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Chapter I

INTRODUCTION

The control of distributed-parameter systems represents

a real challenge to the system designer, both from a theor-

etical and practical point of view. Distributed-parameter

systems arise in various areas. In recent years, due to the

interest in larger and more flexible structures, the analy-

sis and design of such systems have steadily increased in

importance [i-12]. Examples of flexible stuctures are high

buildings, long bridges, large ships and submersible ves-

sels, aircraft, rockets, missiles, satellites with flexible

appendages, astronomical telescopes with large antenas, to

mention just a few. As a rough approximation, these distri-

buted-parameter systems, or at least their most essential

parts, can be considered as vibrating strings, beams, mem-

branes, plates, shells, and various combinations of these

components. Such large flexible systems of this nature are

usually described by a hybrid set consisting of ordinary and

partial differential equations with two or more independent

variables [7,9]. The determination of natural frequencies

and dynamic response of engineering structures, requires

normally a significant simplification of the actual geometry

and an approximate method of analysis.
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Classical structural dynamics problems require the der-

ivation of the differential equations of motion of typical

structural members and the determination of the solutio

ns, where the latter are subject to given boundary condi-

tions. Such closed-form solutions are limited to relatively

simple geometries. However, these solutions are of great

value as they provide an understanding of the dynamical be-

havior of typical components, such as beams and plates. For

more complex structures, closed-form solutions are not pos-

sible and one must consider approximate solutions. Approxi-

mate methods can provide solutions for a wider range of

problems and are capable of yielding results of acceptable

accuracy with reasonable economy of computation.

The most indicated approximate methods in structural

dynamics are the classical Rayleigh-Ritz and its finite ele-

ment version. Substructure synthesis can also be regarded

as a Rayleigh-Ritz method [13]. The classical Rayleigh-

Ritz method is less versatile than the finite element meth-

od, as the latter can be used for more complex structural

problems [13]. Complex structures generally represent as-

semblages of distributed parameter components such as

plates, beams, columns, etc. Whereas many of these compo-



nents may have uniformly distributed properties and by them-

selves may admit closed-form eigensolutions, when they are

bounded together in a single structure, the component eigen-

solution does not have much significance. The eigensolution

of interest now is that of the complete structure and this

eigensolution cannot be obtained in closed form. Therefore,

spatial discretization is unavoidable.

In contrast to the classical Rayleigh-Ritz method, whe-

re the expressions for displacements are applicable to the

complete domain, finite element expressions are defined only

over a part of the domain, namely an element. It is typical

of the finite element method, that the resulting discrete

models possess a large number of degrees of freedom. More-

over, as with any approximate method, the associated alge-

braic eigenvalue problem is not an accurate representation

of the actual system eigenvalue problem, as only the lower

modes can be computed with satisfactory accuracy and the

higher modes can be grossly in error.

In general, the fundamental problem of active control

of flexible systems is to control a large-dimensional system

with a much smaller-order controller. Quite often a large

number of elastic modes may be needed to model the behavior
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of a large flexible spacecraft. However, active control of

all these modes is not likely to be feasible due to computa-

tion limitation and errors that arise in modeling the higher

modes by the discretization process. Clearly, the controls

must be restricted only to the most significant modes [_].

Furthermore, the bandwidths of actuators and sensors prevent

response to the higher-frequency modes, and these higher

modes cannot respond to the actual controls. The tea! just-

ification for controlling only the lower modes lies in the

fact that the higher frequency modes in an actual system are

harder to excite. A conclusion can be drawn at this stage

that a control system must be designed so as to control the

modes of most significance, namely the lower modes. To

guarantee that the controlled modes are sufficiently accu-

rate, it is oftennecessary to consider a relatively large-

order discrete system mode!.

The increased order of models representing modern

structures and the associated control problems, have provid-

ed the motivation for developing methods permitting analysis

of such systems, and providing solutions to the control

problems with little computational effort. Such a method is

the 'Independent Modal-Space Control' (IMSC) method [6-12].

This method is capable of carrying out the control task ef-
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ficiently. Briefly, this method is based on a transforma-

tion of the system equations of motion to modal space,

yielding internally independent modal equations of motion.

Then, the contro! laws ale designed in the modal space, so

as to permit independent control of each individual mode,

thus providing complete decoupling of the equations of mo-

tion. This approach allows complete flexibility as to which

modes to control. The corresponding forces are not actual

forces but more abstract modal control forces. For control

implementation, the actual control forces are synthesized

from the modal forces by a linear transformation. This

method is easy to implement, especially for high-order sys-

tems, such as those arising from modeling complex distribut-

ed-parameter systems.

Most actuators placement concepts discussed so far in

conjunction with the IMSC method [i_,!5], are supposed to

minimize the part of energy that goes into the uncontrolled

modes. Indeed, it is shown in Ref. 14 that the work done to

contro! the controlled modes does not depend on the actuator

locations. Of course, this statement holds true if the mode

participation matrix is nonsingular. This is guaranteed to

be the case for one-dimensional domains if IMSC is used, but

cannot be taken for granted in the case of two-dimensional



domains, so that care must be exercised in choosing the lo-

cation of the actuators.

Another argument can be found in Ref. 15, where a dis-

cussion on actuators placement is presented. It is remarked

that actuator locations can be chosen based upon any desired

criterion which makes the actuators placement as an indepen-

dent design step. It is also remarked in this reference

that improper choice of actuator locations can be disastrous

since the actuator force, or torque, can grow without bounds

as the actuator locations approch a position for which the

system becomes uncontrollable. Then, the reference suggests

a method for optimizing the actuator locations in order to

minimize the actual control effort, ignoring the problem of

controllability. In view of this, it is clear that, before

discussing any minimization aspects, one must place the ac-

tuators so that the mode participation matrix is nonsinqu-

far. It should be pointed out that this problem tends to

disappear as the number of actuators increases.

