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Abstract

in this paper we present some of the basic ideas associated with the

detection of abrupt changes in dynamic systems. Our presentation focuses on

two classes of methods	 multiple filter -based techniques and residual-based

matnods -- and in far more detail on the multiple model and generalized

likelihood ratio methods. Issues such as the effect of unknown onset time on

algorithm complexity and structure and robustness to model uncertainty are

discussed.	 a`'
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1 Introduction

In recent years many techniques havo been proposed for the detection of

abrupt chnnges in dynamic systems., Thase efforts have been motivated by a

wide variety of applications includinq the detection of sensor and actuator

failures (1, 2, 4, 19, 26-351 the tracking of maneuvering vehicles (20, 21,

23 1 251, and numerous signal, analysis problems (electrocardiogram analysis

15, 61, geophysical signal processing ['11, edge detection in images (8, 91,

freeway monitoring {10, 11J,..j. .A key to the development of any technique

for the detection of abrupt changes is the modeling of how the abrupt change

affects the observed signals. In some applications the effect of the abrupt

change is direct and simple -- e.U. a bias developing in an output sigr.al .

In such problems the primary focus of research is on the precise nature of

the decision rule (see, for example [8, 9, 261). In other applications (such

as those described in [1, 2, 4, l0, 11, 19, 211), the effect on the obsery--

ables.is described in a more complex, indirect way - for example, in terms

of an abrupt change in the dynamics of a system. In such problems one is

presented in essence with two problems: the processing of the observed sig-

nals in order to accentuate (and simplify) the effect of the abrupt change

and the definition of decision statistics and rules in terms of the processed

outputs. The techniques described in this paper in principle address both

of these issues in that they produce sufficient st4tistics for

optimum detection. Howeverr we will focus for the most part on the first

task of change detection, that is, the problem of producing signals which make

subsequent detection as easy as possible. As discussed here and in more

detail in [27-29j`y this is an exceedingly important perspective in the design

of detection methods which are-robust to uncertain details of the dynamic

models on which they are based.

In [1) a variety of methods and'structures are described for change
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detection, In this paper we focus on two basic and ex.±;remely important

structures. Tne first of these is the multiple filter structure depicted

in Figur4 " 1. Nitre the observations, y, are processed by a bank °of filters

each o -i'm'tch is based on :a particular hypothesis (e.g. Filter M1 assumes no

change has occurred, Filter #2 assumes a particular type of change has

occurred possibly at a particular time, etc,) The outputs of the filterst Y ►

represent signals Which should typically be small if the corresponding hypo-

theses are in fact correct, and thus the decision mechanism in essence is

based on determining which of the filters is droing the "best s' job of keeping

the corresponding Y's small. There are several methods that have been de-

veloped which fit the general form of Figure 1. In particular, hard (331

and, soft (341 voting systems can be interpreted in this fashion. Another'

example is the multiple observer desiqn described in (361. In the .next

section we describe in detail a third technique of this general type, nathely

the multiple model method.

A second genergl structure for the detection of abrupt changeu is the

residual-based structure illustrated in Figure 2. In this case a filter is

designed based on the assumption that no abrupt change has occurred of will

occur. The filter produces a prediction y of the output signal y based on

this assumption and the past history of the output, and this prediction is

subtracted from the actual output to produce a residual signal y . If no

abrupt change has occurred, Y should be small. Consequently deviations

from this .behavior are indicative of failure, and ^, is on this fact that

the decision mechanism is based. ,Again there a;,Ke a`variety of technigwes'

of this g;Aneral form. In [35) a variety of statistical tests (chi-#44uared,

whiteness, etc.) are proposed for the detection of abrupt changes when the

Y are the innovations from a Kalman filter. In ( 30-321 a met?t^d is described

for the choice of gain in an observer-like filter in order to quarantee that

the decoupling of the steady-state effects oh y of a given set af' possible
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abrupt changes. In Section 3 we discuss a third technique of this general

type, namely the generalized liktilihood ratio method.

