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FOREWORD

This is a final report on lIT Research InstituteProjectNo. K06018

(formerlyM06097), EmbeddedGage ImpactStudy,"preparedby IITRI for NASA

LangleyResearchCenter under ContractNo. NAS1-16763. The work describedin

this reportwas conductedduring the period20 August 1981 to 31 March 1983.

Dr. Walter Illg of NASA was the projectengineer. Dr. I. M. Daniel (formerly

of IITRI)was the initialprincipalinvestigatorsucceededlater by Mr. S. W.

Schrammof IITRI. Additionalcontributionsto the work reportedhereinwere

made by Mr. W. G. Hamilton (formerlyof IITRI)and Mr. T. Niiro. Use of com-

mercial productsor names of manufacturersin this report does not constitute

officialendorsementof such productsor manufacturers,either expressedor

implied,by the NationalAeronauticsand Space Administration.
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1. INTRODUCTION

The ever expandingstructuralapplicationsof compositesexpose them to a

varietyof environmentsand loadingconditions. One importantarea is the be-

havior of compositesunder localizedimpact loading. Impactvelocitiescan

range from low (3-6ms-l; 10-20 ft/sec),for the case of tools or other ob-

jects fallingonto the composite,to intermediate(15-60ms-l; 50-200 ft/sec)

velocitiesencounteredby aircraftin flight,to high velocityballisticim-

pacts. The range of interestin this programwas the low to intermediateone

for which the damage caused in the compositeis invisibleto the unaidedeye.

The damage caused is not only a functionof the velocityof impact,but also

of the mass of the projectile,its geometry,and the materialand layup of the

compositelaminate.

Impact studieson compositeshave been conductedby many investigators.1-9

Nonvisibleinternaldamage in compositelaminateshas been producedby drop-

ping weights of approximately4.5 to 9N (1 to 2 Ib) from heightsof 0.61 to

1.22 m (2 to 4 ft).10 Steel, ice, and gelatinprojectileshave been used at

impact velocitiesof 31 to 305 ms-1 to study the foreignobject damage (FOD)

resistanceof graphite/epoxy,boron epoxy, Kevlar/epoxy,and graphite/

polyimide.6 Similar studieshave been conductedusing siliconrubber pro-

jectilesat velocitiesup to 250 ms-1 (820 ft/sec).7,9

In references7 and 9, unidirectional[016] and [02/+4512sboron/epoxy

and graphite/epoxylaminateswere instrumentedwith surfaceand embedded

strain gages, impactedwith 7.9 mm (0.31 in.) diameter siliconrubber spheres

normallyand obliquely(at 45 deg), and ultrasonicallyinspectedbeforeand

after impact. The residual stiffnessand strengthof the materialat the

point of impactwere measured.

The objectiveof this programwas to use the experimentaltechniquesde-

velopedin References7 and 9 study the case of low velocityimpact damage in

graphite/epoxycompositelaminates. A specificobjectiveof the investigation

was to characterizeimpact damageand correlateit with strainand deformation

historiesduring impact.





2. EXPERIMENTALPROCEDURE

2.1 SPECIMENS

2.1.1 Material Selection and Characterization

The material that was to be initiallyinvestigatedwas T300/5208graphite/

epoxy from NARMCO Materials,Inc. Upon receiptof the 15.2 cm (6 in.) wide

prepregtape, characterizationof the materialcommenced.

The characterizationconsistedof the fabricationand testingof unidi-

rectionalcouponsin tensionand compression,in the longitudinaland trans-

verse directions. Ten-degreeoff-axiscouponswere also tested for determina-

tion of in-planeshear properties.

Longitudinaltensileand compressivepropertieswhich are fiber dominated

were found acceptablefor the T300/5208prepreg. However,all matrix domi-

nated propertieswere unusuallylow and the materialwas rejected. Replace-

ment materialwas requested,but deliveryscheduleswere unacceptableand a

new supplierwas contactedfor a new material.

The T300/5208graphite/epoxywas replacedwith AS-4/3501-6graphite/epoxy

prepreg tape 30.5 cm (12 in.) wide manufacturedby Hercules,Inc. The AS-

4/3501-6conforms to SpecificationMMS-549,Rev. B and was determinedto be

adequate for the program.

The AS-4/3501-6prepreg had to be qualifiedand characterizedbefore

impact specimenswere made. The qualificationtesting,15- and 16-ply,unidi-

rectionalplates,were fabricatedand then cut into:

• 6 beam specimens10.2 cm (4 in.) long x 1.3 cm (0.5 in.) wide
for flexuraltesting

• 6 short beam specimens1.5 cm (0.6 in.) long x 0.4 cm (0.25 in.)
wide for three point interlaminarshear testing.

The resultsof the qualifcationtests are shown in Table 1 for flexure

and Table 2 for shear, respectively. The resultsagreed well with product

data suppliedby Herculesand the materialwas accepted.

2





TABLE1. QUALIFICATIONFLEXTURETESTSFORAS-4/3501-6 6RAPHITE/EPOXY

Specimen Thickness Width Flexural Strength
Number cm (in.) cm (in.) MPA (ksi)

1 0.191 (0.075) 1.273 (0.501) 1818 (263)

2 0.173 (0.068) 1.285 (0.506) 1880 (272)

3 0.185 (0.073) 1.283 (0.505) 1750 (254)

4 0.185 (0.073) 1.273 (0.501) 1987 (288)

5 0.178 (0.070) 1.280 (0.504) 1886 (273)

6 0.193 (0.076) 1.265 (0.498) 1826 (265)

Average: 1857 (269)

TABLE 2. QUALIFICATIONINTERLAMINARSHEAR TESTS
FOR AS-4/3501-6GRAPHITE/EPOXY

Specimen Thickness Width Shear Strength
Number cm (in.) cm (in.) MPa (ksi)

