
z o 
~ o 
Z 
::> o 
LL 

I 
U 
~ 
w 
(/) 
w 
~ 

>-
1= 
~ 
w 
> 
Z 
::> 

Z o -
~ 
~ o 
o 
o 
.....J o 

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS 
SCHOOL OF ENGINEERING 
OLD DOMINION UNIVERSITY 
NORFOLK, VIRGINIA 

NASA-CR-173324 
19840010103 

A MODIFIED LIFTING LINE THEORY. 
FOR WING-PROPELLER INTERFERENCE 

By 

R. K. Prabhu 

and 

S. N. Tiwari, Principal Investigator 

Progress Report 
For the period June 1 to September 30, 1983 

Prepared for the 
National Aeronautics and Space Administration 
Langley Research Center 
Hampton, Virginia 

Under 
Research Grant NCCl-65 
C. H. Liu, Technical Monitor 
LSAD Analytical Methods Branch 

lfBRJ\RY COpy 
AUG ? 1990 

lANGLEY RESEARCH CENTER 
'11-\1t'\RY NASA, HAMPTON, VA • 

111111111111111111111111111111111111111111111 I 

NF01460 

November 1983 



Page NUlmbering C:onsistent 

With The Order of Original 

Document 



3 1176013643821 

DEPARTMENT OF MECHANICAL ENGINEERING AND l'4ECHANICS 
SCHOOL OF ENGINEERING 
OLD DOMINION UNIVERSITY 
NORFOLK, VIRGINIA 

A MODIFIED LIFTING LINE THEORY , 
FOR WING-PROPELLER INTERFERENCE 

By 

R. K. Prabhu 

and 

s. N. Tiwari, Principal Investigator 

Progress Report 
For the period June 1 to September 30, 1983 

Prepared for the 
National Aeronautics and Space Administration 
Langley Research Center 
Hampton, Virginia . 

Under 
Research Grant NCCl-65 
C. H. Liu, Technical Monitor 
LSAD Analytical Methods Branch 

Submitted by the 
Old Dominion University Research Foundation 
P.O. Box 6369 
Norfolk, Virginia 23508 

November 1983 

Nf'l-.I'I,71# 



FOREWORD 

This constitutes a progress report on the work completed during the 

peri od June 1 to September 30, 1983 on the r.esearch project "Wi ng-Prope 11 er 

Interference Studi es. II The work was supported by the NASA/Langl ey Research 

Center (Analytical Methods Branch of the Low-Speed Aerodynamics Division) 

through Cooperative Agreement NCCl-65. The cooper at ive agreement was 

monitored by Dr. Chen-Huei Liu of the Low-Speed Aerodynamics Division. 
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A MODIFIED LIFTING LINE THEORY 
FOR WING-PROPELLER INTERFERENCE 

By 

R. K. Prabhu1 and S. N. Tiwari 2 

SUMMARY 

An inviscid incompressible model for the interaction of a wing with a 

single propeller slipstream is presented. The model allows the perturbation 

quantities to be potential even though the undisturbed flow is rotational. 

The governing equations for the spanwise lift distribution are derived and a 

simple method of solving these is indicated. Spanwise lift and induced drag 

distribution for two cases are computed. 

INTRODUCTION 

Sharp increases in the cost of aviation fuel and uncertainties regard­

in~1 its supplies which came about as a result\of the so-called oil-crisis in 

1973, haVE! prompted aircraft designers to look for highly fuel efficient 

1 Graduate Research Assistant, Department of Mechanical Engineering and 
Mechanics, Old Dominion University, Norfolk, Virginia 23508. 

2Erninent Professor, Department of Mechanical Engineering and Mechanics, Old 
Dominion University, Norfolk, Virginia 23508. 



modes of propulsion. This has led to the revival of interest in turbo-prop 

propulsion systems. It is well known that the old technology propellers are 

still the most efficient means of propulsion for speeds of up to M=0.6. 

Currently, work is in progress to develop propellers that could operate 

efficiently up to a fl ight Mach number of about O.B. However, several major 

problems are associated with the use of propellers -'one of which is the 

interference of the propeller slipstream with other parts of the airplane, 

in particular the wing. This interference brings about changes in the 

aerodynamic characteristics which have to be fully understood before making 

any design decisions. Therefore, the. wing-propeller interference problem is 

being studied with renewed interest. The purpose of this paper is to 

present a method to determine the spanwise lift distribution on a large 

aspect ratio wing in the presence of a propeller slipstream. 

The classical lifting line theory applied to the wing-propeller inter­

action problem (ref. 1) makes the following four assumptions in addition to 

those of the lifting line theory applied to large aspect ratio wings: 

1. The propeller slipstream is confined within a stream tube of circu­

lar cross section. 

2. Th eve 1 oc it yin t his s t ream tub e i sun if 0 rm ( U J) . 

3. The relation between the sectional lift and angle of attack is the 

same as that of an airfoil in uniform flow (with velocities U
J 

and 

llco for wing sections inside and outside the slipstream respective-

1 y). 

4. vJhile computing the downwash, the stream tube representing the pro­

peller slipstream is assuned to extend from upstream infinity to 

cI own s t ream i n fin i t y . 

2 



Whereas the assumption that the propeller slipstream to be a stream 

tube of circular cross section is reasonable, the assumption that the veloc­

ity inside this tube is uniform, is not realistic. The slipstream behind a 

propeller does neither have a uniform velocity distribution nor have a ve­

locity discontinuity. The third assumption concerning the lift curve slope 

of the wing sections washed by the propeller stream,'is also not realistic. 

These rather drastic simpl ifications of the cl assical theory prompted 

several workers to make a detailed study of the problem. Rethorst and co­

workers (ref. 2-5) made extensive studies and developed a lifting surface 

theory for this problem. They assumed, however, that the propeller slip­

stream was in the form of a circular jet in which the velocity was uniform. 

Kleinstein and Liu (ref. 6) scrutinized the assumptions of the classical 

theory and improved on 'some of the assumptions. For the sectional 1 ift 

curve slope they used the data obtained by the solution of the Euler equa­

tions. For the computation of the downwash, however, they assumed that the 

slipstream was in the form of a uniform jet. lheir results brought out the 

effects of the assunption (3) above. Ting et al. (ref. 7) made a new 

approach by applying the aSj1llptotic method to the interference of a wing 

with multiple propellers. Their method required the 1 ift data for wing 

sections in the nonuniform flow which had to be determined by solving the 

Euler equations. Lan (ref. 8) used a quasi-voy·tex-lattice method and a two 

vortex sheet representation of the slipstream to study the interference 

problem. Rizk (ref. 9) developed a model for the interaction between a thin 

wing and a nearly uniform jet. He developed a small disturbance model and 

al'lowed the perturbation to be potential although the undisturbed stream was 

rotational. 

3 



In the present analysis, the propeller slipstream is assumed to be in 

the form of a jet with a smooth velocity profile and without a distinct 

boundary. The relation between the sectional lift and the angle of attack 

is assumed to be obtained by a local two-dimensional analysis. For the pur­

pose of computing the downwash due to the trailing vortices the slipstream 

is assumed to extend from far upstream to far downstream. In addition, the 

disturbance due to the wing, and the nonuniformity in the slipstream are 

assumed to be small. These assumptions are then used in the classical 

theory to derive a modified lifting line theory for wing propeller interfer-

ence. 

ANALYSIS 

Consider a two-dimensional nonuniform flow past an airfoil. If the undis­

turbed stream having a non-uniform velocity field U(y) is rotational, then 

the governing equations to be solved are the Euler equations. If the 

airfoil is thin and is at a small angle of attack, and the perturbation 

velocity components u and v may be assumed to be small, then the 

vorticity transport equation obtained by eliminating pressure from the Euler 

equations reduces to 

(1) 

Further if it is assumed that the term Uyy which is the vorticity in the 

undisturbed stream, is small, then the second term in equation (1) may be 

neglected. Then, the governing equation reduces to 

(2) 

4 



which is satisfied if the perturbation velocity field is irrotational. 

Therefore, under the assumption that the perturbatiuns are small and the 

vorticity in the undisturbed stream is small, the perturbation velocity 

field can be described by a velocity potential. 

This concept of embedding potential disturbances in a slightly rota­

tional background flow was employed by Rizk (ref. 9) while considering the 

wing-propeller interaction problem. He, however, considered a more complex 

problem wherein the effects of the slipstream swirl and a compressibility 

were retained. He solved the resulting equations by a finite difference 

method. 

The classical lifting line theory for the wing-propeller interaction 

given by Koning (ref.1) is an extension of Prandtls' lifting line theory for 

large aspect ratio wings. The equation governing the spanwise distribution 

of circulation r(y) is 

r(y) = 1/2 c(y) c~a(Y) U{a(y) - w(y)/U} ( 3) 

where c(y) is the wing chord, c~a (y) is the sectional lift curve slope 

and a(y) is the angle of attack; also U = UJ 
for Iyl < R, i.e., for 

stations inside the slipstream tube and U = U for Iyl > R, i.e., for 
ClO 

stations outside, R being the slipstream tube radius. The downwash w(y) is 

given by the relation 

5 



1 s dr (n) ( f-R- k s ) dr (n ) + €I fR dr(n) } ( 4a) w(y) = - { f - e:2 
4n -s y-n -s y-n -R y-R2/ n 

Iyl < R, 

= ~ { JS dr (n) - e:2 ( JR dr (n) )- e:l ( J -R - k s ) dr ~ n) } (4b) 
4n -s y-n -R y-n ··s y-R /n 

Iyl > R 

where e:l = (J.!2-1)/(J.!2+1), e:2 = (J.!_1)2/(J.!2+1) and J.! = UiUoo. It may be 

recalled that in deriving these equations, the four assumptions mentioned in 

the previous section have been made. Further, when the propeller sl ipstream 

is absent (UJ = Uoo ), the factors e:l and e:2 become zero and the above 

equations reduce to those of the classical lifting line theory. 

If the jet representing the propeller strE~am has a small excess veloc-

ity, i.e.:, U3 - Uoo = u «Uoo , then we may neglect terms of the order of 

(u/Uoo )2 "in e:l and e:2. In this case e:l'" u/Uoo and e:2'" 0; as a result, 

equations (4a) and (4b) get simplified to 

w(y) = ~ {Js dr(n) + 
4n -s y-n 

=~{ JS dr(n) 
4n -s y-n 

u JR dr (n) } , I y I < R 
Uoo -R y-R2 /n 

(Sa) 

Now consider a high aspect ratio wing with the propeller slipstream go­

ing past it symmetrically as shown in figure 1. Let the velocity profile be 

given by U(y,z) = U(r) = Uoo [1 + F(r2 )] where r2 = i + z2. Outside the 

6 
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slipstream i.e., for r > f\nax' F(r2 ) = 0 and U(y,z) = U"". 

Following the lifting line theory, the wing is replaced by a lifting 

line. The circulation at station y on the lifting line is given by 

r(y) = 1/2 c(y) cla(y) U(y,o) {a(y) - w(y)/U(y,o)}. (6) 

Lift curve slope is determined by considering the airfoil section in a 

uniform stream of velocity U"" for wing sections outside the propeller 

stream, and by considering the airfoil section in a nonuniform stream having 

a velocitjl profile at the corresponding spanwise station for wing sections 

within thE! propeller stream. In the present case, the wing section at the 

spanwise station y = Yl would be in a stream of velocity U(y = Yl; z). 

ThE! lift c:urveslope for the wing sections in this nonuniform stream is to 

be obtainE!d by a two-dimensional analysis. This can be done by solving the 

Euler equations which involves considerable computing effort. An approxi-

mate but simple method is the linearized potential flow method described in 

reference 10 (and summarized in Appendix A). However, for simplicity, only 

the second method has been used in the present analysis. 

Befm'e proceeding to determine the downwash w(y) in the present case, 

it is useful to recall the basis for the results in the classical setting, 

where the velocity within the slipstream tube (assumed to be of circular 

section of radius R) is constant. 

Consider a vortex (representing the wing trailing vortex) of strength 

y located at a distance n from the center 0 of the circle representing 

thl= slipstream tube. Let Inl < R. It can be shown by applying the in-

terface conditions of continuity of pressure and streamline direction across 
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the surface of the slipstream tube, (see ref. 4.) that the flow within the 

circle is described by a vortex of strength y at n together with its 

refracted image of strength e:, y at the inverse point R2/n , whereas the 

floW outside the circle is described by a vortex of strength (1 - e:2)Y at 

n along with an additional vortex of strength (~e:l y) at the center of 

the circlE!. Similarly, if the vortex is located outside the slipstrean 

boundary i.e., I.n I > R, it can be shown that the flow within the circle is 

described by a vortex of strength (1 - e:2)y located at n, and the flow 

outside the circle is described by the vortex along with its refracted image 

of strength (-e:lY) located at the inverse point R2/ n and another vortex 

* of strength (e:lY) at the center of the circle. These results are illus-

trated in figure 2. 

Now c:onsider a propeller stream with a smooth axis)mmetric velocity 

profile. For the purpose of analysis let this stream be divided into a 

1 arge number of concentric annul ar cyl i~ders of width 8R. Consider a 

vortex of strength Y situated at Q(OQ = n). Let the axial velocities in 

thE~ adjacE~nt annular jets with the interface at the radial stations R be 

U and U + u, respectively. It is easy to see that the change u in the 

jet velocity results in an image system as desc:ribed in the previous 

paragraph.. For u« U, as noted earl ier, e:2 = O. Hence if In I < R, the 

flow in Iyl < R is described by the vortex at Q with its refracted image 

of strength e:lY at the inverse point T (OT :: R2 In) and the flow in Iyl 

> R is described by the only vortex at Q; whereas if Inl > R, the flow 

in Iyl < R is described by the vortex at Q, and the flow in Iyl > R is 

*If the sl,anwfse loading is assumed to be s}11lmetric, then the vortex at the· 
center can be neglected for the purpose of determining the wing loading. 
However, "if the effect of swirl on the propeller stream is considered, the 
spanwise 'load distribution will not be s}11lmetr-ic; consequently, the effect 
of this vortex needs to be taken into account. 

9 
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described by the vortex at Q together with its refracted image of strength 

(-8 y) at the inverse point To See figure 30 

As a resul t, the downwash at the spanw; se station. P(PO = y) due to 

the vortex of strength Y. located at Q (with OQ = n) and its image 

(whenever applicable) resulting-from the surface of velocity discontinuity 

at the radius R is given by 

Y 1 81 
6W(y,11) = - { - + }, Iyl < R, 

41T y-n y-R2/ n 
(7 a) 

= 2 { -~} , Iyl > R, 
41T y-n 

(7b) 

for the region Inl < R, and 

6w(y,n) =.:!... { -~} , Iyl < R, (8a) 
41T y-n 

_ Y 1 81 
- - { - - --} , Iyl > R (8b) 

41T y+n y-R2/n 

for the rE!gion In I > R. In the 1 imit as 6R tends to zero, we have 

dU u = U(R) - U(R+6R) ~ - - . dR = -U'dR (9 ) 
dR 

so that El = -(U1/U) dR. 

Lett-ing R to vary from zero to R 'max (which can be theoretically 

11 
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infinity) we obtain the following expression for the downwash at y due to 

Aw(y,n) =.2- {_1_ + (}n\_ ( lOa) 
41T y-n a 

(lOb) 

If 1'(y) is the unknown circulation distribution along the lifting 

1 ine, then 

y = -dr (n) • 

We can now write down the expression for the downwash w(y) at the spanwise 

station y due to the trailing vortices resulting from the distribution 

r(y) as influenced by the axisymmetric jet placed symmetrically with re­

spect to the wing as follows: 

w(y) = f Aw(y,n) 

5 -y 5 \y\ Rmax I 

= - _J:. [f ~ + {f - f } {f - f ) ~- dR } dr ( n ) 
41T -5 y-n -5 y a \ n \ U y_R2 In 

y }nl R 
+ f {( - f max) ~ dR } dr ( n ) . ( 11 ) 

-y a Iyl U y-R2/n 

13 



This expr(~ssion along with the relation 

r(y) = 1/2 c(y) cta(y) U(y,O) {a(y) - w(y)/U(y,O)} (12) 

forms the integra-differential equation for the unknown r(y). For a given 

wing c(y) and a(y) are known; in addition the velocity distribution in 

the propeller slipstream is assumed known. The sectional lift curve slope 

can be determined by the method of reference 10 or 11. With these informa­

tion equations (11) and (12) can be solved for the unknown r(y). 

METHOD OF SOLUTION 

A simple method of solving the equations (11) and (12) is to aSSlJTIe 

r(y) to be a piecewise constant so that there is a certain finite number 

(say N) of trailing vortices. First, it is found convenient to introduce 

the following transformation 

y = s case, n = s cos~, and r = R/s (13) 

Next, trailing vortices are placed at the following N spanwise 

locations 

cl>k = (2K-l)1r/2N, K=I,2,o. 0' N, 

the strength of the trailing vortices being r(K) 41rsU • 
co 

The control points are chosen at the following locations 

(14) 
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1 = 1,2". '.' N. ( 15) 

The circulation at the spanwise station 6 1 is given by 

I 
r (I) = 4'1r S U co r y ( K) • 

K=l 
(16) 

With this~ equation (12) gets transformed into 

][ 

4'1rs U 
co L y(K) = 1/2 c(I) eta(I) U(I) {a(!) - w(I)/U(r)} 

K = 1 
(17) 

whE~re c(][), cta(I), U(I), a(I) and w(I) are the corresponding values 

at the spclnwise station scos6 r The downwash at the control point 6
r 

due 

to the N trailing vortices (together with their images) on one side of the 

wing centerline is given by 

N 1 Icos</iKI co U' dr 
WI (I) = U r y (K) { - + ( J - J ) - ------.--

co K=l cosSr-cOScf>K 0 lc:osSrl U r2 
cosS I - -~-

coS2</iK 

(18a) 

and 
N 

= U E co 
K=l 

1 IcosSrl co U' 
y(K) { ---- + (J - J ) -

cas6 r-cos6K 0 Icosc/>KI u 

(18b) 
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wh-ich can be written as 

and 

N 
wI(I) = U~ E G(U,I,K) 

K=1 
(19 ) 

dr 

dr 

(20b) 

There is ii similar contribution from the trailing vortices from the other 

half of the wing, so that the total downwash at the station is 

N 
w(I) = U E r(K) [G(U,I,K) - G(U,I,-K)] 

~ K=1 

(21) 

1-·1,2, .•. , N. 
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On using this expression for w(I) in equati6n (17) the following set of 

simultaneous equations is obtained. 

I 
E y(K) [1 + ~(I) .{ G(U,I,K) - G(U,I,-K)}] 

K=l 

N 
+ >:: y (K) ~ ( I) { G ( U, I , K) - G ( U, I , -K)} = ~ (I) ~ a ( 1) 

K=I+l U 
00 

I = 1,2, ••. ,N. 

where ~(I) = ---
8 '11' S 

(22) 

(23) 

By solving this set of simultaneous equations using any standard procedure, 

the unknowns y(K), K=1,2, ... ,N ·can be determined. The circul ation r(I), 

lift, downwash and other quantities at the control points can then be 

computed. 

RESULTS 

As the first example, a rectangular wing of aspect ratio 6.0 is chosen. 

The velocity distribution in the propeller stream is assumed as 

U(y,z) = U [1 + a exp { _(y2 + z2)/d2}] 
00 

(24) 

with a = 0.5 and d = 0.3. The resulting spanwise lift distribution is 

17 



shown in figure 4a along with the lift distribution for the wing in uniform 

flow. The effect of the jet is two-fold; first it changes the section lift 

curve slope and second it modifies the downwash close to the centerline dis­

tribution. The c
t 

based on the free stream velocity shows the expected 

distribution. Figure 4b shows the spanwise distribution of the induced drag 

coefficient. 

As the second example, a tapered wing of aspect ratio 6.67 and taper 

ratio 0.5 is chosen. The velocity distribution in the propeller stream is 

asslll1ed as 

U(y,z) = Um [1 + al exp { -(yZ+zZ)/dt} 

- az exp { .. ~(yZ+z2)/d~}]. (25 ) 

With 0 < az < 1 + a and di > dz, this profile has the maximum velocity not 

on the axis, and is a better approximation to the actual axial velocity 

distribution in the slipstream of a propeller. In the example chosen al = 

0.6, ~= 0.75, d1/s = 0.3 and ~/s = 0.05. The spanwise lift and 

induced drag distribution computed for this example are shown in figure 5a 

and 5b, respectively. 

CONCLUDING REMARKS 

By improving some of the assumptions of the classical lifting line 

theory for the wing-propeller interference problem, a new theory is develop­

ed to determine the spanwise lift distribution of large aspect ratio wings 

as influenced by a single propeller. The essential difference between the 

present and the classical theory is that whereas the classical theory 

18 
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idealizes the propeller slipstream as a circular jet with constant velocity, 

thE~ present theory repl aces thi s assumption by a more real i stic one. The 

present study covers a single propeller pl aced sjfflmetrically ahead of the 

wing. The underlying method can be applied, without much difficulty, to the 

case of an unsjfflmetrically pl aced propell er and non-overl appi ng multi pro­

pellers. Results of these studies will be reported soon. 
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APPENDIX 

A THIN AIRFOIL IN A STREAM OF SMOOTH VELOCITY PROFILE 

Consider an infinite series of jets of the same width h as an ap-

proximati()n to a given smooth velocity profile. In the limit as h tends 

to zero, the velocity profile tends to the given smooth velocity profile. 

Let the vl~locity the nth jet being denoted by Un0 'Let a thin airfoil be 

placed on the axis of the primary jet in which the velocity is Uo' If the 

airfoil is represented by a single vortex r, then the strength nKs of 

the image vortices is given by the relation 

Q2 n+1K nK nK - ~ < n < ~ 
~n+1 n+s+1 = n+s+1 - a n+1 n-s' - ~ < s < ~ 

wi th n~= 0, n :I: 0, 

1 - a 2 
n' 

It may be noted that the first index (n) in nK corresponds to the s 
stream under consideration and the second index (s) corresponds to the 

stream in which the image vortex is located. 

A complete solution of the above equation is complex; but for small 

variation of velocity from jet to jet, it is possible to write 
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With a n « 1, a first order solution for nK can be obtained. s 
sulting image system for the primary stream is 

°Ka 

0 K2s 

= r, at y ::: 0, 

=: O~ 

= - a r at y::: (2s-1)h, s' O. s 

The re-

If the airfoil is represented by a vortex distribution y(x), 0 , x 'c 

instead of a single vortex r, a similar image vortex system results. The 

downwash clt the airfoil with this image system is then given by 

'w(x) ::: 1. Je { _1_ + L 

o x-~ s=I,3, .•. 

a (x-~) 
L S } y(~)d~ 

s=1,-3, •.. (x-~)2 + (2s-1)h2 

For small h (=dz), un = -(dU/dz) dz, and the expression for as becomes 
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1 dU 
dz as = - - . _e 

U dz 

WhE!re dU and U are me as ured at Consequently the equation for the z. 
dz 

downwash alt the airfoil becomes 

w(x) = 1 JC { __ 1 __ 
21T 0 x-~ 

r U' (x-~) dz 
a u (x_~)2 + 4z2 

For any given smooth velocity profile U{z), with U(z) * 0, -~ < z < ~ 

thE! integY'als in the parenthesis can be evaluated using any standard tech­

nique and by satisfying the flow tangency condition on the mean camber line, 

the unknown vortex distribution y{x) can be determined. The lift coeffi­

cient of the section can then be determined. 

If the given velocity profile U(z) is s,}fnmetric and the airfoil is 

placed on the line of symmetric, then the expression for w(x) simplifies 

to 

w{x) = 1 JC { 
2rr a 

1 

x-~ 
- 2{x-~) I .. 

co U' 

U 
dz } y{~)d~ 

{x_~)2 + 4z2 
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This constitutes a progress reparton the work completed during the 

period June 1 to September 30, 1983 on the research project "Wing-Propeller 

Interference Studies. II The work was supported by the NASA/Langley Research 

Center (Analytical Methods Branch of the Low-Speed Aerodynamics Division) 

through Cooperative Agreement NCCl-65. The cooperative agreement was 

monitored by Dr. Chen-Huei Liu of the Low-Speed Aerodynamics Division. 
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A MODIFIED LIFTING LINE THEORY 
FOR WING-PROPELLER INTERFERENCE 

By 

R. K. Prabhu1 and S. N. Tiwari 2 

SUMMARY 

An inviscid incompressible model for the interaction of a wing with a 

single propeller slipstream is presented. The model allows theperturbation 

quantities to be potential even though the undisturbed flow is rotational. 

The governing equations for the spanwise lift distribution are derived and a 

simple method of solving these is indicated. Spanwise lift and induced drag 

distributiion for two cases are computed. 

INTRODUCTION 

Sharp increases in the cost of aviation fuel and uncertainties regard­

ing its supplies which came about as a result of the so-called oil-crisis in 

1973, haVE! prompted aircraft designers to look for highly fuel efficient 

1 Graduate Research Assistant, Department of Mechanical Engineering and 
Mechanics, Old Dominion University, Norfolk, Virginia 23508. 

2 Eminent Professor, Department of Mechanical Engineering and Mechanics, 01 d 
~)minion University, Norfolk, Virginia 23508. 



modes of propulsion. This has led to the revival of interest in turbo-prop 

propulsion systems. It;s well known that the old technology propellers are 

still the most efficient means of propulsion for speeds of up to M=0.6. 

Currently, work is in progress to develop propellers that could operate 

efficiently up to a f1 ight Mach number of about 0.8. However, several major 

problems are associated with the use of propellers -'one of which is the 

interference of the propeller slipstream with other parts of the airplane, 

in particular the wing. This interference brings about changes in the 

aerodynamic characteristics which have to be fully understood before making 

any design decisions. Therefore, the wing-propeller interference problem is 

being studied with renewed interest. The purpose of this paper ;s to 

present a method to determine the spanwise lift distribution on a large 

aspect ratio wing in the presence of a propeller slipstream. 

The classical lifting line theory applied to the wing-propeller inter­

action problem (ref. 1) makes the following four assunptions in addition to 

those of the lifting line theory applied to large aspect ratio wings: 

1. The propeller slipstream is confined within a stream tube of circu­

lar cross section. 

2. The velocity in this stream tube is uniform (U J). 

3. The relation between the sectional lift and angle of attack is the 

same as that of an airfoil in uniform flow (with velocities U
J 

and 

lJ
ao 

for wing sections inside and outside the slipstream respective­

lly) • 

4. While computing the downwash, the stream tube representing the pro­

peller slipstream is assuned to extend from upstream infinity to 

downstream infinity. 
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· . 

Whereas the assumption that the propeller sl ipstream to be a stream 

tube of circular cross section is reasonable, the assumption that the veloc­

ity inside this tube is uniform, ;s not realistic. The slipstream behind a 

propeller does neither have a uniform velocity distribution nor have a ve­

locity discontinuity. The third assumption concerning the lift curve slope 

of the wing sections washed by the propeller stream,'is also not realistic. 

These! rather drastic simpl ifications of the cl assical theory prompted 

several workers to make a detailed study of the problem. Rethorst and co­

workers (ref. 2-5) made extensive studies and developed a lifting surface 

theory for this problem. They assumed, however, that the propeller slip­

sty-eam was in the form of a circular jet in which the velocity was uniform. 

Kleinstein and Liu (ref. 6) scrutinized the assumptions of the classical 

thE!Ory and improved on some of the assumptions. For the sectional 1 ift 

curve slope they used the data obtained by the solution of the Euler equa­

ti()ns. FClr the computation of the downwash, however, they assumed that the 

sl ipstrealTl was in the form of a uniform jet. Their results brought out the 

effects of the assumption (3) above. Ting et al. (ref. 7) made a new 

approach by applying the asymptotic method to the interference of a wing 

with multiiple propellers. Their method requirE!d the 1 ift data for wing 

sections in the nonuniform flow which had to be determined by solving the 

Eu"ler equations. Lan (ref. 8) used a quasi-voy·tex-lattice method and a two 

vOf'tex ShE!et representation of the slipstream to study the interference 

problem. Rizk (ref. 9) developed a model for the interaction between a thin 

wing and <1 nearly uniform jet. He developed a small disturbance model and 

allowed the perturbation to be potential although the undisturbed stream was 

rotationa"l. 
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In the present analysis, the propeller slipstream is assumed to be in 

the form of a jet with a smooth velocity profile and without a distinct 

boundary. The relation between the sectional lift and the angle of attack 

is assumed to be obtained by a ·Iocal two-dimensional analysis. For the pur­

pose of computing the downwash due to the trai"ling vortices the slipstream 

is assumed to extend from far upstream to far downstream. In addition, the 

disturbance due to the wi ng, and the nonuniformity in the s 1 i pstream are 

assumed to be small. These assumptions are them used in the cl ass;cal 

theory to derive a modified lifting line theory for wing propeller interfer-

ence. 

ANALYSIS 

Consider .a two-dimensional nonuniform flow past an airfoil. If the undi s­

turbed stlr-eam having a non-uniform velocity field U(y) is rotational, then 

the governing equations to be solved are the Euler equations. If the 

airfoil ;s thin and is at a small angle of attack, and the perturbation 

velocity <components u and v may be assumed to be small, then the 

vorticity transport equation obtained by eliminating pressure from the Euler 

equations reduces to 

(1) 

Further if it is assumed that the term Uyy which is the vorticity in the 

undi sturbed stream, is small, then the second term in equation (1) may be 

neglected. Then, the governing equation reduces to 

(2) 
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which is satisfied if the perturbation velocity field is irrotational. 

Therefore, under the assumption that the perturbations are small and the 

vorticity in the undisturbed stream is small, the perturbation velocity 

field can be described by a velocity potential. 

This concept of embedding potential disturbances in a slightly rota­

tional background flow was employed by Rizk (ref. 9) while conSidering the 

wing-propeller interaction problem. He, however, considered a more complex 

problem wherein the effects of the slipstream swirl and a compressibility 

were retained. He solved the resulting equations by a finite difference 

method. 

The classical lifting line theory for the wing-propeller interaction 

given by Koning (ref.1) is an extension of Prandtls' lifting line theory for 

la.rge aspect ratio wings. The equation governing the spanwise distribution 

of circulation r(y) is 

r(y) = 1/2 c(y) c~a(Y) U{a(y) - w(y)/U} ( 3) 

where c(y) is the wing chord, c~a (y) is the sectional 1 i ft curve slope 

and a(y) is the angle of attack; also U = U
J 

for Iyl < R, i .e., for 

stations inside the slipstream tube and U = U for Iyl > R, i.e., for 
00 

stations outside, R being the slipstream tube radius. The downwash w(y) is 

given by the relation 
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w{.Y) = ~ { J s dr (n ) 
4'11' -s y-n 

:; .:.-- { JS df (n) 
4'11' -5 y-n 

dr (n) } 
y_R2 In 

Iyl < R, 

( I -R _ (s) df ~ n) } 
-s R y-R In 

Iyl > R 

( 4a) 

(4b) 

where e:l :; (lJ2 -1)/{lJ2+1), e:2" (lJ_l)2/{lJ2+1) and lJ = UJlUco• It may be 

recalled that in deriving these equations, the four assumptions mentioned in 

the previous section have been made. Further, when the propeller slipstream 

is absent (UJ = Uco ), the factors e:l and e:2 become zero and the above 

equations reduce to those of the classical lifting line theory. 

If the jet representing the propeller stream has a small excess veloc-

ity, i.e. l• U3 - Uco = u« Uco , then we may neglect terms of the order of 

(u/Uco )2 'in e:l and e:2. In this case e:l /OJ u/lJco and e:2 /OJ 0; as a result, 

equations (4a) and (4b) get simplified to 

w(y) = ~ {Js df(nL + 
4'11' -s y-n 

=.!.... { JS dr(n) 
4'11' -s y-n 

u JR df(n) } , Iyl < R 
Uco -R y_R2 In 

(5a) 

Now consider a high aspect ratio wing with the propeller sl ipstream go­

i ng past 'it s)(TImetrically as shown in figure 1. Let the velocity profil e be 

given by U(y,z) = U(r) = Uco[1 + F(r2)] where r2 = 1- + z2. Outside the 
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