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INTRODUCTION

The conditions for the static equilibrium of an elastic body are

described by an elliptic system of nine partial differential equations for the

displacements and stresses. This paper describes a finite difference scheme

which can be solved by standard direct or iterative methods and yields a

solution which approximates smooth displacements with second-order accuracy.

Iterative techniques can be attractive as a means of solving three-dimensional

problems because they minimize storage requirements and present an algorithmic

structure well-suited to advanced computer architectures. For material

problems_ these features can be useful for solving layered composite materials

as well as materials with nonlinear properties.

As described here, a serious limitation of this method vis-a-vis finite

element methods is that it is applicable only to bodies which can be

subdivided into cube-like volume cells. However, a means of removing this

restriction will be described in another paper.

Part I describes an algebraic approximation to the equilibrium conditions

in a cell as expressed by tractions and displacements on the surface of the

cell. The condition that traction forces balance across cell faces leads to

an algebraic condition for equilibrium between any neighboring cells expressed

solely in terms of displacements. A finite-sum approximation to the work due

to tractions leads to an energy estimate and to a variational description of

the algebraic equilibrium equations.

Part II illustrates this development for an isotropic material using a

plane stress assumption to reduce the problem to two dimensions. Several

simple iteration schemes are used to investigate the numerical convergence of

the method when a singularity is present.

The methods described in this paper are closely related to those

described by the authors in the context of a simpler problem [I].
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PART I

General Development

1.1 The Equilibrium Problem

In this section we describe the equilibrium equations for an elastic body

and attempt to motivate the origin of the finite difference scheme which will

be described in the following section.

We consider a material body occupying a domain _ on whose boundary, r,

I )Tn_ is an outward unit normal; _ = uI, u2, u3 denotes the displacement

vector, T = (!i, !2' !3) the symmetric stress tensor, and € = (_i' !2' !3 )

the symmetric strain tensor.

In the absence of body forces, the equations of equilibrium are described

by the following system of first-order partial differential equations:

a) _ +

Xl _T1 x2 _T2 + 3x3 r3 = 0,

(I) b) € = (grad u + grad T u)/2 in _,

3

c) r. = _ c.. €. i = 1,2,3
-l j=l lJ -j

Here (a) states the conditions for the equilibrium of forces, (b) defines the

strain tensor in terms of the displacement, and (c) is the constitutive

relationship between stress and strain (Hooke's Law). In (c), (cij) involves

21 parameters. By assumption

(2) €T T = _ €.. T.. > 0
lJ 13
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with equality holding iff € = 0.

On the boundary surface F, we let p _ T.n denote the traction due to

the stress. Then boundary conditions associated with (I) are

0

u = u on rI

(3)
0

p = p on F2 ,

where rI and F2 form a disjoint partition of r; if FI = _ then the

solution of (I) will be determined to within a rigid body displacement.

As a result of solving this boundary value problem_ the tractions

will be determined on FI and the displacements u_u- on r2. Thus the

tractions on r, say _(F), will be related to the displacements on _(F)

on F, a fact we indicate symbolically by

(4) p(F) = R_ u(r).

We call the boundary operator R9 a transmission operator.

Let _(_) _ {m} denote a partition of 9 into volume cells. Standard

integration arguments show that u___ must be continuous and the surface

tractions must balance across cell faces. Clearly, a necessary and sufficient

condition for equilibrium in 9 is that any individual cell be in equilibrium

with any neighboring cell.

Consider a cell m whose volume is 0(h3), where h is a representative

length scale, and whose boundary surface _ consists of m faces. In

equilibrium_ the tractions p(y) on y will be related to the displacements
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_(y) on y by means of a transmission operator R, i.e., P(T) = R u(y).

Let <_>y indicate a vector whose m components represent the average values

of i on the faces of m. We may then relate the average tractions <p>y on

the faces of m to the average displacements on the faces by

(5) <p>y = Rh <U>y

where Rhm is an mxm transmission matrix which is related to R . When

conditions for the balance of average surface tractions across cell faces are

adjoined to (5), as well as boundary conditions for average tractions and

displacements on P, we may expect that the resulting system of algebraic

equations for average displacement values will yield an approximation to the

equilibrium problem for (1) - (3) as h . 0.

