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A CYLINDRICAL SHELL WITH A STRESS-FREE END

WHICH CONTAINS AN AXIAL PART-THROUGH OR

THROUGH CRACK

by

F. Erdogan and O.S. Yahsi

Lehigh University, Bethlehem, PA

ABSTRACT

In this paper the interaction problem of a through or a part-
through crack with a stress-free boundary in a semi-infinite cylindrical
shell is considered. It is assumed that the crack lies in a meridional
plane which is a plane of symmetry with respect to the external loads
as well as the geometry. The circular boundary of the semi-infinite
cylinder is assumed to be stress-free. By using a transverse shear
theory the problem is formulated in terms of a system of singular inte-
gral equations. The line spring model is used to treat the part-through
crack problem. In the case of a through crack the interaction between
the perturbed stress fields due to the crack and the free boundary is
quite strong and there is a considerable increase in the stress inten,,
sity factors caused by the interaction. On the other hand in the prob-
lem of a surface crack the interaction appears to be much weaker and
consequently the magnification in the stress intensity factors is
much less significant.

1. Introduction

The main objective cf this paper is to study the effect of a stress-

free boundary on the stress intensity factors in a cylindrical shell

which contains a part-through or a through crack near the boundary. From

the corresponding elasticity solutions of flat plates it is known that

when the stress field perturbed by a crack interacts with a free boundary

there is a certain magnification in the related stress intensity fac-

tors, implying that there would be a reduction in the resistance of the

structure to fatigue crack propagation and fracture [1,2]. Experimental

as well as analytical results also show that generally the stress

intensity factors at that crack tip which is nearer to the free boundary
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' are greater than those at the other tip and consequently the crack would

tend to propagate toward (and eventually perpendicular to) the free

boundary [1-3].	 This mears that of the simple crack geometries in

plates and shells the one which may be of the most practical interest

would be the crack perpendicular to the free boundary.

In shells additional magnification in the stress intensity factors

is known to arise because of curvature [4-6]. 	 In this paper the com-

bined effect of the stress-free boundary and curvature in a cylindrical

shell	 is studied.	 It is assumed the plane of the free boundary is per-

pendicular to the axis of the cylinder and the crack is in a meridional

plane.	 Further, the external loads applied to the curved surfaces and

the end of the cylinder a-^e assumed to be such that the shear stresses

a12 and a 13 vanish throughout the shell in the plane of the crack (Fig. 	 1).

Consequently, in the crack problem the plane of the crack would be a

plane of symmetry with respect to loading as well as geometry.

t 2.	 Differential Equations and the Boundary Conditions

Theroblem described in Fig.	 1 is considered within the confinesp	 9
of linearized shallow shell assumptions and a Reissne r typr :.,Insverse

shear theory [1]. 	 Details of the formulation of a general snallow shell

le.waing to a crack problem may be found in [4-6] and [8].	 The problem

is conveniently formulated in terms of a stress function 0, transverse

displacement w and two auxiliary functions ^ and o.	 Thus, referring

to Appendix A for notation and for definitions of dimensionless and

normalized quantities, the basic equilibrium equations of a cylindrical

shell may be expressed as follows:

° 4 O	 (ate) 
2 

a--z 	 D	 (1)y

D`+w + 712712( 1 —,cP2) y^ _ X4 (1-,,2) aq
	 (2)

lcv2— ^- w =0	 ,	 (3)
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where q(x,y) is th-^ transverse shear loading and ^ and P are related'

to rotations o
x

and
o 
	 by [5];

s = 21 +	 1 -v aQ	
s =

 21 _	 1-v 92

	

x ax 2 ay	 y ay 2 ax

In terms of the stress function ^ the membrane resultants are

defined as

Nxx	 ay , Nyy -
	 N 	 - - axay	 (6)

Similarly, the moment and the transverse shear resultants are given

in terms of the displacement and rotations by

as	 aR	 as	 as

Mxx = h5 ( ax + v 
ay ) 

Myy = hX'+ ax + y

xy 

_ a 1-v
 (	 +

asx	
as	

(7)-7 2 ayh	 )

_ A_ aw	
(8)Vx ax +Rx	 Vy - ay+sy

Before stating the boundary conditions one may note that the

problem is linear and can be solved by using a superposition technique.

s

	

	 Thus, the problem of a eelatively thin-walled semi-infinite cylinder

without the crack under given external loads may be considered separ-

ately from the crack problem in which statically self-equilibrating

crack surface tractions are the only external loads. In the former

problem the external loads may be the transverse loading q and stress,

moment, and transverse shear resultants applied to the end (x 2=0) of

the cylinder. In the plane of the crack x l =0 this solution is assumed

to give only normal membrane and bending resultants 
N11 

and M11 and no

-3-



shear stresses (i.e., N12 (O,x2 ) = M12 (O,x2 ) = V l (O,x2 ) = 0). The

equal and opposite of N ll (O,x2 ) and M ll (O,x2 ) given by this solution

are then used as the crack surface tractions to solve the crack problem.

In this study it is assumed that the problem of the semi-infinite

cylinder without the crack has been Golved and N 11 (O,x2 ) and Mll(O,x2)

are known functions.

The part-through crack problem will be solved by using the line-

spring model. The integral equations of this problem are obtained by

modifying those of the through crack problem to account for the unbro-

ken ligament. The main problem is, therefore, the through crack prob-

lem which will first be formulated. Also note that because of symmetry

it is sufficient to consider one half (x>o) of the shell only. Thus,

referring to the insert in Fig. 2 and Appendix A for notation, equa-

tions (1)-(8) must be solved under the following boundary conditions:

Nyy(x,0) = 0, N
KY

(x,0) = 0, Myy (x,0) - 0,

MXy (x,o) = e, Vy (x,o) = 0, ( O<x<-)	 (9)

NXy (o,y ) = o, Mxy (o,y ) = 0, Vx (o,y )	 0, (--<y<o) ,	 (10)

Nxx (+O ,Y) = F l (Y) , (-dl <y<-bl) ,	 (11)

u( O ,Y) = 0, (--<y<- d l , - b l <y<O) ,	 (12)

Mxx ( +O ,Y) = F2(Y) , ( -dl<y<-bl) ,	 (13)

sx (O,Y) = 0	 (--<y<-d1 - b l <y<o)	 (14)

where Fl and F2 are related to the uncracked shell solution by

Nll (O ' x2 ) 	 Mll(O,x2)
F1(Y) 	 hE	 , F2

(Y) _ - - ?E --- , (x2=ay)•	 (15)

^)A
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3. Solution of Differential Equations

In the perturbation problem under consideration q =0 and eliminating

from (1) and (2) we obtain

047 4W + ll4(1 -KD2) a^ = 0	 (lli)

Considering the symmetry of the problem, fnr the shallow cylindrical

shell the solution of (16) may be expressed as

	

00	 Q

W(x,Y) ° '^7r	 fl (x,a)e"'Yada + Tr J f2 (y ,$)cosxs do.	 (17)

	

-00	 o

Assuming the solution for f l and f2 of the form

fl (x,a) = R (a,m)emx , f2 (Y,8) = S(s ,n)e ny	(18)

by substituting from (18) and (17) into (16) the characteristic equa,-

tions for m and n may be obtained as

ma -4a 2m6+6a 4m4 -(4a 2+K1 1 4 )a 4m2+a 4[a4+1 1 4 (1 +Ka2 ) .l = 0	 (19)

	
a

'	 x

n 8
-(4s 2+K1 1 4 )n 6+[6R41 1 4 (1

+Ks2 )1n4-
40 6n 2+B e = 0	 (20)

L

The solutions of (19) and (20) have the property

mj+4 = -mj , Re (mj ) < 0 , (J=1,...,4) s	 (21)

7	 nj+4 = -nj , Re(ni ) < 0, (j=1,...,4)	 (22)
{

Defining now

R(a,mj ) = Rj (a) , S(S,nj) .. Sj (o) , (J=1,...,8) p	 (23)

-5-
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with (17) the solution of (16) satisfying the regularity conditions

at x=- and y =-- may be expressed as

fl (x,a) = E R.(a)em^X , (0<x<-)	 (24)
j-1

f2 (S,Y) = E S, (s)enjY , (--<Y<0)	 ( 5)
j-5

The functions Rj , (j=1,...,4) and Sj , (j=5,...,8) are as yet unknown.

