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A CYLINDRICAL SHELL WITH A STRESS-FREE END
WHICH CONTAINS AN AXIAL PART-THROUGH OR
THROUGH CRACK

by
F. Erdogan and 0.S. Yahsi
Lehigh University, Bethlehem, PA

ABSTRACT

In this paper the interaction problem of a through or a part-
through crack with a stress-free boundary in a semi-infinite cylindrical
shell is considered. It is assumed that the crack lies in a meridional
plane which is a plane of symmetry with respect to the external loads
as well as the geometry. The circular boundary of the semi-infinite
cylinder is assumed to be stress-free. By using a transverse shear
theory the problem is formulated in terms of a system of singular inte-
gral equations. The line spring model is used to treat the part-through
crack problem. In the case of a through crack the interaction between
the perturbed stress fields due to the crack and the free boundary is
quite strong and there is a considerable increase in the stress inten-
sity factors caused by the interaction. On the other hand in the prob- ;
lem of a surface crack the interaction appears to be much weaker and \
consequently the magnification in the stress intensity factors is
much less significant.

1. Introduction

The main objective cf this paper is to study the effect of a stress- !
free boundary on the stress intensity factors in a cylindrical shell ‘ ;
which contains a part-through or a through crack near the boundary. From i
the corresponding elasticity solutions of flat plates it is known that
when the stress field perturbed by a crack interacts with a free boundary 9
there is a certain magnification in the related stress intensity fac- “
tors, implying that there would be a reduction in the resistance of the
structure to fatigue crack propagation and fracture [1,2]. Experimental t
as well as analytical results also show that generally the stress
intensity factors at that crack tip which is nearer to the free boundary



are greater than those at the other tip and consequently the crack would
tend to propagate toward (and eventually perpendicular to) the free
boundary [1-3]. This mears that of the simple crack geometries in
plates and shells the one which may be of the most practical interest
would be the crack perpendicular to the free boundary.

In shells additional magnification in the stress intensity factors
is known to arise because of curvature [4-6]. In this paper the com-
bined effect of the stress-free boundary and curvature in a cylindrical
shell is studied. It is assumed the plane of the free boundary is per-
pendicular to the axis of the cylinder and the crack is in a meridional
plane. Further, the external Joads applied to the curved surfaces and
the end of the cylinder are assumed to be such that the shear stresses
Y and 713 vanish throughout the shell in the plane of the crack (Fig. 1).
Consequently, in the crack problem the plane of the crack would be a
plane of symmetry with respect to loading as well as geometry.

2. Differential Equations and the Boundary Conditions

The problem described in Fig. 1 is considered within the confines
of linearized shallow shell assumptions and a Reissner typr .- 3nsverse
shear theory [7]. Details of the formulation of a general snallow shell
leading to a crack problem may be found in [4-6] and [8]. The problem
is conveniently formulated in terms of a stress function ¢, transverse
displacement w and two auxiliary functions ¢ and Q. Thus, referring
to Appendix A for notation and for definitions of dimensionless and
normalized quantities, the basic equilibrium equations of a cylindrical
shell may be expressed as follows:

Ay 2 a2
‘+-......] O°W .
vt - (5 yZ -0 (1)
32
Thw + Alez(l-xvz) 5?% = A4(1-cy2) a? ’ (2)
k929 =y =w =0 , ‘ (3)
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12wl 29 . =0 , (4)

2

where q(x,y) is th2 transverse shear loading and y and Q are related
to rotations By and By by [5]:

.2, k(1) 20 Loy _ k(1-v) a0 .
5x T B . (%)

8 2 3y > "y ay X

X

In terms of the stress function ¢ the membrane resultants are
defined as

_ 92 _ 224 _ 8%
Nex = ayg ’ Nyy T Ex? ny T T 3oy (6)

Similarly, the moment and the transverse shear resultants are given
in terms of the displacement and rotations by

38 58 38, 3B

_ .2 X y _ . a X y
Mex = nr (Gx v 3y ) s ”xy e e 3y ) s

38, 98
e @ _T1-v . "x Y
My Tz Gyt (7)

- vy = W

Ve =sx t By o vy TR (8)

Before stating the boundary conditions one may note that the

problem is Tlinear and can be solved by using a superposition technique.

Thus, the problem of a relatively thin-walled semi-infinite cylinder
without the crack under given external loads may be considered separ-
ately from the crack problem in which statically self-equilibrating
crack surface tractions are the only external loads. In the former
problem the external loads may be the transverse loading q and stress,
moment, and transverse shear resultants applied to the end (x,=0) of
the cylinder. In the plane of the crack x1=0 this solution is assumed
to give only normal membrane and bending resultants N11 and M]1 and no

-3-



shear stresses (i.e., N12(0,x2) = M12(0,x2) = V1(0,x2) = 0), The

equal and opposite of N]1(0,x2) and M11(0,x2) given by this solution
are then used as the crack surface tractions to solve the crack problem.
In this study it i3 assumed that the problem of the semi-infinite
cylinder without the crack has been solved and N]1(0,x2) and M1](0,x2)
are known functions.

The part-through crack problem will be solved by using the line-
spring model. The integral equations of this problem are obtained by
modifying those of the through crack problem to account for the unbro-
ken ligament. The main problem is, therefore, the through crack prob-
Tem which will first be formulated. Also note that because of symmetry
it is sufficient to consider one half (x>0) of the shell only. Thus,
referring to the insert in Fig. 2 and Appendix A for notation, equa-
tions (1)-(8) must be solved under the following boundary conditions:

Nyy(x,0) = 0, ny(x,O) = 0, Myy(x,o) =0,

My (%:0) = 0, V. (x,0) = 0, (Osx<=) (9)
Nyy(0s¥) = 0, M (0,y) =0, V (0,y) =0, (-=<y<0) , (10)
N (10,¥) = Fy(y) , (-dy<y<=bq) (1)
u(0,y) = 0, (~mey<edy, =byey<0) (12)
Mex(¥0s¥) = Foly) » (-dy<y<-by) (13)
By(05y) = 0, (-wcy<-d;, -by<y<0) , (14)

where F] and F2 are related to the uncracked shell solution by

Nqq(0,x,) My1(0,x5)
Fily) = - D20 () = - A2 (o nay), (15)
-4-
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3. Solution of Differential Equations

In the perturbation problem under consideration g=0 and eliminating
¢ from (1) and (2) we obtain

w2
v4yltw + A1“(T-KV2) §y¥-= 0 . (15)

Considering the symmetry of the problem, for the shallow cylindrical
shell the solution of (16) may be expressed as

w(x,y) = é%-f f,(x,a)e'iy“da + %-j fz(y,s)cosxs dg. (17)

-0 [o]

Assuming the solution for f] and f2 of the form
f](xsu) = R(a9m)emx ’ fz(y93) = S(B3n)eny ’ (]8)

by substituting from (18) and (17) into (16} the characteristic equa-
tions for m and n may be obtained as

m8-4a2m6+6a‘*m“-(4a2+m1‘*)a’*m2+a‘*[a“+x]“(l+m2)1 =0 , (19)
na-(462+KA]‘*)n6+[66“+11‘*(1+;<32)]n‘+-455n2+38 =0 . (20)
~ The solutions of (19) and (20) have the property

mj+4 = 'mj L] Re(mj) < Oa (J=1’°~':4) ’ (21)
nj+4 = 'nj ’ Re(nj) < 0, (j=],...,4) . (22)

Defining now

R(asms) = Ryla) & S(8,n5) = $5(8) 5 (§=1,...,8) (23)



UALITY
with (17) the solution of (16) satisfying the regularity conditions

at x=« and y=-~ may be expressed as

4 m.X
fa(x,a) = £ Ri(a)e ¥ , (O<x<w) , (24)
‘ j=1 9

y
fa(8sy) = 25 S (s)e s (-w<y<0) (25)
j=
The functions Ry (j=1,...,4) and S4s (j=5,...,8) are as yet unknown.
Similarly, if we let

L] -]

0(x9) = 2 [ gy(xiade™ g + 2 [ g(y.p)coxs da, (26)

-0 0

noting that q=0 from (1) and (2) the functions gy and g, may be cbtaineu

as follows:
n
oy (xa) = -(5H° 3 '——‘Lz—' = m;2-a2, (Ox<=) , (27)
_ 3=1
8 o 3
’B) = _}:1' E —J—'%__ j = ng'Bz’ ('°°'€y<0)' (28)
Assuming the solution of (4) of the form
a(xy) = 25 [ mesade e 1 2 [ ny(y.s)sinex ds, (29)
- 00 o
hy(xsa) = Alasr)e™ , ny(y,8) = B(8,s)e™ (30)

it can be shown that

. r"lx 2 ¥

h}(X,a) = A1(d)e s P = -[a? + ETT:GTJ s (0<x<w) , (31)
i} SoY G ifa2 a2 %

hz(y,B) = 32(3)9 s> Sp = +[p2 + 211:;73 ,» (==<y<0), (32)

where A1(a) and Bz(s) are unknown functions.

