloud cover
fraction for standard atmosphere; spectral range

= 5-200 u, Atm Top = 3U km, T = 288.15 K: e s = 1.0,
a = 3. ec = 3.0, Zc = 6 km, A = 75%.

Zenith Cloud Cover, %

Angle,
e 0

1.0768

50

1.0608

100

1.03950
15 1.0714 1.0566 1.0368
30 1.0546 1.0433 1.0283
45 1.0238 1.0189 1.0125
60 0.9731 0.9785 0.9857
70 0.9212 .0.9367 0.9575
80 0.8382 0.8702 0.9130

G 0.2385 0.1906 0.1265
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Table B4.2 Variation of anisotropic function with cloud height for standard
atmosphere; spectral range = 5-200 u, Atm Top = 30 kin,
Ts = 228.15 K, e s = 1.0, As= 3, cc = 1.0, M = 75%.

Zenith Cloud Height (Zc ), km

Angle,
e 50% Cloud Cover 100% Cloud Cover

2 6 10 2 6 10

1.0715 1.0608 1.0511 1.0658 1.0395 1.0060U
15 1.0665 1.0566 1.0475 1.0612 1.0368 1.0056
30 1.0580 1.0433 1.0363 1.0468 1.0283 1.0043
45 1.0221 1.0189 1.0158 1.0204 1.0125 1.0019
6U 0.9750 0.9785 0.9821 0,,9770 0.9857 0.9978
70 0.9268 0.9367 0.9475 0.9329 0.9575 U.9936
80 0.8508 0.8702 0.8925 0.8645 0.9130 0.9874

G 0.2207 0.1906	 1 0.1586	 11 0.2013 0.1265 0.0186
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Table B4.3 Variation of anisotropic function with high-cloud emissivity
for standard atmosphere; spectral range = 5-200 u, Atm Top
= 30 km, Ts = 288.15 K; e s = 1.09 A = 3, RH = 75%.

Zenith
Angl e,

High Cloud (Zc = 10 km)	 Emissivity, ec

e 50% Cloud Cover 100% Cloud Cover

0.5 1.0 0.5 1.0

0 1.0655 1.0511 1.0511 1.0060
15 1.0609 1.0475 1.0475 1.0056
30 1.0465 1.0363 1.0363 1.0043
45 1.0203 1.0158 1.0158 (	 1.0019
60
70

0.9771
0.9328

0.9821
0.9475

0.9821
0.9475

(	 C.9978
0.9936

80 0.8621 0.8925 0.8925 0.9874

G 0.2034 0.1586 0.1585 I	 0.0186
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Table B4.4 Variation of anisotropic function with surface relative
humidity for standard atmosphere; spectral range = 5-200 u,
Atm Top = 30 km, T

s = 288.15 K,, e s = 1.0, a = 3, e„ = 1.0,
Z c= 6 km.

Zeni th Surface Relative Humidity ( RH) , %

Cle-r Sky	 Overcast sky
Angle,

e 50 75 1U0 50 75 100

0 1.0753 1.0768 1.0784 1.0384 1.0395 1.0401
15 1.0700 1.0714 1.0729 1.0358 1.0368 1.034
30 1.0535 1.0546 1.0557 1.0276 1.0276 1.0287
45 1.0233 1.0238 1.,0243 1.0122 1.0125 1.0126
60 0.9737 0.9731 0.8725 0.9859 0.9857 0.9355
70 0.9229 0.9212 0.9194 0.9579 0.9575 0.9573
80 0.842" 0.8382 0.8346 0.9123 0.9130 0.9134

G 0.2331 0.2386 0.2'438 0.1256 0.1265
--

0.1267
-	 ----
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Table B4.5 Variation of anisotropic function with water vapor scale-height
for standard atmosphere; spectral range = 5-200 u, Atm Top
= 30 km, Ts = 288.15 K, e s = 1.0, cc= 1.0, Zc = 6 km, RH = 75%.

Zenith Water Vapor Scale-Height Parameter, a

Angle,
e Clear Sky Overcast Sky

2 3 4 2 3 4

0 1.0811 1.0768 1.0721 1.0417 1.0395 1.0350
15 1.0754 1.0714 1.0671 1.0388 1.0368 1.0327
30 1.05115 1.0546 1.0514 1.0297 1.0283 1.0253

45 1.0250 1.0238 1.0225 1.0129 1.0125 1.0113
60 0.9719 0.9731 0.9744 0.9854 G.9857 0.9868
70 0.9177 0.9212 0.9247 0.9578 0.9575 0.9601
80 0.8321 0.8382 0.8441 0.9176 0.9130 0.9153

G 0.2490 0.2366 0.2280 0.1241 0.1265 0.1197
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Table B4.6 Variation of anisotropic function with surface emissivity for
standard atmosphere; spectral range = 5-200 u, Atm Top
= 30 km, Ts = 288.15 K, a = 3, = c c = 1.0, Zc = 6 km, RH = 75%.

Zenith Surface Emissivity, es

Angle,
e Clear Sky 50% Cloud Cover

0.8 0.9 1.0 0.8 0.9 1.0

0 1.0647 1.0710 1.0768 1.0535 1.0572 1.0608
15 1.0602 1.0660 1.0714 1.0498 1.0532 1.0566
30 1.0460 1.0504 1.0546 1.0381 1.0408 1.0433
45 1.0200 1.0220 1.0238 1.0167 1.0178 1.0189
60 0.9775 0.9752 0.9731 0.9811 0.9798 0.9785
70 0.9347 0.9277 0.9212 0.9449 0.9407 0.9367
80 0.8681 0.8527 0.8382 0.8881 0.8790 0.8702

G 0.1966 0.2183 0.2386 0.1654 0.1782- 0.1906
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Table B4.7 Variation of anisotropic function high-cloud cover fraction
fur tropical atmosphere; spectral range = 5-200 u, Atm
Top = 30 km, Ts = 302.59 K, E s = 1.0, a = 3, cc = 1.0, 7c = 6 km,
RH = 75%.

Zenith Cloud Cover, %

Angle,
e 0 50 100

0 1.0967 1.0810 1.0608
15 1.G900 1,0754 1.0567
30 1.0690 1.0579 1.0436
45 1.0303 1.0254 1.0192
60 0.9654 0. 709 0.9779
70 0.8976 9.9136 0.9342
80 0.78°3 0.8225 0.8650

G 0.3073 0.2585 0.1958
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Table B4.8 Variation of anisotropic function with cloud height for
tropical atmosphere; spectral range = 5-200 u, Atm Top
= 30. km, T s _ 302.59, e s = 1.0, a = 3, c c = 1.0, RH = 75%.