The minimum-fuel problem is a very important one in the

design of space vehicles and various space structures, espe-

cially for those with lengthy missions. The amount of fuel

or energy alloted for control is limited to such a degree
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that it becomes necessary to treat fue! economy as one of

the predominant factors. In such cases, it is natural to de-

sign the control system so that it consumes a minimum amount

of fuel [16-23].

The total fuel consumed during control is measured by

the time integral of the absolute value of the control vari-

able. Due to some technical restrictions on the actuators,

there exist limits on the magnitude of the control forces.

As an example, the thrust produced by a gas jet actuator is

limited in magnitude by the saturation of the power ele-

ments. Controls subject to constraints and minimizing a

particular functional, such as the consumed fuel, the re-

quired energy, etc., are optimal. A control system minim-

izing the amount of consumed fuel, is referred to as a "mi-

nimum-fuel system".

About two decades have passed since the mathematical

theory of control has been based on powerful variationa!

techniques, such as the minimum principle of Pontryagin.

This method can be used to determine necessary and suffi-

cient conditions for the control to be optimal [16,17]. The

necessary condition for optimal control usually specifies

the nature of the control and the general structure of the

control system.
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The derivation o_ the optimal feedback control law,

i.e., the explicit dependence of the control on the state

variables, is a very complex task and in most practical cas-

es it remains an unsolved problem [18,19]. In these cases, a

trial and error process is unavoidable for the state deter- i

mination. One may consider such a process as reasonable for

a low-order system (fourth-order at most), but certainly not

for a high-order system, where the computational difficulty

is insurmountable. Unfotunately, an accurate model of a

flexible structure requires a large number of degrees of

freedom.

Formulation of the control law in terms of the costate

variables can be accomplished regardless of the system ord-

er, but determination of the initial conditions of the cos-

tate variables for a high-order system is difficult if not

_impossible. The control task is made considerably simpler

by using the IMSC method where the complexity inherent in a

high-order system is eliminated. Using this method, the in-

itial costate variables must be determined for a set of in-

dependent second-order ordinary differential equations, so

that treatment of coupled high-order systems is avoided.
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It is the goal of this study to apply control theory to

a large flexible structure using the 'Independent Moda!-

Space Control' (IMSC) method, particularly for minimum-fuel

control. For the purpose of demonstration, the analysis

wil! be focused on a large-order flexible system in the form

of a plate-like framework. The structure is a beam lattice

assemblage, as can be seen in Fig. l.la. In addition, to

permit simulation of a gravity-free environment in labora-

tory, a beam lattice supported by cables, as shown in

Fig. l.lb, is analyzed.

Chapter II contains the problem formulation. In the

first section, the distributed-parameter system is discre-

tized via the finite element method for both cases shown in

Fig. I.I. Then, in the second section, the eigenvalue prob-

lem is formulated and modal space decomposition is applied

to the coupled equations of motion in order to transform the

coupled set into a decoupled set of differential equations.

The third section discusses the advantage of using a re-

duced-order controller, emphasizing the disadvantages in the

contro! of the higher modes. In this section, the fundamen-

tal principles of the IMSC method are introduced, and the

idea of complete decoupling of the equations of motion is

established.
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(a)

(b) _

• _

Figure i.i: Beam Lattice

(a) Free in Space

(b) Cable Supported



II

Chapter III provides a discussion of linear optimal

control in conjunction with quadratic performance index.

The object is to suppress rigid body modes and the dominant

elastic modes, thus providing attitude and shape control of

a structure in a single control level policy. For control

implementation, force and torque actuators, such as thrus-

ters and momentum wheels, are used.

Chapter IV analyzes aspects of actuators placement and

their effect on the condition of the mode participation ma-

trix. The system in this discussion possesses symetric mass

and stiffness properties in addition to symmetric boundary

conditions. A proposition stating a sufficient condition,

related to the singularity of the mode participation matrix,

is introduced. A detailed proof of the proposition via La-

place expansion for determinants, concludes this chapter.

Chapter V analyses the problem of minimum-fuel in

high-order system. A problem of insurmountable computation-

a! difficulty is made considerably simpler by using the IMSC

method, where the complexity inherent in a high-order system

is eliminated.
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Chapter VI displays numerical examples based on the

analysis of the beam lattice structure presented in

Fig. i.I.

Chapter VII summarizes the conclusions and provides re-

commendations for future research.



Chapter II

PROBLEM FORMULATION

2.1 SYSTEM DISCRETIZATION VIA FINITE ELEMENT METHOD

The equations of motion for a flexible structure can be

derived by means of Hamilton's principle [2_]. This deriva-

tion will lead in general, to a set of hybrid (partial and

ordinary) differential equations that are difficult to han-

dle mathematically even for simple structures and it is

customary to resort to an approximate solution.

The finite element method is an approximate method of

analysis which can be used to solve complex structural prob-

lems. The method consists in taking the displacement mea-

sures at discrete points in the domain as the unknowns, and

defining the displacement field in terms of these discrete

variables. Once the discrete displacements are known, the

system motion can be described at any given point in the do-

main by interpolation. In order to achieve system discreti-

zation, the stiffness and mass matrices as well as the gen-

eralized force vector for the entire structure, must be

obtained. In the finite element method we consider the

structure to be divided into volume elements having finite

13
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dimensions and we select certain points in the interior and

boundary surfaces. The volume elements are referred as "fi-

nite" elements, since their dimensions are finite, and the

boundary points are called nodal points or nodes. The vari-

ous steps in a solution to any problem are:

I. Discretization of the body by selection of elements in-

terconnected at certain nodal points.

2. Evaluation of the element stiffness, mass and force ma-

trices.

3. Assemblage of the stiffness mass and force matrices for

the system of elements-nodes and introduction of dis-

placement boundary conditions.

4. Solution of the resulting system equations for the res-

ponse, due to a given set of initial conditions, under a

certain design of control law.

The system shown in Fig. I.I will be modeled as a reduced

dimension model, assembled of flexible beams connected to

each other by means of rigid blocks, as shown in Fig. 2.1.