2. The Multiple Model (MM) Method

The MM method was orig*nally developed for (problems of sy&tc- idprtifi-

cation and adaptive control [12-17, 291, and in the initial part of this

sect; on we follow these early treatments. Subsequently we will look more

closoly at the issues that arise and possible adaptations that may be

necer;sary for the use of MM for the detection of abrupt events (see [l, 2, 5,

10, L8 19, 22, 23) for further developments).

The basic MM method deals with the following problem. We observe the

inputs u(k), k = 0,1,2,.... and outputs y(k), k = 1,2,... of a system which

is assumed to obey one of a given finite set of linear stochastic models,

indexed by i	 1,...,N:

X. (k+1) = Ai (k) xi (k) + Bi (k) u (k) + wi (k) + gi (k)	 Q. 1:)

y (k) = Ci (k) xi (k) + vi (k) + bi (k)	 (2.^)

where wi (k) and v. (k) are independent, zero-mean Gaussian white noise pro-

cesses, with

E[wi(k)wi(3)') :, Qi (k)d
ik
	(2.3)

E[vi (k)vi (j)'I = Ri (k)6jk	(2.4)

The initi4l state xi
 (0 .) isassumed to be Gaussiani, independent of wi

and vi , with mean Sti (010) and covariance Pi (010) (the meaning of this nota.

tion will become clear in a moment). The matrices A i (k), Bi (k), Ci(k),

Qi (k), and Ri (k) are assumed to 'be known. Also, bi (k) and 9i (k) are given

deterministic ,functions of time (coreesponding to i)iases, lApearizations

about different operating points, etc.). In addition, the state vectors

x
i,
.(k) may be of different dimensions for different values of i (correspond,,

ng to assuming that the different hypothesized models represent different

z
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order;;, for the dynamics of the real system) 	 There are a number of issues

that can be raised concerning this formulation, and we defer our critique of

the MM met'nod until after we have developed its basic structure. We note

here only one technical point which is that we will focus on a discrete-

time formulation of the MM method. Continuous-time versions can be found

in the literature (see (241), and they differ from their discrete-time

counterparts only in a technical and not in a conceptual or structural

manner.

Assuming that one of these N models is correct, we now have a standard

multiple hypothesis testing problem. That is, let Hi denote the hypothesis.

that the real system corresponds to the ith model, and let pi (o) denote the

a priori probability that H i is true. Similarly, let p i (c) denote the

probability that H i is true based on measurements through the kth measuro-

meat, i.e. given I  = {u(o),...,u(k-A,), y(1),...,y(k)}. Then Bayes' rule

yields the following recursive formula for the pi(k)

p(y(k+l)IHi,Ik,u(k))pi(k)

E p(y(k+l)IHj,Ik,u(k))pj(k)
j=1

Thus, the quantities that must be produced at each time are the conditional

probability denrrities p(y(k+l)jH i ,Ik ,u(k)) for i=1,...,N. 'However, con-

ditioned on HI;'this probability density is precisely the one step prediction

density produced by a Kalman filter based on the ith model.

That ie, let xi (k+llk) be the one-step predicted estimate of xi(k+l)

based on I  and u(k), assuming that H i is true. Also let xi (k+llk+1) denote

the filtered estimate of xi (k+l) based on Ik+1 {lk,u(k),y(k+1)} and the ith

model. Then these quantities are computed sequentially from the following

equatiois

Ai (1:+1^1) = Ai (k)xi (kIk) + Bi (k)u(k) + gi (k)
	

(2.6)
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91 (k+llk+l) - S(i (k+llk) + Ki (k+l)Yi (k+l)	 (2.7)

where "yi (k+l) is the measurement innovations nxocesa

Yi (k+l) - y (k+l) - C  (k)9 
i 

(k+l l k)	 (2.8)

and K(k+l) is calculated off-line from the following set of equations;

Pi (k+l l k) - Ai (k)Pi (klk).A' (k) + Qi (Y.	 (2.9)

Vi (k+l) a Ci (k)Pi (k+l lk; Ct(k) + Pi(k)	 (2.10)

