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Abstract

We present a new single level effectively explicit implicit algorithm for
gasdynamics. The method meets all the requirements for unconditionally
stable global iteration over flows with mixed supersonic and subsonic zones in-
cluding blunt body flow and boundary layer flows with strong interaction and
sireamwise separation. For hyperbolic (supersonic flow) regions the method
is automatically equivalent to contemporary space marching methods. For

elliptic (subsonic flow) regions, rapid convergence is facilitated by alternat-

ing direction solution sweeps which bring both sets of eigenvectors and the
influence of both boundaries of a coordinate line equally into play. Point by
point updating of the data with local iteration on the solution procedure at
each spatial step as the sweeps progress not only renders the method single
level in storage but, also, improves nonlinear accuracy to accelerate conver-
gence by an order of magnitude over related two level linearized implicit
methods. The method derives robust stability from the combination of an
eigenvector split upwind difference method (CSCM) with diagonally dvminant
ADI (DDADI) approximate factorization and computed characteristic bound-
ary approximations. The properties and performance of the technique are
demonstrated ir a variety of quasi 1-D nozzle flows including completely
subsonic or supersonic or mixed subsonic/supersonic with sonic points and
shocks. The performance of the new method in 2-D and axzisymmetric flows
are cormpared against the precursor two level linearized scheme in an invis-
cid inlet problem for which the exact solution is known and in a viscous
transonic nozzle problem previously studied both experimentally and com-
putationally. :
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Research Report

Universal Single Level Implicit

Algorithm for Gasdynamics

by

C. K. Lombard and Ethiraj Venkatapathy

I. Background

_ The motivation for the present work stems from the following reason-
ing. Parabolized Navier Stokes (PNS) procedures can eflectively solve steady
supersonic and boundary layer flow problems with small adverse pressure
gradient at a fraction of the cost required by conventional time dependent
procedures. But PNS procedures are ill-posed for subsonic and stream-

——

wise reversed flow problems from the theoretical point of view, a failing

that is manifested in grid sensitive numerical stability problems. On the

-




q

_other haﬁd, certain eigenvector split upwind differenced implicit time depen-
dent procedures are unconditionally stable, practically robust and their ap-
plication is not restricted with respect to the nature or type of compres-
‘sible flow. A solution procedure that has the speed and the storage re-
quirements of PNS schemes and the stability and ‘applicability of the im-
'plicit, upwind time marching schemes will be very useful and desirable. We
give such a procedure here. Before we go on to describe this novel al-
gorithm, we present a brief background to PNS and other related tech-
niques.

The Beam-Warming factored implicit algorithm! with the Baldwin- .

Lomax thin layer viscous approximation® has provided the basis for two
similar space marching (PNS) procedures®4 for the compressible Navier-
Stokes equations. These PNS methods which are highly eficient from
the points of view of both data storage and computer time have proven
effective for flows™® with favorable streamwise pressure gradient or with
‘relatively small adverse pressure gradients. However, in the presence of
strong adverse pressure gradient such as occurs in a wing or fin root regions
the contemporary PNS methods suffer numerical stability problems and may
infer streamwise separation even where separation doesn't occur’. In sﬁch
unseparated (perhaps weakly separated) regions, numerical stability may be
maintained at the price of employing large amounts of artificial viscosity
with a resulting loss in predictive accuracy and knowledge of the actual

state of the flow. Where strong streamwise separation occurs the methods
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are unstable and cannot proceed. Particularly for «ue increasingly relevant
‘laminar flow situation that will be encountered at very high altitude by
aerodynamic systems such as orbital transfer vehicles (OTV's) and space
shuttle, streamwise separation becomes a likely occurrence® in compression
corners associated with canopies, pods, flared bodies, wing or fin rocts and
deflected control surfaces. Thus a more genecral technique is needed that
is inherently stable for all types of upstream influence. At a minimum
the mixed elliptic hypérbolic problem requires global iteration, preferably
with type dependent differencing. Various steps in this direction have
recently been taken by Rakich®, by Rubin and Reddy!® and by Rizk and

Chausseell,

Rakich® utilized gloLal iteration with Vigneron's Mach number depen-
dent upwind and downwind splitting? of the pressure gradient for
the streamwise momentum eguation. The approach provides an im-
provement in both accuracy and stability for both weakly interactive
boundary layer flow and strongly interactive flow without (signiﬂcant)
streamwise separation. Global iteration i5 carried out by " march-
ing the PNS equation repeatedly only zlong the downstream direc-

tion.