1 0.211 (0.083) 0.638 (0.251) 116.7 (16.9)

2 0.203 (0.080) 0.638 (0.251) 122.4 (17.7)

3 0.216 (0.085) 0.643 (0.253) 114.3 (16.6)

4 0.211 (0.083) 0.635 (0.250) 116.0 (16.8)

5 0.206 (O.081) 0.640 (0.252) 117.9 (17.1)

Average: 117.4 (17.0)
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Unidirectional6-ply and 8-ply plateswere fabricatedfor materialcharac-

terization. The followingcure schedulewas used:

• Place layup in autoclave

• Apply full vacuum

• Raise temperatureat 2.8°K (5°F)per minute to 383°K (230°F)

• Hold at 383°K (230°F)for 30 minutes

• Apply 690kPa (100 psi) pressure

• Releasevacuum

• Raise temperatureat 2.8°K (5°F)per minute to 448°K (350°F)

• Hold for two hours at 448°K (350°F)under pressure

• Lower temperatureto 367°K (200°F)at 2.8°K (5°F) per minute

• Releasepressureand remove layup

• Post cure for 4 hours at 448°K (350°F)in an air circulating
oven.

The density of the cured material was measured as

= 1,614 kg/m3

from which the fiber volume ratio was computedas:

p - p
c m 1614 - 1270

Vf - _ _ p - 1800 - 1270 = 0.65m

where f = fiber density

m = matrix density.

UnidirectionaltensileO-deg propertieswere obtainedby testing 1.27 cm x

22.9 cm (0.5 in. x 9 in.) 6-ply coupons. Unidirectionaltensile 90-deg proper-

ties were obtainedby testing 2.5 cm x 22.9 cm (1 in. x 9 in.) 8-ply and 16-ply

coupons. Compressivepropertieswere obtainedby testing 16-ply coupons,13.5

cm x 0.6 cm (5.3 in. x 0.25 in.) in the IITRI compressionfixture. In-plane

shear propertieswere determinedby testing lO-degoff-axisspecimens. The

couponswere 1.27 cm (0.5 in.) wide x 25.4 cm (10 in.) long and 6-pliesthick.

They were instrumentedwith one 3-gage rosetteon each side. Two to four

specimenswere tested in every case. The resultsare shown in Table 3.



TABLE3. PROPERTIESOF UNIDIRECTIONALGRAPHITE/EPOXYAS-4/3501-6

Property Value

Ply Thickness 0.127mm (0.005 in.)

LongitudinalModulus, Ell 159.4 GPa (23.1 x 106 psi)

TransverseModulus, E22 10,6 GPa (1.54 x 106 psi)

Shear Modulus, G12 8.2 GPa (1.19 x 106 psi)

Major Poisson'sRatio,_12 0.28

Minor Poisson'sRatio, _21 0.02

LongitudinalTensile Strength,FIT 1980 MPa (287 ksi)

Ultimate LongitudinalTensileStrain, €11Tu 0.0122

LongitudinalCompressiveStrength,FIC 1440 MPa (209 ksi)
u 0.0141

Ultimate LongitudinalCompressiveStrain,_11C

TransverseTensile StrengthF2T 43.1MPa (6.2 ksi)
Ultimate TransverseTensileStrain u 0.0039' _22T

TransverseCompressiveStrength,F2C 228 MPa (33 ksi)

Ultimate TransverseCompressiveStrain, E_2C 0.0239

In-planeShear Strength,F6 56.4 MPa (6.0 ksi)
u 0.0027

Ultimate Shear Strain,E12
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2.1.2 PreliminaryImpactTestin_

Preliminarytests were conductedto determineapproximatelimits for the

accelerationand strain data to be obtainedlater. The specimengeometrywas

the same as for the final testingwith embeddedgages (Figure1).

These specimenswere formed by bondinga 15.2 cm (6 in.) squaregraphite/

epoxy laminatebetweentwo 1.3 cm (0.5in.) thick aluminumplates with a 12.7

cm (5 in.) diametercutout. Though not shown in Figure 1, the aluminum plates

were held togetherwith socket head cap screws torquedto a common value dur-

ing the adhesivecuring period. The cap screwswere removedfrom the specimen

before impacttesting. Two types of specimenswere fabricatedwhich were 8-

ply and 16-ply of [45/0/-45/90]s and [45/0-45/9012slayups. No embeddedgages

were used in these preliminaryspecimens. In the first specimen two gages

were appliedon the back surfaceof the specimenat a distanceof 3.2 mm

(0.125 in) from the center in the radial direction. In subsequentspecimens

only one gage was applied on the back surfacedirectlyunder the impact point.

Specimenswere impactedrepeatedlyand the transientstrainrecorded in every

case. At the end of a series of impact loadingseach specimenwas scanned

ultrasonically.

The first specimenwas a [45/0/-45/90]s laminateand was impactedwith a

185 gm (0.085Ib) impactorreleasedfrom a heightof 122 cm (48 in.). Figure

2 shows the accelerationand strain recordsobtained. In Figure 2b, the

period of deceleration(from 0 to approximately1.2 msec) correspondsto the

time betweeninitialcontactand maximum penetrationand/or deformationof the

target. During this period,the strainsat the two gage locationsincrease

monotonicallyto a maximum at approximately1.5 msec after impact. The strain

curves lag behind the accelerationcurve because the strain gages were not

locatedat the center of the impact and were on the surfaceopposite to that

where the impactorcontactedthe specimen. In the period between1.2 and 2.5

msec from impact, the rate of change of accelerationbecomespositiveand the

strain decreases. A visual inspectionof the specimenafter impact showed no

visible damage. These preliminarytests showed that measurable(approximately

8000 _) strainscan be generatedwith no visibledamage to the specimen.



r
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Y

L.x
q

-, 15.2 CM 16INI J-I

//_// ALUMINUM ,

__] _--- GRAPHITE/EPOXY

I" 12.7CM 15 IN} ---

Figure 1. Configuration of preliminary impact specimen.
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Ftgure 2. Acceleration (a) and strain (b and c) histories for 122 cm (48 tn.) drop of a 185 gm (0.085 lb)
tmpactor onto an 8-ply [45/0/-45/90] s graphite/epoxy p]ate 15.2 cm (6 tn.) square. Gages (b) and (c)

approximately equidistant from impact location. (Preliminary specimen No. 1).