Ki (k+1) = Pi (k+llk)C!(k)Vi l (k+l)	 (2.11)

Pi (k+llk+l) = Pi (k+llk) - Ki (k+l)Ci (k)Pi ( k+l.jk) 	 (2.12)

Here Pi (k+ilk) denotes the estimatior, error cova rinace in the estimate

ki (k+l lk) (assuming Hi to be true), and Pi (k+llk+l) is the covariance of

the errox xi (k+l)	 xi (k+l Ik+l.), agai n based on Hi . Also under hypothesis

Hi ,Yi (k+l) is zero mean with covariance Vi (k+l), and it is normally cis-

tributed (since we have assumed that all noises are Gaussian). Furtherm-ore,

conditioned on Hi , Ik , and u(k), y(k+l) is Gaussian, has mean Ci(k)li(k+ilk)

and covariance V,(k+l). Thus, from (2.8) we deduce that

p (y (k+l ) I Hi . Ik , a (k)) =	 m^2	
l --------r i 2̂ exp {- 2 YI (k+l) V31(k+l)

(2'T)	 [detVi(k+l))

. Yi ();+l))	 (2.13)

where m is the dimension of y.

Equations ( 2.5) - (2.8) and (2 . 13) define the MM algorithm. The inputs

to the procedure are they(k) and .u (k), and the outputs are the pi (k). The

implementation of t4he algorithm can be viewed as cs)nsisting of a.bank of N

Kalman filters, one based on each of the N possible models. The outputs of

these Kalman filters are the innovations sequen•^es 'yi (k+l), which effecti-

vely measure how well each of the filters can track and predict the behavior

of the observed data. Specifically, if the ith model is correct, then the
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one-step prediction error 'y i (k) should be a white sequence, resulting only

from the intrinsic uncertainty in the ith modal. Howevor if tho ith model

is not correct, then y i (k) will not bo white and will include errors duo to

the fact that the nrediction is based on an erroneous model. Thus the pro-

bability calculation (2.5), (2.13) basically provides a quantitative way in

which to assess which model is most likely to be correct uy comparing the

performances of predictors based on these models.

Let us now address several of the most important questions that arise

in understanding how the MM algorithm should be used. Clearly a very

important• question concerns the use of MM in problems in which the real

system is nonlinear and/or the noises are non-Gaussian. The answer to this

problem is extremely application-dependent. The Gaussian assumption is

basically used in one place--i.e. in the evaluation of p(y(k+l),Hi "k,u(k))

in (2.13). It has been our cxperienco that using this formula, even when

yi (k+l) is non-Gaussian, causes essentially no performance degradation. As

we have pointed out, what MM really attempts to do is to calculate a measure

of how well each of the 'Kalman filters is tracking by looking at the predic -

tion errors yi (k+l), and the pi (k) are simply measure of how well each of the

models are tracking relative to each other and to how well we would expect

them to be tracking.. The critical term in (2.1.3) in general is

yi (k+l) Vtl (k+l) yi (k.+l)	 (2.14)

which is the square of the tracking error normalized by the predicted co-

variance of these errors assuming Hi is true. Thus if this quantity is

large, we would tend to disregard the ith model, while if this is small, the

ith filter is tracking well., The p i (k) exhibit exactly this type of be-

havior, and thus we can expect M to be reasonably robust to non-Gaussian'

statistics. Of course this depends upon the application, but we have had

good success in several applications (S, 103 in which the noises were

f{'
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As far as the ronlinearity of tlio ;real system is concerned, an obvious

approach is to linearize the system about a number of operating points for

each possible model and use these lini ,arizvd models to design extended Kal-

man filters which would be used in place of Kalman ;filters in the MM algor-,

thm. Again the utility of this approach depends very much on the pArticu-

lar application. Essentially the issue is whether the tracking erY,ar from

the extended Kalman filter corresponding to the linearized model "closest

to" the true, nonlinear system is markedly smaller than the errors from

filters based on "mere distant" models. This is basically a signal-^to-: noise

ratio problem, similar to that seen in the idealized MM algorithm in which

everything is linear. In that case the noise is measured by the vi(k+l).

