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Abstract 

We present a new single level effectively explicit implicit algorithm tor 
gasdynamics. The method meets all the requirements for unconditionally 
stable global iteration oyer Bows with mixed supersonic and subsonic zones in­
cluding blunt body flow and boundary layer flows with strong interaction and 
streamwise separation. For hyperbolic (supersonic flow) regions the method 
is automatically equivalent to contemporary space marching methods. For 
elliptic (subsonic flow) regions, rapid convergence is facilitated by alternat­
ing direction solution sweeps which bring both sets of eigenvectors and the 
influence of both boundarie~ or a coordinate line equally into play. Point by 
point updating of the data with local iteration on the solution procedure at 
each spatial step as the sweeps progress not only renders the method single 
level in storage but, also, improves nonlinear accuracy to accelerate conver­
gence by an order of magnitude over ieJated two level linearized implicit 
methods. The method derives robust stability from the combination of an 
eigenvector split upwind difference method (CSCM) with diagonally dllminant 
ADI (DDADI) approximate ractorization and computed characteristic bound­
ary approximations. The properties and performance of the technique are 
demonstrated in a variety of quasi I-D nozzle flows including completely 
subson:c or supersonic or mixed subsonic/supersonic with sonic points and 
shocks. The performance of the new method in 2-D and axisymmetric flows 
are compared against the precursor two level linearized scheme in an invis­
cid inlet problem for which the exact solution is known and in a viscous 
transonic nozzle problem previously studied both experimentally and com­
putationally. 
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Universal Single Level Implicit 

Algorithm for Gasdynamics 

by 

C. K. Lombard and Ethiraj Venkatapathy 

I. Background 

The motivation for the present:work stems from the following reason­

ing. Parabolized Navier Stokes (PNS) procedures can effectively solye steady 

supersonic and boundary layer flow problems with small adverse pre.)sure 

gradient at a fraction of the cost required by conventional time dependent 

procedures. But PNS procedures are iII-posed for subsonic and stream­

wise reversed flow problems from the theoretical point of view, a failing 

that is manifested in grid sensitive numerical stability problems. On the 
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other hand, certain eigenvector split upwind differenced implicit time depen­

dent procedul'es are unconditionally stable, practically robust and their ap­

plication is not restricted with respect to the nature or type or compres­

sible fiow. A solution procedure that has the speed and the storage re­

quirements or PNS schemes and the stability and applicability or the im­

plicit upwind time marching schemes will be very useful and desirable. We 

give such a procedure here. Before we go on to describe this novel al­

gorithm, we present a brief background to PNS and other related tech­

niques. 

The Beam-\Varming factored implicit algorithm1 with the Baldwin­

Lomax thin layer viscous approximation2 has provided the basis ror two 

similar space marching (PNS) procedures3,4 Cor the compressible Navier­

Stokes equations. These PNS methods which are highly efficient from 

the points of view oC both data storage and computer time have proven 

effective for flows5,8 with favorable streamwise pressure gradient or with 

'relatively small adverse pressure gradients. However, in the presence of 

strong ad,·erse pressure gradient such as occurs in a wing or fln root regions 

the contemporary PNS methods suffer numerical stability problems and may 

hirer streamwise separation even where separation doesn't occur7 • In such 

unseparated (perhaps weakly separated) regions, numerical stability may be 

maintained at the price of employing large amounts of artificial viscosity 

with a reSUlting loss in predictive accuracy and knowledge of the actual 

state or the flow. \Vhere strong streamwise separation occurs the methods 

2 
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are unstable and cannot proceed. Particularly for "ue increasingly relevant 

\ laminar flow situation that will be encountered at very high altitude by 

aerodynamic systems such as orbital transfer vehicles (OTV's) and space 

shuttle, streamwise separation becomes a likely occurrences in compression 

corners associated with canopies, pods, flared bodies, wing or fin roots and 

deflected control surfaces. Thus a more general technique is needed that 

is inherently stable for all types of upstream influence. At a minimum 

the mixed elliptic hyperbolic problem requires global iteration, preferably 

with type dependent differencing. Various steps in this direction have 

recently been taken by Rakicho, by Rubin and Reddyl0 and by Rizk and 

Chaussee11 • 

RakichP utilized glotal iteration with Vign~ron's M2ch number depen­

dent upwind and downwind splitting4 of the pressure gradient for 

the streamwise momentum equation. The approach provides an im­

provement in both accuracy and stability for both weakly interactive 

boundary layer flow and strongly interactive flow without (significant) 

streamwise separation. Global iteration i:; carried out by march­

ing the PNS equation repeatedly only along the downstream direc­

tion. 