Zenith Cloud Height (Z ), km
C

Angle, -
e 50	 Cloud Cover	 100% Cloud Cover

2 6 10 2 6 i9

1.0902 1.0810 1.0721 1.0833 1.0608 1.03080
15 1.0840 1.0754 1.0671 1.07761 1.0567 1.0287
30 1.0643 1.0579 1.0515 1.0594 1.0436 1.0222
45 1.0282 1.0254 1.0227 1.0260 1.0192 1.0099
60 0.9678 0.9709 0.9740 0.9704 0.9779 0.9884
70 0.9047 0.9136 0.9227 0.9124 0.9342 0.9650
80 0.8036 0.8225 0.8225 0.8403 0.8187 0.8560

G 0.2866 0.2585 0.2318 0.2646 0.9158 0.1050
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Table B4.9 Variation of anisotropic function
for tropical atmosphere; spectral
= 30 km, Ts = 302.59 K, e s = 1.09

with high-cloud emissivity
range = 5-200 M, Atm Top
A = 3, RH = 75%.

Zenith
Angle,

High Cloud (Zc = 10 km) Emissivity, cc

e 50,00 Cloud Cover 100% Cloud Cover

0.5 1.0 0.5 1.0

0 1.0858 1.0721 1.0721 1.0308
15 1.0'99 1.0671 1.0671 1.0287
30 1.0612 1.0515 1.0515 1.0222
45 1.0269 1.0227 1.0227 1.0099
60 0.96921 0.9740 0.9740 0.9884
70 0.9087 0.9227 0.9227 0.9650
80 0.8120 0.8403 0.8403 0.9258

G 0.2738 0.2318 0.2318 0.1050
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Table 84.10 Variation of anisotropic function with surface relative humidity
for tropical atmosphere; special range = 5-200 u, Atm Top
= 30 km, Ts = 3U2.59 K, e s = 1.0, A = 3, BH = 75%

Zenith	 Surface Relative Humidity (RH), %

Angie,
e
	

Clear Sky	 Overcast Sky

50 75 100 50 75 100

0 1.0917 1.0967 1.1009 1.0588 1.0608 1.0621
15 1.0854 1.0900 1.0939 1.0548 1.0567 1.0579
30 1.0654 1.0690 1.0720 1.0423 1.0436 1.9445
45 1.0287 1.0303 1.0315 1.0187 1.0192 1.0196
60 0.9671 0.9654 0.9641 0.9784 0.9779 0.9776
70 0.9024 x.8976 0.8944 0.9354 0.9342 0.9336
80 0.7972 0.7894 0.7859 0.8660 0.8650 0.8645

G 0.2945 0.3073 0.3150 0.1958 0.1958 0.1976

124



Table 84.11 Variation of anisotropic function with water vapor scale height
parameter for tropical atmosphere; spectral range = 5-200 u,
Atm Top = 30 kin, T s = 302.59 K, e s = 1.0, Z c = 6 km, RH = 75%

Zenith Water Vapor Scale-Height Parameter, a

Angle,
e Cl ear Sk y Overcast Sk y

2 3 4 2 3 4

0 1.1103 1.0967 1.0861 1.0671 1.0608 1.0522
15 1.1026 1.0900 1.0802 1.0624 1.0567 1.0488
30 1.0784 1.0690 1.0615 1.0476 1.0436 1.0377
45 1.0342 1.0303 1.0271 1.0207 1.0192 1.0167
60 0.9614 0.9554 0.9689 0.9768 0.9779 0.9805
70 0.8878 0.8976 0.9074 0.9332 0.9342 0.9410
80 0.7782 0.7894 0.8066 0.8702 0.8650 0.8747

G 0.332? 0.3073 0.2795 0.1969 0.1958 0.1775
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Table 84.12 Variation of anisotropic function with surface emissivity
for tropical atmosphere; spectral range = 5-200 u, Atm Top
= 30 km, T s = 302.59 K, a = 3, c c = 1.0, Z c = 6 km, RH = 75%.

Zenith Surfa:e Emissivity, cc

Angl e,
2 Clear Sky 50% Cloud Cover

0.8 0.9 1.0 0.8 0.9 1.0

0 1.0787 1.0879 1.3967 1.0707 1.0759 1.0810
15 1.0732 1.0818 1,0900 0.0658 1.0707 1.0754
30 1.0561 1.0627 1.0690 1.0505 1.0542 1.0579
45 1.0246 1.0275 1.0303 1.0222 1.0238 1.0254
60 0.9717 0.9685 0.9654 0.9745 0.9727 0.9709
70 0.9154 0.9063 0.8976 0.9238 0.9187 0.9136
80 0.8197 0.8042 0:7894 0.8400 0.8311 0.8225

G M590 0.2837 0.3073 0.2307 0.2448 0.2585

W •
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Table 84.13. Variation of anisotropic function with cloud cover fraction
fur subarctic-winter atmosphere; spectral range = 5-200 u, Atm
Top = 30 km, T s =  257.28 K, e s =  1.0 , a= 3, cc 	 1.0 , Z c = 5

km, RH = 75%.

Zenith Cloud Cover, %

Angle,
8 0 50 100

0 1.0493 1.0425 1.0225
15 1.0459 1.0396 1.0210
30 1.0354 1.0270 1.0163
45 1.0156 1.0120 1.0073
60 0.9819 0.9861 0.9914
70 0.9461 0.9582 0.9736
80 0.8871 0.9115 0.9423

G 0.1622 0.1310 0.0802

F .

ti
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Table 84.14 Variation of anisotropic function with cloud height for sub-
arctic winter atmosphere; spectral range = 5-200 u, Atm Top
= 30 km, T c. = 257.28 K, e s = 1.0, A = 3,e c 1.0, RH = 75%.

Zenith Cloud Height (Z c ), km
Angle,

e 50% Cloud Cover 100% Cloud Cover

2 6 10 2 6 10

0 1.0485 1.0425 1.0309 1.0477 1.0225 1.0023
15 1.0452 1.0396 1.0288 1.0445 1.0210 1.0022
30 1.0348 1.6270 1.0222 1.0343 1.0163 1.0017
45 1.0154 1.0120 1.0098 1.0152 1.0073 1.0008
60 0.9822 0.9861 0.9887 0.9825 0.9914 0.9991
70
80

0.9468
0.8884

0.9582
0.9115

0.9661
0.9288

0.9475
0.8898

0.9736
0.9423

0.9971
0.9934

G 0.1601 0.1.310 0.1021 0.1598 0.0802 0.0089
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Table 84.15 Variation of anisotropic function with high-cloud emissivity
for sub-arctic winter abnosphere; spectral range = 5-200 u,
Atm Top = 30 km, T s = 257.28 K, e s = 1.0, a = 3, RH = 75%.