Deriving the potential and kinetic enery expressions as

well as the non-conservative generalized force, are the

first steps in achieving system discretization.
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Figure 2.1: Beam Lattice Model

(a) Members and Nodes Numbering
(b) Model Members

(c) Rigid Block
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2.1.1 Potential Energy

We denote a typical element by j and consider first the

potential energy expression for the beam member elements.

From the theory of beams, it is well known that the ratio of

shear strain energy to bending strain enery is proportional

to (b/L)z, where b is the cross sectional height and L is

the beam length. Thus, for long thin beams, the shear

strain energy is very small compared to the bending strain

energy. For short stubby beams, similar to those given in

the beam lattice structure, the contribution of those shear

effects, clearly cannot be neglected and for this reason,

Timoshenko theory of beams will be considered as a mean of

accounting for the effects of shear in a simple manner [25].

The tota! slope _w/_x of the centerline that results from

shear deformation and bending deformation, can be given as

the sum of two parts in the following way

(x,=)
J (2 1)

(x,=)+ Sj(x,t)

where _.(x,t) is the rotation of line elements along the
3

centerline due to bending only, while B.(x,t) accordingly,3

gives the shear angle at points along the centerline. As
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far as shear strain is concerned, it is assumed that the

shear strain is the same at all points over a given cross

section of the beam. That is, the angle 6j(x,t), used here-

tofore for rotation of elements along the centerline, is

considered to measure the shear angle at all points in the

cross section of the beam at position x. Such an assumption

will greatly facilitate computation. In order to retain

simplicity and still have the actual shear distribution ef-

fects, a compensation factor k is introduced and the total

potential energy for the deformation field of the Timoshen-

ko-Beam can be written as

v = ) +__i + dx (22)3 ,xj-i

where EI., kGA and GJ* are the bending stiffness, the shearJ J
stiffness and tortional stiffness, respectively, k is the

shear distribution compensation factor depending on the

cross sectional shape and Poisson ratio _, and is given for

a rectangular cross section as

lo(i+_)k=
12 + llv (2.3)
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To eliminate _. from the total potential energy, we first
3

derive the Euler-Lagrange equations and then substitute for

_. in terms of w.. Utilizing the principle of mini-
3 3

mum total potential energy, we can derive the equilibrium

equations associated with the bending and torsion of the

beam. Hence, !et us insert the functiona!

• . d8 2

F(x,w,w',_,_',8,8')= ___i + [dx Cj
2 2 - + (2 4)

with the three functions w., _., 8 into the Euler-Lagrange
3 3 J

equation

d

_[__] _ ____F=0 qi = wj,@j sj_xx _qi , (2.5)

Then, evaluation of Eq.(2.5) for the three functions, re-

sults in the following equations

d [kGAj (wj - _j)] = 0 (2 6a)

d EIj_ kGAj (w_ _j)] 0 (2.6b)

d [GJ_Sj] = 08: _x (2.6c)
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Considering elements with constant stiffnesses EI.3,GAj, and
GJ* , Eqs.(2.6) yield
J

d2w. (2.7)

dw. El. d3w

- @j - kGA._ (2.8)dx
3

Substituting Eqs. (2.7) and (2.8) into Eq.(2.2) and using the

relation G=E/2(I+_), the total elastic potential energy for

the element can be written as

v [wl:1-----6--A + 4(i+_) (2.9a)
J xj_l J

where the first, second and third terms of the integrand

represent the contribution of bending, shear and torsion to

the total potential energy. The potential energy far a ca-

ble member element can be written as

xj Tv = -_ (w,)2dx
j 2 (2.9b)

"xj_I

where TC is the cable tension [13].
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In the cable supported beam lattice structure, gravity

field effect plays an integral role in the expression for

the total potential energy, and should be added to

Eqs.(2.9). For this task we will select a typical element

in gravitation field as can be seen in Fig. 2.2.

The potentia! energy can be regarded as resulting from the

axial force acting through the shortening of the element

projection on the vertical axis. Denoting a length incre-

ment along the displaced axis by ds and the projection by

dy, the potential energy can be written in the form

Lr

= J P(y,t)(ds- dy)vj 0
(2.10)

where P(y,t) denotes the axial force due to gravity. Assum-

ing that the shortening of the projection ds-dy is a small

quantity of second order in magnitude, and retaining only

quadratic terms, using the binomial expansion, the shorten-

ing of the projection can be shown to be

1 [w,(y,t)] 2 dy (2.11)ds - dy =

where the assumption of small motion was made. Introducing

Eq.(2.11) into Eq.(2.10) and substituting P(y,t) by the ac-

tual force acting on the element
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Figure 2.2: A Typical Element in Gravitation Field
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ifyJ
Vj = _ Yj_l(mjgyj + Gj)(w_)2dy (2.12a)

where m. is the mass per unit length and G. is an appropiate
3 3

force at the bottom end of a typical element due to the

weight below, it is clear from the discussion that this

type of potential energy applies only to the vertical mem-

bers of the structure, while horizontal members serve as

load contributors only. For this reason we wish to retain

both Eqs.(2.9_ and (2.12a) separately, while combining them

will be essential only when integration takes place in ver-

tica! orientation.