Figure 3 shows the transientstrain recordsfor another[45/0/-45/90]s

graphite/epoxylaminateimpactedfrom heightsof 83.8 cm (33 in.) and 91.4 cm

(36 in.) by a 185.3 gm (0.41 Ib) impactor. Peak strainwas reachedat approx-

imately1.3 ms after impactand the total durationof the main strainpulse

was approximately2.7 ms. The peak strain initiallyis approximately5 x 10-3

and it declinessteadilywith repeatedimpactsfrom approximatelythe same

height. This may be due to the damage being accumulatedin the impactedarea

which would tend to cushionthe impact somewhatand to the material degrada-

tion itself. An ultrasonicC-scan after nine impactsshows extensivedamage

around the area of impact (Figure4). It is possiblethat this damage con-

sists primarilyof matrix crackingand delaminationbut no fiber fracturesas

the peak strainwas always below the ultimatestrain in the fiber direction.

Similar tests were conductedwith other 8-ply specimens. The resultingstrain

historieswere inconsistentwith the drop heights,but the final damagewas

extensivein all cases after a number of impacts. UlrasonicC-scansfor these

specimensafter 6, 13, and 2 impacts,respectively,are also shown in Figure 4.

Figure 5a shows the transientstrain record for the first drop of the

impactoron a [45/0/-45/90]s laminate. The peak strainof approximately

1.4 x 10-3 is reachedat approximately1.2 ms after impact. The duration of

the primarystrain pulse is somewhatshorterthan that in the case of the

8-ply laminates. The extensivedamage detectedafter only two impactsis

consistentwith the large peak strain recorded (Figure5b).

Based on these preliminarytests, it was decidedto test subsequent

specimensby impactingthe 185 gm impactorfrom heightsof 120 cm (47.2 in.)

and 165 cm (65 in.) for the 8-ply and 16-ply specimens,respectively.

2.1.3 EmbeddedGableSpecimens

Fabricationof the graphite/epoxylaminate specimensfor this projectpre-

sented some difficulties. The difficultiesarose primarilyfrom two sources;

the first was the number of gages to be embedded into the laminates,and the

second was the electricalconductivityof the graphite/epoxycomposite.These

problems could be resolvedonly by developinga rigorousand time consuming

specimenfabricationprocedure.
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Figure 4. Ultrasonic C-scans for [45101-45190] s laminate
after repeated impacts with 185 gm tmpactor.
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Figure 5b. Ultrasonic C-scan for [45101-45190] s laminate
al_tertwo impacts of a 185.3 gm (0.41 lb) impacter

from a height of 165.1 cm (65 in.).
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As was mentionedpreviously,a specialfabricationprocedurewas devel-

oped for preparingthe embeddedgage specimens. Two pointswere obvious im-

mediately. The first was that there would have to be some provisionmade so

the gage-to-wiresolder connectionwould be insulatedto preventgroundingof

the gage to the specimen. The second point was that an insulatedribbon type

lead wire would have to be used from the free edge of the laminateto the em-

bedded gage to minimize the thicknessvariationof the laminate.

The first specimenwas fabricatedwith epoxy-phenolicresin encapsulated

gages with the solder connectionssandwichedbetween two pieces of Kapton

film. The problemwith this configurationwas that the gage was nearly impos-

sible to positionand would migrateduring the laminatecure. When the gage

would migrate, it would strain the solderconnectionsand in many cases,would

cause a break in the connectiongroundingthe gage. The gage became useless

becausethere was no way to reattachthe leads to the connectors.

The second specimenwas fabricatedusing open-facegages with both grid

and connectorssandwichedin Kapton film. These gages reactedsimilarlyto

those of the first specimenin that two of the embeddedgages shiftedduring

the cure cycle. The shift was far enough that either one or both of the

solder connectionsbroke.

The third and fourth specimenswere fabricatedby encapsulatingthe gage

and solder connectionsin the same epoxy that was used in making the prepreg.

A supply of resin was sent to IITRI by Hercules for this purpose. The gages

worked well before being layed up in the laminate,but inconsistentlyafter

the laminatewas cured. What is suspectedis that the encapsulatingepoxy

softened during the laminatecure allowing the graphitefibers to penetrate

the encapsulationto where the fiberswould intermittentlytouch the solder

connectionscausing the gage to ground out occasionally. The first four

specimensfabricateddid have a number of embedded gages which worked well,

but not of a number and locationthat would generateany amount of useful

data. These four specimenswere used as practicespecimensfor multipledrop
tests.
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The gage embedmenttechniquewhich proved to be the most successfulwas a

two step process. The first step was to encapsulatethe strain gage. The

second step was to locate the strain gage in the layup and cure the laminate.