For incompressible fiow Rubin and Reddyl0 (also Lin and Rubin12 

for supersonic flow) introduced type dependent (upwind) differencing 

of the streamwise velocity .along with pressure splitting in an im­

plicit method involving a staggard grid - dependent variable location 

3 
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scheme. This method was extended to compressible flow by Khosla 

'. and Lail3 • The method admits strong interaction with streamwise 

separation but is not homogeneous across the spp.ctrum of 11ach nJm-

, ber regimes of interest here. Other PNS related methods for subsonic 

flow and boundary layer flow with streamwise reversal ha,e recently 

been reviewed by BrownH in conjunction with a new sta~ered grid 

scheme. 

Most immediately relevant, Rizk and Chausseell presented a hybrid 

technique of space marching in supersonic zones and relaxation with a 

Beam-Warming time dependent central difference method O-ref zones of 

strong upstream influence with streaDlwise separation. They have two 

variations of the time dependent method: one fully implicit requiring two 

levels of storage and matrix inversion procedures in aU space directions, 

the other explicit in all space directions but the thi!l layer direction and 

requiring only one level of storage as in a space marching algorithm. 

Bot.h procedures require the same several hundred iterations Ilinimum to 

reasonably ~onverge, with the semi explicit procedure requiring substantially 

less. machine time. However, bot~ procedures are inherently unstable, 

except for the use of artificial dissipation. The marginal stabi!ity coupled 

with the lack of type dependent differencing and nell posed boundary 

approximations all contribute to slow con,ergence. In balance, while 

workable, the hybrid approach leaves something to be desired fro::l the points 

of view of convenience, computer tlme and internal consistency o~ the global 

. ~ - .:..-- - - -- . -, .-- . 



solution procedure. 

A new globally iterated scheme related to that which will be presented 

". here, has been presented by Moretti15 • In his procedure for steady invis­

cid flows, the Euler equations are cast in Riemann variables and the result­

ing uncoupled equations are solved by integrating each Riemann variable 

separately, sweeping back nnd forth alternatively along each coordinate line. 

The coupling between the equations and, thus, the non-linearity are intro­

duced only through the boundaries and the updating of state after com­

plete sweeps. As can be inferred from the results to be presented here, the 

reduced coupling inherently limits the rate of convergence of Moretti's method 

and the procedure is.not extendable to the compressible Na\ier-Stokes equa­

tions. 

n. New Universal Single Level Scheme CSCM-S 

The CSCM flux difference eigenvector split upwind implicit method16,17,18 

for the inviscid terms of the compressible Navier-Stokes equations provides 

the natural basis for an unconditionally stable space marching tech­

nique through regions of subsonic· and streamwise separated flow. In 

such regions the split method can be likened to stable marching of 

each scalar characteristic wave system in the direction of its associated 

eigenvalue (simple wave velocity). In supersonic flow, where all eigen­

values have the same sign, the method automatically becomes similar 

to the referenced PNS techniques based on the Beam-\Varming fac-

5 
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tored implicit method with the Baidwin-Lomax thin layer viscous ap­

proximation. 

Compared to contemporary central difference methods, the CSCM 

'characteristics based upwind difference approximation with its inherent 

numerical stability leads to greatly reduced oscillation and greater ac­

curacy in the presence or captured disco-ntinuities such as shocks, con­

tacts and physical or computational boundaries. The correct mathemati­

cal domains of dependence that correspond with physical directions or 

wave propagation are coupled with well posed characteristic boundary 

approximations17 naturally consistent with the interior pdT.lt- scheme. The 

result is faster sorting out of transient 4isturbances and substantially 

more rapid convergence to the steady state. The splitting and the as­

sociated time dependent implicit method haye been described in detail in 

references (16) and (18) for quasi I-D and 2-D planar- or axisymmetric 

flow. 