Similarly, if we let

r
00	 «,

$(x,Y)	 2^ J 
gl(x,a)e-iyada +	 f 92 (Y,5)cosxs ds,	 (26)

-00	 o

noting that q=0 from (1) and (2) the functions g l and 92 may be obtaineu

as follows:

2, 4	 a 2R (a)m x
g l (x,a) _ -( ) J E 	 p---j	 e 3 , pj = mj 2-a2 , ( 0<x <°°) . (27)

=i

X 1 2 8 n •2S (a) n Y
92 (Y,$) 	 (a ) % E5 g^--z	 a	 qj = nj 2 - s 2 , (-^M <^)•	 (28)

Assuming the solution of (4) of the form

00	 CO

o(x,Y) 
= 2^r 	

h()	
TrTr 

j h2 (Y,$)sinax do,
	

(29)

-00	 o

h l (x,a) = A( a , r )erx , n 2 (Y,$) = B( a ,$)esY
	

(30)

Y	 ^
G

a

it can be shown that

h l (x,a) = A1 («)erlx , r  = -[a2,+ , 1-v 1 , (0<x<-)

h2(Y,$) = B2(p)es2y , s2 = +CO2 + 	2	 ] , (-
-<Y<o),

where A l (a) and B2 (o) are unknown functions.

-6-



The transverse shear theory used in this study is equivalent to

a tenth order system [41- [61 (that is, for example, the equilibrium

equations of the shell can be expressed in terms of five second order

differential equations in five "displacement" quantities u, v, w, Ox

and 0y ) and the differential equations (1), (2) and (4) provide suffi-

cient number of "integration constants" to account for all boundary

conditions. For a unique solution of the problem, it is therefore

necessary to use only the particular solution of (3) (after determining

the function w). Thus, by assuming

0	 00

^(x,Y) _	 f el(x,a)e-'yada + 	 f
e 2 (Y,$) cos sx ds,	 (33)

-0	 a

the functions e l and e 2 satisfying the regularity conditions at x=-

and y=-- are found to be

e1(x,a) = E	 R-j 	m x- 1 e3	 e 2 (Yls) = E. 	 - enjy	 (34)
J = l	 pa 	 J=5 qJ

Ten unknown functions Rj , 0=1,...,4), SJ , (j=5,..,,,8)9 A l and
B2 which appear in the solution giver: above are determined by using

the eight homogeneous and two mixed boundary conditions (9)-(14).

4. Derivation of Integral Equations	 r

By substituting now from the solution given in the previous sec-

tion into (5)-(8) and by using the strain displacement relations

e iJ = 2 (ui1J+uJ,i+Z'iu3J+Z1Ju3,i), (
ij = 1,2)	 (35)

all membrane, moment and transverse shear resultants, the rotations,

and in-plane displacements can be expressed in terms of the unknown

functions Rj , SJ , Al and B2 . These expressions are given in Appendix B.

In (35) Z(x 1 ,x2 ) gives the distance of the middle surface of the shell

from the tangent plane. By substituting from Appendix B into (9) and

I

i

-7-
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by inverting the sine and cosine transforms the homogeneous end con-

ditions may be expressed as follows:

S	 On 
j 
2	

l - 4 a2m 3R•(a)
E^ -q

j- 
-Sj (s} = 2^r	 E1 m. +s	 dot

J 	 J	 J

8 n 3	
i	

00	 4 a im R (a)

=5 q "1` Sj( S ) = z^	 j1 m +R	 da	 (37)

r
J =5 J	 J-00

8 u 0 2-n 2	 K 1-v^2	 1	 °° 4 
(vm•2-a2)m Rj(a)

5 ►cq •-1 " Sj (a) + ^ s s 26 2(a) -	 £1 I<p^m. +a
J	 J	 _00 J	 J	 J

+ iK(1-v)2arl2 A a)]da

rl +sz	 1(

2sn,- K 1-v	 s 2+2)B 	 -	
l 00

4 	
Mom•R.(a)

E 5 ,^^ ' ' Sj(s}	
2	 t 2 s 2 ts ) - - 27r _ [ l KNp 	 m

+ K(1-v)(a 2+r1 2 )s A 

(a)]da s	 (39)
2r1 +s
	 1

a gjnjsj(R)	 1-v	 1	

00 4
	 aiP.m.R.(a)E^ ^Q. _1 - - - sB	 c2 (s) _ - z7r j = l -^^+s

j	 J	 _0, j	 J	 J

(l-%,)r 2
+ 2 rl --	

A,(a)Ida .	 (40)

Three more homogeneous conditions may be obtained from (10) which, with

(36)-(40) may be used to eliminate eight of the ten unknowns. The

mixed boundary conditions ( 11)-(14) would then give a system of dual

integral equations to determine the remaining two unknowns. However,

(38)

E

-8-
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the problem may also be reduced directly to a system of integral equa-

tions by introducing the following new unknown functions;

Gl(Y) = ay u ( +O+Y) , G2(y) = ay Rx( +O ,Y) , --<Y<O	 (41)

From (12), (14) and (41) it may be seen that the conditions

(12) and (14) are equivalent to

Gj(y ) = O, --<y<-d l , - b l <y<O, ( j= 1,2) ,	 (42)

_b1

f
Gj(y ) dy = 0, (j= 1.,2)	 (43)

-d1

We may now use (41) in place of (1l)-(14) as two additional equations,

to express all unknowns (Rj , Sj , Al and B2 ) in terms of G 1 and G2 . Then

(11) and (13) with (42) and (43) would provide the information to deter-

mine G 1 and G2.	 First, by substituting from equations (Bll) and (89)

of Appendix B into (41), it may be shown that

i	 a 1 	 4 ( 1 +v )a2 -p • 	 (44)
G 1 (y ) _ 2^r (^ ) j E	

p .^-^-^ Rj (CC a-'ya da '
3

	

Co	 00

G2 (y ) _ -	
=1	

^'j(0 
a-iya da _ K 1 v)f a2A1(a}e-rya da.

Then, by using the relations (63), (B6) and (B7), after some manipula-

tions it can be shown that equations (10), (44) and (45) are equivalent

to

4 m•R (a)

	

E --- = 0	 (46)
j= 1 	 pj

4 m•R•(a)

3E1 
Kp

-
 
^ -

1
- = i[K(1-v)a + 11C2(a) ,	 (47)
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l

	

m----	 _	 Cl (a) (49)
p3

A l (a) = 2 C2 (a) ,	 '50)

where

b

C.(a) =	 1 G.
J (y )eiay dy , (J=1,2)	 (51)

J	 ^ 
-d1

After solving (46)-(49) for R  and obtaining expressions of the

form

-bl
R.(a) _ dl

	

E c. (a,t)G (t)dt, (j=1,:::,4)	 ,	 (52)
J	 k=1 Jk	 k

-

from (50), (52) and (36)-(40) one can determine S
i 

and B2 and find

expressions of the form

S W = -bl

dl	

E b. (B,t)G (t)dt , ( J=59...1$) ,	 (53)J	 f	 k=l Jk	
k

-

B (s) = -bl
	

E b (o,t)G (t)dt	 (54)
2	

k=l 5k
	 k

-dl

where cjk and bik are quite complicated but known functions.

If we now substitute from (50), (52)-(54), (131) and (64) into

(11) and (13) we obtain a system of integral equations which, with

(43), would determine G 1 and G2 . These equations are of the following

form:

-10-
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lim 
-bl	

E CV (x,a)ei(t-y)ada + 
fo

Y •( ,t,s cosxsds G t dt
x++0 J	 xf

oo
kj	 ka y	 )	 j()

d	 ^ 1 -1

= Fk (y ), (k-1 1 2) 9 (-dl<y<-bl) f	 (55)

where Vkj and Yk`i are known functions, The kernels defined by the

functions Vkj and Ykj in (55) exhibit certain singular behavior which

may be investigated by examining the asymptotic behavior of these

functions for (aj-^w and 5-)*,. The process is relatively straightforward.

First one needs to obtain the asymptotic expressions for m j , nit rl and

S2 defined respectively by (19), (20), (31) and (32) for large values

of jal and s. These expressions may be obtained as follows:

2

m^(a) - ^jaj(l + 	z- 
p$a. 

+ ..,) , (j=l,...,4)	 (55)

q. 2

nJ W = W+ 2-	 - -	 + ...) , (j=5,...,8)	 (57)

r l (a) = -( u I(1 +	 1 a " ...) P	 (58)

11

s 2 (s) = all +	 lV) 04
- ...)	 (59)

Then, by substituting from (56)-(59) into the expressions of V kj and

Y kj , the principal parts of the kernels can be separated and can be

evaluated in closed form. After somewhat lengthy manipulations the

integral equations (55) may be shown to reduce to

-b1
1 1 	6-	 4 z

( t=y ' t+y + +y - t+y ) G1(t)dt

"d1 -b l	
2

+	 E k lj	 3	 1(yot )G(t)dt = 2w Fl(y), (-d<y<-bl)	 (60)
f

d	
j-1

-1

-11-
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(	 )
1-v^ -b 1	 1 - 1 ^,

t-y	 +
6	 - 4 2	 G

2 ( t) dt(	 t,	 t+y ) 
-d1

	

+ -bl	
2 k •(Y^t)G (t)dt x 2^rX4 n F (y ), - d <y<-b	 61

	-d	 3
=l 2^	 a 2	 ( ,	 1),	 )

1

where k i3 , (ij =1 ,2) are known bounded functions and the loading func-

tions F''l and F2 are given by (15).