-6-



The transverse shear theory used in this study 15 equivalent to
a tenth order system [4]-[6] (that is, for example, the equilibrium
equations of the shell can be expressed in terms of five second order
differential equations in five "displacement” quantities u, v, w, By
and gy) and the differential equations (1), (2) and (4) provide suffi-
cient number of "integration conttants" to account for all boundary
conditions. For a unique solution of the problem, it is therefore
necassary to use only the particular solution of (3) (after determining
the function w). Thus, by assuming

00 -]

wud)=%j %uﬂh”WM+%Jeﬂmewx®, (33)
-00 0

the functions 9, and 85 satisfying the regularity conditions at x=e
and y=-= are found to be

4 Ri(a) m.x g Si(8) n.y
= J J = J
Bl(xaa) :jz'l KPJ-' e ’ 92()"3) JES qu_ e . (34)

Ten unknown functions Rj, (i=1,...,4), Sj, (3=5,...,8), Ay and
Bz which appear in the solution giver above are determined by using '
the eight homogeneous and two mixed boundary conditions (9)-(14).

4. Derivation of Integral Equations

By substituting now from the solution given in the previous sec-
tion into (5)-(8) and by using the strain displacement relations .

=] Coe
2ig = 7 (U5,5%Y5,1%7,1Y3,572,343,¢)+ (1.3 = 1.2) (35)

all membrane, moment and transverse shear resultants, the rotations,

and in-plane displacements can be expressed in terms of the unknown

functions R;, Sj, A1 and B,. These expressions are given in Appendix B.

In (35) Z(x1,x2) gives the distance of the middle surface of the shell |
from the tangent plane. By substituting from Appendix B into (9) and 1

-7-
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by inverting the sine and cosine transforms the homogeneous end con-
ditions may be expressed as follows:

g 89,2 L0 b afng R (a)

jﬁg —agif-sj(s) = 5;-[@ 351 1E§é;§%75;z do (36)
g n,3 i 2y a3maR(a)

5 5312«53(8) - 5| £ T % (37)

g VBE-n,? (1=v)2 1 (4 (vmiZ=a?)m R, (o)
____;}.., . - = . J 3J
jfs qu- SJ(B) + B8 5282(6) ZN [ [ji] (Kpj-])(mj2+62)

-0

iK('I-v)zar]2

g 28n, (1-v 1 ® oy 2iagmR,(a)
_k(1=v) (o 2402 = .. AN A
%
k(1-v)(a2+r,2)8 §
Z(Y‘-|2+Bz) A-I(a)]doz s (39) ’,‘,
8 q.n.S-(B) - ® n a'ip.m.R.(a) ,:)
P O R g g R e ;
=5 % 1 g=1 WPy :
(]'\.')Y‘12
+ 2 r] +B A](a)]da . (40)

Three more homogeneous conditions may be obtained from (10) which, with
(36)-(40) may be used to eliminate eight of the ten unknowns. The
mixed boundary conditions (11)-(14) would then give a system of dual
integral equations to determine the remaining two unknowns. However,



ORIGINAL PAGE IS
OF POOR QUALITY

the problem may also be reduced directly to a system of integral equa-
tions by introducing the following new unknown functions:

( ) = "" u(+0,y) ’ Gz(y) = y Bx(+0-y) ’ -m<y<0 . (41)

From (12), (14) and (41) it may be seen that the conditions
(12) and (14) are equivalent to

Gj(Y) = 0’ '”<y<'d]s 'b1<y<0’ (5:1’2) ’ (42)
.b_I
[ e =0, 31,20 (43)
-d

1

We may now use (41) in place of (11)-(14) as two additional equations

to express all unknowns (Rj, S:s A1 and 32) in terms of G, and Gz. Then
(11) and (13) with (42) and (43) would provide the information to deter-
mine G, and Gp. First, by substituting from equations (B11) and (B9)
of Appendix B into (41), it may be shown that

T+v)a4-
Gl(y) = ( ) [ g.' (———-n—-']—-ﬂ) P R (o) e"y“ do , (44)
J=

am:R,(
6y(y) = - ?LJ _,1_.1_1_ e g, - _;‘_)_I 02h, (a)e™ % g,
(45)
Then, by using the relations (B3), (B6) and (B7), after some manipula-
tions it can be shown that equations (10), (44) and (45) are equivalent
to

R.
: Mw : (46)
=1 Py
v miRi(a) 1
jil —ﬁﬁi:T-= ilk(1=v)a + 1Cy(a) (47)

-9-
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y m R (a) = i ).-I 2
351 —igg——— -5 () Cla) (49)
A](G) =2 02(0‘) ’ {50)
where
-b1 '
Cy(a) = [ 6 (e’ @y, (3=1,2) . (51)
=d

]

After solving (46)-(49) for Rj and obtaining expressions of the
form
-b, \
Ryl = [ B cjlantlg(t)dt, (+1,0008) (52)
J k=1 9
~d,
from (50), (52) and (36)-(40) one can determine Sj and B, and find

expressions of the form
-b

1
s(8) = jd OB (0 L (55,....8) (53)
Il
-b]
2
By(8) = f o bg, (8,t)G, (t)dt , (54)
=-d .
1

where cjk and bjk are quite complicated but known functions.

If we now substitute from (50), (52)-(54), (B1) and (B4) into
(11) and (13) we obtain a system of integral equations which, with
(43), would determine G, and G,. These equations are of the following
form:

-10-
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-y v}
Yim I & [Imvkd(x.a)e du + onkj(y,t.a)cosxsds]GJ(t)dt
= Fk(.Y)o (k=1,2), ('d]<y<'b]) ’ (55)

where Vk and Yki are known functions. The kernels defined by the
functions de and ij in (55) exhibit certain singular behavior which
may be investigated by examining the asymptotic behivior of these
functions for |a|-« and g+». The process is relatively straightforward.
First one needs to obtain the asymptotic expressions for m., n., " and
s, defined respectively by (19), (20), (31) and (32) for large values
of |a| and g. These expressions may be obtained as follows:

.2

m;(a) = -|a|(1 +7‘Jz F o), (351,...,8) (56)
q; 952 ,

ng(8) = 81+ b - gle+ ..0) 5 (55,....8) , (57)

ri(a) = -lal(V + oy = o0) (58)

sp(8) = 801 + cryloygz - -0 - (59)

Then, by substituting from (56)-(53) into the expressions of ij and
ij, the principal parts of the kernels can be separated and can be
evaluated in closed form. After somewhat Tengthy manipulations the
integral equations (55) may be shown to reduce to

-b
:

1
J (g - Ty * ooy 15157306 (t)dt
~d, 5

+ J 21 kq5(V>t)Gs(E)dt = 207 (), (-dyey<-by) ,  (60)

-d Jj=
1

h %
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-b

1
“y2 (- -
(1-v%) fd By - 7 e Tt

B

-b
1 2 |

. jd E, agatIgy (016t = amt R R0, (et (61
"

where kij’ (i,d=1,2) are known bounded functions and the loading func-
tions Fj and F, are given by (15).

It should be pointed out that the dominant kernel found in this
study +hich 1is given in (60) is ::entical to that found for the elas-
ticity problem of a plane containing a crack perpendicular to a stress-
free boundary [1]. It should also be observed that the dominant
kernels associated with the crack opening displacement and the crack
surface rotation as given in (60) and (61), respectively, are identical,
verifying the result found in [9] for flat plates. These are physi-
cally expected results and mean that any peculiar behavior the shell
solution may have for b=0 (i.e., for an edge crack) must be identical
to that of the corewyponding plane elasticity solution.

For b>i {Fia. 2) the kernels of the integral equations (60)
and (61) have simple Cauchy type singularity and consequently the
solution is of the fullowing form [10]:

Hk(.Y)
[-(y+dy ) (y+b,) TH

Gk(y) ’ ('d]<.y<"b])s (k=1,2) , (62)

where the unknown functions Hy and H2 are bounded in the closed interval
[-d1, -b1]. In this case the problem may easily be solved numerically
by using a Gauss-Chebyshev type integration formula [11]. For b=0

the problein is an edge crack problem, the functions G1 and 62 are
bounded at y=-b]=0, and equations (43) are no longer valid. In this
problem tco the integral equations may again be solved by using a
Gauss-Chebyshev integration formula and by, for example, assuming that
Hk(O) =0 (in (62)) in place of conditions (43).

-12-
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5. Stress Intensity Factors

In the linearized shell theory used in this study the stresses
are given in terms of the stress rasultants as follows:

GTJ(X]'XZ) = %’N;j(x]’xz) ,» (1,d=1,2) , (63)
b, 12x4 .

