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I. INTRODUCTION

The Tong-term goal of this work is to develop a class of hybrid
integrated-optical processors which will be capable of high-speed matrix
computations. It is envisioned that the ultimate system will consist of an
array of many integrated optical circuits (I0Cs) of several different types
which are interconnected in a programmable fashion to allow a variety of
computational tasks to be carried out.

The potential advantages of the hybrid integrated-optical processor
are high computation speed, low power consumption and mechanical integrity,
all of which are advantageous for the aerospace environment. Two of the key
technical problems are the architectural strategies for computational IOCs
and their interconnection, and the integrated optical lenses which are re-
quired for compact IOC packaging. These topics are addressed in separate
chapters of this report.

The chapter on Integrated Optic Circuits for Matrix Computation
stresses planar, as opposed to channelized, integrated optical circuits
(I0Cs) as the basis for computational devices. Both fully-parallel and sys-
tolic architectures are considered and the tradeoffs between the two device
types are discussed. It is then pointed out that the Kalman filter approach
is a most important computational method for many NASA problems. This ap-
proach to deriving a best-fit estimate for the state vector describing a
large system will lead to matrix sizes which are beyond the predicted capa-
cities of planar I0Cs. It is shown that this problem can be overcome by
matrix partitioning, and several architectures for accomp11sh1ng this are
described.

The Luneburg lens work has involved development of lens design
techniques, design of mask arrangements for producing lenses of desired shape,
investigation of optical and chemical properties of arsenic trisulfide films,
deposition of lenses both by thermal evaporation and by rf sputtering, opti-
cal testing of these lenses, modification of lens properties through ultra-
violet irradiation, and comparison of measured lens properties with those
expected from ray-trace analyses. Lenses with apertures up to 1 cm and
design speeds down to f/2 at this aperture were tried. The better evaporated
lenses had focal spot sizes, at reduced aperture, no more than twice the limit
set by diffraction effects. Initial sputtered lenses promised to be of com-
parable quality; lenses made after the sputtering target had been in operation
for some time, though, tended to absorb light excessively at the design wave-
length, 633 nm. This effect appears to be related to a change in the composi-
tion of the films. When a thoroughly reliable deposition and treatment proc-
ess for chalcogenide lens materials is developed, straightforward design and
testing improvements should permit fabrication of Luneburg lenses suitable
for many beam-forming and signal-processing requirements.

Although this report has two relatively independent major sections,
the figure, equation, and reference numbers are consecutive. The subsections
and pages are also numbered consecutively throughout; all the appendices are
placed at the end.



IT. INTEGRATED OPTIC CIRCUITS FOR MATRIX COMPUTATION

1. INTRODUCTION

The goal of this effort was to evaluate integrated optic architec-
tures required to perform matrix algebra functions such as addition, subtrac-
tion, multiplication and inversion and to combine these functions to obtain
solutions to matrix algebra equations. It was desired that particular atten-
tion be paid to optical implementation of systolic array architectures during
these evaluations.

In carrying out the program the operations of matrix-vector and
matrix-matrix multiplication were emphasized over all others because of their
importance in a large number of application areas and because these are opera-
tions whicn consume a Targe amount of time and hardware when performed elec-
tronically. The systolic architectures were stressed, but some attention was
paid to looking at the implications of fully parallel methods, especially for
the matrix-vector multiplication operation.

From a more systems-oriented viewpoint, this study also touched upon
some NASA applications for high-speed matrix processors, identified the Kalman
filter as having a large number of important applications, and showed that by
using standard matrix decomposition techniques, it is possible to use arrays
of optical processors of limited size to carry out very large computations.

In this section we deal both with the hardware and systems aspects
of optical matrix multiplication. The hardware discussion begins with a des-
cription of the basic integrated optic components, then progresses to inte-
grated optic architectures for matrix multiplication, and ends with methods
for assembling a number of basic multipliers to perform operations on large
matrices. The remainder of the section is devoted to a discussion of some
applications of the matrix-multiplication operation which should be of
interest to NASA.

Many of the basic functions which are required to construct inte-
grated-optic computational devices can be implemented either in a planar
or a channel waveguide geometry. In the work which has been under way at
Battelle for the past few years, we have selected the planar geometry for a
number of reasons. Some of these are: ease of fabrication, geometric
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versatility, and the elimination of some of the complicating interference
effects which arise when single-mode channel waveguides are merged.

Much of the relevant work performed in our laboratories has in-
volved the use of an interdigital electrode pattern,such as shown in Figure 1,
which when deposited on a buffer layer on the surface of an electrooptic wave-
guide can be used to modulate the intensity of, or to change the direction
of, a planar guided wave. The buffer layer serves to isolate the electrodes
from the waveguide so that the guided wave is affected only by the electri-
cally induced periodic index-of-refraction variation and not by the presence
of the metallization pattern.

The tangential component of the electric field in the waveguide is
the only field effective in altering the refractive index for the usual ar-
rangement: TE-mode light propagating in the x direction in a Y-cut crystal
of LiNbO3. An expression describing this field has been derived by Engan.(])
The fundamental component is given by

- Yo ™z
E, = (0847)‘—9—) cos E— s (1)

where g is the electrode gap width, and z is the distance from the gap center.
In the Bragg regime only this component is effective. In the electrooptic
waveguide this field results in an index-of-refraction modulation

=-1n3
An 3 NSee rE. (2)

The index of refraction nefs is the effective index of the guided mode, and

r is the appropriate electrooptic coefficient. Since the electric field and
the index modulation fall exponentially, it is desirable to use a waveguide
which confines the 1ight closely to the waveguide surface. On a LiNbO3 sub-
strate, a Ti-indiffused quide is therefore preferable to an out-diffused
guide. , _ _
If we ignore the falloff of the field in the y direction, we can
treat the periodic index variation as a simple thick Bragg grating, the

Bragg angle ®g being given by

sineg = Ag/2neffh (3)
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Figure 1. Interdigital electrode pattern used to
generate an electrooptic grating.



and the diffraction efficiency by(2)
n = sin" ————m (4)
0

where A is the wavelength of the electrooptic grating, and Ay is the vacuum
wavelength of the light.

In carrying out this work we have used electrooptic gratings with
wavelength A, of both 13.33 um and 8.41 um. These have Bragg angles of 0.62°
0.98° respectively for He-Ne laser light in the LiNbO3 waveguides. The
measured diffraction efficiency for one of these gratings is shown in Figure 2.
As can be seen,the maximum efficiency is about 95% and the behavior of the
diffraction efficiency as a function of the applied voltage is a good fit to
the behavior predicted by Eq. (4). These electrode structures are easily
fabricated by standard photolithographic techniques and have a low capaci-
tance allowing high-speed operation.

2. ELEMENTARY ARITHMETIC QPERATIONS USING PLANAR I0Cs

We describe here some modifications of the basic interdfgita] elec-
trode structure which allow a number of elementary computational functions
to be performed. It should be noted that all of the computational schemes
which we discuss are intrinsically analog in nature and can therefore be
expected to have an accuracy of about 1% (6 to 7 bits), as compared to 16 bits
or more for digital systems. This apparent disadvantage must be viewed in
light of the very high-speed operation, low power dissipation and ease of
fabrication which is expected to characterize the I0 devices. In addition
there have been recent suggestions for architectures which have the potential
for increasing the accuracy of optical devices to the 16-bit range and for
incorporating floating-point operation. We have not yet attempted to work
out all of the details involved in incorporating these improvements into a
single I0C, but it is evident that there will be a significant increase in
hardware complexity, not an unexpected tradeoff.
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Diffraction efficiency versus voltage for electrooptic grating with
A=13.3 ym, d = 2.8 mm deposited on a LiNb03:Ti waveguide. Solid
line shows the calculated diffraction efficiency and the points are
observed data.



Subtraction and Vector Subtraction

We can combine Equations 2 and 4 and rewrite them as

n = sinz[a(A-B)] (5)

where a contains all of the geometric and material parameters and A and B
are the voltages applied to the left and right electrodes, respectively.

The intensity of the diffracted beam is now seen to be proportional to the
difference of the two voltages. If the electrode structure is extended as
shown in Figure 3 and a lens is added to collect the contributions of the
individual segments of the structure then the optical energy at the detector
is given by

N E
E= ) [sin? a(Aj - B4)]
j=1
Eo 2
v g 2% L(Aj - Bj)?. (6)

It is ev1dent that if A and B are the components of the N-dimensional
vectors A and B, respect1ve]y, the structure shown in Figure 3 produces a

quantity proportional to the vector difference (R - B)2. Of course, this
is true only when all A; and Bj satisfy the condition

a(Aj - Bj) a sin[a(A; - Bj)] (7)

Multiplication and Vector Multiplication

In Figure 4 are shown two electrooptic grating electrodes arranged
in a herringbone pattern with a grounded spine. The angles are such that
light diffracted by the first grating is incident upon the second grating at
its Bragg angle. Twice-diffracted Tight therefore has an intensity which is
proportional to the product of the diffraction efficiencies of the two grat-
ings. In general, this intensity is proportional to the product of two sine
functions, a quantity which is proportional to the product AB of the two



I =2 Ij = X a2(Aj - B2

Figure 3.

An extended electrooptic structure for
performing vector subtraction.



Figure 4.
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A herringbone electrooptic structure for performing multipli-
cation. The geometry is such that light diffracted by the
first grating enters the second grating at its Bragg angle so
that it can subsequently be diffracted by the second grating.
The output light intensity is therefore proportional to the
product of the two diffraction efficiencies.



voltages only in the small signal approximation. Several methods for over-
coming this nonlinearity are discussed in Appendix A. In the remainder of
this section we shall proceed as if the linearization problem were handled by
one or another of these methods.

The extension of the herringbone structure as shown in Figure 5
allows the generat1on of an optical signal whose power is proportional to
the scalar product A B It is this herringbone structure or variations of
it which form the basis for all of the matrix-multiplication devices we
discuss. . .

3. MATRIX-VECTOR MULTIPLICATION

We describe here two approaches to matrix-vector multiplication,
both of which make use of the herringbone electrode arrangement previously
described. The first is an adaptation of electronic systolic array archi-
tecture and the second is a fully parallel method. The comparison between
the two approaches can provide the basis for some interesting tradeoff studies
when all of the device parameters are available.

The problem to be addressed is illustrated for a 3 x 3 matrix in
Eq. 8, where the vector components are xj, i = 1,2,3, and the matrix elements
are ajj.

anxq+ ajgxpt a13x 3= ¥
ajgx 1+ agex ot a3x 3= y2
ay3xqt ag3x + agzzx = y3 (8)

The expansion of the multiplication

AX=y, (9)
is written out in detail to emphasize the facts that each component of x
is used three (N) times during the calculation, and that the calculation
itself is composed simply of the sum of products. Both addition and multi-
plication can be carried out quite naturally in an I0C, or, for that matter,
in a bulk optical arrangement. The basic problem is to design an architec-
ture which, most simply or efficiently, gets each of the xj and ajj to the
proper position at the proper time. Both systolic and fully parallel methods
of accomplishing this are discussed.
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Figure 5. The herringbone structure extended to allow

vector multiplication.
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Systolic Array Architecture

The approach to computer design known as systolic array architec-
ture was developed by Kung(3) and others as a method of approaching the prob-
lem of VLSI computer design. The basic guidelines are:

a. Each datum should be fetched from memory only
once to avoid the "von Neumann bottleneck".

b. Each chip should contain only a small number of
different processor subunits, although these sub-
units may be repeated many times on each chip.

c. Connections between subunits should be only to
nearest neighbors to facilitate the rapid flow
of data and to simplify fabrication.