The larger these are, the harder it will be to distinguish the models (the

quantity in (2,14) kecomes smaller as V is increased, and this in turn

tends to flatten out (as a function of i) the probabilities in (2.13)). In

the nonlinear case, the inaccuracies of the extended Kalman filters effecti-

vely increase the V i (k+l) thus re&xcing their tracking capabilities and

making it more difficult to distinguish among them. Therefore, the perfor-

mance of MM in this case will depend upon how ":far apart" the different

models are, as compared to how well each of the trackers tracks. The far%they

apart the models are, the more .signal we have; the'poorer the tracking

performance is, the more difficult it is to distinguish among the hypotheses.

Even if the true system is linear, .there is clearly the question of the

utility of MM given the inevitability of d•iscrepanci,es between the actual

system and any of the N hypothesized models. Again this is a question of

signal-to-noise ratio,, but in the linear case a number of results and ap-

proaches have been developed for dealing with this problem. For example,

Bram [161 has developed a precise mathematicll procedure for calculating
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the distance between different linear models,and h2 has shown that the MM

procedure will converge to the model closest to the real model (i.e. pi(k)+l

true s stelll. This can be viewed as a technique ffor the modal nearest the 	 y	 q

for testing the robustness of MM or as a tool that enables us to decide what

models to choose. That is, if the .real system is in some set of models that

may be infinite or may in fact represent a continuum of models (corresponding

to the precise values of certain parameters), then Saxam's results can be
a

used to decide upon a finite set of these models that span the original set

and that are far enough apart so that MM can distinguish among them. For

example, in adaptive flight control (reference (171.) we maybe interested

in determining the flight condition (operating point) of an aircraft, and
i

we can think of using MM by hypothesizing a set of linearized models that

span the flight envelope. 	 a

Let us now turn explicitly to the problem of detecting abrupt changes.
a;	 1

i Y w14`I..

In such problems one must deal with once key issue that we have not yet
Yr-

&',scussed. Specifically, in change detection we are not simply attempting

to determine Wai.ch of the models given in (2.1) - (2.4) is the correct one,	 - *`

but rather we are trying to detect a shift from one model to another. That

is, in this case the actual system obeys a model of the form

x(k+l) = A(k)x(k) + H(k)u(k) + w(k) + gW	 (2.15)

y 	 = C(k)x(k) + vtk) + b(k)
	

(2.1f)

where for each k the parameters of the model correspond to one of the hy-

pothesized models in (2.1) - (2.4), but the model RiIX change with time.

While this possibility is not directly taken into account in the MM method

as described to this point, This algorithm often does work well in detecting

shifts without any major modification to take this possiblity into account

(see, for example (5, 10). The important issue in this is the adaptability
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of MM4 r.nd the purpose s of the particular application,

To elaborate on -his, 10t us first note that MM will, theorattpally,

eventuallX indicate a shift from one model to another. Two things, however,

must be taken into ac.ount. In the first place, we see from (2.5) that if

Pi (k) is small, the p (k+l) w#.1' grow only slowly at best, sn fact, in

practice we have founri that numt rical roundoff often leads to pi (k) being

set to zero if the ith model is not valid up to time k. In this case pi(3)

will be zero for all 1 > k . In order to avoid this drastic effect and also

the extremely sluggis.i response of MM to a chancte in models, a Lower bound

is usually set orb the pi (k). In different applications we have found bounds

from 10-3 down to 10
-

°5 to be satisfactory, with veer little sensitivity to

the precise value of :he bound. As a second point we note that if a parti-

cular model is not correct up until time k the Kalman filter based • on this

model may develop large errors. If then this model becones correct at time

kx it may take a long time before the prediction errors (2.8) decrease to

reflect the validity )f the model. From (2.13) and (2.5) we see that this

in turn means that MM may not respond to this change for some time. In pra-

tice we have found that this is not a particularly bad problem if the errors

in all of the Kalman filters retain bounded even when the model on which they

are based is incorrect. If a particular real system-mismatched Kalman fil-

ter combination is unstable, th(n there may be problems if the system switch-

es to the model corre3ponding to this filter. what we have found is a

workable solution to this problem is to reset the estimates of potentially

divergent Kalman filters to the estimate of the most probable model, and

this is done whenaver the probability of possibly diver ging filters-falls

below a threshold (such as 10-,2)