For the cable elements, the potential energy can be

written as

1 [YJ gYJ + Gj)(w_)2dy (2.12b)= - (mcj
Vj 2 Yj-I

where m is the mass per unit length for the cable materi-=j
al, and Gj is obvious, in view of Eq. (2.12a).
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2.1.2 Kinetic Energy

The kinetic energy for a typical element j in a beam

member can be expressed as

3" Xj_l ' 2 [_t J dxo (2.13a)

where mj represents the mass per unit length, Jj is the mass

moment of inertia of an element of unit length about the

bending axis and J0j is the polar mass moment of inertia of

an element of unit length. Moreover 8wj/_t is recognized as

the translationa! velocity, _w_/_t as the angular velocity

of the element about the bending axis and _8./_t as the an-
3

gular velocity of the element about the torsion axis. Ac-

cordingly, the first term of the integrand represents the

translational the second the rotational and the third the

torsiona! kinetic energy. The kinetic energy for the rigid

blocks, can be written in view of the notations of Fig. 2.1c

as

T. l i _2 1 Y3 = _ M_2"+ + 8 (2.13b)3 _ IxG x3 _ lyG j

where M is the mass of the rigid block and I and I are
xG yG

its mass moment of inertia about its latera! axes x and y,
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respectively. For the cable elements, the kinetic energy

can be written as

m

rY_ cj (_)2dy (2.13c)2 jT. = J
J Yj-I

2.1.3 Nonconservative Generalized Force

In the derivation of the discretized system equations

of motion, we are making use of the virtual work concept in

order to obtain the nonconservative generalized force ex-

pression

xj [f m '. ] _[wj w'. 8.]T dx (2 I_)_Wj = wj w3 m6j 3 3
_xj_1

where .;wj, m,,w3 and m6j are the distributed force and two

moment components associated with the displacements wj w'.' J '

and 8., respectively.
3
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2.1.4 Finite Element Model

See also Meirovich [13], chapter 9.

Referring to Fig. 2.3a we express the displacement com-

ponents at any point inside the element j in the form

w.(_,t)j= L_(_)._j(t) (2.15a)

T

ej
t,2.15b)

where

Lw(_) = [iwl(_) Lw2(_) Lw3(_) Lw (_)]T (2.16a)

LS(_)= [L_IC_) L82(_)]T (2.16b)

are vectors of interpolation functions and

wj(t) = [Wj_l(t ) hW__l(t ) wj(t) hw_(t)] T (2.17a)

ej(=)--[ej_1(=)ej(=)]Y- (2.17b)

are vectors of nodal displacements where h is the length of

the element. To satisfy compatibility, it is necessary that

the interpolation functions vector be continuous up to the
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!

wj

Sej_l

(a)

I I
= x. = jh

xj_I (j-l)h x 3

w'
J

I I
(b)

1-_

a/2 h a/2

I
xj_ 1 = (j-l)h xj --jhX

Figure 2.3: Finite ElementModels
(a) A Typical Finite Elementj
(b) A TypicalMember with Rigid Blocks
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derivative of one order lower than the highest derivative

appearing in the associated differential equation. Most of

the element formulations that have been developed are based

on polynomial expansions. Therefore, for a beam in bending

represented by a fourth order differential equation, cubic

polynomials are admissible, while for the torsion part that

is represented by a second order differential equation, li-

near polynomials are admissible. For the discretization

process at hand, we select the following interpolation func-

tions

Lwl(_) - 3_2 - 2_3 , Lw2(_) . {2 _ _3

Lw3(_)= 1 - 3_2 + 2_3 L (_)= __ + 2_2 _ _3 (2.18a), w4

LSI(_)= _ , Le2($)= 1 ~ _ (2.1Sb)

For a member with rigid blocks, the following relations can

be derived in view of Fig. 2.3b.

T _ ,T (2 19)
--nw( ) =Lw

A ^

w. I + j 'w'.1 a3- = wJ-I 3- _ ' w -i = wj-i (2.20a,b)

^
a ^

W'. = %'. -- W -- _--Wt.
3 j j 2 , wj

3 (2.20c,d)
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Referring to Eqs.(2.16a) and (2.17a) and substituting

Eqs.(2.20) into (2.19), we obtain

w.(t)= CR wj(t) (2.21)~]

where CR is the rigid constraints transformation matrix

FI a__ 0 02h

I 0 i 0 0 (2.22)
CR = a

0 0 i
2h

0 0 0 1

Substituting Eq.(2.21) into Eq.(2.!9), the modified interpo-

lation function vector L*(_) becomes
~W

T Lw(_) (2 23)_.(_)= cR _

We will use two reference systems, local and global. For a

single element, nodal variables refer to local numbering

system, but for an assembly of elements we shall refer to

global system. The relation between global and local coor-

dinates x and _ respectively, can be concluded from Fig. 2.3

_ jh - x _x = -h d_ (2 24)h '



29

The element beam matrices can be obtained in terms of the

local coordinate _ by substituting Eq.(2.2_) into (2.9a).

The potential energy for a typical element j in the beam

lattice has the form

= EIj _4- d_2 + 12+i19 1 'Vj _ J0 i0 _[ _6- d$=J

J J ' (2 25a)
+ 4(l+_) d_ d_

Inserting Eqs.(2.15) into (2.25a), one obtains

vj=ywj(_)Kj w.(t)+ l~J _ 0 (t) KOj 8 (t) (2.25b)

where

l 1 d2Lw(_) d2LT(_)

= f El • • d_Kwj _ 0 J de_ d_2

Elz d3L (_) d3LT(_) (2.26a)

1 I1 12+i0_. ---i ~w ~w d_+_ o lO AO d_3 d_

i ,I EJ*. dLe(_) dLT(_)

=- J _ ~ d_ (2.26b)K0j h 0 4(I+_) d_ d_

are element stiffness matrices associated with the tran-

sverse and torsional motions, respectively. Using

Eqs.(2.16) and (2.18), the element stiffness matrices become
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12 6 -12 6 144 72 -144 72

4 - 6 2 36 - 72 36
E1 12+ii_ El2

Kwj = _ + i_ Ah S"12 -6 144 -72

symm. symm.
4 36

(2.27a)

r i -i ]EJ*

K0j = 4(l+_)h -l 1 J (2.27b)

where all parameters are assumed to be constant throughout

the element. The potential energy for an element j in a ca-

ble suspension is obtained by substituting Eq.(2.2_) into

(2.9b). The result is

h Ii 1 [dwj(_'_)'2V.j= __c20 Tc h--Zc d_ d_ (2.28a)

Using Eq. (2.15)

Vj = _ w (t) Kcj wj(t) (2.28b)

where

T

fl dL0(_,) dL;(_)1

Kcj h ! 0 c d_ dgc (2.29)
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using the linear interpolation functions Eqs.(2.16b) and