033 (¥1%p0%3) = Mij(xps%) 5 (1,3°1,2) (64)
0% (XK ka) = A Vi (x00%) (- (5071 (3°T,2) (65)
33\ %20%3) = 2 Vi 1X1 X h72! s el s

where the "in-plane" stresses may be combined as
Uij(x]sxzsx3) = c?j(xl’XZ) + o?j(xj’XZ’x3)’ (i:3=];2) . (66)

In the symmetric problem under consideration 1 is the only nonzero
stress component in the plane of the crack x1=0. Thus, the crack
problem is one of Mode I and k1(x2,x3), (x22-b,-d) is the only nonzero
stress intensity factor which, at the crack tips x2=-b and x2=-d may
be defined as follows:

x2—>~b
2 -

From (63), {64) and (66)-(68) it is seen that k] would be a linear
function in Xq and, analogous to (66), it would be convenient to express
it as

X
ky(xgixg) = k(%) + fig Ky (%p)s X, = (-bymd), = <y < B, (69)

~13-



where km and k,, are associated with the "membrane" and "bending"

stresses or N]] and M]1 around the crack tips. Observing now that the
left hand sides of the integral equations (60) and (61) give the expres-
sions for Nxx and Mxx in the outside as well as the inside of the

crack on the x]=0 plane and that only the terms with the dominant ker-
nels would contribute to the singular behavior of Nxx and Mxx’ the stress
intensity factors km and kb may easily he evaluated in terms of the
unknown functions Gy and Gy Thus, by using the properties of singular
integrals [10], it may be shown that

ky(-b) = = 5 VA Hy(-b) , ky(-b) = - Eva D2y by, (70)

(=) =

Njm
)
<

—
~

]
a

—
s’
-
o

o

o~
[ ]
o
o
"

5 /ANy (ad) (71)

6. The Part-Through Crack

In this paper to solve the part-through crack problem shown in
Fig. 1 the line spring model [12] is used. The details of the analysis
with regard to the adoption of the model to Reissner plate or shell ;
theory and the comparison of the results with the existing three-
dimensional finite element sclutions may be found in [13] and [14].
Following [14], the Mode I stress intensity factor along the crack
frong is expressed as 1

ky(y) = /b [o(y)g,(e) + mly)g,(e)], € = L(y)/h , (72)

where the functions ¢ and m represent the membrane and bending resultants
along the net ligament -d]<y<-b1 and gt/JE and gb//_, (£=L/h) are the
shape factors obtained from the plane elasticity solution of a strip
having a thickness h, containing an edge crack of depth L and subjected
to uniform tension or bending away from the crack region. Following

are relatively accurate expressions of 9¢ and 9’
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9,(€) = /& (1.1216 + 6.52005% - 12.3877¢* + 89,0554%5

- 188,6080¢8 + 207,3870510 - 32.0524512) , (73)

9,(8) = vE (1.1202 - 1.8872c + 18.0143c2 - 87.3851¢3
+ 241.9124c% - 319.9402:5 + 168.0105£6) . ~(74)

To obtain o(y) and m(y) first the integral equations (60) and (61)
are modified as [13], [14]
y y "b'l
v &0t F vy )] Gtiet + | L
-d1 -d] -d1

- E%y + tfy rf¥y73061(t)+ : kyj(y2)6;(£)1dt=F, (y),

-d] <y<‘b-| s (75) ”
y y - b , :
F e[ Gye)dtgy )] 6y(taae + S [ el !
‘d'l 'd-l 'd-l L
-b '
4y2 1 2 ( _ ‘
- By * Ty - T (8- e | I, kalyatlag(0)]eFol0) %
d] :
-dy<y<-by (76)

where the functions Yije (i,j=t,b) are given in [14] and the upper

(i.e., =) and lower (i.e., +) signs are to be used for the outer and
the inner surface crack, respectively. After solving (75) and (76) o
and m are then obtained from

-15-
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G(y) = E(Yttu i,Ytbsx) , m(y) = GE(thU i.Ybbe) ’ (77)
y y

u(0,9) = [ (01t s B (30.9) = [ Gplt)dt , ~dyeyecdy ,  (78)
~-d -d
1 1

where + and - signs are to be userd for the external and thie internal
surface crack, respectively.

7. Numerical Results and Discussion

For the through crack problem the calculated results are shown
in Tables 1-4 and Figures 2-11. In the results given in Tables 1-4
it is assumed that in the crack region the sheil is subjected to uni-
form membrane loading or bending, i.e., for the uncracked shell we
have

N11(0’x2) = NO ’ M11(0,X2) =0, (79)

or

N'”(O,Xz) =0, M-”(09X2) =M (80)

0

Thus the input functions of the integral equations are (see (15))
Fily) = =N/hE, Fo(y) = 0 or Fy(y) = 0, Fply) = -M/h%E . (81)

In the tables the membrane and bending components of the stress inten-
sity factor defined by (69) are normalized as follows:

K (o, K, (o
k '(a') = _m'('_J_) ’ kb'i(a) = 'b—(_J_)' ’ O‘j = ('di"'b)’ i=(mab) ’ (82)

where & refers to the crack tip and for uniform membrane and bending
loads the corresponding stresses are given by

=16~



o = No/h » O = 6Mo/h2 . (83)

The results are given for various combinations of R/h, a/h and c/a
which are the characteristic dimensionless length parameters of the
shell (see the insert in Fig. 2). The normalized stress intensity
factors given in the tables for c/a = 1 are obtained from the edge
crack solution. A partial explanation of the steep rise in the stress
iatensity factors at Xo=-d as c»a may be found in [9]. For the membrane
loading when R+» or a0 the bending component kbm of the stress inten-
sity factor tends to zero and kmm approach the corresponding flat
plate solution given in [1]. The tables show the general magnifying
effect of the decreasing crack distance ¢ from the houndary and the
curvature on the stress intensity factors.

Some results obtained from the uniform external loads (79) and
(80) are also shown in Figures 2-6. For a fixed relative crack dis-
tance c/a = 1.5 Fig. 2 shows the effect of R/h and a/h on the membrane
component of the stress intensity factor. As a/h+0 the results
approach the corresponding flat plate values obtained in [1] which
are also shown in the figure. Figures 3-6 show the edge crack results.
Except vor Fig. 5, qualitatively these results are quite similar to
those obtained for the infinite shell problem given in [4]. Again it
is interesting to observe that as a/h-0 kmm approaches 1.586 given
by the plane elasticity solution for an edge crack regardless of the
value of R/h. Even though this is the physically expected result, as
in the Timiting cases given in [9], the surprising aspect of it is
its prediction by a shell theory. 1In an infinitely long cylinder
having an axial line crack the curves corresponding to those given in
Fig. 3 would tend to kmm=1 as a/h»0. It is therefore tempting to look
for a shape factor which, as in flat plates, would be independent of
the crack lerigth. However, multiplying the results given in [4] cor-
responding to those in Fig. 3 for a/h>0 by 1.586, it may be shown that
the relative magnification in kmm in the edge crack is considerably
greater than that in the infinite cylinder.
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It may be seen from Table 3 and Fig. 5 that as in the infinite
cylinder case the bending stress intensity factors found for the
edge crack too decreases with increasing crack length. In this problem
the steep variation of kbb and its convergence to the plane elasticity
solution for a/h-0 may seem to be somewhat unusual but should be physi-
cally expected. In fact this behavior is nearly identical to the
bending solution of a flat plate with an edge crack given in [9].

In the Gauss-Chebyshev quadrature formulas used in solving the
integral equations (60) and (61) the integrals on the left-hand sides
are evaluated for certain discrete set of values Y; of normalized
variable y. Therefore, one iray easily obtain some type of Green's
functions for the stress intensity factors by simply taking one element
of the column matrices F](yi) and Fz(yi) non-zero at a time. This
was routinely done and the results were printed in solving the problem.
By using these results one can calculate the stress intensity factors
Kom® Kpm» Kmp» and Kyy, for any arbitrary external loads N]1(0,x2) and
M]](O,xz) or F](y) and Fy(y)., For example, Figures 7-11 show some
results for a concentrated wedge Toading of a cylinder containing an
axial edge crack. Figures 7 and 8 show the membrane and bending com-
ponents of the Mode I stress intensity factor at the crack tip x2=-d
k](-d,xa) = kT(x3) in a cylinder subjected to concentrated wedge forces

N]](O’xz) = 'P(S(Xz) (84)

shown in the figure. One may note that, as in wedge-loaded flat plate
problems in the shell problem too the stress intensity factor is pro-
portional to 1//a and as a/h+0 (or R»=) again the shell results con-
verge to the plane elasticity values kmm = 0.58 (Fig, 7) and kbm =0
(Fig. 8). Figures 9 and 10 show the results analogous to Figures 7
and 8 for membrane wedge forces applied at Xy = -2, i.e., for

N11(0,x2) = -Ps(x2+a) . (85)

-18-



The effect of the wedge force location on the membrane component
of the stress intensity factor for some selected shell and crack dimen-
sions is shown in Fig. 11. The corresponding stress intensity factor
in an infinite plate containing a semi-infinite crack and subjected
to wedge forces P at a distance s from the crack tip is known to be

k1~‘/z P, (86)

Vi

Thus, since k1 becomes unbounded as s+0 in Fig. 11 P/hv/s rather than
P/hva is used as the normalizing stress intensity factor. It is seen
that as s»0 the stress intensity factor in the shell approaches the
flat plate value given by {(86), As in the previous limiting cases
discussed in this section in this problem too if the applied loads are
very near the crack tips or the length of the (through) crack is very
small compared to all other dimensions of the structure (including its
thickness), then Tocally the stress state is indistinguishable from
the corresponding plane elasticity solution.