Zenith
Angle,

High Cloud (Zc = 10 km) Emissivity, cc

e 50% Cloud Cover 100% Cloud Cover

0.5 1.0 0.5 1.0

0 1.0410 1.0309 1.0309 1.0023
15 1.0383 1.0288 1.0288 1.0022
30 1.0294 1.0222 1.0222 1.0017
40 1.0130 1.0098 1.0098 1.0008
60 0.9850 0.9887 0.9887 0.9991
70 0.9551 0.9661 0.9661 0.9971
80 0.9050 0.9288- 0.9288 0.9934

G 0.1351 0.1021 U.1021 0.0089
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Table 84.16 Variation of anisotropic function with surface emissivity for
sub-arctic winter atmosphere; spectral range = 5-200 u, Atm
Top = 30 km, Ts = 257.28 K, a = 3, c

c 
1.0 Zc = 1.0 z

C 
= 6 km,

RH = 75%.

Zenith
Angle,

Surface Emissivity, es

e Clear Sky

0.8	 0.9	 1.0

50% Cloud Cover

U.8 0.9 1.0

0 1.0359 1.0428 1.0493 1.0297 1.0337 i.0425
15 1.0336 1.0400 1.0459 1.0278 1.0314 1.03:36
3U 1.0261 1.0309 1.0354 1.0216 1.0243 1.0270
45 1.0118 1.0138 1.0156 1.0097 1.0109 1.0120
60 0.9860 0.9839 0.9819 0.9885 0.9873 0.9861
70 0.9569 0.9513 0.9461 0.9646 0.9614 0.9582
80 0.9066 0.8965 0.83' 0.9231 0.9172 0.9115

G 0.1293 0.1463 0.1622 0.1066 0.1165 0.1310

i w
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SYMBOLS USED IN THE COMPUTER PROGRAM "FILAUFC"
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APPENDJX C1

SYMBOLS USED IN THE COMPUTER PROGRAM "FILAUPG"

AISFUN	 Anisotropic function

ALA Altitude dependent average width of the 1ioes of

a molecule.

;LB Altitude dependent individual width of the linos of

a molecule.

AVSI Average value of intensJcy -or the lines in one

decade in an interval.

AVS1
AVS2

AVS3 Average intensities of N2 0,	 CH4 , CO2 ,	 H2 O and 03

AVS4
AVS5

CC Cloud cover

CEMI Cloud emissivity

DEL width of an interval

EMG Surface emittance

FLUX Up welling flux at khe top of the atmosphere, W /M2

FRL Lower frequency limit of the range.

IC integer which is equal to zero if effect of cloud
is not considered and one if it is considered.

I1,	 I2 Integer for each of the five gases considered is
I3,	 I4 equal to 1.	 It is equal to zero if the effect of a gas

I5 is neglected.

JD Number of adjacent intervals on both sides of an

inCerval from which contribution is taken into

account.

KR	 Number of intervals in the band

LCB	 Cloud height

LT	 Height of the atmosphere
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NL Number of layers

NSI Number of lines in a decade within an interval
NS1, NS2

NS3, NS4 Number of lines in an interval.
N S5

PL O,tical path length at the frequency under
consideration.

PLG Planck function of atmosphere evaluated at the
average temperature of the layer.

PNTP Pressure at NTP,	 bar.

PRG Average pressure of a layer.

PSC Planck fur,„tion of the cloud evalulated at the

average temperature of the cloud

PSG Planck function of the surface evaluated at the

surface temperature.

RADC1,RADC2 Radiances in each of the six spectral ranges
RADC3,RADC4 considered.	 :Watts M-2 Sr-1.
RADC5,RADC6

RDAG Radiance emitted by the atmosphere, watts M-2 SR-1.

RDIG Total Radiance at the top of the atmosphere, watts
M-2 Sr-1.

RDSC Radiance emitted by the cloud. 	 Watts M-2 Sr-1.

RDSG Radiance emitted by the surface, watts M-2 Sr-1.

TAG Combined transmittance of all 	 interfering gases.

TEG Average temperature of a layer, K.

TENPG Surface temperature,	 K.

4 Reference temperature for the line parameters, K.

TH Thickness of a layer the atmospheric layer, kin.

TNTP Temperature of NTP,	 K.

TRAC Cloud transmittance

VLIMDF Limb darkening function

133



• NL Number of layers

NSI Number of lines in a decade within an interval
NS1, NS2

NS3, NS4 Number of lines in an interval.
N S5

PL O,tical path length at the frequency under
ccnsideration.

PLG Planck function of atmosphere evaluated at the
average temperature of the layer.

PNTP Pressure at NTP,	 bar.

PRG Average pressure of a layer.

PSC Planck fur,,;tion of the cloud evalulated at the

average temperature of the cloud

PSG Planck function of the surface evaluated at the

surface temperature.

RADC1,RADC2 Radiances in each of the six spectral ranges
RADC3,RADC4 considered.	 :Watts M-2 Sr-1.
RADC5,RADC6

RDAG Radiance emitted by the atmosphere, watts M-2 SR-1.

RDIG Total Radiance at the top of the atmosphere, watts
M-2 Sr-1.

RDSC Radiance emitted by the cloud.	 Watts M-2 Sr-1.

RDSG Radiance emitted by the surface, watts M-2 Sr-1.

TAG Combined transmittance of all 	 interfering gases.

TEG Average temperature of a layer, K.

-	 TENPG Surface temperature,	 K.

4 Reference temperature for the line parameters, K.

TH Thickness of a layer the atmospheric layer, km.

TNTP Temperature of NTP,	 K.

TRAC Cloud transmittance

VLIMDF Limb darkening function
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APPENDIX C2
LISTINGS OF COMPUTER PROGRAM "FILA.UPG"
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7F POOR QUALi i
APPENDIX C2

LISTINGS OF COMPUTER PROGRAM "FILAUPG"

PROGRAM FILAUPG (INPUT,OUTPUT,TAPE5-INPUT,TAPE6-OUTPUT,TAPE2)

C	 THIS RADIATIVE TRANSFER PROGRAM USES QUASI-RANDOM BAND MODEL.
C	 THE LONGWAVE REGION (50 - 2000CM_1) IS DIVIDED INTO 195 INTERVALS
C	 OF 10CM-1 EACH. THE ATMOSPHERE T30KM) IS DIVIDED INTO 15 LAYERS OF
C	 THICKNESSES 1,1,1,1 ,1,1,1 ,1 ,1,1,1,4,5,5,5KM. 	 PURE RTATIONAL AND
C	 6.3M(MICRON) BANDS AND CONTINUUM BAND OF WATER VAPOR IN 8-28.5M
C	 REGION, 15M CARBON DIOXIDE BAND, 9.6M OZONE BAND, 7.8M NITRUS OXIDE
C	 BAND AND 7.7M METHANE BAND ARE CONSIDERED. SINCE NUMBr;R OF LINES
C	 IN SOME BANDS IS VERY LARGE, PRECOMPUTED VALUES OF AVERAGED
C	 INTENSITY AND NUMBER OF LINES FOR EVERY INTERVAL AND INTENSITY
C	 DECADE ARE CSED IN THIS PROGRAM. - TRANSMITTANCE COMPUTATION FOR
C	 EACH BAND IS CARRIEDOUT IN SUBROUTINE TRANS WHICH USES A SIMPLE
C	 INTEGRATION SCHEME EXPLAINED IN REPORT 75 -T14•
C