This approach can be made practical only if the transmission matrices

Rh_ in (5) can be approximated without an a priori knowledge of the

transmission operators R related to the continuous problem. A general

method for constructing Rh on arbitrary cells will be described in a

separate paper by one of the authors.

In this paper we describe a simple construction for Rh which results

when cubical cells are employed. In this case, the equilibrium conditions (5)

and the balance of traction conditions can be given a particularly simple form

using finite difference notations and which we then call a compact finite

difference scheme. Finite difference methods can then be used to obtain a

finite sum energy estimate and also to characterize the average displacement

values as the solution of a quadratic variational problem. As a result, the

algebraic solution of the compact scheme can be obtained by either direct or
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iterative methods using a priori facts about the structure of the algebraic

system. This development is explained below.

1.2 A Compact Difference Scheme

In this section we describe a compact difference scheme (eq. (I0)) which

approximately describes the equilibrium of a cell due tO displacements and

tractions on the cell faces. We then develop an energy estimate and present a

variational principle for the difference scheme. An appropriate method for

solving the difference scheme is given in the following section.

We suppose that _ can be partitioned into regular cubical cells whose

faces are parallel to the coordinate axes; m(x.) indicates a cell with

centerpoint at _ = (Xl_ x2_ x3). We denote the average value of a function

on a face whose centerpoint is __ by _(_)_. If hi _ Ax./2,1 i = i_2,3_

the volume of m is Am = 8hlh2h3 •

Next9 define central average and central divided difference operators

_i and 61 by

_I i(_) _ (_(Xl + hl' x2' x3) + !(xl - hl' x2' x3))/2

(6)

61 +(_) _ (+(xI + hI, x2, x3) -_(x I -hl, x2, XB))/2h i •

The operators B2_62_B3 and 63 are defined similarly.

Also define

gradh _ _ (61 _, 62 _, 63 _)T

(7)

divh _ _ 61 uI + 62 u2 + 63 u3"
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Finally, we write

(_T) ---(_1 £1' _2 --r2'P3 --r3)
(8)

g -- (g--l'!2' !3 )"

The restriction to cube-like cells simplifies the evaluation of surface

tractions. Let $+
i' i = 1,2,3, denote the centerpoints of the opposite faces

of a cell _0. The outward normals n(_) satisfy n(_+) = -n(_7) so that

the average surface tractions p($_) are given by

(9) P(_) = + _Ti($_), i = 1,2,3.

In the following discussion the stress components arise as traction

forces on the faces of cells. An important consequence is that then the

conditions for the balance of average traction forces across cell faces simply

reduce to the conditions that the jump in value of T. vanish across a face--i

xi = const., i = 1,2,3.

Corresponding to the equilibrium equations (I), we propose to consider

the following compact scheme: in each cell

a) 61 _1 + 62 _2 + 63 _3 = 0

3

b) _. T. =
C !j i = 1,2,3

I --i j=1 ij '
(10)

c) _ = (grad h _ + grad_ _)12

i# j2h2 2 h2
. u - _. 6. T. = pj u - 6 Tjd) _z -- i l i --i -- j j j '

i,j = 1,2,3.
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Here 2 indicates a positive diagonal matrix. Clearly, (a), (b), and (c)
i

are consistent with (1); the significance of (d) will become clear from later

developments.

Figure 1 indicates, with reference to a rectangular cell, the variables

associated with the sides of the cell by the scheme (10).

If the strain tensor (g) is eliminated from these equations there thus

results a system of 18 algebraic equations for the 18 components of u__ and

the 18 components of the tractions on the faces of a cell.