The stress intensity factors cbtained for a part-through crack
are given in Tables 5-12. Even though the crack profile L(y) can be
any smooth function, the results are calculated only for a semi-elliptic
inner or outer surface crack in the cylinder. That is, in solving the
integral equations (75) and (76) it is assumed that (Fig. 1)

XZ C

y = xz/a, c]=c/a, -d<x2<-b, ~c1-1<y<-c1+1 . (87)

The problem is solved by assuming that the applied Toads are given by
(79) or (80) and hence the input functions in (75) and (76) are given
by (81). In both cases only the Mode I stress intensity factor kl

js nonzero along the crack front. kt and kb shown in the tables cor-
respond to the normalized Mode I stress intensity factor obtained for
uniform "tension" (79) or for "bending" (80), respectively. k1 is a
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function of x, only (Fig, 1) and for the two loading conditions con-
sidered is normalized as follows:

_ kq(x,) X L
kt(x)zN'o 172 :x="'gé"“=.y+c1sﬁo="'ﬁo"" (88) '
"ﬁ""/ﬁ.gt(go)
. kq(x,) L Xpte L
kb(x)=6M 172 ’X="25—"=.V+Cp€o=”ﬁg'a (89)

where L is the maximum depth of the crack (Fig. 1) and the shape func-
tions 9y and g, are given by (73) and (74). One may note that the
normalizing stress intensity factors used in (88) and (89) are those
obtained from the plane strain solution of an infinite strip having a
thickness h and containing an edge crack of depth Lo which is subjected
tp uniform tension No or bending Mo‘ For the crack depths Lo used

in this study the shape factors gy and g, are calculated to be

o © LO/h 0.2 0.4 0.6 0.8

Vﬁ?[o gt(go) 1.3674 2.1119 4.035 11.988

M7, 9,(5,) | 1.0554 | 1.2610 | 1.915 4.691

Tables 5-9 show the normalized stress intensity factors kt and kb
for a certain range of R/h, a/h, c/a and Lo/h which are the dimension-
less characteristic length parameters of the problem. It is assumed
that the part-through crack may be on the outside or the inside sur-
face of the cylinder. As in the through crack solution, in all cal-
culations the Poisson's ratio v of the material is assumed to be 0.3.
The previous studies varying v between 0 and 0.5 have shown that its
effect on the stress intensity factors is relatively insignificant
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(see, for example, [5]). Hence, the results given should be valid for
most structural materials. The tables show that the stress intensity
factor at the maximum penetration point of a semi-elliptic surface
crack appears to be relatively insensitive to the crack distance c from
the free end.

Some sample results showing the variation of the stress intensity
factor along the crack front are given in Tables 10-12. It is seen
that generally at a given crack depth the stress intensity factor at
the location nearer to the stress-free boundary is greater than that
at the corresponding point which is farther, However, this skewness
or non-symmetry in the distribution of the stress intensity factor with
respect to the midpoint X = 0 or Xy = =c of the crack seems to be
surprisingly small.
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APPENDIX A ORIGINAL PAGE 19
OF POOR QUALITY

Dimensionless and Normalized Quantities

X X, X
xegay=diz=Fdin b o844, (A1)
u=u-|/a » V = Uy/a ,w=u3/a , (A.2)
F(x1,x2)
BX = 31 ’ ﬁy = Bz ’ ¢(x,Y) = “3%ER - (A.3)
o a o}
- _ - - 12 - 13 _ 23
"xx"’ﬂ/E"’yy""Zz/t’ny'T"’xz"T’Uyz"T’ (A.4)

N N N N, .
_ N Y 2w Ny
Yoo T RE > Ny T RE Ny T e o8y TR (F12) (A-8)
M M M 6M. .
_ My _ Mg e op My
Mex = RZE > My = Rz My = RE %1 ” Fh s (1351,2) (A-6)
V, = V;/hB , V, = V,/hB , B = -pob (A.7)
x 1T Ty T MR 2(1+v '
n ‘
A = 12(1-v2)a%/h2R2 , A% = 12(1-v2)a2/h? , « = E/BAY , (A.8)

For dimensions and notation see Figure 1.
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ORIGINAL PAGE 19
OF POOR QUALITY
APPENDIX B

Expressions for stress resultants, displacements and rotations.

o 0

N, (X,y) = ”“Td+ : 2L d
XX Xyy) = f § Q ?J o j g nj 1dCOSBX By
L] [v]
Ny, )~jm§227d Jng s2cosexd
yyX,y"' lﬂmj ]ja s]j 0SBxdg ,

-0

Ty g
= . 3 . i
Nyy(Xs¥) 1I o myTqyde + J L pnylyssinexds,
-t o
= "o 2uyg? d " g 2 2)L d
Mxx(x,y) = J E(mj Ve d )sz a = I %(B “Vnd ) szOSBX 8
-0 0
-0 0

]

)w ,'f 8
= 2.2 - 2on .2} ..
Myy(x,y) J )i(vmj o )szda J g(vs n; )LZJcosBxds

-0 o
1-v)ia ) 1-v)a
+ py I a r1T3da - -(W I s1scosexds ’
- 00 o
M e i) e, d (1)008 L, singxd
xy(x,y) = - -v)j Lo miTpsda = (1-v J L 8 njLyssingxds
-0 0
- 1=-v)a 2 2 T-v)a " 202 .
iﬁﬁi%' f (o +r] )T3da + A L(s1 +8 )L351nexd6 R
s [ _Kmuf“e .
Vx(x.y) 3 [ § pjijzjda 3 g quL2j51and6
- 00 o
- ij o T3da + I s1Lasinsxde ’
00 0 !
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UHIGINAL PAGE 18
OF POOR QUALITY,

L] w

h:h?s‘*f d MI g
a § o pJszdﬁ + a g qdnjL2JCOSBXdﬁ

- o

vy(xoy) i

® o
- [ r1T3da - [ B L3cosﬁxd3 )
-0 )
hat z I T..d halt ? 8 _
T[ gi‘ md pjda - TJ g g LZJSMBXdB

L1 0

i

By (%)

00 -]

i f @ Toda 4 [ s, singxds ,

-0 o

w [ ]

N 11V S hat [ 8
By(X.Y) e f f o szda + ru f g nJszcosBde

f r]T3da - I 8 82 cosgxdg ,

-0l o

|

[} ©

4 8
= 2 o 2
u(x,y) f z [(24v)a my ]ij1jda + f X (2+v)eL,jsinsxde

-l o

¥ (%})2 x W(xsy)

00 ©

8
= - 24,2 - 24un .2 LOSBX
v(x,y) 1[ (va24m, )aszda [ g(s +on g2l <o ds

! . j

-

where
Mgy = 5 3 4

R:(a) mix=iay
=1 J
TZJ.(X"Y’O‘) 2n "'J"“_' e
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Tylxysa) = S22 A1(a)er‘x'my ,
Lyglyse) = %%“:':: Sj(s)eniy ,
Loy (y:8) "%’B':V;a}-r sy(a)e’d
Ly(y,8) = EL}‘T—‘Q Bz(a)eszy
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Table 1. Membrane component of the normalized stress intensity factors
In a cylindrical shell contairing an axial through crack
along ~d<xz<=b. The end of the cylinder (xp=0) is stress-
free and the crack surfaces are subjected to uniform membrane
loading (Nyy==N, , Mj;=0).