The main disadvantage associated with the use of a systolic archi-
tecture in an optical processor is that the progression of data in discrete
steps requires electronic timing circuitry which can place a severe constraint
on the ultimate speed of the system. Aside from this problem, we would be
hard pressed to compile a better set of design guidelines for integrated opti-
cal circuits than those listed above. The first guideline is certainly desir-
able since we do not yet have available an optically addressable memory for
I0Cs, although some recent work(4) on surface holograms may be adaptable for
this purpose. It is therefore essential that the recourse to memory be mini-
mized since the act of fetching data from a digital store is much slower than

the rate at which the IOC is capable of using that data. Second, at this stage

in the development of IOC technology, we have only a small number of opera-
tional building blocks available to us. The second guideline is therefore
compatible with IOC technology, if only by default. The third guideline is,
perhaps, not as important for optical as for electronic systems since it is
possible to have optical carriers intersect either in planar or in channel(5)
configurations without causing significant crosstalk. Complex interconnec-
tion schemes can therefore be implemented without requiring a multilayer
structure. However, since the progress of the data through an optical pro-
cessor is controlled by the speed of 1ight in the device and not by a digital
clock, it will be necessary to pay attention to path lengths in high-speed
devices to assure that proper synchronism of the data flow is maintained.

The first optical matrix-vector multiplier based upon a systolic-
type architecture was suggested by Caulfield, et a1(6) (Figure 6). This is

an example of an optical implementation of Kung's systolic architecture as

12
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modified.by Tamura(7) for optical implementation. The object of this so-called
"engagement" architecture is to arrange for the data to flow through a series of
cells which accept pairs of inputs and accumulate the sums of the products of
the pairs. This data flow is illustrated schematically in Figure 7. In the
implementation shown in Figure 6 the 1ight sources are modulated in proportion
to the matrix elements and the vector components are carried through the engage-
ment region by a properly modulated acoustic wave. Since the data flow is
essentially one-dimensional, this architecture can be implemented in either
bulk- or integrated-optic form.

In an alternative scheme(8) which was devised solely for IOC imple-
mentation, the engagement region consists of an extended herringbone electrode
structure. The entire I0C, which is currently under construction, is shown
schematically in Figure 8. It <consists of the herringbone structure, shown
in the figure as two integrated optical spatial light modulators (IOSLMs) tilted
at an appropriate angle, collimating and imaging lenses along with a beam stop
to prevent the undiffracted and singly diffracted 1ight from reaching the
detector array, and a suitable butt-coupled laser diode light source. The
following figure (Figure 9) shows a schematic of the electronics required to
exercise the device. It is assumed that both the matrix and vector values
are stored in a digital memory. It is seen that a formidable array of shift
registers and D/A converters are required to perform the introduction of
electrical data.

There is an obvious tradeoff between the acoustic and electrooptic
approaches. In the former, the vector components proceed naturally through
the engagement region, carried by the acoustic wave. However, the data-rate
is 1imited by the acoustic velocity and must, in fact, be synchronized with
the rate determined by the acoustic velocity and the cell size. If we assume
each datum is represented by at least a 100 um-long SAW, and that the device
is built in LNO, then the maximum data-rate is 35 MBit/sec. In the electro-
optic multiplier, the data-rate is determined by an external electronic clock
or shift register (which is also required to modulate the light sources in
the acoustic device). Since the electrode capacitance is less than 20
pf/element, a data-rate of 500 MBit/sec should be possible, assuming a 50 ohm
source impedance. The trade off is that to drive the electrooptic device
additional external electronics are required. However, the speed advantage
over SAW or pure electronic devices may make this a very favorable trade.

14
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A suggested integrated optical circuit for performing vector matrix
multiplication using the engagement architecture. The diode laser
continually illuminates the interaction region which consists of two
integrated .optical spatial 1ight modulators in the herringbone con-
figuration. The lens images the interaction region on the detector

array after the undiffracted and singly diffracted light has been
removed from the beam.
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Fully Parallel Architecture

One of the traditional advantages of an optical approach to signal
or data processing is the potential for utilizing a fully parallel architec-
ture. In the case of matrix-vector multiplication, this means that all data
are entered simultaneously and all multiplications and sums are carried out
as the data are entered. The first suggestion for a fully parallel optical
approach to matrix-vector multiplication was made by Goodman(9) in 1978.

The Goodman approach provides an excellent basis for discussing
some of the advantages and the problems associated with optical numerical pro-
cessors. The earliest version of the Goodman matrix-vector multiplier is
illustrated in Figure 10. Vector compénents are introduced as LED intensi-
ties x7,x2...xy and the matrix components by a mask. The xj are distributed
over the appropriate aj;j mask locations by an anamorphic lens arrangement.
The products are directed to the appropriate summing detectors by an ortho-
gonal lens arrangement. The advantage of this configuration and, indeed,the
basic rationale for the optical approach is its speed; answers appear as fast
as the xj are varied. The system latency is simply the time taken for light
to traverse it, about 0.3 nsec for a 10 cm device. Goodman et a1(10) dis-
cusses several variations of this device. In one the anamorphic lenses are
replaced by multimode slab waveguides and in another by fiber bundles.

A11 of these devices have the property of performing the matrix-
vector multiplication in a fully parallel manner. They also have two ob-
vious disadvantages. First, the device is not programmable and can there-
fore perform only one function. This "hard-wired" characteristic is
common to all the numerical optical processors we will discuss. Second,
they can handle only real, non-negative quantities, a point which can be
addressed below, and third, there is no high-speed method for changing the
matrix mask. This last disadvantage has been overcome in several devices
suggested by other authors, but as could be expected, at the expense of
additional complexity and, in case of serial input devices, at the expense
of a great reduction in speed.

The Goodman architecture handles a two-dimensional data array
(the mask) by means of a three-dimensional geometry, and therefore cannot
be directly implemented in a planar integrated-optic format. It is
however possible to design an I0OC which can perform the fully parallel
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operation. A schematic depicting such a device is shown in Figure 11. Once
again, both matrix elements and vector components are introduced as voltages
on electrooptic modulator segments. However, all voltages may be applied in
parallel, the vector components being imposed upon a guided plane wave by an
N-unit electrooptic IOSLM. These values are then distributed by fixed sur-
face gratings so that they impinge, in parallel, upon the matrix-element modu-
lators. As in the Goodman device, summation is performed with lenses and the
device falls into the space-integrating category. Assuming a 3-cm path in
LNQ, the intrinsic processing time for such a device is 0.2 nsec. Of course,
S/N and dynamic range requirements will certainly demand a larger integration
time, but 10nsec/mult. should be realizable.

One of the most obvious of the trade-offs between the engagement
and fully-parallel approach is speed vs. hardware complexity. The engagement
processor requires a modulator N units wide. The direct processor requires a
modulator N2 units wide. The largest IOSLM constructed to date has thirty-two
100 pum-wide units -- a modulator 100 units wide is certainly possible, so a
single engagement processor could handle a 100 x 100 matrix, and a direct pro-
cessor a 10 x 10 matrix. The tradeoffs between the two approaches are sum-
marized in Table 1.
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TABLE I. COMPARISON OF DIRECT AND ENGAGEMENT ARCHITECTURES

Engagement

Direct

Data Flow

Electronic Interface

Natural Device Geometry

Speed

Electronic Interface

I0C Size

Stepped

Parallel set of sequen-
tial inputs

Planar

Limited by electronic
clock and/or shift
register

Complex: N+1 shift regis-
ters, 2N D/A converters.
A11 data moves at high
speed.

Maximum IOQSLM size: N

Continuous

Fully parallel

3-D

Limited by detector
SNR

Moderate: Only time-
dependent values must
change

Maximum IOSLM size: N2
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4. MATRIX-MATRIX MULTIPLICATION

Matrix-vector multiplication can be described as an N2 problem, since
N2 multiplications are required to produce the components of the product vector.
In the process of obtaining the desired result, each vector component is used
N times, and each matrix element is used once. The matrix-matrix multiplica-
tion problem is, on the other hand, an N3 problem, the components of both
matrices all being used N times in the computation. More specifically, the
problem is to compute

c-aB (10)

where the 1j element of C is given by

ij = .
J

Vo=

aij bjk (11)

For a 3 x 3 matrices, for example, cy3 is

€13 = ay1by3 + ajgbp3z + aysbis (12)

The systolic array architecture for carrying out this computation
is shown in Figure 12.(3)  The data are stepped through the engagement region
in the sequence shown. Each of the boxes, Cij» computes the produce of each
pair of simultaneously incident quantities and accumulates a running sum of
the products.

Because of the higher dimensionality of this problem, we have not
been able to devise a reasonable design for a fully parallel matrix-matrix
multiplier, although such designs are possible in the world of three-dimensional
optics. We have, however, arrived at two IOC matrix-matrix multiplier designs
which are based upon the engagement algorithm. The first of these is shown in
Figure 13. The computational units are composed of a herringbone electrode
structure which performs the multiplication, and a detector with sufficiently
long time constant to perform the sums.

The intensity of the light diffracted by the herringbone structure is
proportional to the product of the two analog voltages applied to the struc-
ture. These voltages must be stepped through the device in synchronism as
suggested in the figure. This may be accomplished using an analog shift
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Figure 12. Systolic array architecture for matrix-matrix
multiplication showing the flow of data through
the computational elements. Each element per-
forms the sum-of-products operation.
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register or with digital shift registers and, for the multiplication of two

N x N matrices, 2N2 D/A converters. At this time, the major problems with

the I0C of Figure 13 are the massive amount of high speed electronics required
and the fact that, for the configuration shown, a single I0C with NZ ele-
mentary computational units must be employed. The second of these problems

is overcome in the device shown in Figure 14.

The modified matrix multiplication I0C sketched in Figure 14 com-
bines some of the features of Figure 13 with some of the features of the
matrix-vector multiplier shown in Figure 11. As in the latter device, the
herringbone structure has been sp]ﬁt into two segments and beam splitters are
used to distribute the information encoded in the light beam. The modified
matrix multiplication IOC has the following advantages over the device sug-
gested in Figure 13.

e Because the brs values are distributed optically rather
than electronically, the data can, for most cases, be
considered to be applied simultaneously to the appropriate
apn matrix element array to advance in a rectangular rather
than a skewed array. The result is to reduce the processing
time by N-1 beats.

o The geometry of Figure 14 suggests that a natural split

occurs after each row of A. Therefore, by using parallel

B inputs to a number of Iabs, each I0C could calculate one
one of the row vectors of C, and these calculations could

be done simultaneously. -
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5. SOLUTION OF SYSTEM CONTROL EQUATIONS

A wide variety of problems of great interest to NASA are readily
formulated in terms of large linear algebra problems which need to be solved
very rapidly with a small, low-power-consumption computer. Tracking and
mechanical control are examples of such problems. The universal tool for all
tracking operations and indeed for most control operations is the Kalman
filter. The Kalman filter is essentially a means of predicting the next
number or, as is most commonly conceived, the next vector occurrence. It
accomplishes this by estimating the next occurrence as the previous vector cor-
rected by a factor proportional to the difference between the presently-
observed vector and the predicted vector. The proportionality factor is the

* Kalman factor usually symbolized by the letter K. The Kalman estimated state

vector is preferred over any measured value for two reasons. First, we seldom
measure the state vector directly and our measurements often do not involve all
of the components of the state vector. Second, our process and our measurement
are noisy and hence subject to error which can be minimized by appropriate
statistical techniques. Thus, the Kalman estimated state vector gives the
statistically-best estimate of the true state vector we can obtain-at the

time.