It should be pointed out that the dominant kernel found in thi s

study W hich is given in (60) is : .:entical to that found for the elas-

ticity problem of a plane containing a crack perpendicular to a stress-

free boundary M. It should also be observed that the dominant

kernels associated with the crack opening displacement and the crack

surface rotation as given in (60) and (61), respectively, are identical,

verifying the result found in [9] for flat plates. These are physi-

cally expected results and mean that any peculiar behavior the shell

solution may have for b=0 (i.e., for an edge crack) must be identical

to that of the cvut,, i Bonding plane elasticity solution.
For b>O	 2) the kernels of the integral equations (60)

and (61) have simple Cauchy type singularity and consequently the 	 K

solution is of the following form [10]:	 k

Hk(y)
Gk(Y)

	

	 , (-dl<Y<-bl), (k= 1,2)	 (62)

[-(y+d1)(Y+bl)]

where the unknown functions H l and 
11
2 are bounded in the closed interval

[-d l , -b l ]. In this case the problem may easily be solved numerically

by using a Gauss-Chebyshev type integration formula [11]. For b=0

the problem is an edge crack problem, the functions G l and G2 are

bounded at y=-b 1 =0, and equations (43) are no longer valid. In this

problem tco the integral equations may again be solved by using a

Gauss-Chebyshev integration formula and by, for example, assuming that

Hk (o) = 0 (in (62)) in place of conditions (43).

-12-
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5. Stress Intensity Factors

In the linearized shell theory used in this study the stresses

are given in terms of the stress r4+sultants as follows:

a ^( x l^ x2)i^(xl,x2) , 09 j=112) ,	 (63)

b	 12x3
aij(xl,x2,x3) 	 __FP_Mia(xl,x2) , (i,J = 1,2) ,	 (64)

^ S (x 1 ,x2 ,x3 ) _ 3 
V
•(xl,x2 )C1_( x3 ) 2 ], (3=1,2)	 (65)w

where the "in-plane" stresses may be combined as

aij ( x l , x2 0x3 ) = amJ ( X l , x2 ) "' crbj (x l ,x2 ,x3 ), (i,J =1,2)	 (66)

In the symmetric problem under consideration a ll is the only nonzero

stress component in the plane of the crack x l =0. Thus, the crack

problem is one of Mode I and k l (x2)
x3 ), (x2--b,-d) is the only nonzero

f

stress intensity factor which, at the crack tips x
2 
= -b and x

2 
=-d may

be defined as follows:

k l ( . b,x3 )	 lim aTx- 	
oll (O,x2 ,x3 ) ,	 (67)

X
2 

4-b

k l (-d,x 3 ) = lim	 -2(x 2+d a ll (O,x2 ,x 3 )	 (68)	 l
x2-. - d

From (63), (64) and (66)-(68) it is seen that k  would be a linear

function in x 3 and, analogous to (66), it would be convenient to express

it as

k l (x,2 ,x 3 ) = km(x2 ) +	 kb(x2), x2 = (-b,-d), - 2 < x3 <	 (69)

-13-
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where km and kb are associated with the "membrane" and "bending"

stresses or N il and M11 around the crack tips. Observing now that the

left hand sides of the integral equations (60) and (61) give the expres-

sions for Nxx and Mxx in the outside as well as the inside of the

crack on the x l =0 plane and that only the terms with the dominant ker-

nels would contribute to the singular behavior of N xx and Mxx , the stress

intensity factors km and kb may easily be evaluated in terms of the

unknown functions G 1 and G2 . Thus, by using the properties of singular

integrals [10], it may by shown that

km(-b) _ - 2 3ai 	H 1 (- b l ) , kb (-b) _ -	 a hat N2 (-b l )	 (70)

km(-d) = 2 r N l (-d l ) , kb(-d)	
ha M

2 (-d l )	 (71)

6. The Part-Through Crack

In this paper to solve the part-through crack problem shown in

Fig. 1 the line spring model [12] is used. The details of the analysis

with regard to the adoption of the model to Reissner plate or shell

theory and the comparison of the results with the existing three-

dimensional finite element solutions may be found in [13] and [141.

Following [14], the Mode I stress intensity factor along the crack

frong is expressed as

k l (Y) = 3Fi [
cr (Y) gt ( g ) f m(Y)gb(g)], 9 = L (Y)/h
	

(72)

where the functions v and m represent the membrane and bending resultants

along the net ligament -d l <y<-b l and gt/ F and gb/ V, (^=L/h) are the

shape factors obtained from the plane elasticity solution of a strip

having a thickness h, containing an edge crack of depth L and subjected

to uniform tension or bending away from the crack region. Following

are relatively accurate expressions of g t and gb:

14-
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9t (g) = r (1.1216 + 6.52009 2 - 12.38779 4 + 89.055496

	

188.60804 8 + 207.387NOO - 3M5240 2 ) ,
	

(73)

gm 
(9)= r (1.1202 - 1.88729 + 18.01439 2 - 87.385193

	

+ 241.9124 4 - 319.9402 5 + 168.01059 6 ) .
	

(74)

To obtain a(y) and m(y) first the integral equations (60) and (61)

are modified as [13], [141

Y	 Y	 -bl
-Yt,t (Y)f Gl (t)dt + Ytb(Y)J G2 (t)dt + r j [(tly

-d l	-d1	 -dl

+

t+y + t
+y	

- t+y )G1(t)+.E1 kli(Y,t)Gj(t)]dt=F1(Y)0
J

-d l <y<-b l ,	 (75)

Y	 y	 -b l

+ Ybt(Y)^ G
l (t)dt-Y

bb (y )^ G2 (t)dt + .(J-v2 j [(tly
-dl	-dl	 -dl

where the functions Yid, (i,j =t,b) are given in [14] and the upper

(i.e., -) and lower (i.e., +) signs are to be used for the outer and

the inner surface crack, respectively. After solving (75) and (76) a

and m are then obtained from

-15-
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t+y + t6Y - t y2 ) G2 (t)- - j 1	 = k2^(y,t)Gi(t)]dt=F2(Y)

d	 j 1
1

-d
i
 <y<-b 1	(76)
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a(y ) = E(rttu + Ytbsx) , m( y ) = 6E(Ybtu + YbbRx)	 (77)

y	 y

u(+04) _	 G l (t)dt , sx ( +O ,Y) =	 G2 (t)dt , -d l <y<-b l	(78)

-dl	-dl

where + and	 signs are to be used for the external and the internal

surface crack, respectively.

7. Numerical Results and Discussion

For the through crack problem the calculated results are shown

in Tables 1-4 and Figures 2-11. In the results given in Tables 1-4

it is assumed that in the crack region the shell is subjected to uni-

form membrane loading or bending, i.e., for the untracked shell we

have

Nll (O ' x2 ) - No , Mll (O 'x2 ) - 0 '	
(79)

or

N ll ( 0
1
x2 ) = 0 , M ll (O1x2 ) = Mo	 (80)

Thus the input functions of the integral equations are (see (15))

Fl ay ) _ -No/hE, F2
(y) = 0 or F l (y ) = 0 1 F2 (y ) _ -Mo/h 2 E .	 (81)

In the tables the membrane and bending components of the stress inten-

sity factor defined by (69) are normalized as follows:

)	 )
kmi(aj) k m

(a
=	 j 	 kbi(aj	

k
) = b

(a 
j	 a^ _ (-d,-b), i = (m,b )	 (82)

a  ^	 ai r

where aj refers to the crack tip and for uniform membrane and bending

loads the corresponding stresses are given by

-16-



q	 am = No/h , vb = MOW .	 ( 83)

The results are given for various combinations of R/h, a/h and c/a

which are the characteristic dimensionless length parameters of the

shell (see the insert in Fig. 2). The normalized stress intensity

factors given in the tables for c/a = 1 are obtained from the edge

crack solution. A partial explanation of the steep rise in the stress

intensity factors at x2=-d as c-*a may be found in [9]. For the membrane

loading when R-) or a->0 the bending component k bm of the stress inten-

sity factor tends to zero and kmm approach the corresponding flat

plate solution given in [1]. The tables show the general magnifying

effect of the decreasing crack distance c from the Boundary and the

curvature on the stress intensity factors.

Some results obtained from the uniform external loads (79) and

(80) are also shown in Figures 2-6. For a fixed relative crack dis-

tance c/a = 1.5 Fig. 2 shows the effect of R/h and a/h on the membrane

component of the stress intensity factor. As a/h-}U the results

approach the corresponding flat plate values obtained in [1] which

are also shown in the figure. Figures 3-6 show the edge crack results.