For incompressible flow Rubin and Reddy!® (also Lin and Rubin!?
for supeérsonic flow) introduced type dependent (upwind) diflerencing
of the streamwise velocity along with pressure splitting in an im-

plicit method involving a staggard grid - dependent variable location




scheme. This method was extended to compressible flow by Khosla
apd Lai'®. The method admits strong interaction with streamwise

separation but is not homogeneous across the spectrum of Mach nam-

. ber regimes of interest here. Other PNS related methods for subsonic

flow and boundary layer flow with streamwise reversal have recently

. been reviewed by Brown!* in conjunction with a new staggered grid

scheme.

Most immediately relevant, Rizk and Chaussee!! presented a hybrid
technique of space marching in snp‘ersonic zones and relaxation with a
Beam-Warming time dependent central difference method over zones of
strong upstream influence with streamwise separation. They have two
variations of the time dependent method: one fully implicit requiring two
levels of storage and matrix inversion procedures in all space directions,
the other explicit in all space directions but the thin layer direction and
requiring only one level of storage as in a space marching algorithm.
Both procedures require the same several hundred iterations minimum to

reasonably ~onverge, with the semi explicit procedure requiring substantially

less. machine time. However, both procedures are inherently unstable, .-

except for the use of artificial dissipation. The marginal stability coupled
with the lack of type dependent differencing and well posed boundary
approximations all contribute to slow convergence. In balznce, while
workable, the hybrid approach leaves something to be desired fro= the points

of view of convenience, computer time and internal consistency ¢! the global
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solution procedure.

)

A new globally iterated scheme related to that which will be presented
. here, has been presented by Moretti’>. In his procedure for steady invis-
cid flows, the Euler equations are cast in Riemann variables and the result-
ing uncoupled equations are solved by integrating each Riemann variable
separately, sweeping back and forth alternatively along each coordinate line.
The coupling between the equations and, thus, the non-linearity are intro-
duced only through the boundaries and the updating of state after com-
plete sweeps. As can be inferred from the results to be presented here, the
reduced coupling inherently limits the rate of convergence of Moretti's method
and the procedure is.-not extendable to the compressible Navier-Stokes equa-

tions.

II. New Universal Single Level Scheme CSCM-S

The CSCM flux difference eigenvector split upwind implicit method8:17:18

for the inviscid terms of the compressible Navier-Stokes equations provides

the natural basis for an unconditionally stable space marching tech-

TRy

nique through regions of subsonic- and streamwise separated flow. In

such regions the split method can be likened to stable marching 6!’

el bt o

each scalar characteristic wave system in the direction of its associated

eigenvalue (simple wave velocity). In supersonic flow, where all eigen-

values have the same sign, the method automatically becomes similar

to the referenced PNS techniques based on the Beam-Warming fac-
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tored implicit method with the Baidwin-Lomaz thin layer viscous ap-

proximation.

\

Compared to contemporary central difference methods, the CSCM
-characteristics based upwind difference approxzimation with its inherent
numerical stability leads to greatly reduced oscillation and greater ac-
curacy in the presence of captured discontinuities such as shocks, con-
tacts and physical or computational boundaries. The correct mathemati-
cal domains of dependence that correspond with physical directions of
wave propagation are coupled with well posed characteristic boundary
approximations!? naturally consistent with the interior pcint scheme. The
result is faster sorting out of transient disturbances and substantially
more rapid convergence to the steady state. The splitting and the as-
sociated time dependent implicit method have been described in detail in
rgl‘erences (16) and (18) for quasi 1-D and 2-D planar or axisymmetric

flow.

Io the following, we will sketch the diffcrences between the time depen-
dent method and the new space marching technique which we designate
CSCM-S. The discussion will begin with the quasi 1-D inviscid formula-
tion, present some results elucidating the properties and performance of the
method, then give additional details entering into multidimensional inviscid
and thin layer viscous procedures and, lastly, present eazly 2-1) solutions ob-
tained with the new single level scheme in problems sclved previously'® with

the time dependent method.
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Quasi 1-D Formulation

The general jth interior point difference equations for the time dependent

. CSCM upwind implicit method is written
(I + A+ v + A= A)g; = —AF Aq)j’i_ A Aq);f V)

where ¥V and A are backward and forward spatial difference operators. In

the notation the interval averaged matrices between node points j and j 41

are labled j. The right hand side of equation (1) is written for the first order

method. Higher order methods in space are given with results in references
16 and 18.