We now indicate how (10) leads to a finite-sum energy estimate. Recall

that the work W done on the body can be evaluated from (i) by the use of

integration-by-parts and the use of Gauss" Theorem with the result

T 0 T 0 uT(Ii) 2W = I f _'' r'" d_° = f P u a_ + f u p dy- f- div T d_0.

i,j _ lJ lJ F1 F2

For finite differences summation-by-parts results from the identity

(12) _i(_) = (_i _)(_i 4) + (_i _)(_i !)' i = 1,2,3.

using (6). Also, using (7), Gauss' Theorem holds in the form

(13) I div h v A_0 = I vT_ n Ay,
mc_ F

in which Ay is the area of a face of a cell on which n_n- is the outward

normal.
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Using (12),

T 3 T

(14) divh u z = _ _i u • 6. z. + (_'_)h'
- i=l -- I -i

where, from (10c),

3

(15) (s'Z)h - _ T--i (_i _i )"
i=l

Next, using (10d),

2 h 2. 2(_i uT)(6" _') : _T % 6. _. + I _" (6 _ )
i -- I --I -- i i --i i i i i --i

where _ is some constant. Thus, if we define

(16) [g'Z]h = (g'Z)h + _ 2 h_(6 i z.)2--i
i

then (14) assumes the form

T _] + _T diVh z.(17) divh _ z = [s, h -

Recalling (2) and (10b), we see that (E,Z)h is a positive definite

function of the strain tensor; hence, from (16), so also is [_,T]h. Also,

recalling (9), diVh T z is seen to represent the work per unit volume done

by traction on the faces of a cell _.
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Summing (17) over cells in

(18) [ divh uTTAm = [ [s,r]h Am + [ _T diVhrAm,
m_ -- mE_ mg_

so that for a solution of the compact scheme (i0)

(19) _ divh uTTAm = _ [_,T]h Am > 0.
m_fl mc_

Also, using Gauss" Theorem in the form (13), (18) can be written (compare

(11))

(20) I [g,T]h Am : _ pT u0 Ay + _ uT p0 Ay - I _T diVhrAm,

m_fl F1 r2 m_

where use has been made of (9). In this equation, u0 0__ , _ are to be

interpreted as the average values on cell faces on r of the data given by

(3).

Consider a problem in which u__ is prescribed everywhere on F. The

preceeding discussion can be used to verify that the average values of

displacements on cell faces which solve the compact scheme (i0) also solve the

variational problem

(21) min _ [€,_]h Am : _ pT u0 Ay
u m_ F

for u satisfying the boundary conditions on F. The Euler conditions for

this problem simply express the balance of traction forces, expressed in terms

of u by the use of (i0), across cell faces.
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As mentioned earlier we will describe elsewhere how these ideas may be

adopted to treat cells having general shapes. For this reason we shall not

present here the details of the convergence argument as it applies to (I0)

except to cite the result: the solution u h of (10) converges to the

solution u_ of (I) with accuracy 0(h 2) in an _2-norm while ph(uh )

converges to p(u) with an accuracy 0(h). These remarks apply, of course,

only to sufficiently smooth solutions of (1).

An important feature of the compact scheme (10) is that it only employs

values of the displacements and tractions which arise as average values on

cell sides. This is in contrast to many finite element methods which employ

edge and vertex values of u.

1.3 Solution Method

The compact scheme (I0) may be solved by direct algebraic techniques such

as Gauss elimination, considering the displacements and tractions as unknown

variables. A preferable approach, which we shall now describe, is to

eliminate the traction variables so as to obtain an algebraic system involving

only the displacement variables. We first indicate, in general form, the

steps which lead to this elimination. The specific result upon which

numerical calculations can be performed is given by equation (32).

.(m), i = 1,2,''.,6 indicate a face of a cell and writeLet YI

.... _ _ [u(Y1), u(Y2 ) ... )IT[u]y . ' ' _(Y6 '

(22)

[ely E [P(YI ), P(Y2), "'', p(y6)] T,
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where, for brevity, reference to m has been omitted.

Eliminating the strains from (I0) and recalling (9) we may solve (10) for

[p]y to obtainthe tractions in terms of the displacements [u]y

h(23) [p]y R [u]y,

where Rh is a block 6x6 transmission matrix associated with m which we

write in terms of its rows as

_(YI )

rh( )
(24) --m Y2

Rh E

rh( )
-_6

(A direct evaluation using (i0) shows that this matrix is symmetric.) Thus

(23) states

(25) p(yi(m)) = _(yi(0_))[u]y(_0), i = 1,2,-..,6.