Kalman filtering is usually regarded as so complicated that it must
be accomplished in a digital computer. Thus the event is regarded as being
discretized in time. Of course, the time interval must be chosen to be
commensurate with the calculational speed of the computers involved in cal-
culating the Kalman filter. For large problems, the Kalman filter can be
calculated only if a variety of the system parameters remain constant with
time. Actual NASA events of interest are continuous in time, so continuous
Kalman filtering is appropriate. We believe it will be possible to set up
simple analog optical computers to perform continuous Kalman filtering in
real time.

The following brief mathematical description of Kalman filtering
will suffice to show the computations which are involved.

We suppose we have a k dimensional state vector X satisfying

= A(t)X + n(t) (13)

o.la.
+ixy
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where A(t) = k x k matrix which may vary with time, and n(t) = k dimensional
noise vector which has an expected value of zero but a covariance matrix which
may be time dependent. We measure an r-dimensional vector

y(t) = M(t) X (t) (14)

where M(t) = r x k matrix which may be time dependent. Our goal is to find
" the best estimate Xe(t) to X(t) given y(t).

The Kalman filter makes use of all of the quantities just defined as
well as of the continuously updated state vector covariance matrix P(t) and the
noise covariance matrix

E[A(ty) - Alt2)] = qQ(t). (15)

The Kalman gain function is

K(t) = {[PAT(t) + Q(t)IMT(t)
+ PMT(t)}  [M(t)Q(t)MT(t)]-T. (16)

Using these, Fagin(12) showed two equivalent optimum block diagrams for
accomplishing the desired estimation. These look complicated but they need
not be because many of the boxes each representing a matrix multiplication
may contain a constant matrix. It is clear, however, that optimum estimation
requires only matrix

e multiplication,

o transposition, and

¢ inversion
along with a memory for temporary storage of partial results.

Our consideration of optical architectures for the solution of

the entire Kalman filter problem is by no means complete. However, we have
begun to attack this problem in a systematic way, beginning with the realiza-
tion that it is possible that the size of the matrix for a particular problem
is too large to be handled by a single integrated optical processor.
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Our approach to solving this problem is to:
(1) design the appropriate integrated optical processors,
(2) design suitable algorithms for those processors, and
(3) assemble "small" processors into systems capable of
operating on the full-sized matrix.

Steps (1) and (2) have been discussed above. We will now concen-
trate on ways to overcome hardware constraints on processor size.

The Multiplication of Large Matrices

The approaches we have suggested for constructing I0Cs for carrying
out matrix multiplication use I0SLMs or herringbone electrode structures which
will probably be Timited to a mximum of about 100 elements. This means that
the engagement and the fully-paraliel devices will be limited to matrices of
about 100 x 100 and 10 x 10, respectively.

There are several reasons that the size of the I0Cs is limited.

The most important is that, for proper operation, it is necessary to illumi-
nate the active region with a rather uniform, plane guided wave. It is not
feasible to reduce the width of the individual modulator units to much less
than 100 micrometers. It is also not practical to attempt to generate a
uniform guided wave with a width more than 1 cm. These two figures combine
to produce the 100-element Timit. _

Another limiting factor is the number of connections which can be
made to a single IOC. Although this number certainly exceeds 100, the 200
connections which are required to address the 100 x 100 engagement processor
is getting close to the upper limit.

The approach we use to overcome hardware constraint on the size of
the matrix multiplier is based upon the fact that any matrix can be subdivided
or partitioned into a number of smaller submatrices.(13) When multiplying two
conformable matrices which have been partitioned in a compatible manner, the
submatrices can be treated just as if they were scalar elements. As a simple
example we consider the product A-B = C where A, B, and C are 6 x 6 matrices
and the submatrices are 2 x 2. o - -
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where, for example,

€11 ¢12]
C11 = AnBiy + Ai2Bzr + AisBat = | c22) (18)

Note that each term in Eq. 18 is a 2 x 2 matrix product and each contains a
contribution to Cyy, Cy2, C21, and C2o, which are four of the desired 36
matrix components. It is obvious that the algorithm which allows us to avoid
performing a Targe matrix multiplication demands that we not only perform a
large number of smaller multiplications, but that we devise a system for
carrying out the required additions.

In the example discussed above, we have replaced a 6x 6 matrix
multiplication with 27 2x2 multiplications and 36 3 - number sums. In a
more realistic example we might have chosen to carry out a 128 x 128 multi-
plication with 512 16 x 16 processors. The final output would then be 128
8-number sums. In general we can perform an NM x NM matrix-matrix multiplica-
tion by N3 MxM multiplications. The memory required is no more than that
needed to perform any NM x NM matrix multiplication because the submatrices
can be accumulated.

The matrix-multiplication engagement processor could be used as the
basic I0C for carrying out the submatrix multiplications. It requires 2N-1
clock pulses to perform an N-dimensional matrix multiplication. The data
flow for Cyy of the 6 x 6 example is shown in Figure 15. The sums can be
carried out optically by arranging the processors so that all of the appropri-
ate optical outputs fall on a common detector, or electrically with individual
detectors for each processor and a series of summing circuits. Note that since
all of the submultiplications can be carried out in parallel, there is a poten-
tially large reduction in the processing time. Assuming that there is a con-
veneint way of formatting the data into the proper sub-groups, that the data
are clocked into the processor at a constant rate for all examples, and that
optical summing is used there is a factor of 11/3 reduction in our 6 x 6 ex-
ample, and a factor of 225/31 reduction in the processing time for the
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128 x 128 example. There is an obvious hardware/processing-time tradeoff
which makes this a very attractive approach to consider for handling large
problems.

Another approach to this problem which used a single I0C but more
electronic hardware is discussed in Appendix B. The question of numerical
computation is addressed in Appendix C.

Matrix Inversion

Because matrix-matrix multiplications require the same order of
magnitude of calculations as matrix inversion the concept of using an itera-
tive matrix-matrix inversion scheme is of no interest for electronic digital
computation. Recently, however, several schemes for optical matrix-matrix
inversion scheme is of no interest for electronic, digital computation. Re-
cently, however, several schemes for optical matrix-matrix multiplication

have been devised.(14’ 6, 15)

Because these allow very fast computation, it
is of interest to apply this technique to various problems in linear algebra.
One such problem, eigenvector/eigenvalue solution, is easily attacked by a
matrix power method described elsewhere.(16) Here we describe the inversion
of the matrix A by iterative matrix-matrix method.

The kth/ row of the matrix product AB has as its jth/ column
Cj,k = E ajebgk s - (19)

where the a's and b's are the components of A and B. If now we fix k we

find that we do not need all of the elements of B to calculate Cjk. Rather

we need only b1k, bok, ..., byk, the kth/ column of B. We want the particular
case

s - Vifi=k
Cik = 83k = Lo ¢ 5 # & (20)
Thus we can write
C+1-= [5j1l5j2| ...I(SJ'N] (21)
and
B = A~1 = [bj1| bjz ... [bjn]. (22)

33



We compute A-1 by solving N equations of the form

A by = (23)
where
Bk = (b1k» b2ks ---» byk)T (24)
and
Sk = (81K, 6 cees SNEDT
Ck (61k> S2k> s> ONk (25)

Fortunately the literature is replete with iterative solutions to
Equation 23. For example, Ralston(17) gives three methods. Of these, one
(the Gauss-Seidel method) converges for any positive definite A and converges
faster than the other two methods discussed.

We now show how the Gauss-Seidel method can be extended to matrix
inversion. Write

A=L+U+D, (26)

where D is a diagonal matrix and L and U are, respectively, lower and upper
triangular matrices. We have

AA-T = 1
or
(L+U+D)AT =1,
Therefore
(L +D)A-1 = - ua-1 + 1
and

A-1 = - (L +D)-TUA-T + (L + D)-11. (27)

We start with some "approximate" inverse matrix (A-1)g and calculate an
improved solution

(A-1)7 = (L + D)-T U(A-T)g + (L + D)-1I, etc  (28)

Ralston shows that if A is positive definite, this iteration converges
independently of our choice of (A=1)g. Writing
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B=-(L+D) and
C=(L+D)1I=(L+D)]
the iteration is
"] = ']
(A1) 4 = B(AST) + C. (29)

The multiplication by B is easily carried out by optics. The addition of
C can be carried out electronically.

Finding B is a far easier task than inverting A, because L+D is
essentially lower triangular.
With no precalculation at all we can do Jacobi iteration:

(A1), = -D~1(L + u)(A=1)__, + -] (30)

1
This is because inverting D is totally trivial:

dij = dji8ij = (dij ~1)-1.
This is not guaranteed to converge unless the Euclidean norm of D-1(L+U) is
Tess than one. This is often the case, so the convenience of not having to

invert (L+D) may lead to a preference for this method.

An iterative Tinear equation solver proposed for optical solution
to ’

AX = B, (31)
is
-5

Xn = (I + A)Xp-1 - B. (32)

This has the same sort of convergence burden of proof (||I + A]| < 1) as
the Jacobi method. Reworked, it reads

(A1) = (I + A)(A-N)poy - 1. (33)
A general block diagram for the iterative solution of the equation

is shown in Figure 16.
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ITI. LUNEBURG LENSES

6. INTRODUCTION

The objective of this portion of the program is the development
of procedures for the design, fabrication, and testing of Luneburg
lenses for integrated-optical devices. The lenses are produced by
deposition of arsenic trisulfide glass layers of prescribed profile
onto the surface of optical waveguides made by the diffusion of titanium
into Y-cut lithium niobate crystals.

A conventional Luneburg lens for use in planar integrated
optics consists of a layer of high-refractive-index material deposited
on a portion of an optical waveguide and radially symmetric about an
axis through the center of the lens and perpendicular to the plane
of the guide. The effective refractive index of the guided mode is
changed locally by an amount dependent on the thickness of the overlay

at the point in question. The Luneburg lens is an example of a gradient-index

lens, in which focusing occurs because of the difference in refractive
index between adjacent rays. If the lens profile--thickness as a function
of radius--is properly chosen, a perfect geometric focus can be obtained;
that is, the lens will be diffraction-limited. The geodesic lens
and the diffraction, or grating, lens are other types of waveguide
lenses that may be produced with short focal lengths. The relative
merits of these types of lenses are discussed in our paper "Evaporated
AspS3 Luneburg Lenses for LiNb03:Ti Optical Waveguides," for which a full
bibliographic reference may be found in Appendix D to this report.

Just as there are several types of waveguide lenses which
should be considered for a given application, there are a number of
materials which need to be evaluated if a Luneburg lens is to be used.
The Tens material should have a refractive index higher than the waveguide
surface index, should not cause excessive absorption or scattering
of the guided light, and should be easy to deposit on the waveguide
surface. For lenses on LiNbO3 waveguides, arsenic trisulfide glass
is one of the few known materials to meet these criteria. Arsenic
triselenide and more complex chalcogenide glasses also have high refractive
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indices, but they have fundamental absorption edges more toward the
infrared and cannot be used in the visible. ZnS and CdS have large
energy gaps and high indices of refraction, and they can be deposited
on LiNb03. These materials form polycrystalline films; obtaining films
of good optical quality requires some care. Certain oxides, such as
Ti02, might also be used with LiNbO3 waveguides. It is difficult to
keep the oxygen content of deposited oxide films high enough to obtain
a refractive index comparable to those of the crystal, although some

~ sputtered TiOp films on LiNbO3 with refractive index as high as 2.6
have been prepared (R. Holman, personal communication. The optical
quality of these films was not further assessed.)