Central to its accurate shock capturing capability, the CSCM con-

servative flux diflerence splitting has the “propert}r U" put forth by
Roel!®

(At +A7)Aqy;=AF); = Fip1 — Fj (2)

Here g is the conservative dependent variable vector and F is the as-
sociated flux vector. The matrices AT and A~ are the splittings of
the CSCM interval averaged Jacobian matrix according to the signs of
the averaged eigenvalues. Thus in the equation for the jth grid point,
A+ Agq)j—; represents stable characteristic spatial differencing backward

for positive eigenvalue contributions and A Agq)j, forward for negative

ones.
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ORIGINAL PAGE I3
OF POOR QUALITY

With §g = ¢" 1 —g¢", equation (1) defines a vwo level linearized coupled
block matrix implicit scheme that can be solved by a block tridiagonal
procedure. In reference (18) a new (DDADI) approximately factored alter-
nating sweep bidiagonal solution procedure for equation (1) is presented that
is shown to be very robust and is effectively explicit, i.e. requires only a
decoupled sequence of !ocal block matrix inversions rather than the solution
of the coupled set. For the forward sweep the bidiagonal solution procedure

can be written
(I +3% —A~)5g"; =RHS + A+6¢";_, G

For the linear problem, i.e.  constant coefficient case of stability -
analysis, equation {3) is equivalent to the single level space marching

procedure
U+Zt =Ty =g, —2’+qj —ATA) @)

Nonlinearity enters in the single level space marching form (4) in that
at each step of the forward sweep the matrices A+ are averaged
between q' j—1 and q;? rather than homogeneously at the old iteration
level n. Similarly, companion backward space marching sweep that is
éymmetric to equation {4) and that is intimately related to the back-
ward sweep of the alternating bidiagonal algorithm of reference (13)
is

(I + AT — A7) = —AY A )jmy + A g, — K‘q;i: (5)

D aedm e e S P e e
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As will be shown in a forthcoming paper2®, the method given by equations
(4) and (5) is von Neumann uncoxditionally stable for the scalar wave

ec‘luation. The analysis shows the significance of DDADI approximate

factorization in rendering both the forward and backward sweeps separately

stable regardless of eigenvalue sign. Consequently as the local Courant -

number becomes very large, the robust method becomes a very effective
(symrmetric Gauss-Seidel) relaxation scheme for the steady equations, a fact
which substantially contributes to the very fast performance that will be

demonstrated.

At a right computational boundary on the forward sweep we solve the

characteristic boundary point approximation

] X * ) n
(%+TZ+)5QN=A+0N_1“3*‘1N ©)
‘I'}v—H = g 5 and at a left, on the backward sweep
. ~_n ~ N 1
A=A )ig =A~q" —=F g 2+ @)

Following the solution of equations (6) and (7) the comservative state
vector is iteratively corrected!” to maintain the accuracy of prescribed
boundary conditions while not disrupting the repfesentatio_n of the com-
puted characteristic variables running to the boundary from the inter-
ior. Analysis of 2 model system with upwind differenced scalar equations
and coupled boundary conditions was related to the linearized bidiagonal

scheme!® by Oliger and Lombard?!; the analysis also strongly supports the
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numerically confirmed robust stability of the present nonlinear method for

gasdynamics.

| With the updating at each step, where in equation (5) 6¢; = q';-’“ - q;- ,
it is clear that the symmetric pair of equations (4) and (5) serve to advance
the solution two pseudo time (iteration) levels; whereas, the linear alternat-
ing bidiagonal sweep algorithm of reference (18) advances the solution only
one level. To maintain conservation to a very high degree; in single sweep
marching in supersonic zones we iterate (at least) once locally at each space
marching step. The local iteration serves to make the eigenvectors in the
coeficient matrices consistent with the advanced state and, thus, provides -
improved accuracy for the nonlinear system. It appears effective to do this
inner iteration everywhere, i.e. in both subsonic and supersonic regions, as
the number of global itération steps to convergence with two inner iterations
has been found reduced by a facter of three to four. Since the computa-
tional work per two steps is about the same for the single level and two level
schemes and beyond the fact that one saves a level of storage in the space
marching algorithm, the question arises: Can one get solutions in less com-
putational work through faster convergence with the nonlinear space march-

ing algorithm?

First, we present results for supersonic flow with no shock in Shubin's

diverging nozzle. In purely supersonic zones, the experience with the
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present method is that the solution can be marched accurately in one
global iteration, as ought to be the case. Figure 1 shows the ex-
act solution (in solid line) and the computed result from the first for-
ward sweep. It is evident that the method correctly predicts the solu-
tion to plotting accuracy in one forward sweep. With subsequent sweeps
the error (the difference between the exact and the computed solution)
reduces to machine accuracy in less than three global iterations. In
fact, by increasing (from two) the number of inner iterations on the
solution procedure at each space marching step oné can guarantee con-

vergence to prescribed accuracy in one forward sweep. This is also

-true cf contemporary locally linearized unsplit methods in supersonic

flow.