Although this sounds identicalto the previouslydescribedtechnique,there

was one major difference;the encapsulationwas oven cured before being layed

up in the laminate. In the other encapsulationtechnique,the epoxy was only

air cured in the hope that the strain gage would remain somewhatflexible

therebyintegratingbetter into the epoxy matrix of the laminate. Since this

was not the case, it was decidedthat the next best optionwould be to cure

the encapsulationbefore layup. The strain gage was wired with ribbon leads

solderedat the tabs. The wired gage was then coatedwith a uniformthickness

of epoxy on both sides. The coated gage was placed in a sandwichof glass

scrim cloth. The sandwichwas then cured under vacuum in an air circulating

oven. After curing,the gage was ready for insertionin the layup. As the

laminatewas layed up, the encapsulatedgages were locatedand held in place

by being "tack glued" into place using a couple of drops of epoxy on both

sides of the gage. Since the laminatewas cured under vacuum/pressurecondi-

tions, the excess epoxy from the prepregand the tackingwas drawn into the

bleedercloth, leaving the laminaterelativelyunaffectedby the presenceof

the strain gages. After the laminateswere cured and post cured, they were

bonded to the aluminum holdingfixtures. Subsequently,external straingage

lead wires were solderedinto place at externalconnectorsmounted onto the

aluminumplates. The external leadwires were solderedonto the free ends of

the ribbon leads which were left protrudingfrom the edges of the laminate

plates.

The total number of acceptabletest specimenswas four; two 8-ply [45/0/-

45/90]s and two 16-ply [45/0/-45/90"]2s.The gage layout is shown in Table 4

and illustratedin Figures6, 7, 8 and 9. In the gage layout table,R indi-

cates a radial gage and T indicatesa transversegage. A radial gage is de-

fined as one having the grid parallelto a radial line from the center of the

specimen;a transversegage is one having the grid perpendicularto a similar

radial line. The 125AD type gage (referredto the Micro-14easurementscatalog

numbers)is a single gage with a 3.18 x 3.18 mm (0.125 x 0.125 in.) grid area.
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TABLE4. GAGELAYOUTFORSPECIMENSWITH EMBEDDEDGAGES

Specimen Gage X, y, Plies from
No. Layout No. Type cm (in.) cm (in.) Top

A5-2 [45/0/-45/90]s 1R 125AD 0 0 8
2R " -1.27 (0.5) 0 8

3R " 2.54 (1.0) 0 8

4R " 0 -5.08 (2.0) 8

5R " 0 0 4

6R " -1.27 (0.5) 0 6

7R " 2.54 (I.0) 0 7

8R " -3.81 (1.5) 0 8

9R " -1.27 (0.5) 0 0

1OR " 2.54 (1.0) 0 0

11R " O" -5.08 (2.0) 0

A6-1 [45/0/-45/90]s 1R 125AD 0 0 2
2R " 0 0 6

3R " 0 0 8

4R " 1.27 (0.5) 0 2

5R " 1.27 (0.5) 0 6

6R " 1.27 (0.5) 0 8

7T " -2.54 (1.0) 0 0

8T " -2.54 (1.0) 0 4

9T " -2.54 (1.0) 0 8

lOT " 0 -1.27 (0.5) 8

11T " 0 -1.27 (0.5) 6
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TABLE4. GAGELAYOUTFORSPECIMENSWITH EMBEDDEDGAGES
(concluded)

Specimen Gage X, y, Plies from
No. Layout No. Type cm (in.) cm (in.) Top

B5-1 [45/0/-45/90]s IR 125AD 0 -2.54 (1.0) 16
2R " -1.27 (0.5) 0 16

3R " 2.54 (1.0) 0 16

4R " 0 -5.08 (2.0) 16

5R " 0 0 12

6R " -1.27 (0.5) 0 12

7R " 2.54 (1.0) 0 12

8R " -1.27 (0.5) 0 8

9R " 2.54 (1.0) 0 8

1OR " -1.27 (0.5) 0 0

IIR " 2.54 (1.0) 0 0

B6-1 [45/0/45/90]s 1R 125AD 0 0 4
2R " 0 0 8

3R " 0 0 12

4R " 0 0 16

5R " 1.27 (0.5) 0 12

6R " 1.27 (0.5) 0 16

7T " -1.27 (0.5) 0 12

8T " -1.27 (0.5) 0 16

9T " 0 -2.54 (1.0) 0

lOT " 0 -2.54 (1.0) 8

11T " 0 -2.54 (1.0) 16

X = O, Y = 0 is geometriccenter of graphite/epoxyplate.

R is Radial

T is Transverse
L
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Figure 6. Gage layout for [45/0/-45/90] s specimen A5-2.
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2.2 TEST EQUIPMENT

2.2.1 Drop Ftxture

The fallingweight fixtureconsistedof three elements,the guide rode,

the impactor,and the specimenplatform. A sketch of the fixtureis shown in

Figure 10. A photographof the bottom part of the fixtureis shown in Figure

11.

The guide rods were two 1.6 cm (0.625 in.) diameter,2 m (78 in.) long,

parallelsteel dowels locatedat a distanceof 5.1 cm (2 in.) center to cen-

ter. The guide rods were wall mounted using speciallyfabricatedaluminum

mounting hardware. The rod mounts were fabricatedwith holdingand adjustment

set screwsso the parallelismof the rods was maintainedover the 183 cm (72

in.) drop length. The rods were polishedand lubricatedto minimizethe fric-

tion losses associatedwith the impactormoving along the guide rods. One of

the guide rods was enscribedwith an elevationscale so that the drop heights

could be easily determinedand reproduced.

The impactor,Figure 12, consistedof five parts; the slug, two brass

"v-notched"guide plates,and two slug extensions. The basic impactorcon-

sistedof the hemisphericallyended steel slug and the two brass guide plates.

The mass of the basic impactorwas 185 gm (0.39 Ib), and it was found to be

adequate for producingsubsurfacedamage in both the 8- and 16-ply laminates

within the limitsof the 183 cm (72 in.) drop height. The slug extensions,

like the slug, were made from 1.6 cm (0.625 in.) diametersteel rod. At the

trailingedge of the slug and slug extensions,holes were drilledand tapped

so the extensionscould be threadedonto the slug to vary the total mass of

the impactor. Increasingthe total mass of the impactorwas the easiestway

to increasethe impact force given the fact that the drop heightwas restrict-

ed by the ceilingheightof the laboratory. If increasingthe mass of the

impactorbecame too unwieldly,the back-up positionwas to use a compressed

air cylinderto acceleratethe impactorto generatean acceptableimpact

force.