As noted earlier, diVh T T represents the work per unit volume due to

the tractions arising from the displacements on the faces of _. Let

Ay = diag(AYl,AY2,...,Ay6 )T.
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In terms of the notations just described and recalling (19) we then have

T _)Am = [u]_ AT [p]y _ T Rh Y(26) 0 < (divh u _ = [u] Ay [u] .

This shows that Rh is positive semidefinite since the equality in (26)

holds, according to (19), iff (_s) = 0 and this is seen to hold

iff _(yi ) = constant, i = 1,2,..-,6.

T

Since [s'_]h = diVh _ z' the variational principle (21) also applies in

the form

(27) min _ [u]i Ay Rh
u _EQ - _o [u]T(_)"

The conditions for a minimum resulting from this problem are, as remarked

^

earlier, simply the balance of average traction forces across any face y

common to any neighboring cells which, using (25), may be written as

_ ^ [_]_(_) ^ [_]_(_(28) (Y) + -t0rh'(Y) ") = 0.

^

If T lies on rI, then also

^ 0 ^
(29a) uCy) = u (y)

^

while if _, lies on r2, then

h ^ = p0(_)
(29b) _o(y)[_]y(_) _ .
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^

Earlier remarks show that this system has a unique solution for _(y)

unless rI = ¢.

We now give the explicit result of applying (28) on cell faces. Using

(i0c)

(30)

- 61Ul (62u I + _iu2)/2 (63uI + _IU3)/2-

€ - (_gl,C2,_€3) = (_2Ul + _iu2)/2 62u2 (63u2 + 62u3)/2

(_3Ul + _iu3)/2 (63u2 + 62u3)/2 63u3
w

Let

2 h_ i = 1,2,3,
Pi = m'1 I

(31)

A = Pl P2 + P2 P3 + P3 Pl '

and let _. indicate a cell whose centerpoint is x = (iAx I JAx2, kAx3).z,j,k - '

Then across the faces of _i,j,k incident with mi+1,j,k' mi,j+l,k' and

we find
m" k+ll,j,

(32a) [A_ Cl_ €__+h I p2(_l- _3)u + hl p3(_l- _2)u]mi,j,k

]

L z
J_Oi+l,j,k
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(32b) [A _ c2£ __ + h2 p3(_2 - BI)U + h2 pl(H2 _ H3)u]mi,j, k

= [A _ c2%-c%- h2 P3(_ 2 -BI)U- h2 Pl(_ 2 - _3)u]_0.
i,j+l ,k

(32c) [A _ c3% __% + h3 p2(H3 - _l)U + h3 pl(H3 - B2)_u]m.
1,j,k

= [A _ c3£ !%- h3 P2(_3- _l)U- h3 PI(_3- B2)u]_o. "
z,j,k+l

In these equations we have left unspecified nine parameters which arise

in the matrices K_ = . hi2 These may, as indicated in the next section,i Pl I "

be chosen for convenience (cf. [1]).

We call (32) the stress-eliminated form of the compact scheme (I0).

In summary, then, the system of equilibrium equations (28)_ (29), in

which Rh is the transmission matrix for the compact scheme (10), arises as

the Euler equations for a related positive definite quadratic variational

problem. The system (32) is thus seen to be solvable by direct elimination

methods without pivoting; if iterative methods are considered Gauss-Seidel and

SOR methods are applicable.
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Part II

Example of an Isotroplc Material

II.I Equilibrium Equations

We consider an isotropic material characterized by Young's modulus E

and Poisson's ratio u. We use a plane stress assumption to formulate the

problem in two dimensions, the xI - x2 plane say. This involves setting

_3 = 0 and assuming that the stress components TII , T22 , T21 are

independent of x3 (Timoshenko and Goodier [2]). In two dimensions, the

stress-strain relationship (Ic) may be written in component form as follows:

TII = _ gll + n g22

T22 = _ €11 + _ _22

TI2 = T21 = o €12

or, in terms of the displacement _,

uI n u2
_11 = _ _xI + 8x2

(33) T22 = n _xl uI + _ _x2 u2

_ 1

r12 = _21 2 °(_x2 ul + _xI u2)"
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The parameters _ _ and o are given in terms of Young's modulus and

Poisson's ratio as follows:

E Ev E

- v2 , n - 2 ' o - .(i - ) (I - ) (I + _)

I
The quantity _ o is known as the shear modulus.