With these modifications MM will respond more quickly to model changes.

wheth0,k',',,,- this is adequate depends upon the application. In phrticiildr, if
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fast response is neajd, Hd for control purposes or because Additional modal

shifts are possible, then one may wish to consider a problem .formulation

that explicitly includes model. switches. Furthermore, in some applications

the t, ime at which a shift occurs is excoodingly important, and in such a

case one may again prefer to use such an explicit formulation, as one must

in applications such as multi-object tracking C371 in which keeping track

of large numbers of possibilities is crucial.

In the next section we describe one such formulation, and in the

remainder of this section we indicate how the MM formulation can be modified

to incorporate model changes and what the cost is for this modification.

Specifically suppose that the areal system does correspond to one of the

models (2.1) - (2.4) for each k but that the model may change from time to

time. Clearly there are several different constraints that we can place on

the possible sequences of models. For example, if there are no constraints,

then there are 
Nk+l 

possible sequences of models over the first k time steps

(any of N at .k-0, any of N at	 Such a sf'uation arises, for ex-

ample, if one assumes that the sequence of models , 18 governed by a finite-

state Markov processes. Such models have been considered by several authors.

See for example [40-421 in which, in addition to considering the problem of

estimation, these authors also consider the problem of identifying the

transition probability matrix for the finite-state process.

On the other hand, in many problems one is interested in detecting

individual abrupt changes which are sufficiently separated in time so that

they can be detected and accounted for separately. in such a case it is

reasonable to allow only those sequences that start with one particular

model (the "normal" model) and have a single ,shift to any of the other

models. In this case there are (kN-k+l) possible sequences up to time k --

essentially we must account for all possible failure times.
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The MM solution for any such not of possible sequences of models is

conceptually identical to that discussod previously, except here in principle

we must design a Kalman filter for each allowable sequon ge of models. The

residuals from these filters area then used t,xacLiy as described earlier to

compute the probabilities for all hypothesized sequences. since the number

of possible sequences and thus filters grown in time, some method for prun-

ing the tree of hypotheses is needed, For example, •Wa can think of throw-

ing away very unlikely models. A variety of techniques for handling such

MM trees have been considered in the litera1;ure [18, 19 ^71. While; this

may at first glance appear to be a hopelessly complex solution to the change

detection problem, this approach is not without merit. Specifically, As in

0191 this approach often provides a great deal of insight. Also, the imple-

mentation of Kalman filter trees is not only within the realm of feasibility

for, i.mpleme.ntation using high speed digital hardware, but it is oleo un-

a,r, is a	 .sae problems such as multi-object tracking.

3, The Generalized Likelihood Ratio (GLR) Method

The starting point for the GLR method is a model describing normal

operation of the observed sign,ils or of the system which generated them.

Abrupt changes are then modeled as additive disturbances to this model that

begin at unknown times. While there are strong similarities between the GLR

and MM formulations -- indeed in many cases one can use either approach with

success -- the structure of the GLR algorithm is significantly different

than that for the MM technique. As just discussed for MM, we will look at

the case of a single such change, the assumption being that abrupt changes

are sufficiently separated to allow for individual detection and compensa-

tion. The solution to the problem just described and applications of the

method can be found in ,11, 3, 5, 10, 20, 21, 25). In this section we outline

the basic ideas behind the technique and discuss some of its properties.