The brass guide plateswere used to stabilizethe impactoras it dropped

betweenthe guide rods. The guide plateswere held in place with set screws

which threadedinto tapped holes on the slug and extensions. The guide plates
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Figure 11. Drop fixture.
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were spaced to minimize the possibilityof the impactorcockingand jamming

between the guide rods. The "v-notches"were also sized so therewas a mini-

mum amount of contactbetweenthe guide platesand guide rods. Since the

guide rods were generouslylubricatedbeforeeach test, therewere minor fric-

tion losses associatedwith each impact since there was very little contact

betweenthe platesand rods.

The specimenplatformconsistedof an adjustablebaseplate,two elevation

bars, and two clampingbars. The baseplatewas 25.4 x 31.8 x 1.9 cm (10 x

12.5 x 0.75 in.) steel with a threadedhole at each of the four corners. Into

each hole a 15 cm (6 in.) long bolt was threaded. The bolts acted as the legs

of the platformand providedheightand alignmentadjustmentwith respectto

the drop fixture. The upper surfaceof the baseplatewas inscribedwith the

point of impact and elevationbar locationsas points of referenceused during

experimentset-ups.

The elevationbars were 2.5 x 5 x 15 cm (1 x 2 x 6 in.) steel gage blocks

squaredand ground on all surfaces. The elevationbars were used to provide

coarse elevationchangesfor positioningthe target specimens. The 15 cm (6

in.) lengthwas selectedbecausethis was the same length as the aluminum

plates bonded to the graphite/epoxylaminates. With this common length,the

aluminum plate was totallysupportedwhich minimmizedthe deflectionof the

target during impact.

The clampingbars were also 2.5 x 5 x 15 cm (1 x 2 x 6 in.) steel gage

blocks squaredand ground on all surfaces. The clampingbars were used be-

tween the upper aluminumplate of the targetand the lowest guide rod support

fixture. The clampingbars were aligned normallyto the elevationbars along

the edge of the aluminum plate.

After the baseplate,elevationand clampingbars were positioned,the

bolt legs of the baseplatewere turned until the assemblywas snug betweenthe

ground plane and the drop fixture. This was done to minimize impactenergy

losses due to the specimendeflectingor bouncingduring impact.
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2.2.2 Recording Instrumentation

The data acquisition/processing system, shown schematically in Figure 13,

consisted of three elements; a triggering accelerometer and charge amplifier,

an 8-channel waveform digitizer, and a micro-computer based data handling sys-

tem. Triggering of the 8-channel waveform digitizer system was initiated using

a i0 g (98 m/sec2; 320 ft/sec 2) Endevco, piezoelectric accelerometer. The

accelerometer signal was conditioned by a PCBModel 462A charge amplifier with

a multiplication range of 50 to lOOK. A photograph of the system is shown in
Figure 14.

During the preliminary impact tests, the accelerometer was adhesively

bonded to the trailing edge of the impactor slug. This worked well for the

low (less than i m, 3 ft) drops, but caused problems at drop heights in excess

of 1 m (3 ft). To provide for drops in excess of I m (3 ft), an extension

cable had to be added between the accelerometer and the charge amplifier. In

several practice drops, the extension cable was the apparent source of prema-

ture triggering of the digitizer. This problem persisted through two replace-

ment cables and was finally resolved with a third cable. The source of the

problem was that the cable was twisting while the impactor was falling, caus-

ing causing the wiring inside the cable to ground against the cable connector.

The grounding would trigger the digitizer. Another problem associated with

mounting the accelerometer on the impactor was the rebound of the impactor

after impact. The impactor rebound was severe enough in most cases to cause
A

the accelerometerto separatefrom the impactor,even though the accelerometer

was adhesivelybonded to the impactor. In one case, the reboundwas severe

enough to cause the backing shield of the accelerometerto come off of the

accelerometerbody. The impactormounting locationfor the accelerometerwas

consideredto be unacceptablefor the final tests becauseprematuretriggering
of the digitizercould not be allowed.

Two alternateaccelerometermounting positionson the target specimen

were then considered. One was on the front (impacted)surfaceand the other o-

was on the back side of the specimen. Both positionswere testedand the back

face positionwas selectedas more preferable. Although the front face accel-

erometermountingpositionwas never a heavilyconsideredoption,because the

accelerometercould not be positionedclose enough to the point of impact to
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Figure 14. Data capturing/recording/display system.
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triggerthe digitizersoon enough to capturethe entire impactevent, it was

tested becauseit was suspectedthat the accelerometermight separatefrom the

specimendue to the impactdeflectionwithout triggeringthe digitizer. This

was not the case becausein one preliminarytest, the accelerometerdid fall

away from the specimenbut still triggeredthe digitizerearly enough to cap-

ture the entire impactevent. Therefore,for the four "final"impact tests

conducted,the accelerometerwas adhesivelybonded to the back surfaceof the

targetas close as possibleto the geometriccenter (impactpoint on the upper

surface)of the specimen.

The 8-channelwaveform digitizerused on the programwas a Gould Bioma-

tion Model 2805 Masterwith three Model 2805 slaves. The 2805 Master is an

analog-to-digitalconverterwith a solid-statememory that stores the equiva-

lent of an analog signal. The Master has a simultaneousdual channelrecord-

ing rate of up to 5 MHz (200 ns/point),and 2048 words of 8 bit memory per

channel. Each slave unit had the same specificationsas the master unit. A

peripheralpart of the digitizerwas a digitizerinterface. The interface

used was a Gould BiomationModel 4880 Interface. The Model 4880 is an IEEE

bus interfacewhich provideda data transferpath betweenthe digitizerand

the microcomputer.