In the following, we will sketch the difIerences between the time depen­

dent method and the new space marching technique which we designate 

CSCM-S. The discussion will begin with the quasi I-D inviscid formula­

tion, present some results elucidating the properties and performance of the 

method, then give additional details entering into multidimensional inviscid 

and thin layer viscous procedures and, lastly, present early 2-D solutions ob­

tained with the new single level scheme in problems solved previously18 with 

the time dependent method. 
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Quasi laD Formulation 

The general jth interior point difference equations for the time dependent 

, CSCM upwind implicit method is written 

(1) 

where V and A are backward and forward spatial difference operators. In 

the notation the interval averaged matrices between node points j and j + 1 

are labled i. The right hand side of equation (1) is writt~n for the first order 

method. Higher order methods in space are given with results in references 

16 and 18. 

Central to its accurate shock capturing capability, the CSCM COll­

servative flux difference splitting has the "property U" put forth by 

Roe tO 

(2) 

Here q is the conservative dependent variable vector and F is the as­

sociated flux vector. The matrices A+ and .A~ are the splittings of 

the CSCM interval averaged Jacobian matrix according to the signs of 

the averaged eigenvalues. Thus in the equation for the jth grid point, 

A+ Ll~q)j-l represents stable characteristic spatial differ~ncing backward 

for positive eigenvalue contributions and A-l1~q)i' forward for negative 

ones. 
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, 
ORIGINAL PAGE (9 
OF POOR QUALITY 

\\,ith' 6q = qn+l - qn, equation (1) defines a tWO level linearized coupled 

'block matrix implicit scheme t.hat can be solved by a block tridiagonal 

procedure. In reference (IS) a new (DDADI) approximately factored alter­

nating sweep bidiagonal solution procedure for equ3tion (1) is presented that 

is shown to be very robust and is effectively explicit, Le. requires only a 

decoupled sequence of local block matrix inversions rather than the solution 

of the coupled set. For the forward sweep t'he bidiagonal solution procedure 

can be written 

(3) 

For the linear problem, i.e. constant coefficient case of stability 

analysis, equation (3) is equivalent to the single level space marching 

procedure 

...... ...L ...... • ...... ..J.... ')0'.1.. n...... n 
(I+AT -A-)oq j =A'q j-I -./i'q, -..-1- ~q) , 

J J 
(4) 

Nonlinearity enters in the single level space marching form (4) in that 

at each step of the forward sweep the matrices X+ are averag'!d 

between q'i-l and qj rather than homogeneously at the old iteration 

level n. Simila.ly, companion bach.--ward space marching sweep that is 

symmetric to equation (4) and that is intimately related to the back­

ward sweep of the alternating bidiagonal algorithm of reference (10) 

is 

( ...... + ...... _ "Y+' ",_. "Y- n + 1 
! +A - A )6qj = -.Ii A'l )j-l +A qj -.11 q '+ 

) 1 
(5) 
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OR1GrNAl PAGE fS 
OF POOR QUALllY 

As will be shown in a forthcoming paper20 , the methoe given by equation.; 

'. (4) and (5) is yon Neumann unco:1ditionally stable for the scalar wave 
\ 

equation. The analysis shows the significance of DDADI approximate 

, factorization in rendering both the forward and backward sweeps separately 

stable regardless of eigenvalue sign. Consequently as the local Courant 

number becomes very large, the robust method becomes a v~ry efJ"ectivc 

(symmetric Gaus~Seidel) relaxation scheme for the steady e<;uations, a fact 

which st:bstantially contributes to the very fast performance that will be 

demonstrated. 