II.2 Method of Solution

In this section we write down the compact scheme for the two-

dimensional case when square cells are employed and obtain the transmission

matrix which relates the tractions and displacements in each cell. The

properties of the resulting system are then discussed in the context of its

iterative solution.

Analogous with (i0), and upon elimination of the strains, we have the

following compact scheme for the components of displacement and stress:

Ii rll + 6 _i = 0

xI x2 2

(34a)

T2 +6 =0

t xI I x2 T22

TI = _ 6Xl uI + n 6x2 u2_xI I

(34b) _x2 T22 = n 6Xl uI + _ 6x2 u2,

= ! O(6x2 uI + 6 u2)_xI r21 = _x2 T12 2 xI
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2 h2
2 h2 rI - c 6 r

(_x2 - _xl)u I = a _x2 2 xI II

(34c)
_ d2 h2

- ]u2 = b2 h2 _x2 T22 xI _21(_x2 _x I

2 iag(a2' ]' K2 d d2) in the notation of (10). Usingwhere _i = d b2 2 = iag(c 2,

(34a) and putting eI a2 + c2 B2 = b2 + d2 (34c) become

(Ux2 - Bxl]u I = O1 h2 6x2 TI2

- ]u2 = B2 h2 _x2 T22"(Bx2 _x I

Using (9) to eliminate the strains from (31) we may solve for the

tractions [_]T in terms o_ the displacements [u]y in each cell _ to

obtain

(35) [-P]_= Rh[u-]_'

and in which the transmission matrix R_ is given by
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(36)

I + (9Cli -(I - ec12 ) I - eCll -(I + eCl2 )

Rh _ e-1 -(I - 0c21) I + ec22 -(I + @c21) I - ec22
_0 2h I - ec -(I

11 + ec12) I + ec11 -(I - ec12 )

-(I + (9c21) I - (9c22 -(I - ec21 ) I + ec22 J

Here

0] I iJ, = ,

Cli i/2o c22 0

T I°I °I= , e = 1

c21 = c12 1/2o 0 e2 "

The matrix Rh is obviously symmetric and is easily shown to be

positive semi-definite for positive eI and 82. Balancing the tractions

across vertical and horizontal faces common to neigboring cells, we obtain,

with reference to Figure 2,

(37a) 2(1 + (9 Cll)U(Po) + (I - (9 Cll)(U(Pl) + u(P2))

= (I - (9Cl2)(u(Q1) + u(Q4)) + (I + (9 c12)(U(Qo) + u(Q3)) '

(37b) 2(1 + (9 c22)u(qo) + (I - (9 c22)(u(q1) + u(q2))

= (I - (9 c21)(U(Pl) + u(P4)) + (I + (9c21)(U(Po) + u(P3)) "
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These equations correspond to the stress-eliminated form (32). If

r2 = _, i.e., the values of the displacements are prescribed on the boundary,

then the coefficient matrix of the above problem is symmetric and positive

definite. These properties have an important consequence so far as the SOR

method is concerned, since for such a system the convergence of SOR is

guaranteed for any value of the relaxation factor e in the range, 0 < _ < 2,

(see Varga [3], Young [4]). Similar conclusions can be expected when mixed

boundary conditions are considered.

A natural iterative method for solving (37) is line SOR. The method

involves solving block tridgiagonal systems firstly along all horizontal lines

and then along vertical lines. In the next section we will compare this and

point relaxation methods to a simple problem.