’

; Kom {~b) km;AT-d)

h '§§§ 1.1 | 1.5 2 10 ! 1 | 1.s 2 10
1 1a.1s54 (1,379 [1.220 |1.162 |[2.425 |1.417 {1.238 [1.189 |1.159

e | 2)2.273 |1.623 |1.538 |1.483 |(3.540 |1.664 |1.556 |1.515 |1.483
3 (2,534 {2.069 {1,906 {1.861 {[4.452 {2,073 [1.968 {1.882 {1,86)

10 |6.092 |4.654 [4.49k |4.458 |(9.869 |4.871 [4.522 |4.485 |4,458

1 (2,034 [1.334 {1.171 {1.087 {{2.098 |1.368 |1.187 {1.125 |1.086

1o | 2 |2.263 |1.438 11.316 11.268 ||2.874 |1.485 |1.330 |1.297 |1.266
3 [2.382 (1.654 [1.570 |1.510 {{3.635 {1,693 [1.590 |1.541 {1,510

10 13.996 |3.699 |[3.462 |3.440 {[7.677 |4.883 |3.518 |3.455 |3.440

2 12,102 |1.354 [1.199 |1.119 {[2.279 |{1.396 |1.241 {1.150 {1.121

25 | 3 |2.242 |1.416 |1.285 |1.240 {|2.772 |1.461 {1.297 [1.263 |1.237
10 |2.946 |2.722 (2.425 |2.421 ||5.668 |2.695% |2.522 |2.429 |2.420
1 11.761 {1.237 |[1.110 |1.007 {{1.609 {1.239 |1.116 {1.071 i!.007
100 { 2 [1.884 [1.291 [1.142 {1.039|[1.836 {1.306 |1.149 {1.088 |1.037
3 |2.010 {1.324 |1.165 {1.074 {l2.045 {1.359 {1.164 {1.102 |1.073

10 |2.388 [1.680 (1.595 [1.535{[3.716 {1.713 i1.618 {1.568 |1.535

1 |1.760 |1.228 {1.100 |1.001 {/1.588 |1.225 |1.108 {1.000 |1.001
200 | 2 |1-79% |1.257 {1.125 {1.017 |11.723 {1.264 {1.128 {1.078 |1.017
3 (1.901 {1.298 {1.14k |1.041 {{1.856 {1.316 |1.148 |1.090 |1.040

10 |2.291 |1.577 {1.354 |1.305 {[3.035 |{1.508 |1.366 (1.340 |1.305




Table 2. Bending component of the normalized stress intensity factors
in a cylindrical shell containing an axial through crack along
-d<xp<-b. The end of the cylinder x=C is stress-free and
the crack surfaces are subjected to uniform membrane loading
(N y==Ny, My =0).
A Ky (~0) Ky ' =d)
h f%ﬁ; 1|1 | 2 o | 1l |s | o2 10
] 0.023 [0.016 {0.024 {0.031 |0.060 j0.028 {0.028 |0.029 {0.031
5 2 10,027 |0.048 |0.053 |0.057 |0.094 [0.059 |0.058 {0.057 {0-.057
3 |0.036 {0.071 {0.072 [0.074 {n.118 [0.071 {0.079 {0.074 {0.074
10 [0.112 {0.120 |0.125 [0.120 |0.169 |0.128 [0.124 |0.125 |0.120
l 0.014 {0.012 j0.0!4 }0.020 |0.041 0,017 j0.016 {0.016 {0.021
10 2 [0.025 |0.028 |G.036 {0.039 |0.069 (0.040O [0.04) {0.0:3 {0.042
3 |0.027 (0.048 |0.052 |0.056 |0.094 [0.059 {0.057 [0.055 |0.05€
10 |0.083 {0.109 {0.115 j0.113 {0.150 (0.121 {0.115 {0,115 (0.113
2 |0.017 |0.013 |0.016 |0.027 |0.045 {0.018 [0.018 |0.022 |0.025
25 |3 |0.023 [0.026 |0.030 |0.034 |0.064 {0.032 |0.034 [0.036 [0.036
10 {0.052 {0.08% 084 [0.088 {0.127 {0.094 [0.090 {0.083 {0.088
1 0.003 |0.004 {0.004 0 0.029 |0.006 }0.005 {0.006 0
100 2 |0.0l0 0 0 0.010 |0.022 {0.008 {0.005 {0.007 {0.010
3 [0.013 {0.009 [C.010 {0.016 [0.032 |0.015 [0.013 [0.014 {0.016
10 10.026 |0.044 {0.051 |0.052 {0.091 |0.060 [0.055 |0.055 [0.052
1 0.007 0 0.003 0 0.027 {0.005 {0.007 {0.001 0
200 2 |0.004 0 0 0 0.022 0 0 0 0
3 ]0.010 0 0 0.010 {0.022 |0.009 |0.006 !n.J07 {0,010
10 {0.023 {0.027 {0.034 {0.038 {0.066 {0.039 {0.041 {0,039 |0.038
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Table 3. Bending component of the normalized stress intensity factors
in a cylindrical shell containing an axial through crack along
-d<xp<=b. The end of the cylinder x,=0 is stress-free and
the crack surfaces are subjected to uniform bending (N]'=0,

”l'--“o).
R &/,

n :;ﬁ? 1 s |2 |0 o1 s |2 10
1 |1.117 |0.854 |0.791 |0.726 {1.032 {0.771 |0.783 [0.761 {0.727

5 |2 11.043 |0.766 [0.715 |0.650 [0.912 |0.764 |0.748 |0.692 {0.65]
3 10.990 {0.726 10.675 {0.614 |0.782 |0.72) [0.667 |0.653 |0.613

10 [0.77) |0.563 |0.524 |0.464 |0.641 |0.555 [0.518 |0.502 |0.468

1 |1.136 {0.862 |0.797 |0.736 |1.030 {0.855 {0.791 |0.768 {0.738

16 |2 {1.077 {0.786 {0.734 |0.671 {0.970 |0.786 |0.728 {0.709 {0.673
3 {1.030 {0.746 {0.690 |0.638 [0.883 |0.747 [0.690 {0.678 |0.638

10 |0.832 |0.616 [0.577 |0.516 |0.687 |0.612 [0.575 [0.555 {0.517

2 11.109 {0.803 |0.747 |0.690 {0.990 10.805 |0.743 0.722 {0.690

25 |3 {1.076 {0.771 {0.654 |0.664 [0.958 |0.779 {0.718 |0.700 |0.664
10 (0.909 |0.678 |0.639 [0.584 [0.702 |0.686 |0.625 [0.619 {0.584

1 {1.169 (0.886 (0.816 {0.753 |0.988 |0.871 {0.812 ;0.785 0.753

100 12 11-129 0.814 (0.756 |0.704 [0.968 {0.817 |0.754 |0.736 {0.704
3 11,108 |0.790 {0.739 |0.685 |0.965 |0.798 {0.734 |0.711 {0.687

10 |1.006 [0.731 |0.690 [0.638 |0.847 |0.746 |0.689 10.673 |0.638

1 [1.187 {0.869 |0.812 {0.755 {0.995 {(0.884 |0.820 {0.783 {0.757

200 |2 1.138 {0.819-/0.759 {0.707 |0.953 |0.819 |0.755 {0.737 {0.707
3 {1.120 |0.785 |0.741 0.692 ]0.953 {0.793 {0.740 [0.719 |0.693

10 {1.031 {0.749 |0.708 |0.657 |0.919 {0.772 {0.708 {0.689 |0.656




Table &.

Membrane component of the normalized stress intensity factors in a

cylindrical shell containing an axial through crack along -d<x,<-b.

The end of the cylinder x7=0 is stress-free and the crack surfaces are
" subjected to uniform bending (Ny =0, M;,=-M ).
kb LB Ky =)

R T3

h \ 1| s 2 10 1 | o1.s 2 10
a/R

] 0.135 | 0.082 | 0.086 | 0.10] C.034 | 0.05) { 0.072 | 0.083 | 0.101

5 2 0.228 | 0.194 | 0.175 | 0.167 {-0.061 | 0.119 | 0.150 | 0.158 | 0.167

3 0.272 | 0.229 | 0.180 | 0.171 [-0.316 | 0.%17 | 0.151 | 0.17} | 0.169

10 {-0.511 |-0.824 {~0.77) {-0.840 |-3.223 |-1.190 |-0.847 |-0.826 |-0.838

] 0.092 | 0.053 | 0.053 | 0.072 | 0,024 ! 0.034 | 0.043 | 0.046 | 0.071

10 |2 0.195 | 0.126 | 0.133 | 0.133 | 0.021 | 0.087 | 0.126 | 0.126 | 0.135

3 0.237 | 0.197 | 0.186 | 0.174 |-0.057 | 0.131 | 0.160 | 0.165 | 0.175

10 0.068 [-0.166 [-0.140 |-0.192 |-1.886 |-0.369 {-0.206 |-0.160 |-0.191

2 0.118 | 0.070 | 0.073 | 0.087 | 0.036 | 0.046 | 0.060 | 0.071 | 0.087

25 |3 0.173 | 0.120 | 0.126 | 0.131 | 0.034 | n.080 | 0.106 | 0.115 | 0.130

10 0.312 | 0.210 | O.164 | 0.145 [-0.769 | 0.079 | 0.118 | 0.155 | 0.145

1 0.036 | 0.018 | 0.014 | 0.013 | 0.058 | 0.020 | 0.014 | 0.011 | 0.011

100 |2 0.056 | 0.02% | 0.028 | 0.039 | 0.024 | 0.023 | 0.023 | 0.026 | 0.037

3 0.085 | 0.046 | 0.046 | 0.060 | 0.026 | 0.034 | 0.039 } 0.051 0.060

10 0.254 | 0.224 | 0.205 | 0.196 | 0.033 | 0.154 | 0.i85 | 0.189 | 0.198

] 0.035 | 0.016 | 0.004 | 0.018 | 0.062 | 0,020 | 0.014 | 0.005 | 0.015

200 2 0.039 | 0.020 | 0.016 | 0.023 | 0.040 | 0.017 | 0.014 | 0.014 | 0.021

3 0.056 | 0.030 | 0.029 | 0.042 | 0.025 | 0.026 | 0.025 | 0.025 | 0.041

10 0.200 | 0.155 | 0.158 | 0.163 | 0.042 | 0.114 } 0.138 | 0.146 | 0.164
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Table 5. Normalized stress intensity factors in a cylindrical
shell with a stress-free end containing an axia) semi~-
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h = 5,

alc Lo = 0,2h Lo = 0,4h Lo = 0.6h Lo = 0.8h
h | a kt(O) kb(O) Ke (0) Ky (0) k (0) kb(07 kt(ﬁ) kaﬁ7
Outer Crack, R/h = 5, v = 0.3
1.1 1.843 .833 .561 507 1.292 .189 .090 .008
1.5 |.835 .824 .543 . 485 .275 .169 .083 .000