Except for fig. 5, qualitatively these results are quite similar to

those obtained for the infinite shell problem given in [4]. Again it

is interesting to observe that as a/h-*O kmm approaches 1.586 given

by the plane elasticity solution for an edge crack regardless of the

value of R/h. Even though this is the physically expected result, as

in the limiting cases given in [9], the surprising .aspect of it is

its prediction by a shell theory. In an infinitely long cylinder

having an axial line crack the curves corresponding to those given in

Fig. 3 would tend to k mm=l as a/h-}0. It is therefore tempting to look

for a shape factor which, as in flat plates, would be independent of

the crack length. However, multiplying the results given in [4] cor-

responding to those in Fig. 3 for a/h>O by 1.586, it may be shown that

the relative magnification in 
kmm 

in the edge crack is considerably

greater than that in the infinite cylinder.

-17-
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It may be seen from Table 3 and Fig. 5 that as in the infinite

cylinder case the bending stress intensity factors found for the

edge crack too decreases with increasing crack length. In this problem

the steep variation of kbb and its convergence to the plane elasticity

solution for a/h.+O may seem to be somewhat unusual but should be physi-

cally expected. In fact this behavior is nearly identical to the

bending solution of a flat plate with an edge crack given in [9].

In the Gauss-Ohebyshev quadrature formulas used in solving the

integral equations (60) and (61) the integrals on the left-hand sides

are evaluated for certain discrete set of values y i of normalized

variable y. Therefore, one may easily obtain some type of Green's

functions for the stress intensity factors by simply taking one element

of the column matrices F l (y i ) and F2 (y i ) non-zero at a time. This

was routinely done and the results were printed in solving the problem.

By using these results one can calculate the stress intensity factors

kmm, kbm , kmb, and k
bb for any arbitrary external loads N ll (O,x2 ) and

Mll (O,x2 ) or F l (y) and F2 (y). For example, Figures 7-11 show some

results for a concentrated wedge loading of a cylinder containing an

axial edge crack. Figures 7 and 8 show the membrane and bending com-

ponents of the Mode I stress intensity factor at the crack tip x2=-d

k l (-d,x3 ) = k l (x3 ) in a cylinder subjected to concentrated wedge forces

Nll (O,x2 ) = -P6(x2 )	 (84)

shown in the figure. One may note that, as in wedge-loaded flat plate

problems in the shell problem too the stress intensity factor is pro-

portional to 1/y, a- and as a/h->O (or R-^-) again the shell results con-

verge to the plane elasticity values k 	 = 0.58 (Fig. 7) and kbm = 0

(Fig. 8). Figures 9 and 10 show the results analogous to Figures 7

and 8 for membrane wedge forces applied at x 2	-a, i.e., for

Nll (O,x2 ) = -Ps(x2+a) . (85)
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The effect of the wedge force location on the membrane component

of the stress intensity factor for some selected shell and crack dimen-

sions is shown in Fig. 11. The corresponding stress intensity factor

in an infinite plate containing a semi-infinite crack and subjected

to wedge forces P at a distance s from the crack tip is known to be

kl _ V7 

hP	

(86)

Thus,  since k 1 becomes unbounded as s-►0 in Fig. 11 P/h r rather than
P/ham is used as the normalizing stress intensity factor. It is seen

that as s4 the stress intensity factor in the shell approaches the

flat plate value given by (86), As in the previous limiting cases

discussed in this section in this problem too if the applied loads are

very near the crack tips or the length of the (through) crack is very

small compared to all other dimensions of the structure (including its

thickness), then locally the stress state is indistinguishable from

the corresponding plane elasticity solution.

The stress intensity factors obtained for a part-through crack

are given in Tables 5-12. Even though the crack profile L(y) can be

any smooth function, the results are calculated only fora semi-elliptic

inner or outer surface crack in the cylinder. That is, in solving the

integral equations (75) and (76) it is assumed that (Fig. 1)

2
L(x2 ) = Lo

JT_ x2 c
a } = Lo	- 

y+c l	
,

y	 x2/a, c 1 =c/a, -d<x2 <-b, -c l -1<y<-c l +l .	 (87)

The problem is solved by assuming that the applied loads are given by

(79) or (80) and hence the input functions in (75) and (76) are given

by (81). In both cases only the Mode I stress intensity factor kl

is nonzero along the crack front. k  and k b shown in the tables cor-

respond to the normalized Mode I stress intensity factor obtained for

uniform "tension" (79) or for "bending" (80), respectively. k  is a

k
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function of x2 only (Fig. 1) and for the two loading conditions con-

sidered is normalized as follows:

k l (x2 )	 x2+c	 L

kt(X) = 
N	

, X	 a - Y c l , o - h	 (88)
T_	 gt(o)

k l (x2 )	 - x2+c	 L
kb (X) = M
	

--- , x - a = y + c l , ^o - h	 (89)

-hz VF 9b(o)

where Lo is the maximum depth of the crack (Fig. 1) and the shape func-

tions gt and gb are given by (73') and (74). One may note that the

normalizing stress intensity factors used in (88) and (89) are those

obtained from the plane strain solution of an infinite strip having a

thickness h and containing an edge crack of depth L o which is subjected

to uniform tension No or bending Mo . For the crack depths L o eased

in this study the shape factors gt and gb are calculated to be

90 = L
o/h i	 0.2 0.4 0.6 0.8

'	 o gt(90)
1.3674 2.1119 4.035 11.988

AILO gb(o) 1.0554 1.2610 1.915 4.691

Tables 5-9 show the normalized stress intensity factors k t and kb

for a certain range of R/h, a/h, c/a and L o/h which are the dimension-

less characteristic length parameters of the problem. It is assumed

that the part-through crack may be on the outside or the inside sur-

face of the cylinder. As in the through crack solution, in all cal-

culations the Poisson's ratio v of the material is assumed to be 0.3.

The previous studies varying v between 0 and 0.5 have shown that its

effect on the stress intensity factors is relatively insignificant

-20-
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(see, for example, [51). Hence, the results given should be valid for

most structural materials. The tables show that the stress intensity

factor at the maximum penetration point of a semi-elliptic surface

crack appears to be relatively insensitive to the crack distance c from

the free end.

Some sample results showing the variation of the stress intensity

factor along the crack front are given in Tables 10-12. It is seen

that generally at a given crack depth the stress intensity factor at

the location nearer to the stress-free boundary is greater than that

at the corresponding point which is farther. However, this skewness

or non-symmetry in the distribution of the stress intensity factor with

respect to the midpoint x = 0 or x2 = -c of the crack seems to be

surprisingly small.
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Dimensionless and Normalized Quantities

X -

x1	 x2	 x3

_a ' y	 a	 0 z " a	 o
_ b

bl ` a	
c1 "

c	 d
a	

d l = a (A.1)

u u l /a	 v = u2/a , w = u3/a , (A.2)

F(xl^x2)
Rx = sl	 Ry = R 2 	^(xsY) = a?E '— (A.3)

^xx - X11 E ' °YY	
a22/t '/ _ "12

^:`^Y -	 axz
a 13	 _ c23
B	 °yz -	 B (A. 4)

Nxx
_	 1 ^	 22- -E —E 	Nyy = hE	 , Nxy = N E , vm	 =

N.

,	 ( i =1,2) (A.a)

Mxx = h E	 M
YY 

° hE I Mx
Y

= h̀ E , 'ij =_.	 i 3

6M.- 

h '	
,	 (i,J=1,2) (A.6)

Vx = V 1 /hB	 V	 =
y	 2V /hB , B =	 5E

2+v (A.7)

^ 1 = i	 4	 2 2	 4=12(1 -v )a /h R	 a 2	 2	 212(1- v )a /h ;;,	 K = ,./Ba 4 (A.8)

For dimensions and notation see Figure 1.
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APPENDIX 8

Expressions for stress resultants, displacements and rotations.

Nxx(x,y)
f	 E 01

4T
1j
da + f
	 E n

j 2 L lj cossxds, (B.1)

woo	 Q

Nyy(x,y )
-f
	 E a 2mj 2Tlj da -	 E L1j 0 2cossxds (B.2)

l	 5
-^	 o

NXy(x,y)

Co	 ao
4	 r	 8

f
oo 

E a 3mj T l j da +	 I	 ^ snj L^lj sinuds, (B.3)

J o

MXx( x ,y )

00	 w

f
(mj 2-va2 )T2j da -	 5(o-vnjz)L2jcossxds

-^	 o

fa
	 l T3da +

W
( ss 1 L cossxds (B.4)
J o-0

Myy(x,y )

Co	 00

4	 f= f	 (vmj 2-a 2 )T2j da -	 5(vR2-nj2)L2jcossxds

-^	 o

Co

+ 	
a r l T3da -	

1-\')a	
s l scossxds	 , (B.5)

-00	 o

M,(x,y ) (

0	 OD

_ -i (1-v)J
	 a 

mj T2jda - (1-v)f
	 5 s njL2jsinsxds

-w	 o

co

	 no

2+s z )Lsinsxds	 ,
_	 1-^ a	 (a 2

+r 1 2 )T3
da + (1-v )a	 ( ( s 1	 3

J

(B.6)

_,0 	o

yx ( x ,y )