With the globally iterative nonlinear space marching formulation,
early experience in two quasi 1-D nozzle problems with mixed supersonic-
subsonic zomes is that solutions are obtained in roughly an order
of magnitude fewer iteration steps than had been required with the
previously fast pseudo time dependent technique and block tridiagonal solv-

ing.

The two nozzle problems which are described and solved by Yee,
Beam and Warming?? and solved with the CSCM time dependent tech-
nique in references (16) and (17) are Shubin's diverging nozzle flow
and Blottner's converging-diverging nozzle flow. Both problems in-

volve ucmatched overpressures at the outflow which result in inter-

11
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nal shock terminated supersonmic zones and subsomic outflow.  For
the experiments involving flow of mixed type the same initial data
given by Yee, Beam 2nd Warming - 8 linear interpolation between
inflow and outflow values for effectively exact solutions of the problems
- fis used that was used previously with the time dependent ap-

proach.

For flows of mixed type, in Figures 2 and 3 respectively, results
are shown for successive forward and backward sweeps for five global
iteration steps with Shubin's and Blottner's nozzle flows. In both cases,
the exact solution as given by Yee, Beam and Warming is shown in solid
line and the present computational results solved on a 51 point mesh, in
boxes. Blottner's nozzle flow is shown converged after 10 global iteration
steps. ‘There is substantial evidence in other results not shown that
with further work the number of global iterations required to compuie
fluws such as Blottner's will be reduced by a factor of two, to about

five.

In Figure 4, we show a subscritical, i.e. completely subsonic, flow

. solution computed in only two global iteration steps for the Blottner nozzle

geometry with different inflow conditions. Here the exact analytical sclution
derived by Venkatapathy is shown in solid line and our computed results in

boxes.

The alternating direction sweeps in our method have been derived

directly out of theory for solving the implicit set of difference equations.

12
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However, with 8 moments thought, ope can see mechanistically, numeri.
cally speaking, that omitting the backward sweep from the pair and
globally iterating only with the forward sweep equation (4) will result in
permitting the influence of a subsonic outflow boundary (or interior dis-
turbance) to propagate upstream only one grid point per global itera-
tion. In such a case, which relates to other global iteration methods
found in the literature and that sweep only in the main flow direction,
rate -of convergence is greatly inhibited relative to symmetric sweeping
by a factor of order roughly the humber of grid points in the subsonic
zone. Mathematically, this inhibition is the result of the failure to in-
clude the effect of the eigenvectors governing upstream influence in the .
implicit process but to treat these waves 'éxplicitly with effective CFL

unity.

In Figure 5 we illustrate the progress of the transient solution to
the subcritical nozzle problem after 15 forward sweeps, with the back-
ward sweeps omitted. One can clearly see that the wave influence of
the outflow boundary has progressed only 15 mesh points forward of the
outflow boundary. In Figure 6 the transient solution is shown after 60
steps which is beyond one characteristic transit time (equivalent to 50
mesh intervals) for the upwird wave to reach the inflow boundary. In
Figure 7 we show the history of the RMS error in the primitive vari-
ables. The solution is found to converge to roughly the same RMS er-

ror after three characteristic times (150 steps) as the solution obtained

13
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with the symmetric alternating sweep sequence after only 3 global itera-

tions.

Blottner's supercritical nozzle problem which involves subsonic inflow ac-
celerating through a sonic point to a supersonic zone terminated by a shock to
subsonic outflow is the most computationally demanding of the test cases and
indicates the capability for the method to compute simply and consistently
over the subsonic forebody and base regions of blunt bodies in supersonic
flow. Thus the need for separate time dependent codes will be obviated by

this new method.

Finally, in Figure 8 and 9, we present the couvergence history for
the present nonlinear scheme and the linearized time dependent scheme
for completely subsonic and supersonic nozzle flows. The x-axis shows
the number of iterations each scheme requires to reduce the exact error
to five orders of magnitude for various Courant numbers. It is evident
that the present scheme converges extremely fast at all CFL numbers
compared with the method based on the linearized block tridiagonal sol-

YVer.

wo sional Formulati

For two dimensional flow, assuming a marching coordinate £, inviscid

terms

Btv, 4+B—a4, (6a)

