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The research concerns the theoretical analysis of the fluid mechanics

and heat transfer of motions driven by surface-tension gradients (Marangoni

convection). The object of the work is to obtain an understanding of the

convection accompanying the process of growing high-quality single crystals

from the melt in a u-g environment. The geometries considered in this

work include two-dimensional liquid filled slots and axisymmetrie float-

zone configurations.

The following models were studied:

STEADY MARANGONI FLOWS

1. When a slot is differentially heated so as to impose a temperature

gradient along the liquid-gas interface, a steady Marangoni flow can

be induced. We have .obtained approximate solutions for the flow

field, temperature distribution and surface deflection as functions

of the Marangoni number M. the Prandtl number P and the capillary

number G for long, thin slots when the liquid-gas interface is clean.

reference: Sen and Davis (1982)

Z.	 When the liquid-gas interface of the slot from Ill is contaminated

with surface active material, the steady Marangoni flow is retarded.

We have obtained such stead y flows for cages in which the contaminant

material is a non-condensed monolayer and determined the dependence

of the flow on the surface Peclet number and the Gibbs surface

elasticity.

reference: Homsy and Meiburg (1984).
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J.	 In both planar cases #1 and f2, we obtain flaws for thin slots. These

flows have only small or moderate values of the Marangoni number so

that convective transport of heat is small compared to that due to

conduction. Here we examine the case of clean interfaces when the

Marangont number is lartte. We use a simplified geometry and obtain

estimates for the Nusselt number, the measure of the transport of

heat due to convection. For large '.randtl number, N - M2l7.

reference: Cowley and Davis (1980

4. When the liquid forms a cylindrical float zone and axial temperature

gradients are imposed, steady Marangoni convection can be induced.

We have extended the work of Sen and Davis (1982) to this new geometry

and obtained the flow and heat transfer possible when significant

liquid-gas interface deflection is possible.

reference: Xu and Davis (1983)

STABILITY OF MARANGONI FLOWS

5. We have examined the steady Marangont flows of Al above and analyzed

the stabilit y characteristics of these. We find that if the Prandtl

number P is small that the instability is oscillatory in time and is

associated with the interaction of liquid-gas interface deflection with

the underlying shear flow. Thus, even though the thermocapillary

effect drives the steady motion, it has little effect on the instability

characteristics; the instability is a mechanical one. if P is large

then the instability is either oscillatory in time or a steady cellular

one. Tn either case the instability is associated with the thermal
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field and depends little on the deflection of the liquid-gas inter-

face; the instability is a thermal one.

references:	 Smith and Davis (1982), Smith and Davis (1983a),

Smith and Davis (1983b)

b.	 We have examined the convective instabilities in float-zone geometry

to obtain the analog of the results of #5. 	 Comparisons are in quali-

tative agreement with the experiments of Schwabe et al. in Germany

but buoyancy effects in the experiments are seemingly large.
f

reference:	 Xu and Davis (1984a)

7.	 We have examined the mechanical instabilities in float-zone geometry

to obtain the analog of the results of #5. 	 Here both Smith and

Davis (1983b) - type and capillary instabilities are present.

reference:	 Xu and Davis (1984b)
f

S.	 We have examined the effects of buovancv on float-zone motions induced

by Marangoni effects in order to better compare our theories with

the experiments of Schwabe et al. 	 The steady Marangoni convection

has been calculated, and most of the stability characteristics have

been obtained.

reference:	 Xu and Davis (1984c)

SUMMARY:	 Steady Marangoni flows have been described.	 Several new thermo-

capillary instabilities have been uncovered. 	 The tendency of float-zone

melts to become oscillatory is strongly dependent on the Prandtl number P

of the melt.	 Small P materials behave vastly differently than do large P

materials.	 The present work :nets out a large body of new fluid-dynamical

effects of direct use in understanding the behavior of the fl-rws in float zones.
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