yea

n
r=	 9

e	 a
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We assume that the system under consideration can be modeled as

x(k+l) - A(k)x(k) + BWu(k) + w 	 + fi (k f 0)\'	 (3.1)

y 	 - C(k)x(k) + v 	 + (I i (k 1 0)V	 (3*2)

where the normal model consists of these equations without the f  and gi

torms. These terns, fi (k,8)v and g i (k,V)v, represent the presence of the

ith type of abrupt change, i=1, ... O N. Here 0 is the unknown time at which

the failure occurs (so f
J
 (k, 0) - g i (k,0) - 0 for k < 0i, and fi and gi are

they specified dynamic profilers of the ith ,charge type. For example, if

fi-0 and gi-a vector whose; components aro all zero except for the jth one

which equals 1 for k > 0, 1her. this corresponds to the onset of a bias in

the jth component of y. Finally, the scalar , denotes the magnitude of the

failure (e.g. the size of a bias)	 which we can model as known (as in MM

and as in what is called simplfirad GLR (SGLIi)) or unknown.

Assume that we design a Kalman filter base.l on normal operation, i.e.

	

by neglecting fi and 91 , From the previous section we have that this filter	 =Yea

is given by

IX(k+llk)	 A(k)x(kjk; + B(k)u(k)	 (3.3)

x(k+l^k+1)	 X(k+llk) + K(k+l)y(k+l)	 (3.4)

y(k+l) = y(k+l)	 C(k)x(k+llk)	 (3.5)

where K, P, and V are calculated as in (2.9) 	 (2.12). Suppose now that a

type i change of size v occurs at time 0. Then, because of the linearity

of (21 .1) - (3.5) we can write

x 	 = xN (k) + ai (k;O)V	 (3.6)

x(k1k) = X N( kIk) +	 (k, 0)V	 '	 (3.7)

x(k+l lk) = YN(k+llk) + u i (k+l,0)v	 (3.8)

y ( k ) = 'y (k) + pi (k,0)V	 (3.9)

where xN , xN, and y  are the responses if no abrupt change occurs, and the
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other terms are the responses due so1c1,Y to the abrupt ,ghanga.	 Straight-

forward calculations yield recursive equations for theses quantities:

a,(k+1,0)	 A(k)(xi(k,e)	 + fi (k ► 0 )^r ^xi ((a,0)	 0	 (3,10)

Oi ( k+1,0)	 (I-K(k+l)C(k+l)jW (k+l,F))	 + K(k+l)•

M •(C(k+l)(xi (kw1,0) 	+ qi (k+1,0) 1 	(3. 1 1)

ui (k+1,8)	 A(k)i(k^0),	 (ii (b-1,f3)	 0	 (3.12)
x

Ai(k10)	 = C(k) (ot	 (k, 0)	 -)1 i (k ► 0))	 + g i (k,0)	 (3.13)

The important point about these quantities is that they can be ,Q'4e-

computed.	 Furthermore, by its definition, 'y N (k) is the innovations under

normal conditions, i.e. it is zero-mean, white, Gaussian with covariance

V(k).	 Thus we now have a standard detection problem in white noise: we

observe the filter residuals y(k), which can be modeled as in (3.9)., and we

want to detect the presence of a change (i.e. that k > 0) and perhape -de-

termine its identity	 i	 and estimate its time of occurrence 0 and size V,
e

if the latter is modeled as being unknown.	 The solution to this problem
r ^a

involves matched filtering operations.	 First, define the precomputable '~

quantities

k
^k

a(k,6,i)	 =	 E p!(j,O)v- 1(j)pi(j,e)	 (3..14)
j=6

This has the interpretation as the amount of information present in
{

y (e),..,y(k) about a type i change occurring at time A.

The on-line GLR calculations consist ofdthe calculation of
i

k
d(k,B,i) =	 E pi( j re)V-1 M Y M	 (3.15)

r

j=e

which are essentially correlations of the observed residuals with the

abrupt change signatures pi (j,A) for different hypothesized types, i,.and `•F,

times, e.	 \:f V is known (the SGLR case), then the likelihood . of a type i

change having occurred at time a given data y(l),..-,y VA) is

1

J

)

1



d(k,6,i)
a(k,f,i) (3.18)

F,

,t
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zs (k,0,i) = 2Vd(k,O,i) - v12a(k,0,1)	 (3.16)

If 11 is unknown, then the generalized likelihood for th4s change is

d2(k,9,i)
Z(ktO,i) =	 (3.17}

a(k,8,i)

and the maximum likelihood estimate of '. 1 assuming a change of type i at

time 0 is

.._.