14
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and
—Bt A k1 =B Anq) (65)

are added to the left and right hand sides respectively of both the for-
ward and backward sweep equations (4) and (5). For viscous flow, second
centrally differenced, thin layer viscous terms are also added in the # direc-
tion as is conventionally practiced, e.g. Steger?®. With the terms for
the n cross marching coordinate direction, the technique now becomes an
imglicit method of lines. Along each 5 coordinate line, one can solve
the equations coupled with a block tridiagonal procedure. Alternatively,
a further DDADI bidiagonal approxzimate factorization can be employed
in the n direction and solved either linearly as in rererencé (18) or non-
linearly as here in the £ direction. As shown in the quasi 2-D pumeri-
cal experiments of reference (18), DDADI bidiagonal approximate factoriza-
tion is stable for viscous as well as inviscid terms. Finally in reference
(18) there is a relevant discussion of the reduced approximate factoriza-
tion error that éttends using DDADI in one or more space directions.
The variety of multidimensional solution strategies derived from DDADI
bidiagonal approximate factorization will be presented in greater detail,
along with extension of the method to higher order, in a forthcoming

paper?0,

While extensions to 3-D are not given in detail here, we note such
extensions to a developing two level 3-D CSCM upwind scheme are pos-

sible and will be adopted in the future. For 3-D, the inviscid terms

15
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similar to (6a) and (6b) will again be added for the ¢ cross flow direc-
tion. For eficiency in solving each resulting marching plane, the implicit
operators for the 5 and ¢ coordinate directions can be approximately fac-
toredi using DDADI as described in reference (18) for two space direc-

ticns.

16




wo Dimensiona sults

We present results for a 45° - 15° axisymmetric transonic nozzle
flow previously studied experimentally by Cuffel, Back and Massier?* and
computationally by Cline, Prozan, Serra and Shelton (all referenced in
(24)) and ourselves!8. In Figure 10 we show results after 10 steps of an
early computation run at a local CFL number of 20 with the present first
order single level scheme. Excépt for the addition of an error correction
procedure!? to counter numerical inflow boundary condition drift, a factor

which has improved the present solution in the vicinity of the axis, the

effectively converged results found here are the same as those given for the -

two level scheme in reference 18. (As long as the problem has a unique .

solution, the two schemes must give equivalent results since the right hand
side difference equation sets, including boundary approximations, are the

same.)

For the solution given in Figure 10, we noted a very rapid rate of reduc-
tion in residual, three orders of magnitude in ten steps. This compares
with 60 steps given in reference (18) for the solution obtained with the
two level scheme. The rapid convergence found in this transonic problem
for the CSCM-S method with viscous terms provides the reasonable ex-
pectation of similar fast results to be obtained without viscous effects.
Thus the method in multidimensions appears to have attractive poten-
tial for an improved transonic Euler solver as well as Navier-Stokes sol-

ver.

17
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Next, we present first order inviscid and viscous results for an inlet
problem shown in Figure 11. The pressure contours for the first order inviscid
solutions are shown in Figure 12. Figure 13 shows the first order viscous
results. The viscous computation shows the presence of the leading edge
shock. The flow structure compares very well with the theoretical (for the
inviscid case) and other computational results. In Figure 14, the inviscid
and viscous wall pressure are compared with the exact solution (inviscid).
Figure 15 shows the convergence history of the RMS residue of all the
consevative flow variables for the inviscid problem solved at CFL = 100

with 4 inner iterations at every axial location. For the inviscid case, only

forward marching was carried out and backward marching was omitted. The

solution has converged for practical purposes at the end of the first sweep.
The residue reaches machine accuracy in 10 iterations. In a later paper?®,
we will show the residual reduction versus inner iteration number in single
sweep solutions for supersonic flow and comgare results with contemporary

PNS procedures.

18
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. Summary and Cenclusions

From both theory and computational experiments we observe that the
new single level eigenvector split upwind method is unconditionally stable
and practically robust for all types of flow. Thus the method removes
the restrictions suffered by contemporary PNS methods and the resulting
need to use other complimentary methods. As a result, we conclude, the
present method will permit the solution of complete flowfields about complex
configurations in a comparatively convenient, eficient and consistent manner.
The new method, in addition to requiring only half the dependent variable
storage, has been found in test problems to obtain converged solutions
in fewer iterations and less net work - through improved treatment of_.
nonlinear effects — than the linearized implicit methods from which it evolved.
For flows with subsonic zomes or boundary layers with strong upstream.
influence, the use of the present alternating direction implicit procedure
that is related to symmetric Gauss-Seidel relaxation greatly accelerates
convergence (by order the number of grid points in a subsonic zone) relative

to global iterations (and other schemes) that repetitively sweep only in

. the predominantly streamwise direction. Hence for flows with elliptic

influence in the flow direction, we conclude that suck unidirectional sweep
strategies, regardless of other factors, will not result in very effective solution
algorithms.

19
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