0	 00

_ ^` aX
4
 f	

E44 
pj mj T2jd a - k 

as

4 	
E8 sgjL2jsinsxds

1
1-m	 o

Co	 00

-	
f
	 a T3da + f s 1 L 3sinsxds (B.7)

_00	 o
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^y(x,Y)	
i ►ca1`^	 a p^T2^da + K	 t ^ q jn jL cosoxdR

.0 	 0

	

- j r 1T3da - f s L 3cas8xds	 (B.8)

-^	 o

h1 4	 `f	 _ hX4 { s
sx(x,Y)	

a 1 i MJT2jda	 a J 5 a L2jsinsxde

-	 o

k

- i f a T3da + f s1 sin8xds	 (8.9)

-00	 o
00	 00

^► 	 4	 4	 8
8Y (x,Y) =_ i a1	 E a 

T 2j da + h	
5 

n L2jcosRxda
-^	 o

	

- f 

00 

r 1 T3da - 1 s B2 cosaxdR	 (6.10)

-00	 0

co	 00

U(x,Y)	 C(2+v)a2	 m 2 ^mj T 1 da +	 (2+v)^Ljsnsxda

-00	 d

+ 	) 2 x w(x,Y)	 (8.11)	 w

r0 	 r0

	

v(x ,Y) _ -1I E(va 2+m. )aT .da - 1
	

(s2+vn .2)L 	 cos" do	 (8.12)!	 ^	 J	 ZJ	 ^	 J	 1J	 n^
.00	

Q

where
a

1 1 1 2 Ri (a) mix-iay

	

T 11 (x,Y,«) - 2 -az- pi	 e	 ,

R («) m x-iay

T2j (x,Y, a ) " 27r h^ Kp—' j;1 e
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k 1-v	
rlx-iay

T3(X,Y,a) '	 A,WWe

z	 x

L
i (Y,0) = z"	

sj(s)en^Y

ny
L2J (Yto) _ 7 - ►cq_gj_T s3(s)e

s 2
L 3 (Y,R) = 	

-v B2(a)e 
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Table 1. Membrane component of the normalized stress intensity factors
in a cylindrical shell containing an axial through crack
along -d<x2<-b. The end of the cylinder (x2=0) is stress-
free and the crack surfaces are subjected to uniform membrane
loading (N ll"-Mo , Mll'0)•

k	 -b
kmm	

-d

R
^

h s 1.1 1.5 2 10 1 1.1 1.5 2 10
a

1 x.154 1.379 1.221 1.162 2.425 1.417 1.238 1.189 1.159
5 2 2.273 1.623 1.538 1.483 3.540 1.664 1.556 1.515 1.483

3 2.534 2.069 1.906 1.861 4.452 2.073 1.968 1.882 1.861
10 6.092 4.654 4.494 4.458 9.869 4.871 4.522 4.485 4.458

1 2.034 1.334 1.171 1.087 2.098 1.368 1.187 1.125 1.086

10
2	 .2.263 1.438 1.316 1.268 2.874 1.485 1.330 1.297 1.266
3 2.382 1.654 1.570 1.510 3.635 1.693 1.590 1.541 1.510

10 3.996 3.699 3.462 3.440 7.677 4.883 3.518 3.455 3.440

2 2.102 1.354 1.199 1.119 2.279 1.396 1.241 1.150 1.121
25 3 2.242 1.416 1.285 1.240 2.772 1.461 1.297 1.263 1.237

10 2.946 2.722 2.425 2.421 5.668 2.696 2.522 2.429 2.420

1 1.761 1.237 1.110 1.007 1.609 1.239 1.116 1.071 1.007

100 2 1.884 1.291 1.142 1.039 1.836 1.306 1.149 1.088 1.037
3 2.010 1.324 1.165 1.074 2.045 1.164 1.102 1.073

10 2.388 1.680 1.595 1.}5 3.716
11-359
1.713 1.618 1.568 1.535

1 1.760 1.228 1.100 1.001 1.588 1.2.25 1.108 1.000 1.001

200
2 1.794 1.257 1.125 1.017 1.723 1.264 1.128 1.078 1.017
3 1.901 1.298 1.144 1.041 1.856 1.316 1.148 1.090 1.040

10 2.291 1.577 1.354 1,305 3.035 1.508 1.366 1.340 1.305

e

Y	 ^
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Table 2. Bending component of the normalized stress intensity factors
in a cylindrical shell containing an axial through crack along
-d<x2 <-b. The end of the cylinder x2-0 is stress-frt ►e and
the crack surfaces are subjected to uniform membrane loading

(N 11" -No , Mll -0).

kbm 
-b

kbm -d
R--- ---
h

a 
s

1.1 1.5 2 10 1 1.1 1.5 2 10

1 0.023 0.016 0.024 0.031 0.060 0.028 0.028 0.029 0.031
5 2 0.027 0.048 0.053 0:057 0.094 0.059 0.058 0.057 0•.057

3 0.036 0.071 0.072 0.074 m i 8 0.071 0.079 0.074 0.074
10 0.112 0.120 0.125 0.120 0.169 0.128 0.124 0,125 0.120

1 0.014 0.012. 0,014 0.020 0.041 0,017 0.016 0.016 0.021

10
2 0.025 0.028 0.036 0.039 o.o69 o.o4o 0.041 o.o-, m42.
3 0.027 0.048 0.052 0.056 0.094 0.059 0.057 0.055 0.056
10 0.083 0.109 0.115 0.113 0.150 0.121 0.115 0,115 0.113

2 0.017 0.013 0.016 0.027 0.04 .5 0.018 0.018 0.022 0.025
25 3 0.023 0.026 0.030 0.034 0..064 0.032 0.034 0.036 0.036

10 0.052 0.084 0.084 0.088 0.127 0.094 o.o90 o.o83 o.o88

1 0.003 0.004 0.004 0 0.029 0.006 0.005 0.006 0

100
2 0.010 0 0 0.010 0.022 0.008 0.005 0.007 0.010
3 0.013 0.009 0.010 0.016 0.032 0.015 0.013 0.014 0.016
10 0.026 0.044 0.051 0.052 0,091 0.060 0.055 0.055 0.052

1 0.007 0 0.003 0 0.027 0.005 0.007 0.001 0

200
2 o.004 0 0 0 0.022 0 0 0 0
3 0.010 0 0 0.010 0.022 0.009 0.006 x.007 0,010
10 0.023 0.027 0.034 0.038 0.066 0.039 0.041 10.038 0.038

Y
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Table 3. Bending component of the normalized stress intensity factors
in a cylindri6l shell containing an axial through crack along
-d<x2<-b. The end of the cylinder x2-0 is stress-free and
the crack surfaces are subjected to uniform bending (N11=0,

Mll'-MO).

bb -b
kbb(-d)-

--R c/a

h a/h 1.1 1.5 2 10 1 1.1 1.5 2 10

i 1.117 0.854 0.791 0.726 1.032 0:771 0.783 0.761 0.727

5 2 1.043 0.766 0.715 0.650 0.912 0.764 0.748 0.692 0.651

3 0.990 0.726 0.675 0.614 0.782 0.721 0.667 0.653 0.613

10 0.771 0.563 0.524 o.464 0.641 0.555 0.518 0.502 0.468

1 1.136 0.862 0.797 0.736 1.030 0.855 0.791 0.768 0.738

10 2 1.077 0.786 0.734 0.671 0.970 0.786 0.728 0.709 0.673

3 1.030 0.746 0.690 0.638 0.883 0.747 0.690 0.678 0.638

to 0.832 0.616 0.577 M16 0.687 0.612 0.575 0.555 0.517

2 1.109 0.803 0.747 0.690 0.990 0.805 0.743 0.722 0.690
25 3 1.076 0.771 0.654 0.664 0.958 0.779 0.718 0.700 0.664

l0 0.909 0.678 0.639 0.584 0.702 0.686 0.625 0.619 0.584

1 1.169 0.886 0.816 0.753 0.988 0.871 0.812 0.785 0.753

100
2 1.129 0.814 0.756 0.704 0.968 0.817 0.754 0:736 0.704

X0.6873 1.108 0.790 0.739 0.685 0.965 0.798 0.734 0.711

10 1.006 0.731 0.690 0.638 0.847 0.746 0.689 0.673 o.638

1 1.187 0.869 0.812 0.755 0.995 0.884 0.820 0.783 0.757

200
2 1.138 0.819. 0.759	 .0.707 0.953 0.819 0.755 0.737 0.707
3 1.120 0.785 0.741 0.692 0.953 0.793 0.740 0.719 0.693

10 1.031 0.749 0.708 0.657 0.919 0.772 0.708 0.689 0.656

Y

t
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Table 4. Membrane component of the normalized stress intensity factors in a
cylindrical shell containing an axial through crack along -d<x2<-b.
The end of the cylinder x2-0 is stress-free and the crack surfaces are
subjected to uniform bending (N ll -0, M11--Mo).