Thus the GLR algorithm consists of the single Kalman filter (3.3) -

(3.5), the matched filter operations of (3.15),, and the likelihood calcu-

lation of (3.16) or (3.17). The outputs of the method are these likeli-

hoods and the estimates of eq. (3.18) if V is modeled as unknown. The

basic idea behind MR is that different types of abrupt changes produce

different kinds oY effects on the filter innovations -- i.e. different

signatures -- and GLR calculates the likelihood of each possible event by

correlating the innovations with the corresponding signature.

As with the MM method a number of issues can be raised about GLR.

Some of these, such as thy' effect of nonlinearities and robustness to model

errors, are very similar to the MM case. Essentially it still can be viewed

as a signal-to-noise ratio problem: in'the nonlinear case the additive de-

composition of (3.9) is not precisely valid, but it may be approximately

correct. Also, different failure modes can be distinguished even in the pre-

sehce of modelling errors if thei,r'signatures are different enough. Again

these issues depend very much on the particular application. We refer the

reader, to [4, 6, 10, 11, 21, 25] for discussions of sevc ,ral applications of

GLR to applications in which these issues had to be add,essed.

GLR has been successfully applied to a wide variety of applications,

such as failure detection [1, 41, geophysical signal analysis [7], detecting

arrhythmias in electrocardiograms [6), freeway,,. 	 ' Rent detection [10, 111,

Iry
r	 ;
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wid maneuver detection (20, 21, 25). Note that the model used in (3.1),

(3.2) for such changes is an additive model, Thus it appears on the surface

that the types of abrupt changes that can b4- detected by GLR are a special

subset of those that can be detected by M, since (2.1), (2.2),allow para-

metric- changes (in A, B, C, Q, R) as well an additive ones. There are

several jSo,ints, however, that must be taken into account in assessing and

comparing MM and GLR:

(1) The .price one pays for allowing parametric changes in MM is the

necessity of implementing banks , of Kalman filters, and actually

trees of such filters to account ''or switches between models. GLR,

on the other hard, requires a single Kalman filter and ^ growing

number of correlation calculationz: as in (3.15), which in principle

must be calculated for i=l,...,N and 0=1. ,k. We Will count

shortly on the computational issuos concerned with these correla-

tions, but for now we simply point out that they are typically far

less involved than the calculations inherent in Kalman filters

(see [4, 6, 71 for examples of how simple these calculations can

be'). Also, because i t operates on the outputs of a normal mode

filter, GLR can be easily implemented and attached , as a ttionitor'to

an already existing system.

(2) Extensions to the GLR method can he developed for the detection of

parametric changes ( 381. This extended GLR bears some similarity

to extended Kalman filtering and iterated extended Kalman filtering.

(3) It has been our experience that a GLR system based on the detection

bf additive effects can Often also detect parameter failures. For

example, a gain change in a sensor does look like a sensor bias,

albeit one that is modulated by the value of the variable being

sensed. That is, any detectable change will exhibit a systematic
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deviation between what is ol)sorvrd and what is predicted to be

observed. obviously, the ability of GLR to detect a parametr3:^l

change when it is lookincl for additive ones is again a question

of robustness. If the effect of the ,parametric change is "close

enough" to that of the additive one, the system will work, This

has been the case in all of our experience. In particular we

refer the reader to (41 for an additive-failure-based design that

bas done extremely well in dete;ctinq gain changes in sensors. Note

df course that in this mode; GLR is essentially only indicating

an alarm	 i.e. the estimate V of the "bias" is meaningless, but

in many detection problems'our primary interest is in simply

identifying which of several types of changes has occurred.