2 |.832 [.820 !.537 |.477 {.270 |.162 |.082 |-.001
0 |.827 [.815 |.529 |.h468 |.266 |.157 |.081 |-.002

.904  [.898 |.687 [.651 [.G10 [.329 |.142 ,062

PN
i —

2 ‘ «900 . 894 .678 .639 . 400 .315 .137 .056
2 |.898 1.891 |.673 |.633 |.395 [.309 |.135 | .054
10 |.894 |.887 |.e6h |.623 |.387 [.299 |[.133 | .051
1.1 [.930 .926 [.757 [.730 497 1,429 . 191 116
3 1.5 |.927 .922 .748 .719 .486 Ais .185 . 108
2 .925 .920 744 Al .480 .4o8 .182 104
10 .922 .917 .736 . 705 472 .397 .179 .100
1.1 [.966 .964 .871 .855 .683 .638 .342 275
10 1.5 {.964 .962 .866 . 849 .675 .627 .334 .265

2 |.963 |.961 |.863 |.846 [.670 |.620 |.330 .260
10 |.961 1.959 |.857 |.B38 [.660 |.607 |.322 .249

Inner Crack, R/h =5, v = 0.3

T.T 837 [.820 |.539 |.BB0 [.27% 1.168 1.085 ,001
y |v.5|.821 [.809 |.517 |.454 [.257 |.145 |.079 |-.006
2 |.816 [.803 |.508 [.443 }.250 |.137 l.077 |-.008
10 |.809 |.795 |.497 |.k2g i.244 1.129 [l.076 |-.010
T.1 [.885 [.877 |.641 [.596 1.362 |.269 [.123 .038
5 [1:5|-879 |[.871 |.626 |.578 |.347 |.250 [.117 .031
2 |.876 [.868 |.620 |.571 |.342 |.243 |.116 .029
10 1.871 |.862 |.609 |.558 1.334 {.233 [.113 026
1.V 1.911 [.905 1.703 |.667 |.428 [.347 1.i56 .073
3 |1:5 (.907 |.901 |.691 |.654 [.415 ].330 |[.151 .066
2 |.905 |.898 |.685 |.646 |[.408 |.321 |.147 .062
10 [.901 |.894 |.676 |.635 1.399 |.310 |.145 .058
1.1 |.960 [.957 |.Bh& |.828 1.627 1.577 1|.286 | .215
10 |'-5]-958 [.955 |.839 |.820 [.616 |.562 |.277 .203

2 |.957 |.954 [(.835 |[.815 |.610 |.554 |.272 197
10 [.955 |.951 [.829 [.807 |.600 |.541 1.266 | .189
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Table 6. Normalized stress intensity factors in a cylindrical
shell with a stress=-free end containing an axial semi~
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h = 10,

alc Lo = 0,2h l.o = 0,bh Lo = 0.6h L° = 0.8h

h | a kt(b) kb(O) kt(d) kb(o) kt(b) kb(O) kt(b) kb(o)
Outer Crack, R/h = 10, v = 0.3
1.V |.BkT [.830 ].555 [.500 |.285 |.182 [.087 | .00%4
1 1.5 1.832 ].821 .536 |.476 |.268 |.160 |.081 |-.003
2 [.828 [.816 [.528 |[.467 |[.262 |.152 |.078 |[-.005
jo_|.823 |.811 |.521 |.458 1.257 |[.146 |.077 |-.007
T.1 [.900 |.89% [.676 |.638 .394 [.310 [.131 ,050
g |1.5 .896 |.890 |.664 |.624 |.380 [.291 |.124 041
2 |.B894 |.887 |.660 |.619 |.376 |.286 |.122 .039
10 {.891 [.884 |.653 [.616 |.369 [.278 |.121 037
1.1 1.928 .923 . 7546 718 475 L 405 172 .095
3 1.5 1.925 .920 .739 . 709 .5465 .392 .167 .088
2 924 .919 .734 . 704 460 .385 164 .085
10 {.921 [.916 |.727 |.695 |.452 {.376 |.161 .081
_ 1.1 {.970 [.968 [.883 [.869 [.701 .661 . 351 .289
10 |1-5 968 |.966 !.879 |.864 |.693 [.651 |.344 .280
2 1.968 |{.965 |[.877 |.862 |.689 |.646 |.340 .275
10 {.966 |.964 [.872 |.856 |.681 .635 1.333 .266
Inner Crack, R/h = 10, v = 0.3
1.V 1.836 .823 [.542 |.h8% [.275 |.169 ].08% .000
i 1.5 |.824 812 .521 458 .258 47 .078 |-.006
2 .818 .806 .51 446 .250 . 137 .076 -.009
10 (.812 [.798 |.500 |.h33 |[.243 1.128 |.074 |-.011
1.1 [.888 [.881 .66 [.602 [.363 [.271 [.119 .035
9 |1.5 .882 |.874 ].629 |.582 |.345 |.248 |.112 .026
2 .879 .871 .622 574 <339 240 110 .023
10 |.874 1.866 |.612 1.562 |.331 1.230 |.108 .020
1.1 1.913 |.908 |.704 j.669 [.423 [.341 |.148 .064
3 1.5 {.909 .903 .692 .654 .408 .322 A8 .056
2 .907 .901 .687 .648 403 .315 .139 .053
10 1.903 1.897 |.678 1.637 [.394 [.304 1.136 .050
1.1 [.963 |.9617 [.853 |.837 |.635 |.588 |.287 | .218
10 1.5 1.961 .959 847 .830 .625 574 .277 .206
2 |.960 [.957 |.B44 |[.826 |[.619 |.567 {.273 .201
10 |.958 |.956 |.839 {.819 |.611 .556 |.267 . 194
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Table 7. Normalized stress intensity factors in a cylindrical
shell with a stress~free end containing an axial semi~
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h = 25.

T W i

ale L, = 0.2h L = 0.k L, = 0.6h L =0.8n
h | a [k 0] Tk, T0) Tk (0] Tk, T0) k,(0) Tk, 0] k, (0) Tk, 0]
Outer Crack, R/h = 25, v = 0.3
7.7 1.834 |.829 [.5561 |.495 |.2B1 |.176 |.0B%L .00)
 |1.5|.829 |.818 |.530 |.h70 |.263 |.154 |.079 |-.005
2 |.825 |.813 |.522 |.459 |.257 |.146 |.076 |-.008
10 |.B20 [.808 |.514 {.449 [,251 {.139 |.075 [-.010
1.1 |.898 |.891 |.668 1.629 |.382 |.296 .12k L0042
, |1.5].892 |.885 |.653 [.610 |[.365 |.273 |.116 .032
2 [.890 |.883 |[.647 |.603 [.359 |.265 |.113 .029
10 |.887 /.880 |.641 1.596 |.354 |.259 1.112 .027
1.1 [.925 |.920 |.735 |.705 |.455 1.381 [.157 .078
3 1.5 {.922 |.917 |{.725 |.693 |.441 1.363 |.149 .068
2 (.920 (.915 {.721 .688 [.436 [.357 |.147 .065
10 1.918 1.913 1.715 |.681 |.430 1.350 |.145 | 063
1.1 1.973 971 .891 . 880 .70 .672 344 .286
10 |1:5 [-972 [.970 1.887 |.875 |.698 |.662 |.335 .275
2 |.971 |.969 |.885 |.873 [.695 |[.657 [.332 271
10 1.970 [.968 |.881 .868 |.688 |.648 1.326 .264
Inner Crack, R/h = 25, v = 0.3