kmb -b
kmb -d

R c/
h

rash
1.1 1.5 2 10 1 1.1 1.5 2 10

1 0.135 0.082 0.086 0.101 0.034 0.051 0.072 0.083 0.101

5
2 0.228 0.194 0.175 0.167 -0.061 0.119 0.150 0.158 0.167
3 0.272 0.229 0.1.80 0.171 -0.316 0.117 0.151 0.171 0.169
10 -0.511 -0.824 -0.771 -0.840 -3.223 -1.190 -0.847 -0.826 -0.838

1 0.092 0.053 0.053 0.072 0.024 0.034 0.043 0.046 0.071

10
2 0.195 .0.126 0.133 0.133 0.021 0.087 0.126 0.126 0.135
3 0.237 0.197 0.186 0.174 -0.057 0.131 0.160 0.165 0.175
10 0.068 -0.166 -0.140 -0.192 -1.886 -0.369 -0.206 -0.160 -0.191

2 0.118 0.070 0.073 0.087 0.036 0.046 0.060 0.071 0.087
25 3 0.173 0.120 0.126 0.131 0.034 0.080 0.106 0.115 0.130

10 0.312 0.210 0.164 0.145 -0.769 0.079 0.118 0.155 0.145

1 0.036 0.018 0.014 0.013 0.058 0.020 0.014 0.011 0.011
100 2 0.056 0.029 0.028 0.039 0.024 0.023 0.023 0.026 0.037

3 0.085 0.046 0.046 0.060 0.026 0.034 0.039 0.051 0.060
10 0.254 0.224 0.205 0.196 0.033 0.154 0.185 0.189 0.198

1 0.035 0.016 0.004 0.018 0.062 0.020 0.014 0.005 0.015

200
2 0.039 0.020 0.016 0.023 0.040 0.017 0.014 0.014 0.021
3 0.056 0.030 0.029 0.042 0.025 0.026 0.025 0.025 0.041
10 0.200 0.155 0.158 0.163 0.042 0.114 0.138 0.146 0.164

R

i
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Table 5. Normalized stress intensity factors in a cylindrical
shell with a stress-free end containing an axial semi-
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h = 5. 	 1

a
F

c
a

Lo	 0.2h Lo=0. h Lo= 0.6h Lo=0. h

k t 0 kb 0 kt 0 k
b
 0 kt A k

b
 (0) k t 0 kb 0

Outer Crack, R/h - 5, 'v = 0.3

1.1 3 r .833 .561 .507 .292 ' .189 .090 .00
1 1.5 .835 .824 .543 .485 .175 .169 .083 .000

2 .832 .820 . 537 .477 .210 .162 .082 -.001
10 .827 .815 .529 .468 .266 .157 .081 -.002
1.1 .90 9 7 51 10 .329 .142 .062

2 1,5 .900 .894 .678 .639 .400 .315 .137 .056
2 .898 .891 .673 .633 .395 .309 .135 .054

10 .894 .887 .664 .623 •387 .299 .133 .051
1 1.1 .930 .92 .757 .730 97 29 .191 .11
3 1.5 .927 .922 .748 .719 .486 .415 .185 .108

2 .925 .920 .744 .714 .480 .408 .182 .104
10 .922 .917 .736 .705 .472 .397 •179 .100
t.l .9 .9 71 55 .683 .638 .3 2 .275

10 1. 5 .964 .962 .866 .849 .675 .627 .334 .265
2 .963 .961 .863 .846 .670 .620 .330 .260
10 .961 .959 .857 .838 .660 .607 .322 .249

Inner Crack, R/h = 5, v = 0.3
•1 .831 1.820 .539 0 .27 .1 .085 .001

1 1.5 .821 .517 .454 .257 .145 .079 -.006
2 .816

1.809
.803 .508 .443 .250 .137 .077 -.008

10 .809 .795 .497 .429 .244 .129 .076 -.010
.1 B85 -.877 .	 1 .59 .3 2 .2 9 .123 .03

2 1.5 .879 .871 .626 .578 .347 .250 .117 .031
2 .876 .868 .620 .571 .342 .243 .116 .029
10 .871 .862 .609 .558 .334 1.233 .113 .026
1.1 .911 .905 .703 7 .428 .347 .15 .073

3 1.5 .907 .901 .691 .654 .415 .330 .151 .066
2 .905 .898 .685 .646 .408 .321 .147 .062

10 .901 .894 .676 .635 .399 .310 45 .058
1.1 .960 .957 *828 27 .577 .215

10 1.5 .958 .955 .839 .820 .616 .562 77

r.266

.203
2 .957 .954 .835 .815 .610 .554 72 .197

10 .955 .951 .829 .807 .600 .541 .189

a

a

i
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Table 6. Normalized stress intensity factors In a cylindrical
shell with a stress-free end containing an axial semi-
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h - 10.

a
h

c
a

Lo - 0.2h Lo = 0.4h Lo = 0.6h Lo - 0.8h

k 	 0 kb 0 kt 0 kb 0 kt 0 kb 0 k 	 0 k
b770-

Outer Crack, R/h - 10, v - 0.3

•	 30 .55 .500 .285 - 182 .08 7 004
1 1.5 .832 .821 .536 .476 .268 .160 .081 -.003

2 .828 .816 .528 .467 .262 .152 .078 -.005
10 .823 .811 .521 .458 .257 .146 .077 -.007
1.1 .900 9 7 3 •39 .310 .131 .050

2 1.5 .896 .890 .664 .624 .380 .291 .124 .041
2 .894 .887 .660 .619 .376 .286 .122 .039

10 .891 .8R4 .653 .610 .369 .278 .121 .037
1.1 .92 .923 .7 .71 .475 405 172 .095

3 1.5 .925 .920 .739 .709 .465 .392 .167 .088
2 .924 .919 .734 .704 .460 .385 .164 .085
10 .921 .916 .727 .695 .452 .376 .161 .081
1.1 .970 .9 3 9 .701 1 .351 .289

10 1.5 .968 .966 .879 .864 .693 .651 .344 .280
2 •968 .965 .877 .862 .689 .646 .340 .275
10 .966 .964 .872 .856 .681 .635 .333 .266

Inner Crack, R/h = 10, v = 0.3

1.1 .834 23 .542 .275 .169 .0 .000
1 1.5 .824 .812 .521 .458 .258 .147 .078 -.006

2 .818 .806 .511 .446 .250 .137 .076 -.009
10 .812 .798 .500 .433 .243 .128 .074 -.011
1.1 1 02 .363 .271 .119 .035

2 1.5 .882 .874 .629 .582 .345 .248 .112 .026
2 .879 .871 .622 .574 .339 .240 .110 .023
10 .874 .866 .612 .562 .331 .230 .108 .020
1.1 .913 .90 .70 9 23 .341 .14 0

3 1.5 .909 .903 .692 .654 .408 .322 .141 .056
2 .907 .901 .687 .648 .403 .315 .139 .053

10 .903 .897 .678 .637	 1.394 .304 .136 .050
1.1 .963 .961 53 .837 .635 .5 .28 7 .21

10 1. 5 .961 .959 .847 .830 .625 .574 .277 .206
2 .960 .957 .844 .826 .619 .567 .273 .201

10 .958 .956 .839 .819 .611 .556 .267 .194

i
4

E
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Table 7. Normalized stress intensity factors in a cylindrical
shell with a stress-free and containing an axial semi-
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h = 25.

a
F

c
a

Lo	
0.2h

L0 
= 0.4h L0 = 0.6h 770 - 0. 8h

kt 0 kb 0 kt O kb 0 k t 0 kb 0 k r 0 kb 0

Outer Crack, R/h = 25, v = 0.3

.839- .	 9 .55 9 .2	 1 .17 .0 .001
1 1.5 .829 .818 .530 .470 .263 .154 .079 -.005

2 .825 .813 .522 .459 .257 .146 .076 -.008
10 .820 .808 .514 .449 .251 . .139 .075 -.010
1.1 9 91 29 .392 .29 .12 __.0T2_

2 1.5 .892 .885 .653 .610 .365 .273 .116 .032
2 .890 .883 .647 .603 .359 .265 .113 .029

10 .887 .880 .641 .596 .354 .259 .112 .027
1.1 .925 .920 .735 .705 55 .3	 1 .157 .07

3 1.5 .922 .917 .725 .693 .441 .363 .149 .068
2 .920 .915 .721 .688 .436 .357 .147 .065

to .918 .913 .715 .681 .430 .350 .145 .063
1.1 .973 .971 91 o .70 72 .3 .2

10 1 . 5 .972 .970 .887 .875 .698 .662 .335 .275
2 .971 .969 .885 .873 .695 .657 .332 .271

10 .970 .968 .881 .868 .688 .648 .326 .264

Inner Crack, R/h = 25, v = 0.3

3 2 .543 486 .275 .1 .083 -.001

1
1.5 .826 .814 .523 .461 .258 .148 .078 -.007
2 .821 .808 .514 .450 .251 .139 .075 -.010
to .814 .8ol .503 .436 .244 .129 .073 -.012
1.1 92 5 52 71-1 .367 _._2_7r_ .119 .03