At a right computational boundary on the forward sweep we solve tne 

characteristic boundar; point approximation 

(6) 

I 

q 'jf 1 = q N alid at a left, on the bacl.-ward sweep 

(~ "Y-)~ 7- n A ...... - n + 1 A - ./i vql =.'"1. q 1 - q 2 (7) 

Following the solution of equations (6) and (7) the conservative state 

vector is iteratively corrected17 to maintain the accuracy of prescribed 

boundary conditions while not disrupting the representatiQn of the com­

puted characteristic variables runnin~ to the boundary from the inter­

ior. Analysis of a model system with upwind differenced scalar equations 

and coupled boundary conditions was related to the linearized bidiagonal 

scheme18 by Oliger and Lombard2t ; the analysis also strongly supports the 
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numerically confirmed robust stability of the present nonlinear method Cor 

gasdynamics. 

With the updating at each step, where in equation (5) 6 qj = q j+ 1 
- q; , 

it is clear that the symmetric pair of equations (4) and (5) serve to advance 

the solution t'tt"o pseudo time (iteration) levels; whereas, the linear alternat­

ing bidiagonal sweep algorithm of reference (18) advances the solution only 

one level. To maintain conservation to a very high degree, in single sweep 

marching in supersonic zones we iterate (at least) once locally at each space 

marching step. The local iteration SE'n'es to make the eigenvectors in the 

coefficient matrices consistent with the ad\"anced state and, thus, provides 

improved accuracy for the nonlinear system. It avpears effective to do this 

inner iteration e,'erywhere, i.e. in both s.ubsonic and supersonic regions, as 

the number of global iteration steps to convergence with two inner iterations 

has been found reduced by a factor of three to four. Since the compllta. 

tional work per two steps is about the same for the single level and two level 

schemes and beyond the fact that one saves a leyel oC storage in the space 

marching algorithm, the question arises: Can one get solutions in less com­

putational work through Caster con\'ergence with the nonlinear space march­

ing algorithm! 

One Djm{'usionaJ Resu;ls 

First, 'We present results for supersonic flow 'With no shock in Shubin's 

diverging nozzle. In purely supersonic zones, the experience with the 

10 
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present method is that the solution can be &1larched accurately in one 

global iteration, as ought to be t.he case. Figure 1 shows the ex­

act solution (in solid line) and the computed result from the first for­

ward sweep. It is evident that the method correctly predicts the solu­

tion to plotting accuracy in one forward sweep. With subsequent sweeps 

the error (the difference between the exact and the computed solution) 

reduces to machine accuracy in less than three global iter~tion5. In 

tact, by increasing (rrom two) thE' number of inner iterations on the 

solution procedure at each space marching step one can guarantee con­

vergence to prescribed accuracy in one forward sweep. This is also 

true cf contemporary locally linearized unsplit methods in supersonic 

flow. 

'Vith the globally iterative nonlinear space marching formulation, 

early experience in two quasi 1-D nozzle problems with mixed supersonh:­

subsonic zones is that solutions are obtained in roughly an order 

or magnitude fewer iteration steps than had been required with the 

preT'iously fast pseudo time dependent technique and block tridiagonal solv­

ing. 

The two nozzle problems which are described and solved by Yee, 

Beam and \Varming22 and solved with the CSCM time dependent tech­

nique in references (16) and (17) are Shubin's diverging nozzle flow 

and Blottner's converging-diverging nozzle flow. Both problems in­

voh-e unmatched overpressures at the outflow which result in inter-

11 
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\ nal shock terminated supersonic zones and subsonic outflow. For 

the experiments inyohing llow of mixed type the same initial data 

gi\"cn by Yee, Beam and Warming - a linear interpolation between 

infiow and outllow values for effectively exact solutions of the problems 

- is used that was used previously with the time dependent ap­

proach. 

For flows of mixed type, in Figures 2 and 3 respectively, results 

are shown for successive forward and backward sweeps for flve global 

iteration steps with Shubin's and Blattner's nozzle flows. In both cases, 

the exact ~olution as given by Yee, Beam and \Varming is shown in solid 

line and the present computational results solved on a 51 point mesh, in 

boxes. Blattner's nozzle flow is shown converged after 10 global iteration 

steps. There is substantial eyidence in other results not shown that 

with further work the number of global iterations required to compute 

flows such as Blattner's will be reduced by a factor of two, to about 

ih'e. 