1.1 |.835 1.82% ].543 |.L86 |.275 1.168 [.083 |-.001
1 1.5 1.826 |.814 |.523 461 .258 L1488 1.078 |-.007
2 {.821 {.808 {.514 {.450 {.251 {.139 {.075 |{-.G10
10 |.814 |.801 |.503 |.436 |.2h4 1.129 ].073 |-.012
1.1 |.892 [.885 [.652 [.611 |.367 [.276 [.119 .03%
, |1.5 |.885 |.878 1.635 [.590 |.348 |.252 |.110 .024
2 (.882 |.874 |.627 |.580 |.339 |.242 |.107 .021
10 |.878 1.869 |.618 1.569 .332 1.231 1.105 .018
1.1 1.917 [.911 [|.711 |.677 |.426 |.345 |.1L% .061

3 (1.5 [.912 .906 |.697 |.660 |.408 {.322 |.135 .05}
2 l.910 |.904 |.691 [.653 |.4ov |.314 |.133 .0b47
10 1.907 1.900 1.683 |.643 1.393 1.303 |.130 .0L4
1.1 [.965 .963 .859 [.B44 1.638 [.592 .276 212

10 |1.5 |.964 |.962 |.853 |.837 |.628 |.579 |.270 .201
2 1.963 |.961 .850 |.834 |.622 .573 |.266 .195
10 {.961 .959 |.846 [.828 |[.615 |.563 |.201 .189
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Normalized stress intensity factors in a cylindrical

shell with a stress~free end containing an axial semi~-
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h = 100.

s | c L, = 0.2k L, = 0.5k L = 0.6h L, = 0.8h
h'|a k(0] Tk (0) Tk T0) [k T0) k, (0) [k, (0) ky (0) [k, 10T
Outer Crack, R/h = 100, v = 0.3
T.T [.837 [.827 |.547 [.490 [.276 |.i70 |.082 [-.002
p [1.5 (.88 |.817 |.528 |.467 |[.260 |.151 |.077 |-.007
2 |.824 |.812 |.519 |.456 |.254 |.143 |.075 |-.009
10 |.818 1.805 |.509 |.bh4 [.247 1.134 |.073 |-.012
7.1 [.896 |.889 |.662 |.621 1.37% [.286 |.120 ,036
, |1.5].890 [.883 |.646 |.602 [.356 |.263 |.112 ,027
2 |.887 |[.880 |.639 |.594 |.3495 {.254 |.109 .023
10 |.884 [.877 |.632 |.586 [.342 |.245 |.106 .020
1.1 [.923 [.918 [.726 |.695 |.G4h2 1[.366 |.149 .068
3 1.5 1,918 [.913 [.714 [.680 |.424 |.343 |.140 .057
2 |.917 |.911 [.708 |.673 |.417 |.334 [.136 .052
~J10o [.915 |.909 |.703 ].667 |.k12 1.327 [.134 .050
1.1 [.973 |.971 |.885 [.B73 1.680 .643 [.302 251
10 11:51.972 1.970 |.881 |.869 |.673 |.635 |.296 .223
S 12 [.977 |.970 |.879 |.867 |.670 |.630 |.292 .229
10 {.970 |.969 |.876 |.863 |.664 |.623 |.288 .223
Inner Crack, R/h = 100, v = 0.3
1.1 |.836 |.825 ].5hK3 |.4B5 1.273 |.166 1.081 1-.003
y |1.5 [-827 |.815 |.525 |.463 |.258 |.148 |.077 |-.008
2 1.822 |.810 [.516 |.453 |.252 |.140 |.075 {-.010
10 |.816 |.803 |.506 |.4ho [.245 |.131 |.073 [-.012
1.1 [.89% [.347 |.656 |.615 [.368 [.278 [.117 .033
2 1.5 {.888 .880 640 .595 .351 .256 110 .024
2 [.885 |[.877 |.632 |.586 [.343 |.246 |.107 .021
10 1.881 1.873 1.623 !.575 1.334 [.235 |.104 | .017
1.1 1.920 .915 .718 .686 432 .353 . 145 .062
3 [1.5(-915 |.910 [.704 [.669 |.413 |.330 |.135 .051
y3 .913 .907 1.697 |.661 405 .319 131 .046
10 |.910 |.904 |.690 |.651 [.397 |.308 [.128 | .ok2
1.1 |.967 |.965 |.862 |.B848 |.634 [.588 |.263 194
10 1.5 |.966 |.964 |.857 |.841 .624 | .575 |.254 .183
2 |[.965 [.963 |[.854 |.838 |.619 |.569 |.251 179
10 964 |.962 .850 .833 612 .560 .246 .173
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Table 9. Normalized stress intensity factors in a cylindrical
shell with a stress-free end containing an axial semi-
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h = 200.

alc Lo = 0,2h L° = 0,4h Lo = (,6h Lo = 0,8h
h | a kt(O) kb(O) kt(O) kb(Off kt(O) kb(O) kt(O) kb(O)
Outer Crack, R/h = 200, v = 0.3
T.T [.837 |[.827 |.546 |.489 [.2/5 [.169 |.075 .09h
1 1.5 |.828 .817 527 466 .260 .150 .077 -.008
2 824 |.811 .518 .hss .253 L 075 |-.010
10 |.818 1.805 [.508 |.443 ].246 |.133 1.073 |-.012
1.1 1.895 . 889 .660 .619 371 .282 118 .034
9 1.5 |.890 .882 644 .601 .354 .260 A1 .026
2 .887 .879 .637 .592 347 .251 .108 .022
10 |.884 |.876 |.630 |.583 |.340 [.242 |.105 | .019
1.1 [.922 [.917 |[.72% [.693 [.h38 [.361 [.147 .065
3 1.5 [.918 .913 AR 677 |.421 339 .138 .054
2 916 910 . 705 .670 g »330 134 .050
10 |.914 [.908 |.700 ].663 |.4o7 [.322 [.131 .047
1.1 1.972 .970 .880 . 868 .667 .628 ,286 223
10 [1:5 |-971 .969 |.876 |.864 |.659 |.618 |.278 213
2 .970 .969 .874 .862 .656 614 276 .210
10 .970 .968 .872 .858 .651 .608 272 »205
Inner Crack, R/h = 200, v = 0.3
1.1 [.836 |.825 |.543 |.486 |.273 |.166 |.0B1 [-.003
1 1.5 |.827 .815 .525 463 .258 148 077 -,008
2 .823 .810 517 .453 .252 140 .075 |~.010
10 817 .8057 | .506 .hhg_ .245 131 1.073 -,012
1.1 |.894 . 3887 .656 .615 .367 277 117 .032
2 |1.5 .888 |.881 |.641 .596 1.351 |.256 [.110 .024
2 .885 .878 634 .588 344 247 .107 .021
10_|.882 |.873 |.625 |.577 |.335 1.236 .04k | .017
1.1 [.920 915 .719 .687 |.h32 .353 . 144 .062
3 1.5 [.916 911 . 706 .671 415 .331 .135 .051
2 314 .905 .699 .663 .407 .321 131 .0L6
10 _[.911 |.905 |.692 |.654 |.398 |.310 |.128 | .ok2
1.1 [.968 .966 .865 .851 .637 .592 .262 .193
10 |15 .967 |.965 1.859 |.844 |.625 |.576 |.251 .180
2 .966 .964 . 856 841 .620 .570 247 175
10 .965 .963 .853 .836 .613 .562 242 .169




Table 10, Distribution of normalized stress intencity factors along the
crack front in a cylindrical shell with a stress-free end

containing an axial semi-elliptic surface crack and sub;ected
to uniform local membrane loading or bending, X = (x2+c /a,
R/h = 10, a/h = 1, c/a = 1.1,
Lo/h 0.2 0.4 0.6 0.8
X kt kb kt kb kt kb kt kb
Outer Crack, R/h = 10, a/h =1, c/a = 1.
.929 . 584 .67k 480 | .615 .288 .380 101 127
.828 .680 755 .51 .601 .290 .335 .099 .102
.688 748 799 533 .573 .291 .292 .099 .072
.516 .796 .821 . 548 545 .291 248 .095 044
.319 .827 .830 .556 .521 .290 210 .090 .022
.108 .840 .832 .558 . 505 .288 .187 .088 .007
0 841 .830 555 .500 .285 . 182 .087 . 004
-.108 .837 .828 .551 497 .283 .181 .086 .005
-.319 .816 .818 .537 498 277 .192 .085 017
-.516 J77 .800 .516 .505 267 217 .086 .034
-.688 721 .769 487 .516 .255 246 .085 .056
-.828 .648 719 452 .528 243 274 .081 .078
-.929 553 .639 Ay .533 .232 .306 .078 .097
Inner Crack, R/h = 10, a/h = 1, ¢/a = 1.}
<929 .584 674 476 .610 .281 .37 .097 122
.828 .679 .75k .505 .594 .282 .325 .096 .097
.688 . 745 .796 .525 . 564 .282 .281 .095 .068
.516 .792 .816 .538 .533 .282 .236 .091 .040
.319 .821 .824 . 544 .507 .281 .198 .087 .019
.108 .834 .824 .5h4 . 489 277 174 .085 .003
0 .834 .823 .542 484 .275 .169 .084 .000
-.108 .830 .820 .538 481 .273 .168 .083 .002
-.319 .809 811 524 483 .266 179 .082 .043
-.516 .772 .794 .504 491 .257 .204 .082 .029
-.688 717 .765 477 504 .2b6 .234 .081 .051
-.828 .646 717 Lhh .519 .235 .264 .077 .073
-.929 .551 .638 408 .526 .225 .297 .075 .093




Table 11. Distribution of normalized stress intensity factors along the
crack front in a cylindrical shell with a stress-free end con-
taining an axial semi~elliptic surface crack and sub{ected to
uniform local membrane loading or bending, X = (x2+c /a.