INTEGER X,TH
DIMENSION PLG(195,15),RDSG(7),RDAG(7),RDSC(7)
DIMENSION VLIMDF(7,4)
DIMENSION SUG(5),SPUG(5),STUG(5),ULG(15,5),PULG(15,5),TULG(15,5)
DIMENSION PR(30),TZ(30),VMR( 30, 5),UG(15,5),PRG(15,5),TEG(15,5)
DIMENSION PREG(15,5), TEMG(15,5),ALA(5),ALG(15,5),TH(15),AL T(30)
DIMENSION AVS1(5,24),AVS2(5,29), AVS3 (5,25),AVS4(5,195),AVS5(5,23)
DIMENSION NS1(5 ,24),NS2(5,29),NS3(5,25),NS4(5,195),NS5(5,23)
DIMENSION TRG(195,16),PPG(16),FAG(16)
DIMENSION AG(90),ZX(7),ZEN(7),RADG(7),TAG(7,195,16)
DIMENSION RDIG(7),RDG(195).FXG(195)
DIMENSION PNUM(195),EEX(195),PSG(195),PSC(195)
DIMENSION AISFUN(7,5,2),RADCC(7,5,2),FLUX(5,2),CC(5)
DIMENSION TRAC(11),CEMI(11),RADNCL(195)
DIMENSION RADC1(i',14),RADC2(7,14),RADC3(7,14),RADC4(7,14)
DI^,ENSION RADC5(7,14),RADC6(7,14),RADZ(7,195)
COMMON/TRANE/AVSI(5 ,195 ),NSI(5,195),FRC(195),TRA(195),
1X1(26),T1(26),X2(21),T2(21),DELA,JD,PI

ZENITH ANGLI

DATA ZEN/O.,15•,30•,45•,60.,70.,80./
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ORIGINAL

C	 CLOUD COVER FRACTION	
OF POOR QUA! 1 -{

C
DATA CC/0.0,0.3,0.5,0.7,1.0/
DATA PNTP,TNTP,TEMR/1.00,273.15,296./
DATA ALA/0.079,0.054,0.066,0.063,0.110/
DATA UG/75*0./
DATA FRLI, FRL2,FRL3,FRL4, FRL5/1110.,1220.,550.,50.,950./
DATA DEL,DELA,JD,PI/10.,5•,4,3.1459/
DATA KR1,KR2,KR3,KR4,KR5,KRT/24,29,25,195,23,195/
DATA KB1,KB2,KB3,KB4,KB5/107,118,51.1,91/
DATA KE1,KE2,KE3,KE4,KE5/130,146,75,195,113/
DATA FRLC,KC,KBC,KEC/350.,90,31,120/
DATA A,B,BETA/1.25E-22,2.34E-19,8.30E-03/
REWIND 2

c
C	 VOLUME MIXING RATIOS N20,CH4,CO2
C

DO 4 L-1,30
VMR(L,1)-0.28
VMR(L,2)-1.6
VMR(L,3)-330.

4	 CONTINUE
DATA IC,RE/1,20.1

C
C	 ATMOSPHERE IS DIVIDED INTO 15 LAYERS
C

DATA	 TH/1,1,1,1,1,1,1,1,1,1,1,4,5,5,5/
C	 s
C	 PRESSURE AND TEMPERATURE PROFI:,E. VOLUME ]!TIRING RATIOS
C	 OF WATER VAPOR AND OZONE
C

READ(5,*)(PR(L),TE(L),VMR(L,4),VMR(L,5),L=1,30)
C
C	 FIVE GASES CONSIDERED ARE N20,CI14,CO2,H2O,03
C

DATA I1,I2,13,I4,15/1,1,1,1,1/
C
C	 NUMBER OF LAYERS CONSIDERED AND THE HEIGHT OF THE ATMOSPHERE
C
C	 NL-10 IF ATMOSPHERE TOP IS AT 1OKM
C	 NL-13 IF ATMOSPHERE TOP IS AT 20KM
C

DATA NL,LT/15,30/
DATA X1/0.0,0.001,0.0015,0.00--,0.003,0.004,().005,0.006,
10.008,0.01,0.015,0.02,0.03,0.04,0.05,0.06,0.08,0.10,
20.15,0.20,0.30,0.40,0.50,0.50,0.80,1.00/
DATA NL,LT/15,30/
DATA T1/0.0006,0.0006,0.0006,0.0007,0.001,0.001,0.001,
10.0015,0.002,0.003,0.005,0.008;C.01,0.01,C.01,0.015,
20.02,0.03,0.05,0.08,0.1,0.1,0.1,0.15,0.2,0.1/
DATA X2/—?.0,-0.9,-0.8,-0.7,-0.6,-0.5,-0.4,-0.3,-0.2,
1-0.1,0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0/
DATA T2/0.1,0.4,0.2,0.4,0.2,0.4,0.2,0.4,0.2,
10.4,0.2,0.4,0,2,0.4,0.2,0.4,0.2,0.4,0.2,0.4,0.1/

r	 C
C	 AVERAGE LINE INTENSITIES AND NUMBER OF LINES IN EACH INTERVAL
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ORIGINAL P"-.G'.:- 
C OF POOR QUALITY

READ ( 2 	 ((AVS1 ( I,K),I-1,5),K-1,KR1)
READ ( 2,*)	 ((NS1(I,K),I-1,5),K=1,KR1)
READ ( 2,*)	 ((AVS2(I,K),I-1,5) , K-1,KR2)
REAT^(2, *) 	( ( NS2(I,K) , I-1,5),K-1,KR2)
READ ( 2,*)	 ((AVS3 ( I ,K),I-1,5) , K-1,KR3)
READ ( 2,*)	 ((NS3 ( I,K),I=1,5),K=1,KR3) 	 -
READ ( 2,*)	 ((AVS4 ( I,K),I-1,5) , K-1,KR4)
READ ( 2,*)	 ((NS4 ( I,K),I-1,5) , K-1,KR4)
READ ( 2,*)	 ((AVS5 ( I,K),I-1,5),K-1,KR5)
READ ( 2,*)	 ((NS5(I,K),I-1,5) , K-1,KR5)
DO	 100	 L=1,30

100 ALT(L)	 -L-0.5
C=0.1*TNTP/PNTP

C
C AVERAGE TEMPERATURE AND PRESSURE FOR ALL THE LAYERS OF
C OF ATMOSPHERE ARE COMPUTED USING CURTIS_GODSON APPROXIMATION
C