In Figure 4, we show a subscritical, Le. complete.ly subsonic, flow 

. solution computed in only two global iteration steps for the Blottner nozzle 

geometry with different inflow conditions. Here the exact analytical solution 

derived by Venkatapathy is shown in solid line and our computed results in 

boxes. 

The alternating direction sweeps in our method have been derived 

directly out of theory for solving the implicit set of difference equations. 
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However, with a moments thought, one can see mechanistically, numeri­

cally speaking, that omitting the bacl..'"Ward sweep from the pair and 

gIo.bally iterating only with the forward sweep equation (4) will result in 

permitting the influence of a subsonic outflow boundary (or interior dis­

turbance) to propagate upstream only one grid point per global itera­

tion. In such a case, which relates to other global iteration methods 

found in the literature and that sweep only in the main flow direction, 

rate· or convergence is gready inhibited relative to symmetric sweeping 

by a tactor or order roughly the number or grid points in the subsonic 

zone. Mathematically, this inhibition is the result or the Cailure to in­

clude the effect of the eigenvectors governing upstream influence in the 

implicit process but "to treat these waves 'explicitly with effective CFL 

unity. 

In Figure 5 we illustrate the progress of the transient solution to 

the subcritical nozzle problem after 15 forward sweeps, with the back­

ward sweeps omitted. One can clearly see that the wave influence of 

the outflow boundary has progressed only 15 mesh points forward of the 

outflow boundary. In Figure 6 the transient solution is shown after 60 

steps which ~s beyond one characteristic transit time (equivalent to SO 

mesh inten·.lls) for the upwind wave to reach the inflow boundary. In 

Figure 1 we show the history of the RMS error in the primitive vari­

ables. The solution is found to converge to roughly the same RMS er­

ror after three characteristic times (150 steps) as the solution obtained 

13 
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with the symmetric alternating sweep sequence after only 3 global itera­

tions. 

Blottner's supercritical nozzle problem which involves subsonic inflow ac­

celerating tbrough a sonic point to a supersonic zone terminated by a shock to 

subsonic outfiow is the most com~utationally demanding of the test cases and 

Indicates the capability for the method to compute simply and consistently 

over the subsonic fore body and base regions ot blunt bodies in supersonic 

fiow. Thus the need for separate time dependent code~ 'Will be ob"jated by 

this new method. 

Finally, in Figure 8 and 9, we present the convergence history for 

the present nonlinear scheme and the linearized time dependent scheme 

tor completely subsonic and supersonic nozzle flows. The x-axis shows 

the number of iterations each scheme requires to reduce the exact error 

to five orders of magnitude for various Courant numbers. It is evident 

that the present scheme converges extremely fast at all CFL numbers 

compared with the method based on the linearized block tridiagonal sol-

ver. 

Two Dimensional Formulation 

For two dimensional How I assuming a marching coordinate e, inviscid 

terms 

(6a) 

14 
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\ and 

(6b) 

are added to the left and right hand sides respectively of both the for­

ward and backward sweep equations (4) and (5). For viscous flow, second 

centrally differenced, thin layer viscous terms are also added in the '7 direc­

tion as is conventionally practiced, e.g. Steger23 • \Vith the terms for 

the 'II cross marching coordinate direction, the technique now becomes an 

implicit method of Jines. Along each 71 coordinate line, one can solve 

the equations coupled 'With a block tridiagonal procedure. Alternatively, 

a further DDADI bidiagonal approximate factorization can be employed 

in the 71 direction and solved either linearly as in reference (18) or non­

linearly as here in the e direction. As shown in the quasi 2-D numeri­

cal experiments of reference (18), DDADI bidiagonal approximate factoriza­

tion is stable for viscous as well as inviscid terms. Finally in reference 

(18) there is a relevant discussion of the reduced approximate factoriza­

tion error that attends using DDADI in one or more space directions. 

