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NOMENCLATURE

housing scale factor

housing radius

seal length

pressure

shaft radius

radius

torque

velocity

void fraction or void region
Tocal coordinate

parameter; see eq. (20)
parameter; see eq. (12)
operator, see eqgs. (8) to (11)
viscosity

density

shear

angular velocity
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Subscripts:

gas

1iquid

1imiting rotation boundary
pseudo boundary, equivalent to KR
radial

reference boundary

angular
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INTRODUCTION

Two-phase flow in shaft seals, bearings, pumps,
and dampers has been of concern to tribologists for a
number of years (1). The void phase can be either
vapor or dissolved gases (inerts) and in either case,

a bubbly lubricating film can occur that may substan-
tially affect performance.

Several investigators have addressed the favorable
effects of bubbly films in steadily loaded seals and
bearings (e.g., 2-4). However, under dynamical loading
with squeeze effects, there appears to be a substantial
reduction in the load capacity of bearings (5,6); the

effect in seals is still under investigation. In most
instances one trades load capacity (stiffness) for
damping.

The entrainment of void (air) into oil is common-
place and significant cavity regions can form in jour-
nal bearings (7). It is clear that body force effects
due to rotation or cyclic motions along with continuity
requirements have a significant effect on void migra-
tion and coalescence.

In this study air-entrained oil was discovered to
migrate toward and in some instances become attached
to the rotating interface. A Bingham fluid was used to
model the phenomena.

APPARATUS AND INSTRUMENTATION

The apparatus consists of a 16-mm (5/8-in.) diam-
eter shaft rotating at 1650 rpm, approximately 82.5 mm
23—1/4 in.) from the bottom of a 230- by 230- by 350-mm

9- by 9- by 14-in.) 01l reservoir (Fig. 1). A flex-
ible, transparent cylinder could also be used to de-
crease the effective size of the reservoir to that
approaching a seal or bearing. Rotational speed varied
in a continuous manner. In some tests the shaft con-
tainer interface was sealed by cooling the oil to form
a natural plug (8). The entrained bubbles were formed
simply by pouring oil into the reservoir. The en-
trained bubble motion and shaft rotation were photo-=
graphed at 400 pictures/sec.

ANALYSIS

It is well known from balancing the radial forces
that an entrained gas in a liquid will migrate against
the body force field and establish itself at a balance
point - which, in this case, is either about the cen-
terline or about the shaft. The puzzling part is that
the bubble appears as nearly solid-body rotation - the
bubbles approach one shaft radius in diameter and are
whirling about with the oil. However, if one estab-
lishes the flow field for a shaft (r = R) in an infi-
nite reservoir, the flow field is nearly solid body
close to the shaft (R < r < KR). Apparently, the



outer limit of the oil flow field possesses a shear
layer that, not only limits the escape of the vapor,
but distorts the bubble as well (Fig. 2).

Single Phase

For a single-phase fluid bounded between two con-
centric cylinders, the torque applied by the rotating
inner cylinder (shaft) on the fluid is found from a
solution to the momentum equation

2
T-- {mk® (1)
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where
2
(1) = 4nLleR (2)

Here, R is the inner cylinder radius, KR 1is the outer
cylinder radius, and the angular velocity is

2
Rw r KR
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It is clear that the ratio of the torque applied to a

gas to that applied to a liquid is determined by the
ratio of viscosities
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Two-Phase

If it were possible to segregate the fluid domain
encompassing the shaft into x domains of vapor (gas)
and (1 - x) domains of liquid, assuming a liquid/vapor-
slip ratio of unity, the torgque would become

2 ()s)

2 L

However, eq. (5) possesses a singularity at the satura-
ted vapor locus and a better representation becomes

T o+T
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where
T 1y K (7)
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From eq. (6), it is clear that the torque is signifi-
cantly reduced by adding a small amount of gas (vapor).

Attached Bubble

For a bubble attached to the rotating shaft, we
assume that the flow field and outer cylinder can be
replaced by a fluid with a stress tensor defined by
eq. (8). The outer cylinder boundary KR 1is now re-
placed by a pseudo boundary rg.
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and the rate of deformation tensor is
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which is commonly known as the Bingham plastic model.
For our model +tps is the dominant term

%TZT = (‘re)z (11)

and solving gives the circumferential velocity as
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Further, assuming that KR = r, is known, equa-
ting the torque applied to the vapor between the con-
centric cylinders to that of the Bingham model provides
an expression for 1.
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The circumferential velocity of egs. (12) and (13) be-
comes
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where rp is the radius when Vg = 0.
To establish a limiting value for rg, Vg s set

equal to 0, and eq. (17) becomes
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For attached bubbles with diameters of 0.5, 1, and 2
shaft radii, the values of rp are approximately 25 mm
(2 in.), 130 mm (50 in.), and «.

With such a definition of the shear layer, one can
expect nearly solid-body rotation to a radius of rg
with viscous flow at larger values of r. Since the
radial pressure gradient is given directly in terms of
the angular velocity,

o oV
a% = 'T;L (21)

it is clear that the vapor is 'held' adjacent to the
shaft by the difference in densities, or

2

(o, =0 IV

dp 2 [
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and that this is strongly dependent on the rotational
speed. Further, as the interface r = rgy is ap-
proached, the gas entrained into a bubble should become
dis:or;ed by the change in shear as defined by eq. (12)
or (17).

EXPERIMENTAL RESULTS

To achieve gas or vapor entrainment into the
fluid, an 0il was poured into the reservoir, and the
shaft rotated at selected speed. The vapor adjacent
to the shaft rapidly formed what appeared to the un-
aided eye as a vapor torus with a slower fluid/bubble
motion within the reservoir. High-speed motion pic-

tures taken at 400 frames/sec revealed individual gas
cavities adhering to the shaft and rotating at nearly
synchronous speed (Fig. 3). The bubbles were rather
distorted at their apex because of shear at the inter-
face and appeared to locally "lock" oil between them
to complete the “"solid-body rotation." These bubbles
extended 0.6 shaft radii from the shaft surface; they
also tended to migrate along the shaft and to coa-
lesce. Large bubbles would lose gas to the oil. That
gas would then appear as tracers in the oil. When the
seals were not cooled, some void would migrate toward
the seal aperture and disrupt the flow (reduce the
leakage).

Applications to other data for seals, bearings,
and pumps have not been addressed, but such entrainment
effects should be expected when the fluid is two-phase.
At higher rotational speeds and during transition to
turbulence, the bubble size and rotational synchroniza-
tion are expected to be limited. Further, as the res-
ervoir approaches that for the classic flows in rotat-
ing annuli, the entrained bubbles are expected to merge
into Taylor vortices.

SUMMARY

An experimental program has been carried out to
determine the nature of the flow field about entrained
gases in liquids (air/oil in this study). The en-
trained gas formed bubbles that were observed to rotate
with the shaft in nearly a synchronous manner for se-
lected rotational speeds. A simple analysis using a
Bingham fluid was used to describe the phenomena.
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Fig. 1. - Schematic of experimental apparatus.
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Fig. 3. - Entrainment of air bubbles in oil about a rotating shaft.
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