The microcomputerused was a Hewlett-PackardHP-85 with expandedmemory

to 32K. The microcomputerwas supportedwith an HP-82092Mflexibledisc drive

and an HP-7470A plotter. The HP-85 systemwas used based on system capability

recommendationsmade by Gould, manufacturerof the digitizer. The microcompu-

ter was initiallyprogrammedusing softwareprovidedby Gould. The vendor-

suppliedsoftwaredid not performto the minimumrequirementsof the research

programand had to be extensivelymodified. The programmingwas sufficientto

provideerror free remote initializationof the digitizercontrol settings,

and transferof the data to flexibledata discs. Where the programmingwas

very weak was in data displayand plottingfunctions. As an example, there

were no provisionsin either the CRT display softwareor the plottingsoftware

to displayor plot more than one datatrace on a singlemedium. The software

was modified so that up to all eight channelsof captureddata could be dis-

playedor plottedon a singlemedium simultaneously. Other modificationsmade
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to the softwareincludedchanges in file handlingroutinesand extensive

changesin the plotterscalingand labelingroutines. These modifications

were unplannedbut necessaryin order to extract any meaningful information

from the captureddata.

Z.2.3 Nondesl_ructtve Evaluation Equipment

One of the objectivesof the programwas to quantify the extent of damage

done to the laminatesas a result of the impact. IITRI'sultrasonicscanning

and recordingequipmentwas used to nondestructivelyinspect the various test

specimens.

Figure 15 shows the overallsetup of the ultrasonicscanningand record-

ing system used in this program. The ultrasonictransducersystem is operated

by a Model 5052UA pulser-receivermanufacturedby Panametrics,Inc. It is

capableof drivingthe transducersin either the pulse-echoor through-

transmissionmode. The pulser-receiveris a broad-banddevice which can read-

ily operatetransducersin the range of 1 to 20 MHz. It has independentcon-

trols for input energy, signal repetitionrate, high pass filter gain, and

attenuationall of which controlthe final transducersignal. It providesa

time domain output for reviewingthe RF signal on an oscilloscopeor spectrum

analyzer. It also has a gated peak outputdetectorwhich can operateone axis

of an x-y recorder pen for plottingthe ultrasonicinformationcontainedin

the variationof the peak output signal.

In addition to the transducersand pulser-receiver,three pieces of

equipmentwere requiredto get a completepictureof specimenintegrity. They

were an x-y recorder,an oscilloscope,and an oscilloscopecamera.

The x-y plotterwas a HP-7044Ax-y recorder. The x and y control sensi-

tivitiesranged from 0.25 mV/cm to 5 V/cm. The recordedC-scan could be

smaller,equal to, or larger than the actual specimenup to a size of 25 x 38

cm (10 x 15 in.). The x-y recordercould operatein either the pen-liftor

analog mode. In the pen-liftmode, the output from the peak detectorwas

channeledthroughan electronicalarm unit into the pen-liftcontrolof the

recorder. The alarm unit was set to triggerthe pen-liftwhenever the ampli-

tude of the peak detectorfell below a prescribedlevel, indicatinga flaw;
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otherwise,the pen stayed in contactwith the paper tracingline. This gave

detailed flaw locationsin the plane of the specimenwith definiteoutlines of

the flaw boundaries. The analog mode supplementsthis informationby giving a

continuousrecord of the amplitudeof the gated pulse. It is obtained by

scanningthe specimenwith the alarm unit by-passed.

The oscilloscopeused was a TektronixModel 445/A2/B2. This was a 50

MHz, dual channel,portable oscilloscopewith deflectionfactorscalibrated

from 5 mV to 5 V/division. The horizontaldeflectionsystem providesstable

triggeringover the full bandwithcapabilitiesof the verticalsystem. The

oscilloscopewas fed with informationprocessedby the pulser-receiver.

The mechanicalsystem has a scanningcarriage platformwith three pre-

cision screw driveswhich move the ultrasonictransduceralong three mutually

perpendicularaxes. It is guided along the tank length on steel shafts

attached to the supportframe. The platform is elevatedabove the tank and

can be traversedand positionedat any tank location. A motorizedscrew

drives the verticalscanningarm which holds the ultrasonictransducerat the

lower end. The drive is capableof moving the verticalarm in up and down

scanningstrokesof any adjustablelength up to 35.6 cm (14 in.) at rates up

to 127 cm/min (50 in/min). A horizontaltraversescrew drive is also present.

It is manually operatedand is used only for locatingor focusing the ultra-

sonic transducereach time a new specimenis scanned.

2.3 TEST SEQUENCE

The following is the list, in order of completion, of the steps used to

conduct the tests for this program. The list assumes completion of the strain

gage encapsulations.

• Removegraphite/epoxy prepreg from storage freezer (allow
to warm to near room temperature).

• Cut bleeder cloth to size.

• Clean caul plate and spray with mold release.

• Cut graphite/epoxyto size for correctlaminate
orientation.

• Layup bleedercloth,graphite/epoxyplies, and
encapsulatedstraingages on caul plate.
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• Form vacuum bag with nylon film and flexibleadhesive
tape.

• Insert vacuum bagged layup into curingoven.

• Cure specimenaccordingto scheduledescribedin Section
2.1.1.

• Allow layup to cool to room temperature,remove from
vacuum bag, and trim edges of laminatewith scalpel,etc.

• Nondestructivelyinspectlaminatenoting strain gage
locationsand any fabricationdefects. Quantify defects
if possible.

_- • Adhesivelybond laminate to aluminumframes using torqued
bolts to controlcompression. Allow adhesiveto cure and
remove bolts.

• Solder embeddedgage ribbon leads to extensionlead wires.

• Prepare surfacesof graphite/epoxylaminateand bond
surfacestrain gages. Attach lead wires to surface
gages. Check workingconditionof all gages using
multimeterto read gage resistances.Mark defective
embedded gages as such, and replacedefectivesurface
gages as required. Adhesivelybond accelerometerto the
back surfaceof the target specimenas close to the point
of impact as possible.