The variety of multidimensional solution strategies derived from DDADI 

bidiagonal approximate factorization will be presented in greater detail, 

along with extension of the method to higher order, in a forthcoming 

paper20. 

\\"hile extensions to 3-D are not given in detail here, we note such 

extensions to a developing two level 3-D CSCM upwind scheme are pos­

sible and will be adopted in the future. For 3-D, the inviscid terms 

15 
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similar to (6a) and (6b) will again be added ror the r cross flow direc­

tion. For efficiency in solving each resulting marching plane, the implicit 

operators for the TJ and r coordinate directions can be approximately fac­

tored using DDADI as described in reference (I8) ror two space direc­
tions. 
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Two Dimensional Results 

We present results for a 45° - 15° axisymmetric transonic nozzle 

flow previously studied experimentally by Cutrel, Back and Massier24 and 

computationally by Cline, Prozan, Serra and Shelton (all referenced in 

(24» and ourselves18 • In Figure 10 we show results after 10 steps of an 

early computation run at a local CFL number of 20 with the present first 

order single level scheme. Except for the addition of an error correction 

procedure17 to counter numerical inflow boundary condition drift, a factor 

which has improved the present solution in the vicinity of the axis, the 

effectively converged results found here are the same as those given for the 

two level scheme in reference 18. (As long as the problem has a unique 

solution, the two schemes must give equivalent results since the right hand 

side difference equation sets, including boundary approximations, are the 

same.) 

For the solution given in Figure 10, we noted a very rapid rate of reduc­

tion in residual, three orders of magnitude in ten steps. This compares 

with 60 steps given in reference (18) for the solution obtained with the 

two level scheme. The rapid convergence found in this transonic problem 

tor the CSCM-S method with viscous terms provides the reasonable ex­

pectation of similar fast results to be obtained without viscous effects. 

Thus the method in multi dimensions appears to have attractive poten­

tial for an improved transonic Euler solver as well as Navier-Stokes sol­

ver. 

17 
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Next, we present first order inviscid and viscous results for an inlet 

problem shown in F:gure 11. The pressure contours for the first order inviscid 

~olutions are shown in Figure 12. Figure 13 shows the first order viscous 

results. The viscous computation shows the presence of the leading edge 

shock. The fiow structure compares very well with the theoretical (for the 

inviscid ca~e) and other computational results. In Figure 14, the inviscid 

and viscous wall pressure are compared with the exact solution (inviscid). 

Figure 15 shows the convergence history of the RMS residue of all the 

consevative flow variables for the inviscid problem solved at eFL = 100 

with 4 inner iterations at every axial location. For the inviscid case, only 

forward marching was carried out and backward marching was omitted. The 

solution has converged for practical purposes at the end of the flrst sweep. 

The residue reaches machine accuracy in 10 iterations. In a later paper25 , 

we will show the residual reduction versus inner iteration number in single 

sweep solutions for supersonic flow and compare results with contemporary 

PNS procedures. 

18 

.. 



:---
------~----. -

m. Summary and Conclu5ions 
\ 

From both theory and computational experiments we observe that the 

new single level eigenvect.or split upwind method is unconditionally stable 

and practically robust for all types of flow. Thus the method removes 

the restrictions suffered by contemporary PNS methods and the resulting 

need to use other complimentary met.hods. As a result, we conclude, the 

present method will permit the solution of complete flowflelds about complex 

configurations in a comparatively convenient, emcie'nt and consistent manner. 

The new method, in addition to requiring only half the dependent variable 
. 

storage, has been found in test problems to obtain converged solutions 

in fewer iterations and less net work - through improved treatment of 

nonlinear effects - than the linearized implicit methods from which it evolved. 