In the remainder of this portion of the report, we will first
describe our procedufes for fabricating and testing the optical waveguides
and the AspS3 layers. Then we will describe the procedures for designing
Luneburg lenses of prescribed characteristics and for designing masks
suitable for making, by evaporation or sputtering of the glass, lenses
of the desired profile. Ray-tracing will be seen to play a significant
role in assessing the adequacy of these designs. Finally, we describe
the fabrication and testing of -some selected lenses, and we conclude
by summarizing the progress made, the problems encountered, and the
questions remaining.

7. WAVEGUIDE AND SUBSTRATE

For all but the most preliminary work, it is necessary for
accurate lens design to know the refractive index of the guided mode
and the index at the guide surface to the third decimal place. This
means,in turn,that the waveguides have to be fabricated by a reproducible
process on well-characterized substrates. Commercial 1ithium niobate
crystal plates are somewhat variable in optical properties and diffusion
coefficients, complicating the characterization process. In parallel
work, we are attempting to correlate such variable properties with
one another and with factors such as sample stoichiometry in order
to allow production of waveguides of fully predictable behavior.
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In the process most frequently used to make the waveguides
employed in the present experiments, a film 17.5 nm thick of high-purity
titanium is deposited on the LiNbO3 crystal surface. The titanium
is then indiffused at 1000 C for 2.5 h in an atmosphere of slowly flowing
oxygen which has been bubbled through water at 90 C. The water vapor
compensates for out-diffusion of lithium which occurs during the diffusion
anneal. This procedure produces waveguides supporting a single mode
of each polarization at wavelength 633 nm. As no residual diffusant
remains on the surface, the waveguide is presumed to have a depth profile
of approximately Gaussian shape. To describe such a profile, two parameters--
the surface index and the diffusion depth--are required, and both cannot
be obtained from the propagation constant of the guided mode, but reasonable
extrapolations can be made from data on two- and three-mode guides.

In some cases, guides supporting more than one mode of a given polarization
have been used. Of course, only one mode can be expected to be sharply
focused by the lens.

To determine to sufficient accuracy the waveguide surface
index, we need to know, in addition to the mode indices and something
about the refractive index profile in the guiding layer, the substrate
refractive index. We have found that this quantity can be measured
quite accurately by a recently described(18) prism coupling method.

In our implementation of this method, a symmetrical SrTi03 prism is
clamped to the sample, as shown in Figure 17, and light is brought to

the prism-sample interface through one remaining prism face much as

one excites a propagating mode in a waveguide with a prism coupler.

The amount of light reflected from the prism-sample interface is recorded
as the angle of incidence is varied. When the angle of total internal
reflection at the interface is approached, the reflected intensity
"increases rapidly. In spite of effects of imperfect beam collinearity
and varying air gaps between the prism and sample, it is generally

easy to determine the angle of total internal reflection to within

1' of arc and thence to calculate the sample refractive index to +0.0001
or better. The refractive index and angles of the prism are found

in the conventional way using a prism spectrometer. The ordinary refractive
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Prism-coupling method for measuring refractive
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index of lithium niobate varies little from sample to sample, a typical
value at 633 nm wavelength being 2.2865. The extraordinary index is
more variable, ranging from 2.1996 to 2.2032, presumably as a result
of changes in stoichiometry.(]g) This method has the advantage that
measurements may be carried out either before or after the waveguide
layer is formed. When the waveguide is present, it is possible under
favorable circumstances to determine the guided-mode indices as well
(H. Onodera, personal communication). More often, however, these values
are obtained using rutile prisms to couple into and out of the guided
modes. Measurements on one waveguide supporting two modes of each
polarization yielded the following representative results for the TM
polarization:

substrate index ' 2.2868
O0-order mode index 2.2892
surface index 2.300
diffusion depth 2.2 um

assuming a Gaussian profile and the validity of the WKB approximation(zo)
for evaluating the surface index and the waveguide depth. This waveguide
was used in several of our experiments on determining the refractive |
index of the deposited films and the data given above have been used

in some of our more recent lens designs.

8. AspS3 FILM DEPOSITION

Arsenic trisulfide film lenses have been fabricated by two
physical-vapor-deposition processes, rf-sputtering and thermal evaporation.
Uniform-thickness films were also prepared by these methods for measurement
of the film optical properties. In this section we describe the film

deposition methods and the methods for determining the principal properties
of the films prepared.

The experimental arrangement for making AspS3 films by thermal
evaporation is illustrated schematically in Figure 18. The process
is carried out in a conventional bell-jar high-vacuum evaporation system,
pumped down to a pressure of 1.0 x 10~2 torr at the start of the evaporation.
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The source is 99.99% pure AsZS3 fused glass which has been hand-ground in
a porcelain mortar and pestle to a fine powder, approximately 325 mesh.
The powder is evaporated from a quartz crucible, 18 mm in diameter at the
top, held in a tungsten basket. Best results are obtained when the
crucible is around half full. The evaporation temperature is estimated
to be in the 500 to 700 C range and the source-to-substrate distance is
typically 100 mm. In most experiments, the film deposition rate was
around 20 nm/sec. Lenses fabricated at deposition rates of 2 nm/sec had
Simi]ar properties to those deposited at the higher rate. The masks,
which are used to shape the deposit to the desired thickness profile,

are made of thin sheets of aluminum. The crystal substrate was not heated
or cooled during the evaporation.

Sputtering of AspS3 thin films was first described by Watts
and co-workers 21), Our experiments were carried out using the same
vacuum system used for the evaporation work. A special baseplate was
constructed allowing easy conversion of the system between the two
deposition methods. For deposition of chalcogenide glasses a dedicated
system is needed because of the relatively high vapor pressure of the
materials.

The experimental arrangement for rf sputtering is indicated
in Figure 19. Not shown in the drawing is a movable aluminum mask which
may be inserted just above the thick profiling mask and the film thickness
gauge in order to permit presputtering of the target. The target is
a polished disk of 99.99% pure As»S3 glass, 102 mm in diameter and
6 mm thick, obtained from Unique Optical Company, Farmingdale, NY.

It was fastened to the target electrode with Epon epoxy resin. Before

the target was used, it was presputtered for 12 h to remove contaminants.
It is kept under vacuum when not in use. Most of the substrates used

are 3 mm thick; so the target-to-substrate distance is 23 mm. The
sputtering gas is argon, either standard laboratory grade or high-purity.
One attempt at sputtering in high-purity nitrogen yielded a whitish
powdery deposit, which was not analyzed. To produce films, the system

is pumped down to about 8 x 10-9 torr; then gas is admitted and the

films are sputtered at about 35 um argon pressure. The operating frequency
is 13.56 MHz and the sputtering is typically done at 20 W forward power.
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The film deposition rate is typically 12 nm/min, but can be varied
from 10 to 18 nm/min at this power, depending on the standing-wave
ratio and the other conditions.

Both methods yield films which adhere well both to glass
and to lithium niobate substrates. Under magnification, the initial
sputtered films appeared smoother. Evaporated films often show small
pockmarks and granules adhering to the surface, which seldom, however,
affect the optical properties of lenses or other films in any obvious
way. Problems were encountered, on the other hand, with some of the
sputtered films after the system had operated a while, as discussed
below.

Once films have been prepared under specified conditions,
their properties are measured. The minimal set of parameters that
must be determined for design and fabrication of lenses is

(1) thickness, and thickness profile in the case of lenses;

(2) film refractive index at the design wavelength (the

633 nm Tine of a He-Ne laser in all the work reported
here); and

(3) change in refractive index upon illumination with short-

wavelength T1ight or upon annealing just below the glass

transition temperature(22'24). This phenomenon may be
used to adjust lens properties after fabrication, or
it may lead to gradual change in lens properties over
time if the lenses are not either protected or fully.

desensitized by intentional annealing or illumination.
We will describe measurements of each of these parameters 1n turn.
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1. Lens shape and film thickness. The overall

thickness of the lens is fixed by measuring the mass

of material deposited on a piezoelectric thickness monitor
mounted near the crystal, but away from the masks. The
mass/thickness ratio is determined by profilometer thickness
measurements on test specimens. The profilometer, a
Taylor-Hobson Talysurf 4, or more recently a Talysurf

6, is also the principal instrument used to determine

the lens profile. The stylus does not damage the arsenic
trisulfide glass or the waveguide layer, and it is not
difficult to make a traverse through the thickest part

of the lens. One difficulty with Talysurf measurements

is that the substrate is often found not to be flat;

so an extrapolation of substrate surface position beneath
the lens is required in order to determine the lens thickness.
Deposition of the lens may cause some warping of the
substrate, Departures from planarity are not sufficient,
though, to have any effect on the properties of the guided
waves or on the lenses. '

The profilometer work is complemented by interferometry.
A Twyman-Green arrangement is used to provide interferograms
of the lens shape; an example is shown in Figure 20. Both
white-light and monochromatic illumination yield informative
fringe patterms. The interferograms are particularly good
for detecting shape distortions resulting from misalignment
of masks or from substrate imperfections.
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Figure 20.

Twyman-Green interferogram of arsenic trisulfide
Luneburg lens 1 cm in diameter.
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2. A5253 refractive index. The refractive indices at

633 nm of arsenic trisulfide films deposited according to our

procedures have been measured by a prism deflection technique.
Prisms of uniform thickness and apex angle 30° are deposited
on LiNbO3 waveguides through triangular masks held close to
the guide. The prisms are oriented symmetrically with respect
to the z-axis of the crystal and a 633 nm guided beam is
coupled into the waveguide so it propagates along the x-axis
of the y-cut crystal. After the beam is deflected by the
ovef]ay prism, it is end-fired out of the guide through a
polished edge and its deflection measured on a screen about a
meter away. Because of the steep edges of the prism, some
light in the prism region is frequently scattered at the input
edge into higher-order modes supported in this region. The
light is subsequently scattered back out into the substrate
fundamental mode at the output edge; so there are often 2 or

3 deflected beams corresponding to different modes in the
prism region. From each observed deflection we calculate a
mode index in the prism region, and from each mode index we
calculate, using a program similar to that used to determine
the lens thickness profile, a value for the refractive index
of the overlay material.

The unweighted average of 16 such determinations,
measured on 6 evaporated prisms varying between 0.28 and 1.21
um in thickness, was 2.446 + 0.006. Two different substrates
were used, and the modes observed were 6 TEO, 6 TMO, 3 TE] and
1 TM]. The range of refractive indices found was 2.38 to
2.48; while this is larger than desirable, most of the values
clustered well around the mean. The mean for the 7 TM modes

was 2.445, while for the 9 TE modes it was 2.447. The value
2.445 was adopted for design work on evaporated lenses not
to be subjected to ultraviolet illumination.



A similar experiment was carried out using a sputtered
prism 0.93 um thick. A single TM beam was observed in the
output when TM-polarized input was used, and two TE output
beams were found with TE input. From the deflection of the
TM0 beam, a film index of 2.61 + 0.005 was calculated. To
obtain similar values for the beams with TE polarization,
it was necessary to assume that they corresponded to excita-

2
verified that a prism of this thickness would support these

tion of the TE, and TE3 modes in the prism region; it was

two additional modes. The film indices obtained on this
assumption were 2.63 and 2.56. A value of 2.58 was adopted
for the design calculations on sputtered lenses; this value
will also be seen to be appropriate for evaporated lenses
which are annealed or exposed to ultraviolet. The absence
of deflected peams corresponding to the TE0 and TE] modes
in the prism may indicate that these beams were absorbed or
very effectively scattered into the higher-order modes or
out of the waveguide. The high refractive index of the
sputtered films is most easily explained by assuming that
they have undergone during their formation a maximum photo-
induced refractive-index increase as a result of the large
amount of blue and ultraviolet light present in the sputtering
glow discharge.

3. Ultraviolet-induced change in refractive index. The

dynamic photoinduced index was determined by measuring the
change in the deflection of a guided TMo beam by an evaporated
A5253 prism as the prism was illuminated with an ultraviolet
lamp. This prism again had apex angle 30°; it was 0.60 um
thick. The single-mode waveguide on which it was placed had
polished end faces. The input coupling prism and the crystal
were all enclosed in a plastic box through which dry argon
flowed throughout the experiments. The ultraviolet illumina-
tion, strongest at 400 nm, impinged on the prism through the
top of the box. The intensity of the 400 nm Tine at the
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sample, with the box cover in place, was 1.10 mw/cmz. There

was a small change in refraction by the prism between the time
it was first made and when it was used in these experiments.
This preliminary change in film index was equivalent to about
10 minutes extra exposure to the uv source. For exposure
times up to about 3 hours, the refractive index of the ASZS3
as measured by the deflection of the TM0 mode may be expressed
as

n = 2.5820 - 0.1295 exp (-E/5.739), (35)

where E is the total uv exposure (400 nm Tine) in J/cmz.

This expression is consistent with a model in which the rate
of photoinduced index change is simply proportional to the
remaining amount of unaltered material. For longer exposures,
the film index increases above the saturation value indicated
by Equation (35) to 2.594. This effect is probably related to
heating of the sample by the uv lamp. The prism region also
supported a TM] mode; the dynamics of the index change
measured using deflection of this mode were very similar to
those with the TM0 mode, but the calculated initial film index
for this mode was about 0.02 higher than for TMO. After

6 hours exposure, a TM2 mode of even higher apparent index
showed up. The observed index changes and model curves fitted
to an equation of the type of (35) are shown in Figure 21.
While heating of the sample seems to be an important influence
on the values obtained at long times, the displacement of the
curves from one another should not go unremarked. This
difference might result from some dependence of film composition,

23)

there is also greater uncertainty involved in determining the

and consequently photosensitivity( » On evaporation time, but
film index from the properties of the higher-order modes.
Refractive index increases similar to those produced by

(24,25) We

exposure to uv can also be induced by annealing
obtained similar changes in refractive index by annealing
films at 190 C for 1 hour in slowly flowing dry argon or

nitrogen.
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Figure 21.

100 200 300 400

Apparent refractive index of AspS3 film prism as function of time
of exposure to 1.1 mW/cm? of ultraviolet light, as determined by
deflection of 3 different modes supported in prism region. Heavy
lines connect data points; light lines are fits to data of the
form ng = a - b exp(-t/t).
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Sputtered films were exposed to ultraviolet in a similar
way for up to 12 hours with no significant change in their
refractive properties. Annealing as described above also had
no effect. This is consistent with the idea that these films
as made have about the maximum refractive index possible for
films of their composition.

9. LENS DESIGN

To describe the Tens design, mask design, and ray-tracing work, it
will be helpful to follow through a single example. We will consider a lens
of diameter 12 mm designed to focus a 10 mm wide TM0 beam at a distance of
21 mm, measured in the waveguide, from the lens center. The guide will be
taken to be the one described earlier, with surface ordinary index of 2.300
and TM0 mode index of 2.2892. The lens deposit, either sputtered or
evaporated and annealed, will be taken to have a refractive index of 2.58,
and the design wavelength in air is 633 nm. The design speed is /2.1 in
terms of the design useful aperture, or f/1.75 in terms of the total aperture.
In terms of the back focal length often used by lens designers, the corre-
sponding values are f/1.5 and f/1.25.

To determine the required refractive index profile, we solve the

integral equation(26’27)
(t - z)1/2 1
N(r) _ 2 [ sin © (u” + z)
Next " o (w2 + 22)1/2 |

In this equation, N(r) is the mode index at radial distance r in the lens
region, while Next is the mode index outside the lens, 2.2892 in our example.
The parameter t is the reciprocal of twice the full-aperture f/number of the
lens, or 0.2857, and z = tR, where R = 2r N(r)/A Next' A is the full Tlens
aperture, 12 mm. In the form presented here, the integral is easily evalu-
ated to 5 decimal place accuracy bya single 16-point Gaussian quadrature.

The parameter R will be seen to range between zero and unity. To determine
the index profile, we select a suitable set of values of R and for each one
evaluate the integral; each evaluation yields a value for N(r)/Next, and
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from this we finally determine from the definition of R the value of r to
which the calculation applies. The refractive index profile is shown in
Figure 22.

To find the lens thickness profile corresponding to this
refractive-index profile, we take the waveguide to have a Gaussian profile
with a diffusion length of 2.2 um, a surface index of 2.300, and a bulk
index of 2.2868. The values other than the surface index are not highly
critical to the accuracy of the calculations. Since the lens thickness
varies slowly with radius, we model the situation at a given radius as a
uniform layer of lens material covering the inhomogeneous waveguide. We
made a straightforward extension of the calculation method devised by
Southwe11(28) to this case, assuming that the waveguide layer in the LiNbO3
could be described within the WKB approximatid;. In most of the lens
region, the major portion of the optical energy is drawn into the lens
layer, and the electric field of the optical wave decays throughout the
substrate. Under such circumstances, a simplified three-layer waveguide
approximation may be used. This analysis applies, strictly speaking, only
to TE modes, except of course that index values appropriate to the TM0 mode
in the L1‘Nb03 are inserted into the calculation. While this is in most
circumstances a fairly good approximation, it should be corrected for more
accurate lens design(zg); as we shall see, the present design happens to
be one in which this part of the analysis is inadequate for peripheral rays.
The calculated thickness profile, normalized to unity at the lens center,
is shown in Figure 23. The design central thickness is 0.39 um.

10. MASK DESIGN

To design a set of shadowing masks which will yield a lens
deposit of the desired thickness-vs-radius profile, we need suitable models
of i) the molecular detachment process at the evaporation on sputtering
source, ii) the transport through the masks to the substrate, and iii) the
deposition process at the substrate. Given these, we then require a
straightforward but tedious search procedure to determine the positions
and apertures of the necessary masks. In devising the models and computa-
tional procedures, we have drawn on previous work on mask design for
sputtered(30'32) and evaporated(33) lenses for glass substrates, although
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Figure 22. Design mode-index profile for £/2.1 Luneburg lens of 10 mm input
aperture, designed to focus TMy mode of LiNb03:Ti waveguide.
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with a number of modifications. Since we are dealing with a smaller index
difference between the deposited material and the substrate than are those
using glass waveguides, it seems we should not need quite as complicated
mask arrangements in order to obtain good quality lenses.

The evaporation source is modeled as a uniform distribution,
over a circle whose diameter is that of the top of the crucible, of point
sources, each of which emits A5253 molecules (or equivalently As4S6
mo]ecu]es(34)) uniformly into the hemisphere above the source. A Lambertian
distribution (weighted by the cosine of the angle from the normal to the
source surface) is often(33) assumed instead of a uniform distribution;
but since in our system the actual melt surface is well below the assumed
source plane, a uniform distribution seems an equally valid assumption. In
any event, since the evaporation source is relatively small, only small
angles are involved, and the two models are difficult to distinguish.

The sputtering source is similarly modeled as a uniform circular
distribution of point sources, now assumed, however, to emit with a
Lambertian distribution, as often observed experimenta]]y(35), and as
usually assumed(31) in the absence of better information. Yao(3]) assumed
a source of infinite extent, but since our sputtering target is relatively
small and close to the substrate, we have found it necessary to take its
finite size into account. |

The particles emitted from the source are assuﬁed to travel in
straight Tines to the substrate. If a particle hits a mask, it is assumed
to be deposited permanently there. The sticking probability at the sub-
strate is taken to be independent of the film thickness and independent
of whether the particle condenses on the substrate material or on the film.

We design the mask arrangement to obtain as good as possible an
approximation to the relative shape of the deposit, normalized to unity at
the center of the lens, and rely on a separate measurement of deposition
rate to get the central thickness correctly. The masks for the evaporation
work are made of thin sheets of aluminum with holes punched in them. For’
the sputtering experiments, where space is more limited, we adopted the
idea of Zernike (36)and Yao and Anderson (32)of making the masks by milling
conically tapered segments in aluminum plates.

The relative lens thickness at a point a given radius r from the
center may be calculated by integrating the flux arriving at this point
from the observable area of the source and dividing by the integrated flux,
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similarly calculated, at the lens center. The area of integration in the
plane of the source is bounded by arcs of circles which are the projections
of the mask segments on this plane and possibly also by the edge of the
source. The complexity of determining the boundaries of the integration
area for each mask arrangement and each value of r makes evaluating the
integrals analytically quite difficult. Consequently we have adopted a
numerical - procedure, specifically a statistical procedure, the method of
equidistributed sequences(37). The area of integration is conveniently
taken to be a rectangle closely bounding the observable region; unit functions
in the integrand are used to reject points within the rectangle but not in
the observable region.

An equidistributed sequence of points in the interval [0,1] is
defined as an ordered set {xi, i = 1,N} which is determined such that

lim '§ f(x;) = [} £(x)dx '
N L i (37)
Nosoo .
for all reasonably well-behaved functions f(x). It can be shown that
such a sequence may be generated by taking the decimal parts of successive
integral muitiples of any irrational number, such as 2. Integrals over
any finite limits may be evaluated using (37) by appropriate scaling, and
multidimensional integrals are easily handled by using an independent
sequence for each dimension. Simple numerical tests we have carried out
indicate the method of equidistributed sequences is at least five times as
fast as a Monte Carlo integration of comparable accuracy. For the present
problem, evaluating the integrand at 2000 points proved sufficient to give
the integrals to 3 decimal place accuracy with high probability.

To automate the design process somewhat, one mask aperture was
allowed to take on a range of values; for each value the calculated lens
profile was compared to the design profile at 5 or 10 interior points. A
least-squares comparison was used, although a minimax criterion might have
been somewhat more useful. The output was examined in detail in all pro-
mising cases and further adjustments were made by hand until what appeared
to be a satisfactory approximation to the design profile was reached.
Experiment and ray-tracing calculations have generally shown that while our
designs so far are satisfactory near the center of the lens, they sometimes

57



fail near the periphery. For the example design we have been discussing,

we found after extensive calculation with up to four masks that a simple
two-mask arrangement fit the design as well as any. In this arrangement
the lower mask has an aperture 12 mm in diameter and is positioned 0.04 mm
above the substrate, while the upper mask, with an 8.3 mm aperture, is
positioned 4.8 mm above the substrate. We found experimentally that
separating the lower mask from the substrate with aluminum foil improved

the coupling into the lens. This mask arrangement is easily created by
milling an aluminum plate. The calculated profile for this mask arrangement
is compared with the design profile in Figure 23. For some other sputtered-
lens designs, mask arrangements that taper primarily the other way--that is,
opening toward the source--are more suitable, while for evaporated lenses,
small apertures 25 to 30 mm below the substrate are required with our
experimental arrangement.

11. RAY TRACING

The only way to determine what happens when a Luneburg lens
departs from the ideal shape, or varies from the design refractive index,
is to trace a sufficient number of rays through the lens to see what happens
to the focal spot. We expect, of course, a change in focal length and a
decrease in focal spot quality, but these changes have to be evaluated
quantitatively in order to determine the tolerances required to meet the
specifications of a particular application. Specifically, we can hope to
learn from ray tracing
(1) the adequacy of our lens design procedures
(2) the adequacy of our mask design procedures
(3) the degree to which the physical properties--e.g., the film
refractive index--of the lenses we have made are sufficiently
similar to those assumed in the designs
(4) the effect of variations in experimental parameters--
e.g., the Tens central thickness--on the focal spot quality
(5) some aspects of the overall behavior of Luneburg lenses
which may not be intuitively obvious.
Ray tracing thus plays an important role in closing the loop
between design and fabrication.
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Before discussing some ray-trace work applied to our representative
design, we will describe one way in which ray tracing can help improve our
understanding of Luneburg lens behavior. We made a series of evaporated
lenses with the same mask arrangement, but with different evaporation times,
so some lenses had close to the design central thickness while others were
considerably thinner. One might naively expect that lenses thinner at the
center, with lower mode indices and less steep gradients, would have longer
focal lengths than thicker ones, but we found a considerable range over which
the thinner lenses had reduced focal lengths. This is illustrated in
Figure 24,where experimental points are indicated by circles and the design
focal length and thickness are shown at the rightmost "X". The other two
X's indicate the results of ray-trace analyses through lenses with the
design index profile but reduced thickness. Clearly, the reduced focal
lengths are what one should expect under these conditions. Examination of
the ray diagrams shows that rays passing through different parts of the lens
cross the axis at points which, debending on the lens thickness and the
" entrance coordinate, may be either in front of or behind the design focal
position. Thus, the apparent sharpest focal point depends on the aperture
used in a complicated way. The ray-trace also indicates that the lens
indicated by the Teftmost X in Figure 24 should have a focal spot smaller
than the diffraction 1imit at apertures corresponding to f/4.8 or smaller.
The sidelobes might not be low--the diffraction pattern was not calculated--
but these simple geometrical optics calculations indicate the possibility
of obtaining good quality lenses for some purposes with designs that vary
markedly from the conventional Luneburg contour.

Now we turn to our design example, which we recall is for a lens
to focus a 10 mm wide TMO input beam 21 mm from the lens center. First we
consider a ray-trace through a lens with the design thickness profile shown
in Figure 23. Some representative rays are shown in Figure 25. It is
immediately apparent that a good focus, though slightly short of the
design focal length, can be obtained at somewhat reduced aperture; but that
peripheral rays are not focused well. Both the change in focal length and
the long focal length of the peripheral rays are results of not using the
correct boundary condition for the TM mode, as discussed earlier. This
easily remediable deficiency in the design program has never been corrected
since it never led to serious aberrations in earlier designs. Since there
is little change of getting this design to work well at full aperture, we
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shown in Figure 23.



will consider its properties at half aperture. The focal length for a 5 mm
wide input beam is 19.8 mm and the focal plane diffraction pattern is shown
in Figure 26. The graphics have not been changed from those for conventional
two-dimensional lenses; a traverse through the center of the plot parallel to
either axis is a good approximation to the Luneburg lens focal-plane intensity
distribution. The vertical scale is linear. All the diffraction patterns
presented in this report should be considered only as qualitative representa-
tions, since not enough rays have been traced to obtain a completely accurate
quantitative picture. Nonetheless, one can see that at the reduced aperture
the lens should focus quite well, with a focal spot size in the range of the
diffraction limit.

To investigate the result of a small change in design parameters,
lgt us consider the effect of a reduction in the refractive index of the
lens material from 2.58 to 2.573. This amounts to a change of 2.5% in the
difference between the film index and the waveguide surface index. A trace
of representative rays for this case is shown in Figure 27. The ray plot
is quite similar to the previous one, but there are discernible differences.
The focal length at 5 mm aperture has increased slightly, to 20.2 mm. The
diffraction pattern, Figure 28, at this aperture still has a sharp focal spot,
but the sidelobes are increased somewhat. Increasing the lens central
thickness from 0.39 to 0.40 um produced effects of comparable magnitude.

The calculated focal length at 5 mm aperture shortened to 19.1 mm and the
focus became a little sharper.

In Figure 29, we present a trace of representative rays through a
lens with the profile attainable with the mask design described in the
previous section. The lens shows a fairly sharp focus at apertures up to
6 mm, but peripheral rays are again only weakly focused. The focal length
at 5 mm aperture is reduced to 18.3 mm. The variation of focal length with
small changes in lens shape is large enough that it appears that in applica-
tions such as collimation where precise focal length control is important,
it is highly desirable to have a means of adjusting the focal length after
fabrication. The focal-plane diffraction pattern for this lens, Figure 30,
shows that the central focal spot remains fairly sharp, but the sidelobes
are considerably increased.

A11 the ray tracing work described here was done by Professor
Duncan T. Moore and C. Benjamin Wooley at the University of Rochester

Institute of Optics under subcontract to Professor Moore's firm, Gradient
Lens Corporation.
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Figure 27.

Ray trace through a lens similar to that in Figure 25, but
with reduced film refractive index.
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Ray trace through a lens with profile, shown in Figure 23,
attainable with simple mask arrangement.
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12. LENS FABRICATION AND TESTING

Numerous 1lenses have been made and tested. The fabrication
procedures have already been described. We frequently departed in one
respect or another from the nominal design procedures in order to investi-
gate experimentally effects of variations in material and process parameters
such as were investigated theoretically in the previous section.

The principal experimental data obtained on the lenses were the
focal length and, in relatively good lenses, the focal spot quality. In
most cases the lenses focus outside the wavequide. To determine the focal
Tength, we measure the length of the optical path in each medium--waveguide,
output coupling prism if used, and air--from the lens center to the focal
pof;t, and convert the total distance to an equivalent distance inside the
waveguide. The accuracy of this procedure is not very high; our quoted
focal lengths might easily be in error by +10%.

Our primary method for characterizing the optical quality of the
Luneburg lenses is the examiration of the 1ight distribution in the focal
plane. The focal spot is scanned by coupling the beam transmitted through
the lens out through a rutile prism and refocusing it with an f/2 imaging
Tens onto an optical multichannel analyzer (OMA). The experimental arrange-
ment is shown in Figure 31. The OMA has 500 25 um channels on 25 um
centers. The channels are long enough to collect substantially all the
light diffracted or scattered in the direction perpendicular to the wave-
guide plane. The OMA output can be displayed on an oscilloscope screen or
recorded digitally. In some instances, a Reticon diode array has been used
instead of the OMA.

OMA scans of the lens focal spots have generally been made at
reduced input aperture in order to be sure that all the light transmitted
is captured by the relay lens and focused on the OMA detector. The
diffraction patterns do not sharpen markedly at larger apertures, but we
cannot presently say how much of this effect results from poorer quality
of the lens near the periphery and how much from aperture effects in the
light-collection system. The focal spot quality does not vary in any
marked or predictable way with lens thickness. The spot quality data
may be evaluated by noting that for 5 mm aperture and 21 mm focal length,
the half-power diffraction-limited spot size for the TM0 mode at 633 nm is
2.3 ym. For an ideal lens, the first sidelobes should be 13.3 dB down in
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intensity from the central peak. These two numbers, focal spot size and
first-sidelobe intensity, do not fully characterize the lens quality, of
course, even at fixed input aperture. It should also be borne in mind that
the input beam is a truncated Gaussian rather than an ideal plane wave.

From among our results on evaporated lenses, we will present
representative data on just two, one tested as made and the other exposed
to ultraviolet Tight to increase its refractive index. Additional details on
a number of evaporated lenses are provided in our previous year's report(38)-
These lenses were again 12 mm in diameter; they were formed by evaporating
arsenic trisulfide through a mask with a 5.0 mm diameter aperture held
28 mm below the waveguide and an 11.9 mm aperture edge-defining mask placed
0.5 mm from the guide. The dssign is intended to focus a 10 mm wide TM0
beam at a distance of 30 mm from the center of the as-prepared lens.

A Reticon diode array scan--25 um detectors on 50 um centers--for
one as-prepared lens is shown in Figure 32. This lens is 0.70 um thick,
compared to a nominal design value of 1.69 um. It has a measured focal
length of 25 mm at 10 mm aperture. In the scan, which was made at 4 mm
aperture, the central spot is 2.3 um wide, compared with a diffraction-
Timited value of 1.5 um at this aperture, and the first sidelobes are
11 dB down. This represents one of our better as-prepared lenses. The
marked difference in thickness from the design value seems to have little
effect on the focal spot quality, although it does affect the focal length.
The ray-tracing work, though, indicates that often even when the focal spot
is sharp, the phase deviations in the focal plane are of far from standard
form. This effect, a form of the phenomenon referred to(39) as “spurious
resolution”, can have serious consequences if the lens is to be used for
optical data processing.

The Reticon scan shown in Figure 33 is for a lens which was
exposed to ultraviolet light until its refractive index was increased to
around 2.58. This lens is 1.2 um thick and has a focal length of 18 mm.
The focal spot is 2.9 um wide, or 2.7 times the diffraction 1imit, and the
first sidelobes are more than 13 dB down. As with altering the thickness
of the as-prepared lenses from the design value, increasing the film
refractive index changes the focal length without changing the focal-spot
characteristics as markedly as one might expect. The same remarks about
phase deviations apply.
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Figure 32.

Diode-array scan of focal plane of as-prepared
evaporated lens.
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Figure 33.

Diode-array scan of focal plane of evaporated
lens exposed to ultraviolet light.



Luneburg lenses need not be circular in shape as viewed from
above (40), e prepared by evaporation some AsZS3 lenses of more nearly
rectangular shape and measured their characteristics. OQur work in this
area is described in our paper "Rectangular Luneburg-type Lenses for
Integrated Optics", item 3 in Appendix D. This paper and item 1 in that
list also contain additional data on focal plane scans.

Only preliminary tests of information handiing capacity of the
lenses have been made. In one experiment, the lens was deposited on a
large substrate and broad-band tranducers were arranged to generate surface
acoustic waves in the lens input plane. The SAW frequency was swept from
280 to 410 MHz and a digital word generator was used to sample periodic
portions of this range. For example, "on" segments 6.2 MHz wide separated
by 6.2 MHz "offs" were readily resolved photographically. Rays to the
centers of adjacent "on" segments have an angular separation of about
0.5 mrad. The spatial frequencies are separated by about 0.5 um. The
ultimate resolution is clearly higher, but unfortunately this lens was
accidentally destroyed before testing could be completed. These results,
while encouraging, should not be weighed too heavily in view of the known
phase aberrations in many of our lenses. _ '

Initial experiments on sputtered lenses were also encouraging.
These experiments were started before designs for the masks were completed,
so a variety of masks were made on the basis of rough guesses about useful
shapes and tried out. Masks with a single conical taper, similar to those
used by Zernike(36), and masks with a double conical taper, like those
described by Yao and Anderson(31), were both used, as was a mask with a
conical plus a cylindrical section. The mask apertures were made by
drilling through 4.8 mm (3/16") thick aluminum sheet. In all these masks,
the aperture was 6.75 mm in diameter at its narrowest point. The lenses
are approximately 11 mm in diameter and either 0.5 or 0.6 um thick at the
center. While all the lenses focused 633 nm guided light to some extent
those made with the single conical masks had relatively diffuse focal spots.
One lens made with a double-cone mask and 0.6 um thick had a focal length
of 25 mm inside the waveguide. A 0.6 pm thick lens made with a cylinder-
plus-cone mask also had a 25 mm focal length. The lens deposits appeared
to be of good quality.

After the sputtering system had been in operation for some time,
though, the quality of the lenses deteriorated markedly. The difficulties,
which appeared in lenses of all sizes and shapes, may be summarized by
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saying that thicker lens deposits tended to absorb or scatter the incident
light very strongly, so no output beam could be detected, while thinner
deposits did not refract as strongly as expected, focal lengths referred to
the waveguide material being 60 mm or more. Varying the sputtering
conditions, replacing masks and shutters, using high-purity argon instead
of standard laboratory grade, and cleaning and overhauling the system had
no effect. Presputtering for 1 to 2 hours seemed to help somewhat as did
raising the mask slightly above the waveguide as we have previously des-
cribed. Microscopic examination of some of these later films showed
scattered platelets a few micrometers in diameter adhering to the surface
but similar-looking platelets observed on some evaporated films did not
affect their properties markedly. This problem is unresolved at this
writing, but chemical analyses, to be described shortly, have provided
some helpful diagnostic information. Thus while we anticipated sputtering
would be a more controlilable and reproducible process than evaporation for
fabricating the lenses, it has not so far proven to be so.

13. CHEMICAL ANALYSES

In view of the differences between evaporated and sputtered films,
and between "early" and "late" sputtered films, it seemed worthwhile to
investigate the chemical nature of the films and of the raw materials from
which they were made. The primary analytical technique employed was ESCA
(electron spectroscopy for chemical analysis), since this method provides
information on bonding, and thus enables one to determine what compounds,
as well as what elements, are present. The film samples were uniform
layers in the 0.4 to 1.0 um thickness range, deposited on glass slides
which could be cut to the approximate size for insertion into the ESCA
apparatus. Examination of the films under magnification showed small
platelets adhering to some areas of the sputtered films, particularly the
more recently prepared films. The evaporated film had fewer such features.
Robinson back-scatter electron micrographs of the films also showed
numerous surface features, appearing at 500X like little balls, on the
sputtered films. It could not be ascertained whether these were the same
features observed visually, but it is suspected they are similar because
they show similar tendencies to follow polishing marks and other such
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imperfections in the underlying glass plate. The electron micrographs did

not reveal whether the surface features were of different composition from

the substrate, but ESCA experiments with the angle of the incident X-ray

beam increased from 45 to 63° showed no significant changes in composition,
indicating that these features probably have a composition similar to the
bulk. One drawback of ESCA is that it provides information on the composition
only of the top 3 nm of the sample, so other techniques are necessary if there
is any reason to believe the composition may not be uniform through the
sample. Also ESCA Tooks at the whole sample surface, and is not suited for
studying variations from point to point on the surface. '

A1l the samples are very pure. The only contaminants detected were
minor amounts of surface organics. In particular, there is no evidence of
A5203 or As4S4 molecules. ESCA data do not seem to be available for ASZSS’
the other stoichiometric compound of arsenic and sulfur, but as there are
no unidentified peaks, the likelihood of this material being present is
small. These other compounds could be detected, if present, at a level
of a few percent. Thus all the materials appear to have exclusively
A5253-type bonding at the local level. Integration of the areas under the
peaks shows, though, that they are all more or less sulfur-rich, as Table 2
(on the following page) indicates. The relative amounts of the constituents
are presented in two ways: as the fractional amount x of As in material
AsxS]_X and as the amount y of S in materials of formula ASZSy’ Thus for
pure A5233 glass, x should equal 0.40 and y should equal 3. The uncertainty
in the values of x is around *0.03, while the possible error in y is quite
large, ranging from 0.5 to 1.7. There appear to be significant differences
between the compositions of the films and those of the corresponding sources,
as well as differences in the films themselves. To see whether a change in
target compostion as the material is used up might play some role in the
difference in sputtering results, we made an electron microprobe traverse
across a freshly broken face of this sample. A similar traverse was made
across a face of glass used as the evaporation source. Both samples showed
considerably less sulfur in the interior than at the surface. The content
seemed to vary smoothly through the samples. We have not attempted quantita-
ive analysis of this data because previous attempts to perform such calculations
for microprobe measurements on evaporated films did not appear to yield
reliable results. Qualitatively, we can say that the sputtering source
is slightly more sulfur-rich near the surface than the glass raw material
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Table 2. Composition of Bulk and Film Samples of Arsenic

Trisulfide Glass as

Indicated by ESCA.

| Asx Sl-x As2 S

Sample X Y

Glass, evaporated source .338 3.9
Glass, sputter-etched .350 3.7

10 minutes to remove carbon

Evaporated film .280 5.1
Unused piece of a sputtering target .204 7.8
Sputtered film, early .226 6.8
Sputtered film, late .330 4.1
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for evaporation, while near the center of the samples tested the evaporation
source was more sulfur-rich. We might speculate that the molten evaporation
source has a composition close to ASZS3, variations in composition in evapor-
ated films then resulting from decomposition during evaporation. Changes
in sputtered films, on the other hand, might reflect changes in the compo-
sition of the exposed surfaces of the target. Clearly, though, considerable
additional work is necessary if these ideas are to be verified or otherwise.
The analytical work described in this section was performed by
Julius Ogden, Doyle Kohler and Carl A. Alexander of the Battelle-Columbus
Physico-Chemical Systems Section.

14. DISCUSSION AND CONCLUSIONS

In the first part of this program, we were able to show that
short-focal-length Luneburg lenses of good quality could be produced by
depositing arsenic trisulfide films on L1'Nb03 waveguides. One principal
difficulty was with variability of the properties, particularly the refrac-
tive index, of evaporated films. This was one reason for trying sputtering
as a possible alternative deposition procedure. Sputtered films to-date,

.though, have shown a larger range of properties, and have been more difficult

to control, than have evaporated ones. We have suggested, on the basis of
limited chemical analyses, that inhomogeneity in the material forming the

sputtering target may be responsible. This suggestion is at present very

speculative, of course.

Improvements have been made in the remainder of the design and
fabrication procedure, so if reliable film deposition procedures are
developed, it should require primarily some process refinement to permit
production of useful lenses on a regular basis.

Reliability and reproducibility of the lens production process
can only be defined, though, with respect to some particular design objective.
It is a good general objective to aim, as we have done, at fabrication of
large diameter, short focal length, diffraction-limited lenses, but it is
more appropriate in a particular case to investigate how the deviations
from the nominal design which are likely to occur affect the lens performance
in its designed role. It is important to bear in mind that the point sources
and plane waves of conventional design are idealizations which are seldom
appropriate for contemporary integrated optics devices.
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Our present judgment is that the most reliable way of making
arsenic trisulfide thin-film lenses is thermal evaporation followed by
annealing in an inert atmosphere(25). This opinion is based on only a few
experiments, though, and considerable additional experimental work including
more chemical analysis would be desirable. Surprisingly little analysis
of arsenic trisuifide films has been done anywhere.

As far as improvements in the remainder of the design and fabrica-
tion process go, the primary requirement is closer integration of the ray-
tracing work into the design and fabrication process. Ray tracing has pro-
vided valuable information, but it has not always been obtained at the
most suitable times, mainly through failure to recognize how helpful it
was going to be. Other design improvements are in the nature of refine-
ments. We have mentioned difficulties in some lenses with focus of peripheral
rays, passing through the thinnest part of the lens. These problems can
be alleviated by designing for still larger lens diameters and using only
the central portion of the lens. If space on the substrate becomes a
problem, rectangular- or lenticular-outline lenses can be used. Tolerance
requirements for these large lenses remain to be investigated, though.

In testing of the lenses, the only improvement that may be needed
is in the profilometry of the lens shape. In situations where close
tolerances must be maintained, uncertainty concerning curvature of the
substrate below the lens makes sufficiently accurate measurement difficult.
While there are a number of things that can be done, there is no easy way
around this problem.

If a good film deposition process is developed, these other design
and process refinements should permit the fabrication of arsenic trisulfide
lenses suitable for many beam-forming and signal-processing requirements.
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APPENDIX A

THE NONLINEARITY PROBLEM

A major problem with most components available for analog optical
computation is that they are not linear devices. Thus, if we have a signal
voltage Vg, applied to most common optical modulators the output light inten-
sity will typically be

I =1, sin2 a Vg (1A)

where I5 is the incident intensity and a is a constant characteristic of the
modulator. In most cases we would, of course, prefer that the output be

I = const x V. (2A)

There are a number of approaches to achieving this end. The most desirable
is to develop d& linear modulator. We understand that there are some promis-
ing developments along these lines, but we are unable to comment further at
this time. Other approaches are signal preconditioning, modified detection
schemes and operating in a binary mode.

Each of the three approaches to overcoming the intrinsic nonlinearity
for the electrooptic grating modulator is discussed in this Appendix. Signal
preconditioning is an analog method which is best applied to slowly-varying
signals. In the case of the fully-parallel matrix-vector multiplier, in
which the vector components are rapidly-changing data and the matrix elements
represent a slowly-varying set of system equations, it would be natural to
handle the matrix elements with the analog signal preconditioning technique.

The modified detection scheme involves frequency-shifting one of
two optical beams whose intensities are to be multiplied. The multiplication
takes place on a square-law detector and takes advantage of its properties to
extract the desired product. Matrix multiplication architectures using this
technique have not yet been devised.

Operation in a binary mode involves using one side of the herring-
bone electrode structure as an (electrical) digital-to-(optical) analog con-
verter. The optical analog signal is then modulated (multiplied) by the
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second half of the herringbone. This approach results in a reduction-in the
size matrix which a given IOC can handle since an N-bit (E)D/(0)A converter
requires N IOSLM elements. However, the ability to accept a direct N-bit
parallel input is a significant advantage.

Signal Preconditioning

Assume a modulator M where transmission T varies in a nonlinear way
with the applied voltage V, so that, for example

T = sin2(aV). (3A)

To set T to some desired value x, 0 < x < 1, we must apply the voltage

V(x) = (sin=1,®)/a (4A)

This voltage can be generated using the circuit shown in Figure 1A. We use
an electrooptic modulator, M to "model" the real modulator. Applying V
yields IT. The detected signal, 8T, is proportional to T with a readily
measurable proportionality constant, 8. A comparator between 8T and BX
drives the circuit through feedback to

T -8X=0. (5A)
When this condition obtains,
V = V(x) (6A)

is available for use. The "decay" from the initial V, say V = 7/2a for

which T = 1, is exponential with the time constant limited only by comparator
speed. A time delay must be built in so that only the steady state V is
applied to the modulator we wish to control. It remains to be seen if such
an approach is sufficiently rapid to justify its use.
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An Optical Method for Linear Analog Multiplication

Assume again that the modulators generate the output given by
Eq. (1A). We will show that, by introducing an appropriate modulation signal
we can extract an electrical signal proportional to ViVa.

Consider the outputs of two modulators

I, sin? aVy

I

Ip = I, sin2 aVy (7A)

If aVy, aVp<<l, then the output intensities and the corresponding amplitudes

ares

I7 = (aV1)2l, ; A7 = aViAq ef(wts)t

aVohA, eiwt (8A)

Io = (aV2)2ly 5 Az
where w is the optical frequency and § is an r.f. frequency shift imposed

on one of the beams.
If the two beams are now combined on a square-law detector, the

resulting signal is

const x Aqel (W)t 4 poeint 2

(2]
[i]

2 2
Ay + Az + AjApcosét

D.C. term + alViVplgcosst. (9A)

Therefore by detecting the A.C. term we get a signal which is linearly
proportional to VyVjp.

A method for accomplishing this is shown in Figure 2A. This can
be implemented either in bulk or integrated optical form.
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D/A Conversion

An optimum method for overcoming the nonlinearity problem when
input data are available as parallel binary words is to use an appropriate
D/A converter. We present here the first experimental results of such a
device, an (electrical)digital-to-(optical) analog converter,” and show how
it can be used in an integrated-optic multiplier.

The D/A converter is fabricated upon a planar, single-mode Ti-
indiffused LiNbO3 waveguide. The active element is an electrooptic inte-
grated optic spatial light modulator (IOSLM) which is simply an extended
interdigital electrode structure composed of a number of separately address-
able segments. The electrode segments are addressed in parallel with the
voltages respresenting the digital word to be converted.

In the configuration tested, it is essential that a digital "zero"
be represented by a zero voltage and that all digital "ones" be represented
by a voltage, V. As shown in Figure 3A, the voltages representing the digi-
tal word are applied to the electrodes through a voltage divider. The divi-
ders are set so that the voltage V, when representing the most significant
bit, results in the diffraction of an optical power which we may represent
by Pmax- The next divider is set so that the diffracted power is Ppay/2, the
next to generate Ppsx/4, and so on. The total optical power diffracted by
the structure is therefore the optical analog representation of the electri-
cal digital input. This optical analog signal may then be used as the input
to an analog optical device such as a multiplier, or a lens can be used
to direct all of the diffracted 1ight to a photodetector in which case the
electrical analog signal is generated.

Figure 4A shows the results of a simple proof-of-principle experi-
ment which was set up by uniformly illuminating the IOSLM with a prism-coupled
guided plane wave. The diffracted 1light was collected by an external lens
and directed onto a photodetector. The voltage dividers were individually
set as described above, and the system was stepped manually through the digi-
tal words 000000 to 111111 by the use of toggle switches. The figure shows

* Developed under AFOSR support on Contract Number F49620-79-C-0044.
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the analog voltage generated by the photodetector as a function of the digital
input word. As can be seen, the system functioned as expected. The kink in
the otherwise straight line is thought to be due to a slight missetting in
one of the voltage dividers.

The high-speed performance of the integrated optic D/A can be esti-
mated by assuming, for example, that a laser will be used whict will result
in a diffracted power of 50 microwatts from the most significant bit. In
this case the maximum diffracted power, when all six bits are on, will be
98.44 microwatts and the contribution of the least significant bit will be
1.56 microwatts, a value which is -36 dB down from the maximum. It can be
shown that, for direct detection of a 100 microwatt signal at a 100 MHz band-
width, the signal-to-noise (SNR) of an optical detector is 60 dB. There-
fore, the LSB can be detected with an excess SNR of 24 dB. This excess can
be retained to achieve a minimum error rate, be used to increase the number
of bits, increase the operating rate, or decrease the optical power.

Figure 5A indicates how the integrated-optic D/A can be used as part
of a herringbone structure to perform part of a vector-matrix multiplication.
Each matrix element is represented by a 3-bit word. Each vector element is
represented by an analog signal which has been linearized by the analog
method discussed above.

An I0C for matrix-vector or matrix-matrix multiplication by the
engagement algorithm is shown in Figure 6A. Note that the penalty paid for
using an N-bit D/A is an N-fold reduction in the dimension of the matrix
which a given processor can handle.
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In order to handle arbitrary sized matrices with fixed sized optical matrix
processors it is necessary to expand or contract the problem to fit the processor.
Here we examine this preprocessing, show a quite general method, and apply it to the
type of triple matrix product calculation needed for Kalman filtering. Emphasis
will be placed on systolic type processors.

The recent explosion of interest in optical matrix processors (refs. 1-6) need
not be reviewed here except to note that even with spatial light modulators with one
dimensional space-bandwidth products of 1000 or more, we may not be able to handle
large matrices. Spatial dimensionality is used to allow representation of real or
complex numbers, to achieve high numerical accuracy through binary representation,
and to allow floating point calculations. As a result, we might find ourselves
limited to working with relatively small matrices, say, 20 x 20. Call this processor
dimension D. The problem we discuss here is how to match real problems to such a
restricted processor. In all that follows we will illustrate with D=2 processors.

The first step will be to expand the given matrix so that its dimensions are
mD x nD. To do this we fill out the given matrix with zeros to the right and below.
For D=2 and the given matrices

311 212 %13
A= 371 222 223
331 232 2333
and
P11 Py2 Py
521 B2z Ba3 ,
bq; B3y Pag
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we expand to

311 35 313 0

A - 31 %22 2230 | _ [ AIO]
aj) 25, 2,4 0 010
_ 0 0 0 0
and
" P11 P12 Py3 0
ba1 P22 P23 © [BIO]
Bg = | P3p B3z P33 0 010
0O 0 0 O
It is easy to show =
AB|O
AgBg = [' oIo ] '
. We now partition AE and BE into D x D submatrices. That is
s - [ A1 42 ]
A1 1422
and

- [ 811 | B2 }
E By1 1Bys
It is well known (ref. 7) that

A1By1 T A28y AyBia T ABy, ]
ApyByp F ApaBoy) Ag Bio T ANE,,

B =
AgPE [

Let us see how we can best order these calculations. Figure 1 shows an optical
matrix processor and its supporting electrcnics. Clearly we need never do more than
a D X D matrix at any time. One memory must store Agp and Bg. The partitioning elec-
tronics then selects out of the memory the needed submatrices.

Let Ag and Bg be of dimension nD x nD. If we can afford n? parallel D x D pro-
cessors, we can use some memory-efficient approach such as the engagement approach
shown in figure 2. In many cases this will be impractical. The other extreme case
is that of only one D X D processor. In that case we order Agp and Bg submatrices in
such a way as to calculate one submatrix at a time of the product matrix so all inte-
gration occurs on the D2 detectors. In our example, we calculate Aj1Bj; first and
then add to it on the same detectors Aj2Bo;.
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One large and important type of matrix problem is the Kalman filter: a general
and powerful estimation technique widely used in many areas such as automatic con-
trol (ref. 8). The Kalman filtering process is recurring, interactive, ordered
sequence of matrix inversions, additions or subtractions, and multiplications. The
most difficult tasks are several triple matrix products of the form ABC. Let us now
explore efficient ways of doing AgBgCg products.

In the case in which we can afford nZ parallel processors, we finish calcula-
ting the 1,1 component of AgBE just as we need it to multiply the 1,1 component of
Cg in the 1,1 multiplier, etc. Thus, except for time needed for electronic conver-
sions, reformatting, and feedback (see figure 1), the calculation of AgBgCE takes
only 3N-1 single D x D multiplier clock times to evaluate rather than 2(2N-1) if
AgBg were calculated fully before we begin to calculate AgBgCg.

To accomplish AgBECg calculation with all integration and memory taking place
only at detectors we need at least ntl DxD multipliers. The method is easy to
understand. First we calculate the 1,1 element of AgBE on a single DxD computer.
Then we broadcast it to the n computers which, in parallel, multiply it by the (1,1),
(1,2), ..., (1,N) elements of Cg. Then we calculate the 1,2 element of AgBg, multi-
ply it in parallel with the (2,1), (2,2), ..., (2,N) elements of Cg, accumulate the
sums on the detectors, etc. Because the calculations are likely to be systolic or
engagement types, we can (as before) keep all parts of the system busy at all times.
That is, the 1,1 component of the 1,2 component of AgBg will be available only one
clock time after the D,D component of the 1,1 component of AgBg. Of course the n
parallel processors are ready for each element from the single processor as it is
calculated. To calculate all n2 components of AgBg takes nZ + n-1 clock times.

Only n clock times later the whole matrix AgBECE is calculated, so a total of n2 +
2n-1 clock cycles is needed.

These considerations show that an expanding-partitioning-interleaving approach
provides an efficient way to use DxD matrix multipliers to handle arbitrary sized
matrices. The illustration of the triple matrix products so critical to Kalman fil-
tering show in some detail how the calculations can be done while using only the DxD
detector arrays for scratch pad operations (storage of intermediate results).
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Figure Captions

Figure 1. An optical computer will contain more electronics than optics.
This figure indicates perfectly some of the functions the electronics
must service.

Figure 2.  Submatrices can be ordered in the same way as individual components
for engagement processing (a). The notatfon above for the particular
case illustrated in the text can be further broken down in terms of
individual matrix components (b).
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APPENDIX C

NUMERICAL ACCURACY

While optics will offer advantages over electronics in speed, size,
power consumption, and problem size, it is known to suffer badly in accuracy
comparisons. Two approaches are possible (so far as we know) to improve this
situation. Both involve trading off some known advantage to gain back some
accuracy.

The first approach is to do "bit slicing". That is, each number will
be represented by many optical signals rather than just one. If we use 16
binary signals per number we can represent 16 bit numbers. Two independent
researchers have come up with proprietary solutions to multiplying such
numbers using optics with no better than 4 bit accuracy (good optical systems
have 6 or 7 bit accuracy). We can not disclose those schemes now, but we
. will be able to before the contract is over. This scheme buys ac;uracy by
lowered speed (if the bit slices occur sequentially) or increased complexity
(if the bit slices occur in parallel). These prices are unfortunate but
appear to be affordable because of the extremely large inherent speed and
complexity advantages of optics over electronics when no bit slicing is used.
The price is also comforting in the sense that we would be worried if nature
appeared to give us something for nothing. Thus we must figure out the
minimum required accuracy and design for that to achieve maximum speed or
minimum complexity.

The second approach is to formulate the problem in such a way we can
achieve a decreased need for accuracy if we make more calculations. We

perform what we will call "approximation" and "reformulation" in sequence
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many times. Suppose we want to find the X satisfying f(xo) = 0 and close

to x = 3. We evaluate f(3) and £'(3). We then find Ax1 such that
£(3) + £'(3) Axl = 0.

We do not need to do this very accurately. This allows the first

approximation

x(l) = 3+ Ax..
o 1

We now reformulate by going back to the mathematically exact expreésion for
f(x) to find f(xél)) and f'(xél)). We can then approximate again.

Arbitrary accuracy in the fi.nal,xo is possible if the approximation accuracy
is good enough to get closer each time. This approach (the example is
called the Newton-Raphson method) 'starts over" with each cycle but starts

closer to the correct answer each time. In a control problem we can

) use optics to calculate the control vector a,

. use the approximate @ to "correct" the system,

] measure and infer the resulting state vector X, and

] use optics to calculate the control vector to correct the

system given the new state vector.
From these discussions it becomes clear that a complex analysis must
be undertaken to optimize the algorithm-hardware combination for any part-
jcular task. What NASA will require is the full set of algorithm and hard-

ware variations along with the rules for making the tradeoff.
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A DIFFERENT POLYNOMIAL EVALUATOR

If the purpose of the polynomial evaluator is to represent an ideal plant
in an active control system (rather than solving a polynomial), it may be
easier and numerically better to use a method other than Hormer's rule.

In general the best fit to a function £(x) using polynomials of given
order is of the form

amxm + a xm-l + ... + a

e
1

[¢}

xn..l + ... + Db
1 o

(1)

A general approach to finding the a's and b's is Padé approximation‘™’.

Usually m = n #1. In this case we will simply want to evaluate f(x)x Emn(x)

- given x very rapidly. We have no interest in finding its roots.

Likewise we may wish to integrate a differential equation of the form

dy/dx = f(x,y) = f;n(x,y)-

(1)

Here we can use a high order Runge-Kutta method which requires evaluating
f(x,y) at a variety of specific arguments.
In these caseé a product form of the polynomial provides better numerical
stability(z). Let us write
n
Pn(x) =a 121 (X-rn),

where the rn's are the roots 6f Pn(x) which can be preevaluated. The optical

product evaluator is very simple. Conceptually, it looks like this.
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A series of modulators M

Y

"

r2

=0

Mn ° P (x)

l’

. Mn is driven by signals (x-rl), caey (x-rn)

and the product is detected at D. Time delays between x inputs to the stages

will be unnecessary for any NASA applications.

1.

2.
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