• Prepare drop test fixture. Positionand center specimen
platformunder guide rods. Mount specimenon platform,
and locate clampingblocks. Turn leg bolts until specimen
is level and snuggedup against lower guide rod mounting
bracket. Move impactorto desireddrop heightand clamp.

• Attach strain gage lead wires to potentiometriccircuitof
data recordingsystem. Connectaccelerometercable to
charge amplifier.

• Turn on digitizerand computer hardware. Load impact test
data transfersoftware into the micro-computer. Check
data storagedisc for adequate storagespace. Replace
disc as required.

• Start impact test controlprogram. Turn on charge ampli-
fier to accelerometer. Set sensitivitycontrolson
digitizer,i.e., amplitudevoltage,data points per sec,
triggeringmode, etc.

• Without droppingthe impactor,test the triggeringsensi-
tivity severaltimes to ensure "hair triggering"of the
digitizer.
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• Start data gatheringprogram. Key in number of channels
being recorded,maximum of eight.

• Check digitizerto ensure that "pre-trigger"light is
illuminated. This light indicatesthat the digitizeris
ready to record data when triggeredby the accelerometer.
If light is not illuminated,restarttest controlprogram.

• Recheckall power and controlsettingswitches.

• Spray lubricantonto guide rods.

e Releaseimpactorand allow to fall onto target. Capture
impactorafter first rebound,before second impact.

• Data captureand transferto the microcomputerare
automaticallyhandledby the test software.

• Transferimpact data from microcomputerto storagedisc
using data transferprogram.

• Remove test specimenfrom specimenplatform. Disconnect
strain gage lead wires from potentiometriccircuitand
accelerometercable from charge amplifier.

• Remove surfacebonded strain gages and accelerometerfrom
target specimen. Leave embeddedgage lead wires intact
for repeat tests if necessary.

• With aluminum plates in place, nondestructivelyinspect
the test specimen. The specimenshould be ultrasonically
inspectedusing a 5 MHz, compressionwave, immersion,
focusedtransduceroperatedin the pulse-echomode
generatinganalog or pen-liftC-scans.

• If multiple tests are to be conducted,bond new surface
strain gages onto the specimenand retest.

• Read straindata off data storagedisc into smoothing
and/or plottingprogram. Final result is to plot one to
seven strain curveswith associatedaccelerationcurve on
a single plot to show comparativestrain historiesfor a
single impactevent as a functionof positionwith respect
to the impact location.

• Make correlationbetweenstrain data and impact damage.
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3. RESULTS

Specimen A5-2 was a [45/0/-45/90] s specimen with a gage layout as shown
in Figure 6. The specimen was scanned ultrasonically before impact using a

- 5 MHz transducerin the pulse-echomode. Two analog C-scansare shown for

this specimenin Figure 16, one with the gate monitoringthe back face re-

flectionand the other with the gate monitoringthe ultrasonicpulse at the

midsurfaceof the specimen. The embedded gages and their leads are clearly

evident. Transientstrain resultsobtainedduring impactfrom varioussurface

and embeddedgages are shown in Figures 17 and 18. Figure 17 shows that the

surfacestrain on the back face oppositethe point of impact increasesat a

fast rate reaching the separationlimit of the instrument. The next two gages

on the back surfaceaway from the centralpoint show a large dropoff in the

strain. The embeddedgages,which in this case were placedat the midsurface

show a relativelylow, but constant,strain indicatingthat the membrane

componentof the deformationis relativelysmall and is maintainedconstant

throughoutthe impact. Ultrasonicscans of the specimenafter impactare also

shown in Figure 16 for the monitoringgate at the back face and the midsurface

of the specimen. These scans cannot be interpretedeasily becauseof the

presence of the embedded gages. However, it is seen that the only evidenceof

damage is concentratednear the point of impactas corroboratedby the strain

data.

SpecimenA6-1 was a replicateof the previousspecimen,but with a dif-

ferent gage layoutas shown in Figure 7. Analog ultrasonicC-scansbefore im-

pact are shown in Figure 19 for the monitoringgate at the back face and at

the midsurface,respectively. Transientstrain resultsobtainedduring impact

from various surfaceand embeddedgages are shown in Figure 20. All strain

recordsindicatethe presenceof a flexuralstresswave near the point of im-

pact of approximately100 _s duration. Peak strainsas large as 0.006 are

shown, sufficientto cause matrix cracking. It is not known whether the con-

stant strain levels indicatedbeyond 100 ]Jsare indeedsteady-statestrainsor

a gage/instrumentationmalfunction. Further testingwould be requiredto
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Before Impact

Gate at Back Face Gate at Hid-Thickness

After Impact

Gate at Back Face Gate at Hid-Thickness

Figure 16. Analog ultrasonlcC-scans for [45/0/-45/90]s laminatebefore
and after impactwith 185 gm impactorfrom 120 cm height.

(SpecimenA5-2)
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After Impact

Gate at Back Face Gate at Mid-Thickness

Before"Impact

Gate at Back Face Gate at Mid-Thickness

Figure 19. Analog ultrasonic C-scans for [45101-45190] s laminate before
and after impactwith 185 gm impactorfrom 120 cm height.

(SpecimenA6-1)
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identifyand separatethe stages of wave propagationand steady-state,quasi-

static response. Ultrasonicanalog C-scansof the specimenafter impact are

shown in Figure 19, with the monitoringgate at the back face and at the mid-

surface. The former of thetwo scans shows evidence of damage concentrated

near the point of impactand, becauseof the gate location,near the back

face.