(2.18b), the cable element stiffness matrix becomes

lIc (2.30)
Kcj = _- -1 1

Following this pattern, the additional stiffness matrix due

to gravity contribution can be obtained from Eq.(2.12a)

J _ 0 [mjg(l-_:)h + G ] w_(_ t) 2J L d_ d_ = _-w (t) KGj wj(t) (2.31)

where

i m G. dLw(_) dLT(_) d_ - mjg_ d_ (2 32)KGj = 0 jg + d_ d_ d_ d£, "

Using Eqs.(2.16) and (2.18)
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36 3 -36 3 36 0 -36 6

KGj = _-_ mg + - m---K
36 -3 60 36 -6

symm. symm.
4 2

(2.33)

The potential energy due to gravity contribution for element

j in the cable suspension, is similar to Eq.(2.28), or

v i r wj(=)j = _ wj(t) KCG j (2.3_)

Since cables in transverse vibration and beam in torsional

vibration represent entirely analogous dynamical systems

from a mathematical point of view, the same interpolation

functions can be used for both cases. Therefore, KeG j in

Eq.(2.3_) has the form

KCGj = 0 c3g + d_ d_: 0 mcjg_ d_ d£, d_ (2.35)

Using Eqs.(2.16b) and (2.18b)

-i 1 (2.36)
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A similar pattern is adopted to obtain the element mass

matrix, where the assumption of a member consisting of one

element is made. Substituting Eq.(2.24) into (2.13a)

3" = --2 0 mj (_,t)] 2 + Jj _r _ d_ + J03 '

(2.37a)

inserting Eqs.(2.19) and (2.23) into Eq.(2.37a), one obtains

1 .T T 1 _T(t) (_) (2.37b)Tj = _ wj(t)CR Mwj CR wj(_)+ _ M%j 0j

where

fl T i fl dL~w(_) dLT(_)~w (2.38a)Mwj = h 0 mj Lw(_)~L_(_)d_ +_ 0 J'3 d_ " d_ d_

ii
MOj = h _0 J0J Le(_) LT(_) d_ (2.38b)

T

C_MwjC R and MOj are element mass matrices associated with

the transverse and torsional motion. Using Eqs.(2.16) and

(2.18), the element mass matrices become
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156 22 54 -13 36 3 -36 3

4 13 - 3 4 - 3 -i
J

T Mwj CR = T , mh42___O + 3--_ CRCR CR 156 -22 36 -3

symm. 4 symm. 4

(2.39a)

 h[2ol]= ---q--- (2.39b)
M@j. l 2

where all the parameters were assumed to be constant

throughout the element. The kinetic energy for element j in

the cable suspension is obtained by substitutingEq.(2.24)

into (2.13b), so that

h 1

T. = c ! [wjJ 2-- 0 mcj (E,,t)] z d_ (2.40a)

Using again the linear interpolation functions Eqs.(2.16b)

and (2.18b), we obtain the cable element mass metrix

-T

T 1 _T(t) M wj(t)j = _ - cj (2.40b)

where
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mc c (2.41)
McJ = _ i 2

The discrete element force vector can be obtained from

Eq.(2.14). Using local coordinate

6W.3 = h 10 fwj 6wj(_,t) - mw3,._ 6 d_ + mej 68j(_,t) 6_

(2.42a)

Substituting Eqs. (2.15) into (2.42a)

,i i dLT(_)

T I ~w dwj (t)d__Wj = h _]0fwj L_(_) CR _wj(c) d_ - 0 mw3'" d_ CR -

i+ h m%" T (t) d_o -ILe(_)cR_ej

= FT dw.(_) + T
-wj "3 Fej _@j(t) (2.42b)

where

ii dLw(_)_i T Lw(_)d _ _ T ~ d_ (2 43a)= fwj CR- m%;jCR d_ "Fwj h J0 0

"-i

Fej = h 10 mSj L6(_) d_ (2.43b)

are the element generalized force vectors.
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We will regard the forcing functions as concentrated

forces and moments acting at the element nodes. These forc-

es and torques can be represented as distributed forces and

torques by writing them in the form F 6(_-$.) and M 6($-$.)
i 1 j 3

where 6($-$ ) and 6($-$ ) are spatial delta functions. Sub-
i j

stituting these expressions into Eqs.(2.43), we can write

F -- [h M h F. M IT (2.44a)
~wj Fj_1 wj -1 j wj

= iT
F@j [h M@j_I h M6j (2._4b)

where Fj_I , Mwj=l , MOj_I and Fj, Mwj, M@j are concentrated

forces, bending moments and torques at the j-I and j nodes

respectively.

The potential energy, kinetic energy and virtual work

for member s are obtained by summing up the contributions of

the individua! elements, in a process known as "assembling".

Two types of members participate in the assembly, beams and

cable supports which are regarded as 4th and 2nd order mem-

bers respectively, according to the degree of their differ-

ential equations of motion. With this notation it will

prove convenient to introduce a 3(m4+I) and a (ma+l) dimen-

siona! displacement vectors for a 4th and a 2nd order mem-
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ber, where m4 and m z are numbers of elements in these type

of members, respectively. For a beam-member

U_su= [w0 hw6 wI hw_ ... Wm_ hW'm_ e0 el ... em_]T

(2.45a)

and for a cable-member

T
u = [w0 wl -.- Wm2] (2 45b)_S2

The member stiffness matrix can be written in a block diag-

onal form as follows. Starting with a beam member, we have

K I 0

w l.....+..... (2.46)

Ks4 0 I,K0 3(m_+l)

where each block can be schematically displayed as follows

\
\

\

K = \ (2.47a)