11.3 Numerical Example

Consider a square domain on whose vertical edges the displacements are

fixed and which experiences a uniform load along its top horizontal surface.

This situation is illustrated in Figure 3.

The boundary conditions are

T
u = (0,0) on x = 0,i

T

_2 = (0,0) on y = 0

_2 = (0'-I)T on y = i.

Our experiments were performed using the plane stress approximation with

values of Young's modulus and Poisson's ratio given by E = 107 , _ = 0.3.
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The equilibrium displacement uI is anti-symmetric and u2 is symmetric

about the line x = 1_ . However, in the computations that were performed, no

advantage was taken of this symmetry.

For the choice of parameters eI = 02 = 2/o, an important simplifi-

cation occurs in (34), viz.

I - OA = diag(l - 2_Io, 0),

^

I - OA = diag(0, i - 2_/o).

It is with the above values of eI and e2 that the results in this section

were obtained.

In our experiments we used the point Gauss-Seidel, point SOR and line

SOR methods. The parameters for the SOR methods were chosen to be the optimum

ones for Laplace's equation. Initially, the value of u was taken to be zero

at all the grid points. Keeping in mind that the method can be expected to

yield only second-order accuracy, the iterations were terminated when the

%2- norm of the residuals was less than 10-3 .

In Table I we show the dependence of the number of iterations required

to attain the convergence criterion on the mesh size for various iterative

schemes.
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Table I. Dependence of Number of Iterations on Mesh Size

h pt. Gauss-Seidel pt. S0R line S0R

i/2 42 34 --

1/4 100 54 30

i/8 325 97 51

1/16 1240 191 99

These results indicate that the rates of convergence of the Gauss-

Seidel and S0R methods on this problem are 0(h 2) and 0(h) respectively.

Table II contains the values of the %2-norms of the solutions to the stress-

eliminated equations (37) for different grid sizes.

Table II. %2-Norms of Numerical Solution

h I1Ulll2 llu2H2

1/2 0.0221 0.0979

I/4 0.0086 0.0710

I/8 0.0055 0.0603

1/16 0.0048 0.0568

1/32 0.0046 0.0556

We note that the convergence of llulJ[2 is 0(h2i while that of

flu2112 is 0(h 3/2) as h . 0. This degradation in behavior is due to the

singularities which are located at the top corners.
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The values of the tractions are calculated by substituting the values

of u in (35). The components of displacement and traction display the

relevant symmetric or anti-symmetric properties to four decimal places. There

are two integral checks that can be carried out to verify the computations_

namely

1 I

- f rlI(O,y)dy + f Tll(l,y)dy = O,
0 0

(35)
1

I

f T21(I,y)dy = _ _ "0

These conditions express the integral condition

f T • ndy =0
r

i
using the assumed symmetry of T12 about x = _ . These integrals were

computed numerically using the midpoint rule. The first integral check held

exactly while the second one was found to be correct to the number of decimal

places specified in the displacement calculation.

Various plots are given of the solution. Figures 4, 5, 6 are contour

plots of the stress componets TII, r22_ T12 respectively. These were

obtained using 64 cells in each direction. Figures 7a and 7b show the

principal stress vectors within each computational cell. The principal stress

directions are defined to be those vectors _ € 0 which satisfy the

eigenproblem

(T - ll)x = O.
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Concluding Remarks

The treatment of equilibrium with a volume force _ requires no essential

modifications to the method. In this case (la) has the form _ _ T. = _;
i xi --i

correspondingly (10a) is modified to

(10a*) _ _ T. = f .
i x.1--i --

We leave the details of the consequent developments to the reader.
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u,I 2

U'!l w u,I I

u,! 2

Figure 1. Variables associated with cell sides by the

difference equations in two dimensions.

Q2
I

P3 - P4

QO Q4
I I

PI --Po P2

Q1 Q3
I I

Figure 2. Points associated with the stress-eliminated

equations (37).
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!2 = (0,-i)T

r

/
/ /
/ /
/ /
/ /
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Figure 3. Description of the plane stress test problem.
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Figure 5. Plot of the Stress component z22"
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