For flows '9,'ith subsonic zones or boundary layers v;ith strong upstream, 

influence, the use of the present alternating direction implicit procedure 

that is related to symmetric Gauss-Seidel relaxation greatly accelerates 

convergence (by order the number of grid points in a subsonic'zone) relative 

to global iterations (and other schemes) that repetitively sweep only in 

, the predominantly streamwise direction, Hence for flows with elliptic 

influence in the flow direction, we conclude that such unidirectional sweep 

strategies, regardless of other factors, will not result in very effective solution 

algorithms. 
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Figure 1. Shubin's diverging nozzle supersonic flow solution developed in 
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Other computed results of Cline (dashed line) and Prozall (chain 
dot) and experiment of Cuffel, £1!l (symbols) are discussed 
in references 18 and 24. 

.' 

2.0 

" 

00 
."11 :g 
"tJG> 
0:; 
0"'-:tJi2 
.0"'0 
c: ~I 
l:» C'J 
r- .... 1 

~m 

~ ,I I':: ~ ~ 

.. _0 _. _. _________ .. 
.-.-.~------.. -~"--__ ~._"" __ ._r ______ .. ________ ... _ .... 
~. ' " ,',' ~. ....~., . 

: . r __ _ __ ' :':\' j ~ ~.' .1. . ' .• , '~''--_~'''':' ___ ~''':''''_~--:,-... ;;;;:--___ ,,-::~-=::-:: 

~~~.~" 1t;\~;~~~t~.:'~~f:1:~~< )~:~~t·~~~.;:::;):~~J ~ .. :' _,..,\' ~-'.i" .~~:, . ::.:.l' ~ . L ,;,BI;~~~~,·-~;:.:; {:::~~~}~.}t = 



,0 .. 
J 

0.020 

O.OIS CORNER SHOCK 

FANS 
0.010 

t>= 

0.005 

o.em 

-1>.005 I Iii iii iii i i 

, 

--""::---t--~ ______ ~ _ 

2g 
il§ 
0 2 
;.o~ 
D"O 
C> 
:> r;J 
r-tT) 

-' 

-<I.Cl 0.00 0.01 0.02 0.01 O.Oi O.OS 0.06 0.01 O.OS 0.03 0.10 ;Ja I 
I 

Figure 11. Schematics of the supersonic inlet rlow problem. 

--.. ------=--.-,-...,.--,~ 
...... _ .' ~:..-: ___ ._ __ _~_: __ .<..&.O &-& bas 
~"la~--

I 
I 

I 
! 
I 
i 

I 
1 
1 , 
t 

~= .... ~ __ .. . ' ., oo.'-~'~----=i~._ ~~:;;ii 



a:: 

.. " 
\ 

/ 

Pressure-Conlour 

0.020 

0.015 

0.010 

~ &+xl. • 
A ~Vm§.eg xo' .~ .~ ,~,&~~ __________________________________________ _ 

& + D· 0 ., o;e. 6& 
A1< 0 11. ."n~)(4. aa 

A+ ~ ~ • N nVv OXl( o4t. 6 a 
A ... 'lib Ie Q VOO)( .. .. .. 

)( 0. Mil. 0 )( + 6 .. 
.. .. ':'x v II • \' 00 )\( +. ~ 
a~ o\'\}' II V 0 'Sc" .. 
~ )(°0 ~ \' Cb )( +to 
~X q, 1t \' 0 'Ie + 
a'+~o .)( .... 

&+)(q, 0)( ... 

a it- ~ <b 0 )( ++ 
A .... +)( 0 0 ~ * + ... + 

"'D ..)( 0 0 II Xx + ... + 
a ... " x & .. x,c x)()()(x)( 

& -'a 
~ a 6\ a 

0.005 

O.COO 

A .... it- ~)( 0 • 0 0 0 0 0 

a ++)( 0 \' V • V v. 
4l + )( 0 VV 

.. +)( ~ V ••• • •••. a +)(~~. 
.. + x 0 ,,11 "c "M

N
• 

a ... )( 0 V. Ie .." -.-.-.--.-.-.-.-.--:--.-.--6-+0 . ....-.-.-..._--.-. __ 

-0.005 Iii ii' iii , , i 
~.Ol 0.00 0.01 0.02 0.03 O.Of O.OS D.OO 0.07 O.ott 0.09 0.10 

X 
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26 by 26 unstretched grid. 
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stretched mesh. Note th~ leading edge shock. 
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