2 1.5 .885 .878 .635 .590 .348 .252 .110 .024
2 .882 .874 .627 .580 .339 .242 .107 .021

10 .878 .869 .618 .569 .332 .231 .105 .018
1.1 .917 •911 .711 77 2 .345 .144 0	 1

3 1.5 .912 .906 .697 .660 .408 .322 .135 .051
2 .910 .904 .691 .653 .401 .314 .133 .047

10 .907 .900 .683 .643 .393 .303 .130 .044
1.1 .965 .963 59 3 .592 .27 .212

10
1.5 .964 .962 .853 .837 .628 .579 .270 .201
2 .963 .961 .850 .834 .622 .573 .266 .195

10 .961 .959 .846 .828 .615 .563 .261 .189

t

A

x
i

h

k

5
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Table 8. Normalized stress intensity factors in a cylindrical
shell with a stress-free end containing an axial semi-
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h = 100.

a
F

c
a

Lo - 0.2h L0 = 0. h L0 	0.6h L 0 = 0.8h
kt 0 kb (0

k 
	 0 kb 0 kt 0

kb(0)
kt 0 kb 0

Outer Crack, R/h = 100, v = 0.3

1 . 1 •	 37 27 .547 90 .27 .170 .082 -.002
1 1.5 .828 .817 .528 .467 .260 .151 .077 -.007

2 .824 .812 .519 .456 .254 .143 .075 -.009
10 .818 .805 .50 .444 .247 .134 .073 -.012
1.1 9 9 2 21 .37 .2 .120 .03

2 1.5 .890 .883 .646 .602 .356 .263 .112 .027
2 .887 .880 .639 .594 .349 .254 ,log .023

_ 10 :884 .877 .632 .586 .342 .245 .106 .020
1.1 .923 .91 .72 95 2 .3 .149 .069-

3 1.5 .918 .913 .714 .680 .424 .343 .140 .057
2 .917 .911 .708 .673 .417 .334 .136 .052
10 .915 .909 .703 .667 .412 .327 .134 .050
1.1 .973 .971 5 73 0 3 .302 .-271-

to 1.5 .972 .970 .881 .869 .673 .635 .296 .233
2 .971 .970 .879 .867 .670 .630 .292 .229

10 .970 .969 .876 .863 .664 .623 .288 .223

Inner Crack, R/h = 100, v = 0.3

1.1 3 25 .543 5 .273 .1 .081 -.003
1 1.5 .827 .815 .525 .463 .258 .148 .077 -.008

2 .822 .810 .516 .453 .252 .14o .075 -.010
10 .816 .803 .506 .440 .245 .131 .073 -.012
1.1 .894 r ,-	 7 .656 .615 .3 7_277- .117 .033

2 1.5 .888 .880 .595 .351 .256 .110 .024
2 .885 .877

1.640
.632 .586 .343 .246 .107 .021

- 10 .881 .873 .623 .575 .334 .235 .104 .017
1.1 .920 .915 .71 .432 .353 .145 .062

3 1.5 .915 .910 .704 .669 .413 .330 .135 .051
2 .913 .907 .697 .661 .405 .319 .131 .046
10 .910 .904 .690 .651 .397 .308 .128 .042
1.1 .997 -.9.6.5- 2 3 .5 .263 .19

10
1.5 .966 .964 .857 .841 .624 .575 .254 .183
2 .965 .963 .854 .838 .619 .569 .251 .179

10 .964 .962 .850 .833 .612 .560 .246 .173

-34-

f



ORIGINAL PAGE to

OF POOR QUALITY

Table 9. Normalized stress intensity factors in a cylindrical

shell with a stress-free end containing an axial semi-
elliptic surface crack and subjected to uniform local
membrane loading or bending, R/h = 200.

a	 c	 Lo = 0.2h	
Lo = 0. 4h	 Lo = o. 6h	 Lo = 0.8h

h	 a kt 0	 kb 0	 kt 0	 kb 0	 kt 0	 kb(0) kt 0	 kb 0

Outer Crack, R/h - 200, v = 0.3
_

3 . U77 9 .27 9 .075 __._0_9_1T
1 1.5 .828 .817 .527 .466 .260 .150 .077 -.008

2 .824 .811 .518 .455 .253 .141 .075 -.010
10 .818 .805 .508 .443 .246 .133 .073 -.012

. 95 .889 _.T 0 19 .371 .2 2 .ilk
2 1.5 .890 .882 .644 .601 .354 .260 .111 .026

2 .887 .879 .637 .592 .347 .251 .108 .022
10 .884 .876 .630 .583 .340 .242 .105 .019
1.1 .922 .917 .72 93 .438 .361 .147 .o_5

3 1.5 .918 .913 .711 .677 .421 .339 .138 .054
2 .916 .910 .705 .670 .414 .330 .134 .050

10 .914 .908 .700 .663 .407 .322 .131 .047
1.1 .972 .970 TTO .667 2 .2 .223

10 1. 5 .971 .969 .876 .864 .659 .618 :278 .213
2 .970 .969 .874 .862 .656 .614 .276 .210
10 .970 .968 .872 .858 .651 .608 .272 „205

Inner Crack, R/h = 200, v = 0.3

1.1 .836 .825 .543 .273 .1 .0	 1 --.003
1 1.5 .827 .815 .525 .463 .258 .148 .077 -.008

2 .823 .810 .517 .453 .252 .140 .075 -.010
10 .817 .804 .506 .440 .245 .131 .07 -.012
1.1 9 7 . 06- 15 .3	 7 .277 .117 .032

2 1.5 .888 .881 .641 .596 •351 .256 .110 .024
2 .885 .878 634 .588 .344 .247 .107 .021
10 .882 .873 .625 .577 .335 .236 .104 .017
1.1 .920 .915 .719 .687 •	 32 .353 .1 .062

3 1.5 -916 .911 .706 .671 .415 .331 .135 .051
2 .;314 .906 .699 .663 .407 .321 .131 .046
10 .911 .905 .692 .654 .398 •310 .128 .042
1.1 .9 .9 5 51 37 .592 .262 7193

10 1.5 .967 .965 .859 .844 .625 .576 .251 .18o
2 .966 .964 .856 .841 .620 .570 .247 .175

10 .965 .963 .853 .836 .613 .562 .242 .169

y

t
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Table 10. Distribution of normalized stress intensity factors along the
crack front in a cylindrical shell with a stress-free end
containing an axial semi-elliptic surface crack and subJected
to uniform local membrane loading or bending, x = (x2+c)/a,
R/h - 10, a/h - 1, c/a - I.I.

L	 h
0

0.2 6.4 o.6 0.

x
kt I	

kb
kt

kb
kt kb kt I	

kb

Outer Crack, R/h - 10, a/h - 1, c/a - 1.1

.929 .674 o .615 .2 .380 .101 .127

.828 .680 .755 .511 .601 .290 .335 .099 .102

.688 .748 .799 .533 .573 .291 .292 .099 .072

.516 .796 .821 .548 .545 .291 .248 .095 .o44

.319 .827 .830 .556 .521 .290 .210 .090 .022

.1o8 .84o .832 .558 .505 .288 .187 .088 .007
0 .841 .830 .555 .500 .285 .182 .o87 .004

-.1o8 .837 .828 .551 .497 .283 .181 .086 .005
-.319 .816 .818 .537 .498 .277 .192 .085 .017
-.516 .777 .800 .516 .505 .267 .217 .o86 .034
-.688 .721 .769 .487 .516 .255 .246 .085 .056
-.828 .648 .719 .452 .528 .243 .274 .081 .078
-•929 .553 .639 .414 .533 .232 .306 .078 .097

Inner Crack, R/h - 10, a/h - 1, c/a - 1.1

.929 .584 .674 .476 .610 .281 .371 .097 .122

.828 .679 .754 .505 .594 .282 .325 .096 .097

.688 .745 .796 .525 .564 .282 .281 .095 .o68

.516 .792 .816 .538 .533 .282 .236 .091 .o4o

.319 .821 .824 .544 .507 .281 .198 .087 .019

.1o8 .834 .824 .544 .489 .277 .174 .085 .003
0 .834 .823 .542 .484 .275 .169 .084 .000

-.108 .830 .820 .538 .481 .273 .168 .083 .002
-.319 .809 .811 .524 .483 .266 .179 .082 .043
-.516 .772 .794 .504 .491 .257 .204 .082 .029
-.688 .717 .765 .477 .504 .246 .234 .081 .051
-.828 .646 .717 .444 .519 .235 .264 .077 .073
-.929 .551 .638 .408 .526 .225 .297 .075 .093

0

w

F	 ^

pF

4
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Table 11. Distribution of normalized stress intensity factors along the
crack Front in a cylindrical shell with a stress-free end con-
tainio g an axial semi-elliptic sur "race crack and sub ected to
uniform local membrane loading or bending, x = (x2+c)/a.