DO	 101	 N=1,5
L2-LT
SUG(N)=SPUG(N)-STUG(N)=0.
DO	 102	 M=1,NL
LA-NL+1-M

ULG(LA,N)=PULG(LA,N)=TULG(LA,N)-0.
L1=L2-TH(LA)+1

DO	 103	 L-L1,L2
DU=C*PR(L)*VMR(L,N)/TE(L)
ULG(LA,N)=ULG(LA,N)+DU
PULG(LA,N)=PULG(LA,N)+PR(L)*DU
TULG(LA,N)=TULG(LA,N)+TE(L)*DU
SUG(N)-SUG(N)+LU
SPUG(N)-SPUG(N)+PR(L)*DU

103 STUG(N)=STUG(N)+TE(L)*DU
UG(LA,N)=SUG(N)
PRG(LA,N)=PULG(LA,N)/ULG(LA,N)
TEG(LA,N)=TULG(LA,N)/ULG(LA,N)
PREG(LA,N)=SPUG(N)/SUG(N)
TEMG ( LA,N)-STUG(N)/SUG(N)
ALG(LA,N)-ALAN)*(SQRT(TEMR/TEMG(LA,N)))*PREG(LA,N)/PNTP

102 L2-L1-1
101 CONTINUE
C

C TRANSMITTANCE FOR THE N20 BAND 	 IS	 COMPUTED FOR ALL THE	 15
C LAYERS.	 TRG IS THE FINAL TRANSMITTANCE,	 SO INDIVIDUAL
C TRANSMITTANCES ARE MULTIPLIED INTO THIS ARRAY
C

LD-NL+1
DO	 110	 LA-1,LD
DO	 110	 K-1,KRT

110 TRG(K,LA)=1.
IF(I1.LT.1)	 GO	 TO	 163
DO	 111	 K=1,KR1
DO	 111	 I=1,5
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F a

111

113

1 1

C

C

C

163

116

118
117

C

C
C

164

FRC(K)-FRL1+(2*K-1)*DELA
AVSI(I	 )-AVS1(I,K)
NSI(I,K,=NS1(I,K)
CONTINUE
DO 112 LA-1,NL
CALL TRANS(ALG(LA,1),UG(LA,1),KR1)
DO 113 K-KB1,KE1
TRG(K,LA)-TRG(K,LA)*TRA(K-KB1+1)
CONTINUE

TRANSMITTANCE FOR CH4 BAND

IF(I2.LT.1) GO T0164
DO 116 K-1,KR2
FRC(K)-FRL2+(2*K-1)*DELA
DO 116 I=1,5
AVSI(I,K)=AVS2(I,K)
NSI(I,K)=NS2(I,K)
CONTINUE
DO 117 LA-1,NL
CALL TRANS(ALG(LA,2),UG(LA,2),KR2)
DO 118 K-KB2,KE2
TRG(K,LA)-TRG(K,LA)*TRA(K-KB2+1)
CONTINUE

TRANSMITTANCE FOR CO2 BAND

IF(13.LT.1) GO TO 165
DO X21 K-1,KR3
FRC(K)=FRL3+(2*K-1)*DELA

DO 121 I-1 f5

AVSI(I,K)-AVS3(I,K)
NSI(I,K)-NS3(I,K)

121
	

CONTINUE
DO 122 LA=1,NL
CALL TRANS (ALG(LA,3),UG(LA,3),KR3)
DO 123 K=KB3,KE3

123
	

TRG(K,LA)=TRG(K,LA)*TRA(K-KB3+1)
122
	

CONTINUE
C
C
	

TRANSMITTANCE FOR WATER VAPOR FOR 6.3M AND PURE
C
	

ROTATIONAL BAND
C

165
	

IF (I4.LT.1) GO TO 166
DO 126 K-1,KR4
FRC(K)-FRL4+(2*K-1)*DELA
DO 126 I-1,5
AVSI(I,K)-AVS4(I,K)
NSI(I,K)-NS4(I,K)

126
	

CONTINUE
DO 127 LA-1,NL
CALL TRANS(ALG(LA,4),UG(LA,4),KR4)
DO 128 K-KB4,KE4

128
	

TRG(K,LA)=TRG(K,LA)*TRA(K-KB4+1)
127
	

CONTINUE
	

134
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OF POOR QUA± lTY

C

C	 TRANSMITTANCE IS COMPTED CORRESPONDING TO WATER VAPOR
C	 CONTINUUM ABSORPTION INTHE 350-1250CM 1
C

DO 131 K-1,KC
131	 FRC(Y.)-FRLC+(2*K-1)*DELA

DO 132 LA-1,NL
PPG(LA)-PREG(LA,4)*UG(LA,4)*VMR(1,3)*1.E-06/UG(LA,3)

132	 FAG(LA)-(PPG(LA)*EXP(6.08*((TEMR/TEMG(LA,4))
1-1.))+0.002*(PREG(LA,4)-PPG(LA)))
DO 134 LA-1,NL
DO 135 K-1,KC

135	 AG(K)=2.69E+19*(A+B*EXP(-BETA*FRC(K)))*FAG(LA)
DO 137 K-KBC,KEC

137	 TRG(K,LA)-TRG(K,LA)*EXP(-UG(LA,4)*AG(K-KBC+1))
C
C	 TRANSMITTANCE FOR 03 BAND
C
134	 CONTINUE
1 56	 IF (I5.LT.1) GO TO 167

DO 142 K-1,KR5
FRC(K)=FRL5+(2*K-1)*DELA
DO 142 I-1,5
AVSI(I,K)=AVS5(I,K)
NSI(I,K)=NS5(I,K)

142	 CONTINUE
DO 143 LA=1,NL
CALL TRANS(ALG(LA,5),UG(LA,5),KR5)
DO 144 K-KB5,KE5

144	 TRG(K,LA)-TRG(K,LA)*TRA(K-KB5+1)
143	 CONTINUE
167	 CONTINUE

CONS=18.*6.625E-03
CNST=6.625*0.3/1.38
DO 147 M=1,7
ZX(M)=1./COS(ZEN(M)/57.29578)

147	 CONTINUE

C
C
C	 PLANCK FUNCTIONS FOR EACH OF 195 INTERVALS AND THE 15
C	 LAYERS OF ATMOSPERE ARE COMPUTED AND STORED
C
C

DO 311 K=1,KRT
FRC(K)=50.+(2*K-1)*DELA
PNUM(K)=DEL*CONS*FRC(K)*FRC(K)*FRC(K)*1.E-07
EEX(K)=CNST*FRC(K)
DO 149 M=1,7
DO 150 LA-1,NL

C

140
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ORIGIML FACiE r5

OF POOR QUALf y

C	 TRANSMITTANCES IN SOME OF THE INTERVALS ARE VERY LOW
C	 BECAUSE OF STRONG ABSORPTION. TO AVIOD UNDERFLOW ERROR
C	 THEY ARE EQUATED TO ZERO.
C

	

	 -
IF(TRG(K,LA).LT.1.E-50) GO TO 200
TAG(M,K,LA)=TRG(K,LA)**ZX(M)
GO TO 150

200 TAG(M,K,LA)=0.
150 CONTINUE

TAG(M,K,NL+1)=1.
149 CONTINUE

DO 152 LA=1,5
1152 PLG(K,LA)-PNUM(K)/(EXP(EEX(K)/TEG(LA,4))-1.)