SpecimenB5-1 was a 16-ply quasi-isotropicspecimenof [45/0/-45/9012s

layup with a gage layout as shown in Figure 8. Analog ultrasonicC-scans be-

fore impactare shown in Figure 21, with the monitoringgate at the back face

and at the midsurface. Transientstrain recordsobtained from varioussurface

and embeddedgages are shown in Figures22 and 23. The back surfacegage at

location1 reachesthe saturationpoint at a strainlevel of 6250 _. The

back surfacestrain near the point of impact (Figure22) reachesa low peak at

approximately1 ms after impact. Embeddedgages under and near the poin_ of

impact show similarresponse. Gage 10 locatedat the midsurface1 in. from

the point of impact,does not show any response,possiblybecause the membrane

componentof deformationis negligiblefor the thicker16-ply laminate. Ana-

log C-scansof the specimenafter impact are shown in Figure 21, with the gate

at the back face and midsurface. Here the evidence of damage is seen only in

the latter of the two scans, possibly indicatingthat the damage was more con-

centratednear the midsurface.

SpecimenB6-1 was a replicateof the specimenabove with a differentgage

layout (Figure9). Analog C-scansbefore impactare shown in Figure 24, with

the monitoringgate at the back face and the midsurface. Transientstrain

recordsobtainedfrom surfaceand embeddedgages are shown in Figure 25. Most

embeddedgages show very little response,except the gage at location2 which

apparentlyfailed. Analog C-scansafter impact are shown in Figure 24, with

the gate at the back face and the midsurface. Both of these scans reveal

damage near the point of impact.
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Before Impact

Gate at BackFace 6ate at Mid-Thickness-

AfterImpact

Gate at Back Face Gate at Hid-Thickness

Figure 21_nd Analog ultrasonic C-scans for [45/0/-45/9012 s laminate before
after impact of a 185 gm (mpactor from 165 cm height.

(Specimen B5-I)
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Figure 22. Transient strains in [45/0/-45/9012s laminate
after impactof a 185 gm impactorfrom a height-of 165 cm.
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Before Impact

@

Gate at Back Face Gate at Mid-Thickness

Figure 24. Analog ultrasonicC-scans for [45101-4519012s laminate
before and after impactof 185 gm impactorfrom 165 cm height.

(SpecimenB6-1)
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4. SUI_IARY,CONCLUSIONS,ANDRECOMMENDATIONS

Impact studieswere conductedon 8-ply and 16-ply quasi-isotropic

graphite/epoxylaminates,instrumentedwith surfaceand embedded straingages.

Techniqueswere furtherdevelopedfor embeddingstrain gages betweenthe

graphite/epoxyplies. Transientstrainsduring impactwere recordedwith a

waveform digitizercapableof samplingdata at 0.5 ps intervals.

In most cases the embedded gages were placedat the midsurfaceof the

specimenand thus recordedonly the membrane or in-planecomponentof the

strain. This membrane componentwas much smallerfor the thickerlaminateas

expected. In most cases the durationof impactwas approximately2 ms with

strain peaks reachingapproximately1 ms after impact. In one case (Specimen

A6-1) considerableflexuraloscillationwas recordedin the first 100 _s after

impact. Recorded strainswere large enough to cause matrix cracking,but not

fiber fracture.

The damage inducedwas inspectedby ultrasonicscanningbeforeand after

impact. Analog C-scanswere obtainedwith the monitoringgate at the back

face and midsurfaceof the specimen. Althoughthe presenceof embedded gages

obscuredthe C-scans,damagewas always detectable. This damage was localized

near the point of impact. In the 8-ply laminatesthe damage was concentrated

near the back face of the specimen,whereas in the 16-ply laminatesdamagewas

detectedat the midsurfaceas well as near the back face.

The resultsobtainedto date are not sufficientto reach definitequanti-

tative conclusions. Furtherwork is necessaryto study the phenomenamore

systematically. The reproducibilityof the damage mechanismsand extent of

damage should be verifiedfirst. Then, it will be possible to study various

aspectsof the problemby using more specimens. First, nondestructiveinspec-

tion before and after impact shouldbe conductedon specimenswithout strain

gages, because the presenceof gages obscuresthe ultrasonicscans. The loca-

tion of straingage embedmentin subsequentsimilarspecimensshould be deter-

mined on the basis of the damage indicationsof the ultrasonicinspection. To

minimize fractureof the straingage grid when matrix crackingoccurs, small
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gages should be used in place of large gages. UltrasonicC-scans should be

complementedby A-scans in order to determinethe through-the-thickness

locationof the damage.X-radiographyor holographicinterferometrycould be

used as supplementsor alternativesto ultrasonicinspection. The relative

magnitudesof the membraneand flexuraldeformationsshould be varied by

varyingthe specimendiameterfor a fixed laminate thickness. Both the short-

time and long-timeresponseof the plate shouldbe determined. The initial

wave propagationstage is of short duration (on the order of microseconds),

whereas the quasi-staticresponseis of at least two orders of magnitude

longerduration. The through-the-thicknessdeformationshould be investigated

by means of thick beam specimensinstrumentedon the edges. Crack detection

instrumentationcan be used to supplementstrain gage data.

The type and extent of damage should be correlatedwith the imparted

energy as determinedfrom the accelerationof the impactor. The damage growth _

under repeatedimpactsshould be measuredand the accumulationof damage

related to the total impartedenergy. The energy absorbingcapabilitiesof

severalbasic types of matrix, the standard3501-6 (Hercules)resin and the

more ductilepolysulfoneand polyether-etherketone(PEEK)resins,should be

compared. Additionally,quasi-isotropiclaminatesand more anisotropiclay-

ups, such as [45/0/-45/0]s, shouldbe investigated.

Residual stiffnessand strengthof laminatessubjectedto impact should

be measuredand comparedwith the stiffnessand strengthof the undamaged -

material. Wheneverpossible,experimentalresultsshould be comparedwith
analyticalpredictions.
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