L /h 0.2 0.4 0.6 0.8
x| % Ky Ky Ky, Ky Ky, Ky Ky,
Outer Crack, R/h = 10, a/h = 3, c/a = 1,1
.929 .549 .639 .56 . 604 . 330 457 151 .203
.828 671 . 749 541 654 .372 458 161 . 109
.688 . 768 824 .616 .683 A1 .hsh 170 .169
.516 .845 .876 .678 .703 b .hlbo .17& 142
,319 .898 .908 .723 .715 460 421 173 17
.108 .925 .922 . 745 .719 475 .408 172 .098
0 .928 .923 L746 .718 475 405 .172 .095
-.108 .924 .921 742 716 472 .ol A7 .096
-.319 .894 .903 713 .7oh 455 408 169 JaN
-.516 .838 .868 .662 .683 425 416 . 165 .130
-.688 .759 Bil .593 .654 .384 19 .156 149
-.828 .659 .736 .512 .617 .337 A2 41 163
~.929 .528 .625 423 .563 .289 403 126 71

Inner Crack, R/h = 10, a/h = 3, ¢/a = 1.1

.929 .55 .b45 .be7 616 .332 459 144 . 195

.828 .675 .753 546 .659 .366 450 .150 .176
.688 .748 .824 .610 .675 .392 ,430 154 .148
.516 .840 .870 .659 .680 411 .400 154 116
.319 .888 .896 691 .678 422 .368 .150 .089
.108 911 .907 . 704 672 425 346 .148 .068
0 .913 .908 . 704 .669 423 . 341 148 064
-.108 .909 .905 .699 .666 RAL . 340 146 .065
-.319 .881 .889 .675 .659 406 .347 143 .080
-.516 .829 .858 .633 .648 .384 .365 .lhl .100
-.688 .754 .808 574 .31 .354 .380 .135 .122
-.828 .658 734 .503 .606 .318 .397 24 142
-.929 .537 .626 421 .560 .278 .388 14 .155
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Table 12, Distribution of normalized stress intensity factors along
the crack front in a cylindrical shell with a stress-free
end containing an axial semi-elliptic surface crack and
subjected to uniform local membrane loading or bending,

R/h = 25, a/h = 1, c/a = 1.1, x = (x,+c)/a.
L,/h 0.2 0.4 0.6 0.8

kt kb kt kb kt kb kt kb
X Outer Crack, R/h = 25, a/h = 1, c¢/a = 1,1
029 | .584 | .675 | .479 | .61h | .285 | .377 | .099 | .125
.828 . 680 755 .509 .539 .286 .331 .097 .099
.688 747 .798 .531 .570 287 .287 . 096 .070
516 . 795 .820 545 541 .287 242 .092 041
319 .825 .829 553 517 .286 204 . 087 .019
.108 .839 .830 .553 .500 .283 181 . 085 .004
0 .839 .829 .551 .495 .281 176 .08& ,001]

-.108 .835 .826 547 492 .278 176 ..084 .003

-.319 .814 .816 .534 L9l 272 187 .083 .014

-.516 .776 .799 .513 .502 .263 212 .083 .032

-.688 721 .769 .485 .513 .252 242 . 084 054

-.828 .648 .719 . 450 .526 .2“0 271 .083 .076

-.929 .553 .639 413 + 532 »230 .304 .07S .096

Inner Crack, R/h = 25, a/h = 1, ¢/a = 1.1
.929 .583 674 475 .609 ,280 .369 .096 121
.828 .678 .753 . 504 593 .281 <324 .094 .096
.688 . 745 .796 .525 .563 .281 .280 .094 . 066
.5l6 . 792 .817 .539 534 .281 .235 .030 .039
.319 .822 .825 .55 .508 .280 .196 .086 017
.108 .835 .826 .546 491 .277 173 .084 ,002
0 .835 .824 .543 486 .275 .168 .083 -.001

-.108 .831 .822 .539 .483 .272 .168 .082 .000

-.319 811 .812 .526 , 485 .266 179 .081 012

-.516 773 .795 .506 494 .258 .205 .082 ,029

-.688 .719 .766 479 .507 247 .235 .081 0851

-.828 646 .718 446 .52] .235 .265 .077 .074

-.929 .552 .638 .410 .528 226 .298 .075 .093
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Figures

Geometry of the semi-infinite cylinder with a part-through
crack.

Veriation of the membrane component of the normalized stress
Intensity factors in a semi-infinite cylinder containing a
through crack and subjected to uniform membrane loading

Nyy=Ng In the crack region. kpm(=b)=1.204 and kyy(=-d)=1,097
shown in the figure are the stress intensity factors in a semi=~
infinite plate with the same crack size, relative crack location
and loading as the shell,

Membrane component of the normalized stress intensity factor
in a semi-infinite cylinder containing an axial edge crack and
subjected to uniform fembrane loading Nyj=N, in the crack
region.

Bending component of the normalized stress intensity factor in
a semi=infinite cylinder containing an axial edge crack and
subjected to uniform membrane Joading Ny =N, in the crack
region.

Bending component of the normalized stress intensity factor in
a semi-infinite cylinder with an axial edge crack which is sub-
jected to uniform bending Myy=M, in the crack region.

Membrane component of the normalized stress intensity factor in
a semi-infinite cylinder hawing an axial edge crack and subjected
to uniform bending Mj)=My in the crack region.

Membrane component of the normalized stress intensity factor
in a semi-infinite cylinder containing an axial edge crack and
subjected to concentrated membrane wedge forces P at the cir-
cular boundary.

Bending component of the normalized stress intensity factor

In a semi-infinite cylinder having an axial edge crack and sub-
jected to concentrated membrane wedge forces P at the circular
boundary.

Membrane component of the normalized stress intensity factor
in a semi-infinite cylinder having an axial edge crack and sub-
jected to membrane wedge forces P atthe midpoint of the crack.

Bending component of the normalized stress intensity factor in a
semi-infinite cylinder having an axial edge crack and subjected
to membrane wedge forces P at the midpoint of the crack.

Effect of the location of concentrated membrane wedge forces on the

membrane component of the normalized stress intensity factor in
a semi-infinite cylinder containing an axial edge crack.
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Fig. 1 Geometry of the semi-infinite cylinder with a part-through

crack.
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Variation of the membrane component of the normalized :tress
intensity factors in a semi-infinite cylinder containiiig a
through crack and subjected to uniform membrane loading

N11=Ng in the crack region. kmm(=b)=1.204 and kyy(=d)=1.097
snown in the figure are the stress intensity factors in a semi-
infinite plate with the same crack size, relative crack location
and loading as the shell.
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Fig. 3
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Membrane component of the normalized stress intensity factor
in a semi-infinite cylinder containing an axial edge crack and

subjected to uniform membrane loading N11=No in the crack
region.
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Fig. b Bending component of the normalized stress intensity factor in
a semi-infinite cylinder containing an axial edge crack and
subjected to uniform membrane loading Ny;=Ng in the crack
region.
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Fig. 5 Bending component of the normalized stress intensity factor in
a semi~infinite cylinder with an axial edge crack which is sub-
jected to uniform bending M;y=M, in the crack region.
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Fig. 6 Memb rane component of the normalized stress intenéity factor in
a semi-infinite cylinder having an axial edge crack and subjected
to uniform bending Mjy=My in the crack region.
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Fig. 7

Membrane component of the normalized stress intensity factor
in a semi-infinite cylinder containing an axial edge crack and
subjected to concentrated membrane wedge forces P at the cir-
cular boundary.
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Bending component of the normalized stress intensity factor

in a semi~infinite cylinder having an axial edge crack and sub-
jected to concentrated membrane wedge forces P at the circular
boundary.
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Fig. 9 Membrane component of the normaljzed stress intensity factor

in a semi-infinite cylinder having an axial edge crack and sub-
jected to membrane wedge forces P atthe midpoint of the crack.
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10  Bending component of the normalized stress intensity factor in a
semi-infinite cylinder having an axial edge crack and subjected
to membrane wedge forces P at the midpoint of the crack.
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Fig. 11 Effect of the location of concentrated membrane wedge forces on the
membrane component of the normalized stress intensity factor in
a semi~infinite cylinder containing an axial edge crack.
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