IF(NL.LE.5) GO TO 311
DO 153 LA-6,NL

153 PLG(K,LA)=PNUM(K)/(EXP(EEX(K)/TEG(LA,3))-1.)
311 CONTINUE

C
C	 SURFACE TEMPERATURE
C

TEMPG-302.59
DO 213 NTE=1,3
TEMPG=TEMPG+5.
DO 313 K-1 ,Y.RT

313 PSG(K)=PNUM(K)/(EXP(EEX(K)/TEMPG)-1.)
C
C	 HEIGHT OF THE CLOUD BASE CAN BE CHANGED BY CHANGING LCB HERE
C

LCB=-2
DO 212 NK=1,3
LCB=LCB+4
LCT=LCB+1

C
C	 AVERAE CLOUD TEMPERATURE
C

TEMPC=0.5*(TE(LCB)+TE(LCB+1))
DO 312 K=1 ,Y:RT

312 PSC(K)=PNUM(K)/(EXP(EEX(K)/TEMPC)-1.)
C
C	 SURFACE EMISSIVITY

C

EMG=0.70
DO 211 NE-1,3
EMG=EMG+0.1

209 FORMAT("1SURFACE EMISSIVITY -",F6.2,//,"
1SURFACE TEMPERATURE ="F6.2,//,"
2HEIGHT OF THE ATMOSPHERE =",I2,"KM",//,"
3CLOUD TOP HEIGHT-",I2,//,"
4CLOUD EMISSIVITY -",F5.3,//)
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C
C
C

C

C
C

155

154
r,

C
C
C
C

ORIGINAL PAGE: 19

OF POOR QUALITY
DO 214 M=1 ,7
RADG(M)=0.
DO 214 X- 1,6
RADC1(M,X)-RADC2(M,X)-RADC3(M,X)-RADC4(M,X)-RADC5(M,X)
1-RADC6(M,X)-O.
CONTINUE
FLG=0.

CLEAR ATMOSPHERE UPWELLING RADINCES AND FLUXES FOR
ALL 2EITH ANGLES ARE COMPUTED

DO 148 K-1,KRT
DO 154 M=1,7

UPWELLING RADIANCE DUE TO SURFACE EMISSION

RDSG(M)=EMG*PSG(K)*TAG(M,K,1)
RDAG(M)=0.
DO 155 LA-1,NL

UPWELLING RADIANCE DUE TO ATMOSPHERIC EMISSION

RDAG(M)=RDAG(M)+PLG(K,LA)*(TAG(M,K,LA+1)-TAG(M,K,LA))
RDIG(M)=RDSG(M)+RDAG(M)
RADG(M)-RADG(M)+RDIG(M)
CONTINUE

COMPUTES UPWELLING FLUX BY EXPONENTIAT1NG TRANSMITTANCE
BY THE DIFFUSIVITY FACTOR 1.66 AND MULTIPLYING PLANCK
FUNCTION TIMES PI

FLSG=EMG*PI*PSG(K)*(TRG(K,1)**1.66)
FLAG-0.
DO 157 LA-1,NL
FLAG=FLAG+PI*PLG(K,LA)*((TRG(K,LA+1)**1.66)
1-(TRG(K,LA)**'.66))
FLXG=FLSG+FLAG
FLG=FLG+FLXG
RDG(K)=RDIG(1)
FXG(K)=FLXG
CONTINUE
DO 159 X=1,2

ONLY TWO DIFFERENT CLOUD EMISSIVTIES ARE USED IN THIS
STUDY. DIMENSION OF X SHOULD BE CHANGED 1F IT IS REQTIIRED
TO VARY MORE THAN TWO

FLC=0.

CLOUD EMISSIVITY
ONLY THE HIGH CLOUD HAS TWO DIFFERNr' VALUES

i w

214

C

C

C
C

157

148

C
C
C

C

C

C
C

C
C

142

^J



i •	
ORIGINAL PAGE ES

OF POOR QUALITY

IF(LCB.LE.6.AND.X.EQ.2) GO TO 159
IF(LCB.LE.6.AND.X.EQ.1) CEMI(X)-1.0
IF(LCB.EQ.10.AND.X.EQ.1) CEMI(X)-0.5
IF(LCB.EQ.IO.ARTD.X.EQ.2) CEMI(X)-1.0

C
C	 CLOUD TRANSMITTANCE IS EVALUATED
C

TRAC(X)-1.-CEMI(X)
DO 210 M-1,7
DO 210 K=1,KRT

210 RADZ(M,K)-0.
IF(IC.EQ.0) GO TO 601
DO 315 K-1,KRT

C
C	 UPWELLING FLUX FROM CLOUD TOP
C

FLSC-CEMI(X)*PI*PSC(K)*(TRG(It,LCT)**1.66)
FLSG-EMG*PI*PSG(K)*(TRG(K,')**1.66)
FLAC-0.

0
C	 UPWELLING FLUX FROM THE ATMSPHERIC LAYERS ABOVE THE CLOUD
C

DO 222 LA-LCT,NL
222 FLAC=FLAC+PI*PLG(K,LA)*((TRG(K,LA+1)**1.66)

1-(TRG(K,LA"**1.66))
FLXC-FLSC+FLAC
FLC=FLC+FLXC
IF(TRAC(X).EQ.0.0) GO TO 3909
FLAT-0.