. 2(m.+l)
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K_ =

(2._7b)
• . (m_+l)

in which the shaded blocks indicate summation of the over-

laping entries. We notice the distinction between a verti-

cal member and a horizontal member in the beam lattice. The

former is affected by gravity, while the latter serves just

as a load contributor. Therefore, for a vertical beam mem-

ber, using Eqs.(2.27) and (2.33), we obtain

12 6 -12 6

6 4 -6 2

-12 -6 24 0 -12 6
06 2 0 8 -6 2

El -12 -6 24 0
+6 2 0 8

24 0 -12 6

0 0 8 -6 2
-12 -6 12 -6

6 2 -6 4
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144 72 -144 72

72 36 -72 36

-144 -72 288 0 -14& 72
0

72 36 0 72 -72 36

+ 12+ii_ El 2 -144 -72 288 0 +
i0 Ah _ 72 36 0 72

288 0 -144 72

0 72 -72 36
0

-144 -72 144 -72

72 36 -72 36

r 36 3 -36 3

3 4 -3 -i

-36 -3 72 0 -36 3
0

3 -i 0 8 -3 -i

--I [ GImg + -36 -3 72 0

4.
+30 3 -I 0 8

72 0 -36 3

0 8 -3 -i

0 -36 -3 36 -3

3 -i -3 4
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36 0 -36 6

0 6 0 -i

-36 0 72 -6 -36 6
0

6 -i -6 8 0 -i

-36 0 72 -6
_m__K

60 6 -i -6 8

• (2.48a)

72 -6 -36 6

0 -6 8 0 -i
-36 0 36 -6

6 -i -6 2

i -1

-i 2 -i 0

-i 2 (2.48b)EJ*
K@ : 4(l+_)h

2 -i
0

-i i

Here, we should note that for a horizontal beam-member, only

the first two matrices in Eq.(2.48a) are to be included.

Finally, for a cable-member, the stiffness matrix can be ob-

tained using Eqs.(2.30) and (2.36), with the result
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1 -i

-i 2 -i 0

13 T + G] -i 2 (2.49)Ks2 = mcg + c h " •)
2 -i

0
-i 1

A similar pattern can be hold to obtain the mass matrices

for a beam-member as well as for a cable-member.

For the member force vector, we can write

F = [FTw T T-s_ Fe]3(_+l) (2.50)

where F and F are 2(m4+I _ and (m4+l) vectors respectively,~w ~0

obtained from Eqs.(2.4q) in a manner similar to the member

stiffness and mass matrices.

Making use of the above matrices and vectors, the mem-

bers equations of motion can be written in the matrix form

(2.51a)
M u + K u = F s4 = 1,2,...,M_
s4 -sW s4 ~s_ ~s4

u = 0 s2 = 1,2,...,M2 (2 51b)Ms2 _s2 + Ks2 ~s2 ~
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for a _th and 2nd order members respectively. M4 and Ma

represent the number of 4th and 2nd order members in the

structure. It will prove convenient to consider the total

dimension of the beam lattice _ccording to the number of

beam members along each side. Let n and _ represent thesea

numbers along the lattice sides a and b respectively, and

nc, the number of cable members in each cable branch,

M_ na nb (2 52a)= (nb+l)+ (na+l)

M2 = 2n (2.52b)c

Equations (2.51) represent a set of M=M4+Mz disjoint equa-

tions for the independent members in the entire structure.

For the assemblage of discrete members, the boundary dis-

placements must match. The displacements at the nodes shared

by several members must be the same for every such member

and corresponding forces should be statically equivalent to

the applied forces. Note that displacements include rota-

tions and forces include torques. At this point let us in-

troduce the Nd=3M4(m4+l)+Mz(m2+l ) dimensional disjoint dis-

placement and force vectors

T T T T IT
_d " [_I _2 "'" _"M4 _21 922 "'" 9 2M2

(2.53a)

T _I Q_2 T T
(2.53b)
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as well as the disjoint mass and stiffness matrices

I I ]
l 0

diag Ms% 0 diag Ks4 1

M d = ' Kd = " - _l
s b diag K

0 b diag Ms2 L 0 lI s2

s_ = 1,2,...,M_ s2 = 1,2,...,M 2 (2.54a,b)

With these expressions, the equations of motion for the dis-

joint structure, have the reduced matrix form

Md _d + Kd -Ud = -Fd (2.55)

It is clear that the disjoint vector Ud contains local coor-

dinates some of which are redundant for the description of

the assembled structure. It will prove convenient to intro-

duce a new displacement vector q representing the nodal dis-

placements of the complete structure in terms of components

along the global system coordinates. The total number of

nodes in the entire structure can be determined in terms of

na, _ , nc, and m4,mz,M4,M2

, = - 2 + M2(m2-1) (2.56a,b)N% = (na+l)(nb+l)+ M4(m4-1) N2 2nc

In view of this number, the order of the independent global

coordinates vector q is

N ffi3[(na+l)(nb+l)+ M_(m_-l)+ [2n - 2 -Mz(m2-1)] (2.57)q c
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The relation between the vectors _d and q can be written in

a matrix form as

Ud(t)= C q(c) (2.58)

C is a NdXN rectangular matrix reflecting the constraintsq

expressions, relating the disjoint structure in the local

coordinate set to the assembled continuous structure in the

globa! coordinate set. introducing Eq.(2.58) into Eq.(2.55)

and premultiplying by C T, the structure equations of motion

will take the matrix form

M_(c) + K q(t) = 9(t) (2.59)

where

M = CTMdC , K = CTKdC , Q = CTFd (2.60a,b,c)

and

iT= w2 8 8 .. "'"
q [Wl 8Xl %Yl x2 Y2 " WN_ 8xN_ 8YNg WN_+I WN_+2 wNa+N2

(2.61)

q is the nodal displacement vector and Q represents the vec-

tor of nodal control forces. The elements in the nodal dis-

placement vector, wi, 8xi, 8yi are the nodal global coordi-

nates, i.e., lateral displacement and two rotations

respectively, in the ith node. To add the rigid blocks con-
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tribution to the kinetic energy, we can associate the veloc-

ity components of Eq. (2.13b) _ , 8xj, 8yj, with the appropri-

, respectively, and sim-
ate noda! velocities %, qi+l qi+2'

ply add the mass and two moments of inertia of these blocks

to the related entries in the main diagona! of the system

mass matrix.