Lo/h 0.2 o.4 0.6 0.

x k 
kb

k 
kb kt

kb k 

kb,

Outer Crack, R/h = 10, a/h = 3, c/a = 1.1

.929 .549 39 .456 0 .330 57 .151 .203

.828 .671 .749 .541 .654 .372 .458 .161 1109

.688 .768 .824 .616 .683 .411 .454 ,170 .169

.516 .845 .876 .678 .703 .444 .440 .174 .142

.319 .898 .908 .723 .715 .46o .421 .173 .117

.108 .925 .922 .745 .719 .475 .408 .172 .098
0 .928 .923 .746 .718 .475 .405 .172 .095

-.1o8 .924 .921 .742 .716 .472 .404 .171 .096
-.319 .894 .903 .713 .704 .455 .408 .169 .111
-.516 .838 .868 .662 .683 .425 .416 .165 .130
-.688 .759 .80 .59;3 .654 .384 .419 .156 .149
-.828 .659 .736 .512 .617 .337 .412 .141 .163
-.929 .528 .625 .423 .563 .289 .403 .126 .171

Inner Crack, R/h = 10, a/h = 3, c/a - 1.1

.929 .55	 _ - .645 .	 7 1 .332 59 .1 .195

.828 .675 .753 .546 .659 .366 .450 .150 .176

.688 .768 .824 .610 .675 .392 ,430 .154 .148

.516 .84o .870 .659 .680 .411 .400 .154 .116

.319 .888 .896 .691 .678 .422 .368 .150 .o89

.108 .911 .907 .704 .672 .425 .346 .148 .o68
0 .913 .908 .704 .669 .423 .341 .148 .o64

-.io8 .909 .905 .699 .666 .419 .340 .146 .065
-.319 .881 .889 .675 .659 .4o6 .347 .143 .080
-.516 .829 .858 .633 .648 .384 .365 .141 .100
-.688 .754 .808 .574 .631 .354 .380 .135 .122
-.828 .658 .734 .503 .6o6 .318 .387 .124 .142
-.929 .537 .626 .421 .560 .278 .388 .114 .155

M
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Table 12. Distribution of normalized stress intensity factors along
the crack front in a cylindrical shell with a stress-free
end containing an axial semi-elliptic surface crack and
subjected to uniform local membrane loading or bending,
R/h - 25, a/h	 1, c/a - 1.1, x - (x2+c) /a.

Lo/h0.2	 0.4	 0.6	 0.8

kt	
kb	

kt	
kb	 k 
	

kb	 k 
	

kb

x	 outer Crack, R/h - 25, a/h - 1, c/a, - 1.1

.929 .584 .675 .479 .614 .285 .377 .099 .125

.828 .68o .755 $09 .599 .286 .331 .097 •099

.688 .747 .798 .531 .570 .287 .287 .096 .070

.516 .795 .820 .545 .541 .287 .242 .092 .o4l

.319 .825 .829 .553 .517 .286 .204 .087 .019

.108 .839 .830 .553 .500 .283 .181 .085 .004
0 .839 .829 .551 .495 .281 .176 .084 .001

-.108 .835 .826 .547 .492 .278 .176 •.084 .003
-.319 .814 .816 .534 .494 .272 .187 .083 .014
-.516 .776 .799 .513 .502 .263 .212 .083 .032
-.688 .721 .769 .485 .513 .252 .242 .o84 .054
-.828 .648 .719 .45o .526 .24o .271 .o83 .076
-.929_ .553 .639 .413 .532 .230 .3o4 .079 .096

Inner Crack, R/h - 25, a/h - 1, c/a - 1.1

.929 .583 .674 .475 .609 .280 .369 .096 .121

.828 .678 .753 .504 •593 .281 .324 .094 .096

.688 .745 .796 .525 .563 .281 .280 .094 .066

.516 .792 .817 .539 .534 .281 .235 .090 .039

.319 .822 .825 .545 .508 .280 .196 .086 .017

.108 .835 .826 .546 .491 .277 .173 .o84 .002
0 .835 .824 .543 .486 .275 .168 .083 -.001

-.108 .831 .822 .539 .483 .272 .168 .082 .000
-.319 .811 .812 .526 ,485 .266 .179 .o81 .012
-.51 6 .773 .795 .506 .494 .258 .205 .082 .029
-.688 .719 .766 .479 .507 .247 .235 .081 .051
-.828 .646 .iM .446 .521 .235 .265 .077 .074
-.929 .552 .638 .410 .528 .226 .298 .075 .093
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Figures
s

Fig-	 1 Geometry of the semi-infinite cylinder with a part-through
crack.

Fig.	 2 Variation of the membrane component of the normalized stress
Intensity	 factors	 in a semi-infinite cylinder containing a
through crack and subjected to uniform membrane loading
Nil-No in the crack region. 	 kmm(-b)-1.204 and k1y1m(-d)-1.097
shown in the figure are the stress	 intensity factors	 in a semi-
infinite plate with the same crack size,	 relative crack location
and loading as the shell.

Fig.	 3 Membrane component of the normalized stress 	 intensity factor
In a semi-infinite cylinder containing an axial edge crack and
subjected to uniform membrane loading N11-N o in the crack
region.

Fig.	 4 Bending component of the normalized stress	 intensity factor in
a semi-infinite cylinder containing an axial edge crack and
subjected to uniform membrane loading N ii -No in the crack
region.

Fig.	 5 Bending component of the normalized stress intensity factor in
a semi-infinite cylinder with an axial edge crack which is sub-
jected to uniform bending M iI -Mo in the crack region.

Fig.	 6 Membrane component of the normalized stress 	 intensity factor in
a semi-infinite cylinder having an axial edge crack and subjected
to uniform bending M I i-Mo in the crack region.

Fig.	 7 Membrane component of the normalized stress 	 intensity factor
in a semi-infinite cylinder containing an axial 	 edge crack and
subjected to concentrated membrane wedge forces P at the cir-
cular boundary.

Fig.	 8 Bending component of the normalized stress intensity factor
in a semi-infinite cylinder having an axial edge crack and sub-
jected to concentrated membrane wedge forces P at the circular

^,. boundary.

Fig.	 9 Membrane component of the normalized stress intensity factor
in a semi-infinite cylinder having an axial edge crack and sub-
jected to membrane wedge forces P atthe midpoint of the crack.

Fig.	 10 Bending component of the normalized stress intensity factor in a
semi -infinite cylinder having an axial edge crack and subjected
to membrane wedge forces P at the midpoint of the crack.

Fig. 11	 Effect of the location of concentrated membrane wedge forces on the
membrane component of the normalized stress intensity factor in
a semi-infinite cylinder containing an axial edge crack.
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Fig. 1	 Geometry of the semi-infinite cylinder with a part-through
crack.
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Fig. 2	 Variation of the membrane component of the normalized :'cress
intensity factors in a semi-infinite cylinder containing a
through crack and subjected to uniform membrane loading
N1 1 =No in the crack region. kmm(-b)=1.204 and kmm(-d)=1,097
snown in the figure are the stress intensity factors in a semi-
infinite plate with the same crack size, relative crack location
and loading as the shelf.
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Fig. 3	 Membrane component of the normalized stress Intensity factor'
in a semi-infinite cylinder containing an axial edge crack and
subjected to uniform membrane loading N11=N0 in the crack
region.
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Fig. 4	 Bending component of the normalized stress intensity factor in
a semi-infinite cylinder containing an axial edge crack and
subjected to uniform membrane loading N 11 =No in the crack

region.
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Fig. 5	 Bending component of the normalized stress intensity factor in
a semi-infinite cylinder with an axial edge crack which is sub-
jected to uniform bending M 11 =Mo in the crack region.

V ^



Ito
ORIGINAL PAGE BSS"

OF POOR QUALIW

kmb

Q1

0,2

00
5	 n!h	 10

Fig. 6	 Membrane component of the normalized stress intensity factor in
a semi-infinite cylinder having an axial edge crack and subjected
to uniform bending Mll=Mo in the crack region.
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jected to membrane wedge forces P atthe midpoint of the crack.

o



a a

P

N- - 
I*..*

.c a-
v

x

-2

r s'

i

I

Y

k

:a

0
x

ORIGINAL, PAGE IS
OF POOR QUALITY

0.4

0
	 ^--100

5	 a/h	 10

25

R =5
h

10

Fig. 10	 Sending component of the normalized stress intensity factor in a
semi-infinite cylinder having an axial edge crack and subjected
to membrane wedge forces P at the midpoint of the crack.



i

i

V d
.,era,

6

5
kj (0)

C-)hF 4

3

2

1

00

OV 0

U
l~ p0i3 QUALITY

h

a _10
h

^a_
h 2

s/a	 2

0

Fig.* 11	 Effect of the location of concentrated membrane wedge forces on the
membrane component of the normalized stress intensity factor in

{
`	

a semi-infinite cylinder containing an axial edge crack.


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf

