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FOREWORD
This cohstitutes a progress report on the work completed during the
period June 1 to September 30, 1983 on the research project "Wing-Propeller
Interference Studies." The work was supported by the NASA/Langley Research
Center (Analytical Methods Branch of the Low;Speed Aerodynamics Division)
through Cooperative Agreement NCC1-65. The cooperat%ve agreement was

monitored by Dr. Chen-Huei Liu of the Low-Speed Aerodynamics Division.
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A MODIFIED LIFTING LINE THEORY
FOR WING-PROPELLER INTERFERENCE

By
R. K. Prabhu! and S. N. Tiwari?

SUMMARY
An inviscid incompressible model for the interaction of a wing with a
single propeller slipstream is presented. The model allows the perturbation
quantities to be potential even though the undisturbed flow is rotational.
The governing equations for the spanwise 1ift distribution are derived and a
5imp1e method of solving these is indicated. Spanwise 1ift and induced drag

distribution for two cases are computed.

INTRODUCTION
Sharp increases in the cost of aviation fuel and uncertainties regard-
ing its supplies which came about as a result,of the so-called oil-crisis in

1973, have prompted aircraft designers to look for highly fuel efficient
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modes of propulsion. This has led to the revival of interest in turbo-prop
: propulsion systems. It is well known that the old technology propellers are
still the most efficient means of propulsion for speeds of up to M=0.6.
Currently, work is in progress to develop propellers that could operate
efficiently up to a flight Mach number of about 0.8. However, several major
problems are associated with the use of propellers - one of which is the
interference of the propeller slipstream with other parts of the airplane,
in particular the wing. This interference brings about changes in the
aerodynamic characteristics which have to be fully understood before making
any design decisions. Therefore, the wing-propeller interferenge problem is
being studied with renewed interest. The purpose of this paper is to
present a method to determine the spanwise 1ift distribution on a large
aspect ratio wing in the presence of a propeller slipstream.

The classical 1ifting line theory applied to the wing-propeller inter-
action problem (ref. 1) makes the following four assunptions in addition to
those of the 1ifting line theory ahp]ied to large aspect ratio wings:

1. The propeller slipstream is confined within a stream tube of circu-

lar cross section.

2. The velocity in this stream tube is uniform (UJ).

3. The relation between the sectional 1ift and angle of attack is the

same as that of an airfoil in uniform flow (with velocities U, and

J
U, for wing sections inside and outside the slipstream respective-

1y).
4. While computing the downwash, the stream tube representing the pro-
peller slipstream is assumed to extend from upstream 1’nf1’n1’ty'to

downstream infinity.



Whereas the assumption that the propeller slipstream to be a stream
tube of circular cross sectﬁoh is reasonable, the assumption that the veloc-
ity insfde this tube is uniform, is not realistic. The slipstream behind a
propeller does neither have a uniform velocity distribution nor have a ve-
Tocity discontinuity. The third assumption concerning the 1ift curve slope
of the wing sections washed by the propeller stream, is also not realistic.

These rather drastic simplifications of the classical theory prompted
several workers to make a detailed study of the problem. Rethorst and co-
workers (ref. 2-5) made extensive studies and developed a 11fting surface
theory for this problem. They assumed, however, that the propej]er slip-
stream was in the fdrm of a circular jet in which the velocity was uniform.
Kleinstein and Liu (ref. 6) scrutinized the assumptions of the classical
theory and improved on-some of the assumptions. For the sectional 1ift
curve slope they used the data obtained by the solution of the Euler equa-
tions. For the computation of the downwash, however, they assumed that the
slipstream was in the form of a uniform jet. Their results brought out the
effects of the assumption (3) above. Ting et al. (ref. 7) made a new
approach by applying the asymptotic method to the interference of a wing
with multiple propellers. Thei} method required the 1ift data for wing
sections in the nonuniform flow which had to be determined by solving the
Euler equations. Lan (ref. 8) used a quasi-vortex-lattice method and a two
vortex sheet representation of the slipstream to study the interference
problem. Rizk (ref. 9) developed a model for the interaction between a thin
wing and a nearly uniform jet. He developed a small disturbance model and

allowed the perturbation to be potential although the undisturbed stream was

rotational.



In the présent ana]ysis, the propeller slipstream is assumed to be in
the form of a jet wiih:a smooth ve]ocity profile and without a distinct
boundary. The relation between the sectional 1ift and the ang1e'0f attack
is assumed to be obtained by a local two-dimensional analysis. For the pur-
pose of computing the downwash due to the trailing vortices the s]ipétream
is assumed to extend from far upstream to far downstream. In addition, the
disturbance due to the wing, and the nonuniformity in the slipstream are
assumed to be small. These assumptions are then used in the classical
theory to derive a modified lifting 1ine theory for wing propeller interfer-

ence.

ANALYSIS
Consider a two-dimensional nonuniform flow past an airfoil. If the undis-
turbed stream having a non-uniform velocity field U(y) 1is rotational, then
the governing equations to be solved are the Euler equations. If the
airfoil is thin and is at a small angle of attack, and the perturbation
velocity components u and v may be assumed to be small, then the
vorticity transport equation obtained by eliminating pressure from the Euler

equations reduces to
- Vx)x -vU. =0 (1)
" Further if it is assumed that the term Uyy which is the vorticity in the

undisturbed stream, is small, then the second term in equation (1) may be

neglected. Then, the governing equation reduces to



~which is satisfied if the perturbatioh velocity field is irrotational.
Therefore, under the assumption that the perturbétions:are small and the
vorticity in the undisturbed Stream is smali, the perturbation velocity
field can be described by a velocity potential.

This concept of embedding potential disturbances in a slightly fota—
tional background flow was employed by Rizk (ref. 9f while considering the
wing-propeller interaction problem. He, however, considered a more complex
problem wherein the effects of the slipstream swirl and a compressibility
were retained. He solved the resulting equations by a finite difference
method. | _

The classical 1ifting line theory for the wing-propeller interaction
given by Koning (ref.l) is an extension of Prandtls' 1ifting line theory for

large aspect ratio wings. The equation governing the spanwise distribution

of circulation T(y) s

r(y) = 1/2 c(y) ¢, (y) Ula(y) - wly)/u} (3)

where c(y) is the wing chord, Cza(Y) is the sectional 1ift curve slope
and a(y) is the angle of attack; also U = UJ for |y| <R, i.e., for
stations inside the slipstream tube and U =U_ for |y| >R, i.e., for
stations outside, R being the slipstream tube radius. The downwash w(y) is

given by the relation



= - -R_ s dr(n) R dr(n) -
w(y) e (v e2 ( {S £ ) o + €] {R R b (4a)
lyl <R,
=1 sdr(n) _ _ Rdr(n) _ -R_ s, dr(n)
rrl = 2 ([ o Jmer (] ) v ) (4b)
lyl > R

where el = (2-1)/(12+1), e2 = (H-1)/(¥?+1) and ¥ = Uy/Us. It may be

recalled that in deriving these equations, the four assumptions mentioned in
the previous section have been made. Further, when the propeller slipstream

is absent (Uj = Us), the factors e1 and e2 become zero and the above

equations reduce to those of the classical 1ifting line theory.

If the jet representing the propeller stream has a small excess veloc-

ity, i.e., U3 - Ug = u<< Uy, then we may neglect terms of the order of

(u/Us)2 in e1 and e2. In this case €1 = u/U, and e2 ® 0; as a result,

equations (4a) and (4b) get simplified to

R dr(n)
R y-RZ/n

i}
——
—

w
Q.
o]
—
=
S

w(y) b |yl <R (5a)

+ Y /
U°° -

=1 s dr(n) _ u R s dr(n)
4n { {s y-n u ( {s £ ) y-Rz/n} » 1y1 > R {50)

Now consider a high aspect ratio wing with the propeller slipstream go-
ing past it symmetrically as shown in figure 1. Let the velocity profile be

given by U(y,z) = U(r) = U_[1 + F(r2)] where r2 = y?> + z2. Qutside the
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slipstream i.e., for r >R .., F(r2) = 0 and U(y,2) = U,.
Following the 1ifting 1ine theory, the wing is replaced by a 1ifting

line. The circulation at station y on the lifting 1ine is given by
T(y) = 172 c(y) cq,(¥) Uly,0) {a(y) - w(y)/U(y,0)}.  (6)

Lift curve slope is determined by considering the airfoil section in a
uniform stream of velocity U, for wing sections outside the propeller
stream, and by considering the airfoil section in a nonuniform stream having
a velocity profile at the corresponding spanwise station for wing sections
within the propeller stream. In the present case, the wing section at the
spanwise station y = y; would be in a stream of velocity U(y = y;; z).
The 1ift curve slope for the wing sections in this nonuniform stream is to
be obtained by a two-dimensional analysis. This can be done by solving the
Euler equations which involves considerable computing effort. An approxi-
mate but simple method is the linearized potential flow method described in
reference 10 (and summarized in Appendix A). However, for simplicity, only
the second method has been used in the present analysis.

Before proéeeding to determine the downwash w(y) in the present case,
it is useful to recall the basis for the results in the classical setting,
where the velocity within the slipstream tube (assumed to be of circular
section of radius R) is constant.

Consider a vortex (representing the wing trailing vortex) of strength
Y Tlocated at a distance n from the center 0 of the circle representing
the slipstream tube. Llet |n| < R. It can be shown by applying the in-

terface conditions of continuity of pressure and streamline direction across



the surface of the slipstream tube, (see ref. 4) that the flow within the
circle is described by a vortex of strength y at n together with its
refracted image of strength €, Y at the inverse point R2/n, whereas the
f]ow outside the circle is described by a vortex of strength (1 - e2)Y at
n along with an additional vortex of strength (u €; y) at the center of
the circle. Similarly, if the vortex is located outside the slipstrean
boundary i.e., |n] > R, it can be shown that the flow within the circle is
described by a vortex of strength (1 - e2)Y Tlocated at M, and the flow
outside the circle is described by the vortex along with its refracted image
of strength (-e1Y) Tlocated at the inverse point R/ and another vortex

N
of strength (e1Y) at the center of the circle . These results are illus-

trated in figure 2.

Now consider a propeller stream with a smooth axisymmetric velocity
profile. For the purpose of analysis let this stream be divided into a
1érge number of concentric annular cylinders of width AR. Consider a
vortex of strength ¥ siiuated at Q(0Q = n). Let the axial velocities in
the adjacent annular jets with the interface at the radial stations R be
U and U + u, respectively. It is easy to see that the change u 1in the
jet velocity results in an image system as described in the previous
- paragraph, For u << U, as noted earlier, ez = 0. Hence if |n| < R, the
flow in |y| < R 1is described by the vortex at Q with its refracted image
of strength ;Y at the inverse point T (0T = R®/N) and the flow in ly]
> R is described by the only vortex at Q; whereas if |n| >R, thé flow

in |y] < R 1is described by the vortex at Q, and the flow in |y| > R s

*If the spanwise loading is assumed to be symmetric, then the vortex at the-
center can be neglected for the purpose of determining the wing loading.
However, if the effect of swirl on the propeller stream is considered, the

spanwise load distribution will not be symmetric; consequent]y, the effect
of this vortex needs to be taken into account.
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described by the vortex at Q together with its refracted image of strength
(- v) at the inverse point T. See figure 3.

As a result, the downwash at the spanwise station P(P0O = y) due to
the vortex of strength Yﬂ located at Q (with 0Q = n) and its image
(whenever applicable) resulting- from the surface of velocity discontinuity

at the radius R 1is given by ,

Aw(.Y:“) ——{ + } ) I,YI <R, (7&)

=L { 1, |yl >R, (7b)
4 y-n
for the region |n| <R, and
aw(y,n) = L —l—-} . |y] <R, (8a)
v y-n
1 €1
= _I.{ - bos lyl >R (8b)

4 y+n  y-R%/n
for the region |n| > R. In the limit as AR tends to zero, we have

u=UR) - URHR) = - Y o R = -u'dR (9)

dR

so that e1 = -(U'/U) dR.

Letting R to vary from zero to %nax (which can be theoretically

11
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" infinity) we obtain the following expression for the downwash at y due to

a trailing vortex of strength :Y located at n.

aw(yn) = XL { L +(} o opmaxy U ARyl > ) (10a)
4r - y-n 0yl U y-R¥/n |
. y| R \
S +(} S opmay U Ry ) <] (10b)
4n  y-n 0 |n] U y-R%/n

If I'(y) 1is the unknown circulation distribution along the 1ifting

line, then

y = =dl'(n).

We can now write down the expression for the downwash w(y) at the spanwise
station y due to the trailing vortices resulting from the distribution
T(y) as influenced by the axisymmetric jet placed symmetrically with re-

spect to the wing as follows:

w(y) = [ Aw(y,n)
1,/ dr -y s dyl o nax U dR
=-=[ [ —+{ ] -THT -] )= } dr(n)
41 -s y-n -s y 0 |n| U y-R%/n
y Inl R \
+f{(} gmaxy U R4 grn) (11)

13



This expression along with the relation
I(y) = 1/2 c(y) ¢, (y) U(y,0) {aly) - w(y)/u(y,0)} (12)

forms the integro-differential equation for the unknown T(y). For a given
wing c(y) and a(y) are known; in addition the vé]ocity distribution in
the propeller slipstream is assumed known. The sectional 1ift curve slope
can be determined by the method of reference iO or 11. With these informa-

tion equations (11) and (12) can be solved for the unknown TI(y).

METHOD OF SOLUTION
A simple method of solving the equations (11) and (12) is to assume
T(y) to be a piecewise constant so that there is a certain fihite number
(say N) of trailing vortices. First, it is found convenient to introduce

the following transformation
y=scos®, n =35 cosd, and r = R/s (13)

Next, trailing vortices are placed at the following N spanwise

locations

o = (2K-1)w/2N, K=1,2,..., N, (14)

the strength of the trailing vortices being v(K) 4usy_.

The control points are chosen at the following locations

14



ey = I/N, 1=1,2,..., N (15)

The circulation at the spanwise station eI is given by

s U, B v(K) =172 (D) e (1) () {a(1) - w(1)/7U(D)} (17)

where c(1), cza(I), U(I), o(I) and w(I) are the corresponding values
at the spanwise station scoseIo The downwash at the control point 91 due
to the N trai1ing vortices (together with their images) on one side of the

wing centerline is given by

- N |cosé, | o
1 K ' d
w(D =y, 3ov (] Sy ¥
K=1 CosO [-Cosé 0 lcoso | U cose - rz
cos?g,
for |cos®|>|cosé,| (18a)
N coso | o .
and =y zov(K) {2« () Do gU_ 4
K=1 cosel-coseK 0 |cos¢K| ] 0S8 -._lji_
COS¢K
for |c0561|<|cos¢K| (18b)

15



which can be written as

N
wi(l) = Uy 2 G(U,I,K 19
(1) = Ua B 6(U, LK) (19)
lcose, | = :
where G(U,I,K) = 1 +(f K ) v dr .
cosd ;-cosd, 0 |cosé,| U coso; -
cosy
for |c0561|>|cos¢K| (20a)
|cose. | = .
and -V (] L ) v dr
cos0 ;-cosé 0 lcosd | U e . T
cosy
(20b)

for |coseI|<|cos¢K|

There is a similar contribution from the trailing vortices from the other

half of the wing, so that the total downwash at the station is

N .
v(K) [G(U,I,K) - G(U,I,-K)]

=
—
—t
~—

]
(amn

ne]

16



On using this expression for w(I) in equation (17) the following set of

simultaneous equations is obtained.

1 |
I ov(K) [1+u(D) { 6(U,1,K) - 6(U,1,-K)}]

K=1
N U ,
+ ¢ y(K) w(1) { 6(U,1,K) - G(U,I,-K)} = u(l) — o(I)
K=1+1 u_
(22)
I =1,2,...,N

c(I) cla(I)

where (I) = ———— (23)
8ws

By solving this set of simultaneous eqhations using any standard procedure,
the unknowns vy(K), K=1,2,...,N <can be determined. The circulation TI(I),
1ift, downwash and other quantities at the control points can then be

computed.
RESULTS
As the first example, a rectangular wing of aspect ratio 6.0 is chosen.
The velocity distribution in the propelier stream is assumed as

U(y,z) = U[1 + aexp { -(y? + 22)/d?}] (24)

with a =0.5 and d = 0.3. The resulting spanwise 1ift distribution is

17



shoﬁn'in figure 4a along with the 1ift distribution for the wing in uniform
flow. The effect of the jet is two-fold; first it changes the section 1ift
curve slope and second it modifies the downwash close to the centerline dis-
tribution. The Co based on the free stream velocity shows the expected
distribution. Figure 4b shows the spanwise distribution of the induced drag
coefficient.

As the second example, a tapered wing of aspect ratio 6.67 and taper

ratio 0.5 is chosen. The velocity distribution in the propeller stream is

assumed as

U(y,z) = U, [1 + a; exp { —(y2+22)/di}
- a exp {’w(y2+zz)/d%}]. (25)

With 0 < ay <1+ a and d; > d2, this profile has the maximum velocity not

on the axis, and is a better approximation to the actual axial velocity

distribution in the slipstream of a propeller. In the example chosen aj =

0.6, & =0.75, dy/s =0.3 and d,/s = 0.05. The spanwise 1ift and
induced drag distribution computed for this example are shown in figure 5a

and 5b, respectively.

CONCLUDING REMARKS
By improving some of the assumptions of the classical 1ifting line
theory for the wing-propeller interference problem, a new theory is develop-
ed to determine the spanwise 1ift distribution of large aspect ratio wings
as influenced by a single propeller. The essential difference between the

present and the classical theory is that whereas the classical theory

18
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iQQalizes the probé]]ek slipstream as a circular jet with constant velocity,
the present theory replaces fhis assumption by a more realistic one. The |
present study covers a single propeller placed synmetrically ahead of the
wing. The underlying method can be applied, without much difficulty, to the
case of an unsymmetrically placed propeller and non-overlapping mu]tﬁpro-

pellers. Results of these studies will be reported/soon°
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APPENDIX -
A THIN AIRFOIL IN A STREAM OF SMOOTH VELOCITY PROFILE

Consider an infinite series of jets of the éame width h as an ap-

| proximation to a given smooth velocity profile. In the limit as h tends
to zero, the velocity profile tends to the given smooth velocity profile.
Let the velocity the nth jet being denoted by Un‘ Let a thin airfoil be
placed on the axis of the primary jet in which the velocity is U,. If the
airfoii is represented by a single vortex T, then the strength nKS of

the image vortices is given by the relation

2 n+¥l _n _ n ~o{n<
Bn+l Kn+s+1 Kn+s+1 “n+1 Kn-s’ -0  §< o
= (112 - 112 2 2 . = - a
%4 (Un Un+1)/(Un * Un+l) ’ Bn 1 *n>
... N
with Kn = 0, n#+0,
and OKO =T,

It may be noted that the first index (n) in nKS corresponds to the
stream under consideration and the second index (s) corresponds to the
stream in which the image vortex is located.

A complete solution of the above equation is complex; but for small
variation of velocity from jet to jet, it is possible to write

) 2 2 2 ~ -
“n F (Un - n+1)/(Un * Un+1) un/Un’
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where u. = (U

w1 - Uy) < U

With a << 1, a first order solution for nKS can be obtained. The re-

sulting image system for the pkimary stream is

KO =T, at y = 0,
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If the airfoil is represented by a vortex distribution v(x), 0 < x <c
instead of a single vortex T, a similar image vortex system results. The

downwash at the airfoil with this image system is then given by

a _(x-£)
wix) = £ 1l o+ g 5
v 0 x-&  s=1,3,... (x-£)% + (2s-1)h?

Y e
- z v(€)dg
s=1,-3,...(x-E)2 + (2s-1)h?
For small h (=dz), u, = -(du/dz) dz, and the expression for a_ becomes
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1 du
g = = — dz
: U dz
where 29- and U are measured at z. Consequently the equation for the
dz

downwash at the airfoil becomes

I B | o U (x=E) dz
R é { X=E é U (x-£)2 + 422

ou (x-&) dz
Sw U (x-E)2 + 422

4o

b v(g)de

For any given smooth velocity profile U(z), with U(z) # 0, -»< z< =
the integrals in the parenthesis can be evaluated using any standard tech-
nique and by satisfying the flow tangency condition on thé mean camber line,
the unknown vortex distribution vy(x) can be determined. The 1ift coeffi-
cient of the section can then be determined.

If the given velocity profile U(z) 1is symmetric and the airfoil is

placed on the line of symmetric, then the expression for w(x) simplifies

to

IC { _]_.- - 2(X-€) [’“’ U dz

w(x) = _l. —_—
2r 0 X-& U (x-£)2 + 422

b y(g)de

27



FOREWORD
This constitutes a progress report on the work completed during the
period June 1 to September 30, 1983 on thé reseérch project "Wing-Prope]]er
Interference Studies." The work was supported by the.NASA/Lahgley Research
Center (Analytical Methods Branch of the Low-Speed Aerodynamics Division)
through Ccoperative Agreement NCC1-65. The cooperat%ve agreement was

monitored by Dr. Chen-Huei Liu of the Low-Speed Aerodynamics Division.

i



TABLE OF CONTENTS

FOREWORD. ¢ evvoeennnnsenccacennaneenseocesocanccosoasnsanosocaosass
SUMMARY. o v iveiivnninennnerenescnonnnns Ceseceeetrresnoseesassoronoe

INTRODUCTION. ...... eeereeneiaeaes Cererereaetaeans e

IR A ST e

METHOD OF SOLUTION........... e

RESUL TS ettt itiiesetenosseononscnonssssssnconnsososnanns

CONCLUDING REMARKS.......... ceaseaese R P coe
REFERENCES . ot eeetvtetenininniescocooonssnsssscssssnsnnancassscnces

APPENDIX: A THIN AIRFOIL IN A STREAM OF SMOOTH VELOCITY

PROFILE..ccvveeenreennns cesaeecstsses ceetesiessoecencno

LIST OF FIGURES

Figure

1 Schematic of the Problem. ....eeeeeereoeescosoeensoonasesences

2 Image Vortices for a Uniform Jet.....coeenvvinnennnnnns

3 Image Vortices for a Smooth Jet.....everviieennnnenenanenenns

4a Spanwise Lift Distribution......cviiieeriiiiiennnennn,

4b Spanwise Induced Drag Distribution on the Rectangular
L £ T

5a Spanwise Lift Distribution on a Tapered Wing.........oovevunn

5b Spanwise Induced Drag Distribution on the Tapered Wing

ooooooo

ooooooo

ooooooo

ooooooo

14

17
18

24

25

20

21
22



A MODIFIED LIFTING LINE THEORY
FOR WING-PROPELLER INTERFERENCE

By
R. K. Prabhu! and S. N. Tiwari?

SUMMARY
An inviscid incompressible model for the interaction of a wing with a
single propeller slipstream is presented. The model allows the perturbation
quantities to be potential even though the undisturbed flow is rotational.
The governing equations for the spanwise 1ift distribution are derived and a
simple method of solving these is indicated. Spanwise 1ift and induced drag

distribution for two cases are computed.

INTRODUCTION
Sharp increases in the cost of aviation fuel and uncertainties regard-
ing its supplies which came about as a result of the so-called oil-crisis in

1973, have prompted aircraft designers to look for highly fuel efficient

1Graduat.e Research Assistant, Department of Mechanical Engineering and
Mechanics, 01d Dominion University, Norfolk, Virginia 23508.

2Emiqent Professor, Department of Mechanical Engineering and Mechanics, 01d
Dominion University, Norfolk, Virginia 23508.



modes of propulsion. This has led to the reviva1 of interest in turbo-prop
propulsion systems. It is well known that the 61d‘technology propellers are
still the most efficient means of propulsion for speeds of up to M=0.6.
Currently, work is in progress to develop propellers that could opérate
efficiently up to a flight Mach number of about 0.8. However, several major
problems are associated with the use of propeliers - one of which is the
interference of the propelier slipstream with other parts of the airplane,
in particular the wing. This interference brings about changes in the
aerodynamic characteristics which have to be fully understood before making
any design decisions. Therefore, the wing-propeller 1nterferen;e problem is
being studied with renewed interest. The purpose of this paper is to
present a method to determine the spanwise 1ift distribution on a large
}aspect ratio wing in the presence of a propeller slipstream.

The classical 1ifting line theory applied to the wing-propeller inter-
action problem (ref. 1) makes the following four assumptions in addition to
those of the 1ifting line theory applied to large aspect ratio wings:

1. The propeller slipstream is confined within a stream tube of circu-

lar cross section.

2. The velocity in this stream tube is uniform (UJ).

3. The relation between the sectional 1ift and angle of attack is the

same as that of an airfoil in uniform flow (with velocities UJ and
U, for wing sections inside and outside the slipstream respective-
ly).

4. While computing the downwash, the stream tube representing the pro-

peller slipstream is assumed to extend from upstream infinity'to

downstrean 1nfinity.



whereas_the assunpfion thét the propeller s]ipstfeam ta be a stream
tube of circular cross section.is reasonable, the assumption that the veloc-
ity inside this tube is uniform, is not realistic. The slipstream behind a
propeller does neither have a uniform velocity distribution nor have a ve-
locity discontinuity. The third assunption concerning the 1ift curve slope
of the wing sections washed by the propeller stream, is also not realistic.

These rather drastic simplifications of the classical theory prompted
several workers to make a detailed study of the problem. Rethorst and co-
workers (ref. 2-5) made extensive studies and developed a 1ifting surface
theory for this problem. They assumed, however, that the propej]er slip-
stream was in the form of a circular jet in which the velocity was uniform.
Kleinstein and Liu (ref. 6) scrutinized the assumptions of the classical
theory and improved on some of the assumptions. For the sectional Tift
curve slope they used the daté obtained by the solution of the Euler equa-
tions. For the computation of the downwash, however, they assumed that the
slipstream was in the form of a uniform jet. Their results brought out the
effects of the assumption (3) above. Ting et al. (ref. 7) made a new
approach by applying the asymptotic method to the interference of a wing
with multiple propellers. Their method required the 1ift data for wing
sections in the nonuniform flow which had to be determined by solving the
Euler equations. Lan (ref. 8) used a quasi-vortex-lattice method and a two
vortex sheet representation of the slipstream to study the interference
problem. Rizk (ref. 9) developed a model for the interaction between a thin
wing and a nearly uniform jet. He developed a small disturbance model and

allowed the perturbation to be potential although the undisturbed stream was

rotational.



In the present analysis, the propeller slipstream is assumed to be in
the form of a jet with a smooth velocity profile and without a distinct
bouhdary, The relation between the sectional 1ift and the angle of attack
is assumed to be obtained by a local two-dimensional analysis. For the pur-
pose of computing the downwash due to the trailing vortices the slipstream
is assumed to extend from far upstream to far downsfream¢ In addition, the
disturbance due to the wing, and the nonuniformity in the slipstream are
assumed to be small. These assumptions are then used in the classical
theory to derive a modified 1ift1ng Tine theory for wing propeller interfer-

ence,

ANALYSIS
Consider a two-dimensional nonuniform flow past an airfoil. If the undis-
turbed stream having a non-uniform velocity field U(y) is rotational, then
the governing equations to be solved are the Euler equations. If the
airfoil is thin and is at a small angle of attack, and the perturbation
velocity components u and v may be assumed to be small, then the
vorticity transport equation obtained by eliminating pressure from the Euler

equations reduces to

U(uy - vX)x - VUyy = (1)
Further if it is assumed that the term Uyy which is the vorticity in the
undisturbed stream, is small, then the second term in equation (1) may be

neglected. Then, the governing equation reduces to



which is satisfied if the perturbétion ve]ocify fie1a is irrotational.
Therefore, underzthe assumption that the perturbations are small and the
vorticity in the dndisturbed stfeam is small, the perturbation velocity
fie1dlcan be described by a velocity potential.

This concept of embedding potential disturbances in a slightly rota-
tional background flow was employed by Rizk (ref. 9f while considering the
wing-propeller interaction problem. He, however, considered a more complex
problem wherein the effects of the slipstream swirl and a compressibility
were retained. He solved the resulting equations by a finite difference
method. _

The classical 1ifting line theory for the wing-propeller interaction
given by Koning (ref.l) is an extension of Prandtls' 1ifting Tine theory for

large aspect ratio wings. The equation governing the spanwise distribution

of circulation T(y) is
r(y) = 1/2 c(y) ¢, (y) U{a(y) - w(y)/u} (3)

where c(y) 1is the wing chord, cza(y) is the sectional 1ift curve slope
and a(y) is the angle of attack; also U = UJ for |y| <R, i.e., for
stations inside the slipstream tube and U = u, for |y] >R, i.e., for
stations outside, R being the slipstream tube radius. The downwash w(y) is

given by the relation
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_ L s dr(n) _ -R_ /s, dr(n) R dr(n)
() o ([F El gt ED ) gy

lyl <R,

1 dr(n) R dr(n) R dr(n)
el S e s a (- ) ) @)

ly] >R

where e1 = (12-1)/(u2+1), e2 = (H-1)2/(¥%+1) and ¥ = Ug/Uo. It may be

recalled that in deriving these equations, the four assumptions mentioned in
the previous section have been made. Further, when the propeller slipstream

is absent (Uj = Us), the factors e1 and e2 become zero and the above

equations reduce to those of the classical 1ifting line theory.

If the jet representing the propeller stream has a small excess veloc-

ity, i.e., U3 - Uy = u << U,, then we may neglect terms of the order of

(u/UL)2 in €1 and e2. In this case €1 » u/U, and €2 ® 0; as a result,
equations (4a) and (4b) get simplified to

- u R dr(n)
T St ) ——— 9 R 5
w(y) = o + i f_R R /n} ly| < (5a)
- 3;_ s dr(n) _ u R s dr(n) R. (5b
4w { {s y-n U ( {s R ) y-R%/ bl > (5b)

Now consider a high aspect ratio wing with the propeller slipstream go-
ing past it symmetrically as shown in figure 1. Let the velocity profile be

given by U(y,z) = U(r) = U_[1 + F(r2)] where r?2 = y?> + 22, Qutside the



Uly,2)

U =U(y,z) =U (1 +F(y*+ z?))
F IS AN ARBITRARY FUNCTION.

F=0, AS y,z2—= @
2}

U(y1,2)

SECTION AA

FIG.1 SCHEMATIC OF THE PROBLEM
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