2.2 THE EIGENVALUE PROBLEM AND MODAL SPACE DECOMPOSITION

The object is to reduce the transverse motion of the

structure to zero. This can be done most effectively by ac-

tive control techniques. Customarily, controls are designed

by working with the state equations of motion. In the

state-space framework, methods have been developed for state

and output feedback problems which have been proved to be

computation_!_ll_tt_active. It turns out that _or a discre-

tized structure, as described by Eq.(2.59), a configuration

space approach is simpler and more useful.

To achieve the control task, the IMSC method is em-

ployed. As a first step, it is necessary to solve the ei-

genvalue problem associated with Eq.(2.59), where the latter

can be written as

w2 M qr = K qr r = !,2,...,Nq (2.62)r
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M and K are tea! symmetric and positive definite matrices,

so that all the eigenvalues _a are real and positive wherer

the _ 's represent the natural frequencies of the system and

qr are the associated orthogonal set of eigenvectors. The

eigenvectors can be normalized by setting

r

-qrM qr = 6 , qrT K qr _2 _ r,s = 1,2 .._Nq (2 63a,b)rs r rs '" "

where 6 is the Kronecker delta. Arranging the eigenvec-rs

tots in a N xN modal matrix
q q

U = [.ql q2 --. .qNq] (2.64)

Eqs.(2.63) can be rewritten in the compact matrix form

uT =I , Ur --A (26S)

where I is the identity matrix of order N and A is the
q

diagonal matrix of eigenvalues.

Using the expansion theorem [24], the response of the system

at any time can be expressed as a linear combination of the

eigenvectors. Defining _(t) as a N dimensiona! modal spaceq

vector, we introduce the linear transformation

q(t)= ~ (2.66)
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Substituting Eq. (2.66) into Eq.(2.59), premultiplying by UT

and using Eq.(2.65), we obtain the modal equation

_(t)+ ,%_(t) = N(t) (2.67)

where

N(t) = uTQ(t) (2.68)

is the N - vector of generalized control forces associatedq

with the modal vector _(t). Eq.(2.67) represents a set of

N modal equationsq

F <t)+ _2 _r(t) = N (t) r = 1,2, Nq (2 69)_r r r "''* "

Although Eqs.(2.69) appear as a decoupled set, modal coordi-

nate recoupling occurs in general through the control forc-

es, as can be recognized from Eq.(2.68). To achieve a com-

plete decoupled form, each modal control force Nr must

depend on the rth mode only, which is the essence of the

IMSC method.
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2.3 CONTROL OF THE DOMINANT MODES

The fundamental problem of active control of a flexible

system, is to control a large-dimensional system with a much

smaller-order controller. Although a large number of elas-

tic modes may be needed to model the behavior of a large

flexible structure, active control of all of these modes is

out of question due to computation limitations and errors in

the higher modes because of the discretization process.

Clearly, the controls must be restricted to the most signi-

ficant modes, which are the lower modes.

The justification for controlling lower modes only lies

in the fact that higher frequency modes are very difficult

to excite. Furthermore, the bandwidths of actuators and

sensors cannnot respond to the higher frequency modes.

Hence, although Eqs.(2.69) permit independent control of all

the discretized system modes, we will concentrate in cont-

rolling only a number of dominant modes. This number can be

determined by examining the modes participation in the res-

ponse. To accomplish this, the eigensolution will be rear-

ranged according to the increasing order of the eigenvalues

and only the first c of Eqs.(2.69) will be retained for the

control task.
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Perhaps this is the point to emphasize the unique ad-

vantage of the Independent Modal Space Control method. Aft-

er the system equations have been transformed to the modal

space, the control laws will be designed in the modal space,

permitting independent contro! of each individual mode.

This approach allows a complete flexibility as to which mode

to control. For control implementation, the actual contro!

forces are synthesized from the moda! contro! forces by a

linear _ransformation, as we shall see latter in this sec-

tion. It appears that this approach is simpler to imple-

ment, especially for high-order system such as those arising

from modeling complex distributed-parameter systems. Let us

assume that only a subset of the modeled modes will be cont-

rolled and use the subscripts C and R to denote the cont-

rolled and residual (uncontrolled) modes, respectively.

Then, introducing the partitioned forms

=i cl01(t) ,-77-,<._j , A = [_o-_....IARj , N_= .-_-- • , u = [u ,IuR]
(2.70a,b,c,d)

Equation (2.67) can be separated into the two equations

+ A _c N (2.71a)_C C = ~C

°.

5R+ AR{R= _a (2.71b)



50

where

= uT Q ' _R T_c c - = UR 9 (2.72a,b)

are the partitioned parts of the control vector.

Substitution of Eq.(2.7Oa) into Eq.(2.66), yields the co-

nfiguration space displacement vector

q(t) = Uc _c(_) + UR _R(t) (2.73)

Assuming that the contribution of the uncontrolled modal

vector _R(t) to the actual response is negligible, we can

truncate Eq.(2.73) by ignoring UR_R(t ).

For control implementation, thruster and torquer ac-

tuators will be placed at some nodes, the number of which

equals to the number of controlled modes. The control forc-

es are first designed as generalized forces in the modal

space, and then synthesized to form the actual actuator

forces.

The discrete forcing vector Q(t) in Eq.(2.59) will be gener-~

ated by using c discrete actuators

9(=)-B

where F(t) is a c-dimensional vector of thrusters and tor-

quers, while B is a full rank NqXC modal participation ma-
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trix. Substituting Eq.(2.74) into Eq.(2.72a), the expres-

sion for the actual actuators forces is

F(t) = (U_B)-I Na(t) (2.75)

where the actuators are placed so that (U_B) is
a nonsingu-

lar matrix.

Substituting Eqs.(2.7_) and (2.75) into Eq.(2.72b), the re-

sidual modal force vector is obtained as

T B(U_ B)-I Nc(t) (2.76)NR(t)= uR

We can summarize now the modal equations of the cont-

rolled and uncontrolled modes as follows:

_c(t) + A _c(t) = N (t) (2.77a)~ C ~ -C

-c (2.77b)

Equations (2.77) illustrate clearly that the c entries of

the modal vector _c(t) can be controlled independently, whi-

le the R entries of the residua! part of the modal vector

_R(t) are excited by the spillover of the control forces

into the uncontrolled modes.