C
C	 IF THE CLOUD EMISSIVITY IS LESS THAN 1, UPWELLING FLUX
C	 COMPONENT BELOW THE CLOUD LAYER JS EVALUATED
C

DO 223 LA=I,LCB
223 FLAT=FLAT+PI*PLG(K,LA)*((TRG(K,LA+1)**1.66)

1-(TRG(K,LA)**1.66))
FLAB-(FLAT+FLSG)*TRAC(X)
FLC-FLC+FT„ B

3909 DO 158 M-1,7
C
C	 UPWELLING RADIANCE FROM CLOUD TOP
C

RDSC(M)-CEMI(X)*PSC(K)*TAG(M,K,LCT)
C
C	 UPWELLING RADIANCE FROM THE SURFACE AND THE ATMOSPHERE
C	 BELOW THE CLOUD
C

143



ORIGINAL PAGE ll

OF POOR QUALITY

RDSG(M)-EMG*PSG(K)*TAG(M,K,1)
RADNCL(K)-0.
DO 409	 LA-1,LCB
TERM2-PLG(K,LA)*(TAG(M,K,LA+1)-TAG(M,K,LA7)

409 RADNCL(K)-RADNCL(K)+TERM2
RADNCL(K)-TRAC(X)*(RDSG(M)+RADNCL(K))

C EMISSION FROM CLOUD
RADNCL(K)-RADNCL(K)+RDSC(M)

C `
C UPWELLING RADIANCE FROM THE ATMOSPHERE ABOVE THE CLOUD
C

DO 408 LA-LCT,NL
TERM4-PLG(K,LA)*(TAG(M,K,LA+1)-TAG(M,K,LA)j

408 RADNCL(K)-RADNCL(K)+TERM4

C
C UPWELLING RADIANCE AT THE TOP OF THE ATMOSPHERE, FOR A
C PARTICULAR ZENITH ANGLE AND A SUB-INTERVAL
C

RADZ(M,K)-RADNCL(K)
158 CONTINUE
315 CONTINUE
601 CONTINUE
C
C

DO	 190	 M-1,7
C
C TOTAL UPWELLING RADIANCE IN THE SPECTRAL REGION 5-10M
C

DO	 180 K-96,195
RADC1(M,X)-RADC1(M,X)+RADZ(M,K)

180 CONTINUE
C
C TOTAL UPWELLING RADIANCE IN THE SPECTRAL REGION 10-20M
C

DO	 181	 K=46,95
RADC2(M,X)-RADC2(M,X)+RADZ(M,K)

181 CONTINUE
C
C TOTAL UPWELLING RADIANCE IN THE SPEC'T'RAL REGION 5-20M
C

RADC3(M,X)-RADC1(M,X)+RADC2(M,X)
C
C TOTAL UPWELLING RADIANCE IN THE WINDOW REGION	 10.5 -12.5
r,

DO	 182	 K-76,9
RADC4(M,X)-RADC4(M,X)+RADZ(M,.K)

182 CONTINUE
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C

C TOTAL UPWELLING RADIANCE IN THE SPECTRAL REGION 5-50M
C

DO	 183	 K-16,45
RADC5(M,X)-RADC5(M,X) +RADZ(M,K)

183 CONTINUE
RADC5(M,X)-RADC5(M,X) +RADC3(M,X)

C
C TOTAL UPWELLING RADIANCE IN THE SPECTRAL REG109 5-200M
C

DO 184 K-1,195
RADC6(M,X)-RADC6(M,X)+RADZ(M,K)

184	 CONTINUE
190	 CONTINUE
C
C	 UPWELLING FLUXES AND RADIANCES ARE COMPUTED FOR PARTLY
C	 CLOUDY CONDITIONS BY EVALUATING WEIGHED SUMS OF THE
r,	 CLEAR AND OVERCAST VALUES
C

DO 414 NF-1,5
FLtTX(NF,X)-(1'.-CC(NF))*FLG+CC;NF)*FLC
DO 415 M-1,7
RADCC(M,NF,X)-(1.-CC(NF))*RADG(M)+CC(N)*RADC6(M,X)

C
C	 ANISOTROPIC FUNCTIONS ARE CAUCULATED

415	 AISFUN(M, NF.X)- PI*RADCC(M,NF,X)/FLUX(NF,X)
414	 CONTINUE
159	 CONTINUE

RDG!=RDG2-RDG3-RDG4-RDG5-RDG6=RDGI-0.
FXG1-FXG2-FXG3-FXG4-FXG5=FXG6=FXG7-0.

C
DO	 170 K-96,195
RDGI=RDGI+RDG(K)
FXG1-FXGI+FXG(K)

170 CONTINUE
C
C

DO	 171	 K-46,95
RDG2=RDG2+RDG(K)
FXG2=FXG2+FXG(K)

171 CONTINUE
RDG3-RDGI+RDG2
FXG3-FXGI+FXG2

C
C

DO	 172	 K=76,90
RDG4-RDG4+RDG(K)
FXG4-FXG4+FXG(K)

172 CONTINUE
C
C
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ORIGINAL FAw^ :.
DO 173 K-16,45	 OF Pt)OI? OU ;^;7
RDG5=RDG5+RDG(K)
FXGS-FRG5+FXG(K)

173	 CONTINUE
C

RDG5-RDG5+RDG3
FXG5-FRG5+FX03
DO 174 K=1,15
RDG6-RDG6+RDG(K)
FXG6=FXG6+FXG(K)

174	 CONTINUE
RDG7-RDG6+RDG5
FXG7=FXG6+FRG5

C

C
WRITE(6, 67)

67	 FORMAT(1H1/19X21HMODEL ATMOSPHERF USED)
WRITE(6, 68)

68	 FORMAT(/j/7X3HALT,5X5HPRESS,6X4HTEMP,6X9HWATER VAP,8X5H0'LONE)
WR_ ,E(6, 69)

69

	

	 FORMAT(6X4H(KM),5X5H(ATM),5X5H(KEL),9X6H(PPMV),7X6H(PPMV)//)
WRITE(6, 70)(ALT(L),PR(L),TE(L),VMR(L,4),VMR(L,5),L=1,30)

70	 FORMAT(F10.1,F10.5,F10.2,E15.4,E15.4)
WRITE(6, 76)

76	 FORMAT(1H1/25X29HCLEAR ATMOSPHERE PATH LENGTHS///)
WRITE(,;, 64)

64

	

	 FORMAT(6X2HTH,7X3HULG,8X3HPRG,7X3HTEG,8X2HUG,
18X4HPREG,6X4HTEMG,6X3HALG)
WRITE(6, 65)((TH(LA),ULG(LA,N),P3G(LA,N),TEG(LA,N),UG(LA,N),
1PREG(LA,N),TEMG(LA,N),ALG(LA,N),LA-1,NL),N-1,5)

65

	

	 FORMAT(//5(16(I8,E12.3,F10.5,F10.2,E12.3,F10.5,F10.2,F3.3/)))
WRITE(6, 71)

71	 FORMAT(/40X30HINTEGRAT^i) RADIANCE AND FLUXES)
WRITE(6, 72)

72

	

	 FORMAT(/30X"VARIATION WITH NADIR ANGLE (THETA) AND ","CLOUD
1COVER")

WRITE(6,84)
84	 FORMAT(/40X,"SPECTRAL RANGE -5 - 10 MU")

WRITE(6, 73)
73

	

	 FORMAT(///18X,3HRADIA!-,CE,4X8HRADIANCE,4X8HRADTANCE,
14X8HRADIANCE,4X8HRADIANCE,418HRADIANCE,4X8HRADIANCE)
WRITE(6, 74)

74

	

	 FORMAT(5X,"CLOUD COVER",2X,8HTHETA+00,4X8HTHElA-15,4X8HTHETA-30,
14X8HTHETA-45,4X8HTHETA-60,4X8HTHETA-70,4X8HTHETA=80//)
WRITE(6, 60)(CC(X),(RADC1(M,X),M-1,7),FLUX(X),X=1,7)
WRITE(6,71)
WRITE(6,72)
WRITE(6,85)

85	 FORMAT(/4CX,"SPECTRAL RANGE = 10 - 20 MU")
WRITE(6,73)
WRITE(6,74)
WRITE^6, 60)( CC(X),(RADC2(M,X),M=1,7),FLUX(X),::=1,2)

r.
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OF POOR QUALITY

WRITE(6,71)
WRITE(6,72)
WRITE(6,86)

86	 FORMAT(/40X,"SPECTRAL RANGE = 5 - 20 MU")
WRITE(6,73)
WRITE(6,74)
WRITE(6,60)(CC(X),(RADC3(M,X),M = 1,7),FLUX(X),X=1,2)

WRITE(6,71) -
WRITE 6,72
WRITE 6,87

87	 FORMAT(/40X,"SPECTRAL RANGE = 5 - ;0 MU")
WRITE(6,73)
WRITE(6,74)
WRITE(6,60)(CC(X),(RADC4(M,X),M = 1,7),FLUX(X),X=1,2)

WRITE(6,71)
WRITE(6,72)
WRITE(6,88)

88	 FORMAT(/40X,"SPECTRAL RANGE = 10.5 - 12.5 MU")
WRITE(6,73)
WRITE(6,74)
WRITE(6,60)(CC(X),(RADC5(M,X),M - 1,7),FLUX(X),X=1,2)

WRITE(6,209) EMG,TEMPG,LT,LCB,CEMI(1)

WRITE(6,71)
WRITE(6,72)
WRITE(6,89)

99	 FORMAT(/40X,"SPECTRAL RANGE = 5 - 200 MU")
WRITE(6,73)
WRITE(6,74)
WRITE(6,60)(CC(NF),(RADCC(M,NF,1),M=1,7),NF=1,5)

60	 FORMAT(F12.2,2X,7E12.5/)
WRITE(6,90)

90	 FORMAT(/44X,"ANISOTROPIC FUNCTIONS"/)
WP,I`PE(6,74)
WRITE(6,60)(CC(NF),(AISFUN(M,NF,1),M=1,7),NF=1,5)
IF(LCB-LE.6) GO TO 8585
WRITE(6,209)EMG,TEMPG,LT,LCB,CEMI(2)
WRITE(6,71)
WRITE(6,72)
WRITE(6,89)
WRITE(6,73)
WRITE(6,74)
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WRITE(6,60)( CC( NF),(RADCC(M,NF,2),M=1,7),NF=1,5)
WRITE(6,90)
WRITE(6,74)	 -
WRITE(6,60)( CC( NF),(AISFUN(M,NF,2),M-1,7).NF=1,5)

8585 WRITE(6. 78)
78	 FORMAT(1H1/17X64HCLEAR AND CLOUDY RADIANCES AND FLUXES IN THE

1SPECTRAL RANGES///)
WRITE(6, 79)

79	 FORMAT(28X7HRANGE 1,8X7HRANGE 2,8X7HRANGE 3,
18X7HRANGE 5,8X 15HRANGE 4(WINDOW),5X7HRANGE 6)
WRITE(6, 80)

80	 FORMAT(28X7H5 10 MU,7X8H10 20 MU,8X7H5_20 KU,8X7H5_50 MU,
18X14H 10.5- 12.5 MU,5X8H5-200 MU/ /)
WRITE(6,81)RDGI,RDG2,RDG3,RDG5,RTG4,RDG7

81	 FORMAT(7X13HCLEAR ATM RAD,4E15.5,E20.5,Ei5.5)
82	 FORMAT(8X12HOVERCAST RAD,4E15.5,E20.5/)

WRITE(6,83)FXGI,FXG2,FXG3,FXG5,FXG4,FXG7
83	 FORMAT(6X14HCLEAR ATM FLUX,4E15.5,E20.5,E15.5/)

WRITE(6, 61)
61	 FORMAT(1H1/25X45HSPECTRAL TRANSMITTANCES, RADIANCES AND FLUXES

WRITE(6, 63)
63	 FORMAT(///6X4HFREQ,7X8HTRANS TO,6X9HCLEAR ATM,6X9HCLEAR ATM,

17X8HTRANS TO.6X9HCLOUD TOP,6X9HCLOUD TOP)
WRITE(6, 75)

75	 FORMAT(6X4HCM 1,8X7NSURFACE,7XBHRADIANCE,5X10HFLUX(W/M2),
16X9HCLOUD TOP.-$X8HRADIANCE,5X10HFLUX(W/M2)//)
WRITE(6, 62)( FRtVfK). TRG(K,1),RDG(K),FXG(K),TRC(K,LC),RDC(K),

1FXC(K) ,K-1 ,KIZT)
62	 FORMAT(FIO.0,F15.5,2E15.5,F15.5,2E15.5/)
211	 CONTINUE
212	 CONTINUE
213	 CONTINUE

STOP
END

SUBROUTINE TRANS(ALB,PL,KR)
INTEGER W
COMMON/TRAtiE/AVSI(5,195),NSI(5,195),FRC(195),TRA(19;),
1X1(26),T1(26),X'(21),T2(21),DELA,JD,PI

C
C	 CALUCULATES TRANSMITTANC': IN EACH INTERVAL AT ALL
C	 ALTITUDES CONSIDERING DIRECT AND WING CONTRIBUTIONS
C

OMER
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CR'.C;NAL Ri'"ClE IS

RHO=ALB/DELA	
OF POOR QUALITY

DO 300 K-1,KR
TRA(K)-1.
DO 30i J-1,KR
TRD=1.
JA-IABS(J-K)
IF(JA.GT .JD) GO TO 301
ZI-FRC(K)-FRC(J)
EPSI-ZI/DELA
DO 302 I=1,5
NSJ=NSI(I,J)
PNUM=RHO*RHO*AVSI(I,J)*PL/(PI*ALB)
RES=0.
IF (J.NE.K) GO TO 303
DO 304 W=1,26
YY=PNUM/(X1(W)*X1(W; ?RHO*RHO)
IF (YY.GT .675.) GO TO 305
Y=EXP(-YY)
GO m0 304

305	 Y=0.
304	 RES=RES+Y*T1(W)

GO TO 302
303	 DO 306 W=1,21

YY-PNUM/((EPSI- X2(W)) *(EPSI-X2(W)))
IF (YY.GT .675.) GO TO 307
Y-EXP(-YY)
GO TO 306

307	 Y=O.
306	 RES=RES+Y *T2(W)

RES=RES/6.
302	 TRD=TRD*RES**NSJ
301	 TR.A(K)=TRA(K)*TRD
300	 CONTINUE

RETURN
END

ti
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