There are several final issues that should be mentioned in discussing

GLR. The first concerns the calculation of statistical measures of per-

formance of GLR. As mentioned in the preceding section, Baram (16] has

developed a method for measuring the distance between models and hence a

measure of the delectability and distinguishability of different failure

modes. Similar calculations can be performed for GLR, but in-this case it is

actually simpler to do and interpret, as we can use standard detection

theoretic ideas. Specifically, a direct meanie of the detectability of a

particular type of change is the information a(k,6,i), defined in (3.14).

This quantity can be viewed as the correlation of pi (j,6) with itself at

zero lag. Similarly, we can determine the relative distinguishability of a

type i change.at two tunes 61 and @ 2 as the correlation of the corresponding

signatures
k

a(k,8 ,8. ,i) =	 E	 p! (j,6 ) V-1 ( j ) pi 01 62 )	 (3.19) .
1 2	 j=max(eVY 1

t

k
k

j

s i
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and the relativ:s distinguishability of type i and m changes at times ej and

02 similarly;

k
a(k,01 ,0 2 ,i,m) =	 g	 (i(i,(11)V.l(j)pm(j ► e2)	 (3.20)

j wmax (0 1 , 0 2 )

These quantities provide us with cxtromely useful information. For example,

in some applications (6-9) the estimation of the time 0 at which the change

occurs is critical, and (3.19) provides information about how well one can

resolve the onset time. In failure detection applications these quantities

directly provide us with information about how systram redundancy is used to

detect.and distinguish failures and can be used in deciding whether addition-

al redundancy (e.g. more sensors) are needed. Also, the quantities in (3.14),

(3.19), and (3.20) directly give the statistics of the likelihood measures

(3.16), (3.17). For the SGLR case of (3.16), R s is Gaussian, and its mean

under no failure is - V2a(k,0,i), while if a type m failure occurs at time

its mean is

E[Z2 (k,0,1)1(m,o]	 V2(2a(k,e,^,i,m) - a(k,6,i)] 	 (3.21)

For example if (m,,2) = (1,0) -- i.e. if the precise failure and time assumed

in the calculation of ZM ,0,i) are truep then its mean is +'2a(k,e,i). In
the case of (3.17), under no failure k(k,0,i) is a chi-squared random vari-

able with l degree of freedom, while if a failure (m,^) of size V occurs

M,6,i) in non-central chi-squared with mean

E[SC (k, e,i) I(m ► ^)a = 1 + v2a(k,
e, i m)2
	

(3.22)
a(k,e,i)

Clearly these quantities can be very useful in evaluating the performance of

GLR detection algorithms avid for determining decision rules based on the

GLR outputs. If one were to follow the precise GLR philosophy-[391, the

decision rule one would use is to choose at each time k the largest of the

R (k,6,i) or k(k,0,i) over all possible change types i and onset times @.
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This ;largest value would then be compared to a threshold for change detec-

tion, and if the threshold is exceeded tho corresponding maximizing values

of 6 and i are taken as the estimates of change type and time. While such

a simple rule works in some cases (6, 211, it is worthwhile often to consider

more complex rules based on the Vs, For examr)le, persistance tests (i.e.

X must exceed the threshold over some time period) are often used to cut

down on false alarms due to spurious and unmodoled events. See (4, 7, 9, 261

for more discussion of decision rules.

A final issue to be mentioned is the pruning of the tree of possibi-

,.lities. As in the MM case in principle we have a growing number of calcu-

lations to perform, as d(k,4,i) must be calculated for i=1,...,N and all

possible change times up to the present, i.e. What is usually

done is to look only over a sliding window of possible times:

k-Ml < 8 < k-M2	(3.23)

where M1 and M2 are chosen based on the a's -- i.e. on detectability and

distinguishability considerations. Basically after M 2 timessteps from the

onset of change we have collected enough information so that we may make

a detection with a reasonable amount of accuracy. Further, after M l time

steps we will have collected a sufficient amount of information so that

detection performance is as good as it can be (i.e. there is no point in

I waiting any longer): Clearly we want M i r M2 large to allow for maximum

information collection, but we want them small for fast response and for

computational simplicity. :This is a typical tradeoff that arises in all

change detection problems.

1
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