Chapter III

LINEAR OPTIMAL CONTROL WITH QUADRATIC
PERFORMANCE INDEX

An optimal control system is defined as one in which a

certain performance index is minimized. Selecting the prop-

er performance index for a complex control system is in gen-

eral a difficult task. As stated in the previous chapter,

independent control of the modes is achieved if the control

force associated with each modal coordinate, depends only on

this coordinate. This guarantees complete decoupling of the

modes. In view of this approach, we can determine a perfor-

mance criterion for each mode independently. Because every

moda! coordinate is controlled independently of any other

modal coordinate, the overall system cost wil! then be the

sum of all modal costs

c

J = 7 J (3.1)C _ r
r=l

Evidently Jc is a minimum if every Jr in the summation is a

minimum, because minimization of each term can be carried

out independently. At this point we abandon the configura-

tion space expression from chapter II and replace the sec-

ond-order modal equations Eqs.(2.7la) by first-order moda!

state equations.

Let us consider the modal state variables

52
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= (t) r = 1,2, ..,c (3.2a,b)xlr(t) = _r (t) ' X2r(t) _r

In view of this state definition the modal Eq.(2.71a) can be

written as pairs of first-order differential equations

Xr(t) = Ar Xr(=) + B Nor(t) r = 1,2,... c (3 3)
-- -- -r ' "

where

-rX (t) = r(t) t)] r [._ 1 , 1] T

[xI X2r ( A = B = [0' r 0 ~r

(3.4a,b,c)

This type of state definition is different from the one used

in the iMSC method [26]. In Ref. 26, the modal velocity is

eigenvalue-dependent such that the modal matrix A r is skew

symmetric in Wr and vanishes from the modal equations for

possible rigid body modes. To handle the entire system in

presence of rigid body modes, dual-level control scheme was

introduced, in which the first level is a proportional con-

trol providing control to the rigid body modes. This con-

trol provides "artificial" stiffness rendering the stiffness

matrix positive definite. Second level controls _are then

designed to provide final controlto the complete system.

The state defined by Eqs.(3.2) permits one control policy

for the en=ire system, including control of the rigid-body

modes.
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In view of the state Eqs.(3.3), we consider the follow-

ing performance indices

itf TrQr x ....
J = (x + R N2 ) dt r = 1,2 ,c (3.5)
r 0 " ~r r r

where tf is the final time, Qr are 2x2 weighting matrices

and Rr are weighting factors. For the rigid body modes, Qr

are chosen independently of the eigenvalues, or

Qr Qllr 0= r = 1,2.....n (3.6)
Q22 r

For the elastic modes, Qr are chosen as

_o2 O]
Qr = r r = n +l,nr+2 ...,c (3.7)

0 lJ r '

In view of Eq.(3.7) the first term of the integrand in

Eq.(3.5) represents the total energy associates with the

controlled elastic modes. R is the modal control effort
r

expenditure during the interval _(O,tf)- Increasing Rr'

places a havier penalty on the control effort.

The minimization of the modal cost Jr leads to the optimal

controls [16,17]

Nr(t) = -R -I BT K Xr(t) r = 1,7, .. c (3.8)r r r _ - " '
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where Kr(t ) is the 2x2 symmetric matrix satisfying the modal

differential matrix Riccati equation

Kr = - Qr + Kr Br Rrl BT K -K r A - AT K (3 9)r . r r r

r = 1,2,...,c

The steady-state solution is of great interest and wil! be

obtained by setting Kr=O in Eqs.(3.9). This yields the

algebraic matrix Riccati equation. With the notation

Kr = [Kllr21rKK12r]22rj" r = 1,2,...,c (3.10)

the solution to the gain coefficients Kilt, K1ar, Kzz r can

be shown to be

Kllr = (Q22r- 2Rr mZ)(Qllr + Rr _) + 2Rrl (Rr_+RrQIIr) (3.11a)

= JR Q22 - 2R2 m2 + 2R (R2 _ + R Q1 r)½.IIK22r i r r r r r r r r I _ (3.llb)

1

= _2 + (R2r _ + R QIKl2r - Rr r r r Ir) (3.11c)

r = 1,2,...,c
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where Q11r, Qzzr are general coefficients of the diagonal

weighting matrix Q r" Substituting Eqs.(3.11) into Eqs.(3.8)

and using Eqs.(3.2), the optimal modal controls are obtained

in the form

K12r K22r

Nr(t) = - _R _r (t) - _R _r(t) r = 1,2,...,c (3.12)
r r

Insertion of Eqs.(3.12) into Eqs.(2.71a) results in the sec-

ond-order differential equations

_r(t ) + 22r " (t) + _ + Kl2r_r R _r(t) = 0 r = 1,2,...,c (3.13)
r r

The general solution to Eqs.(3.13) is known to be

_r(0) -<r _nrt _r(0) -_r _nrt
_r(=) = i e cos(_dr _ - _r) +-- e sin(_drt)

(i - _) _ _dr

r = I o c (3.1_)

where

o Kl2r

nr r R
r

K22r
r = i (3.15b)

_r 2(R2 w2 + R K r)_r r r 12

l

_dr = _nr (i - _2)2 (3.15c)
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_r

Sr arctan i r = 1,2 ,c (3 15d)
(i-_2r)_

Eqs.(3.14) imply that I-_>0, which places a lower bound on

the control factors Rr. Using Eqs.(3.11b,c) and (3.15b), we

obtain

Q 2r
> + mZr) r = 1,2,...,c (3.16)Rr 4(Qllr Qz2r

From Eq.(3.16), in view of Eq.(3.6) and (3.7)

Q_2r
R > r = 1 _ n (3 17a)

r
r 4Qllr

for a rigid body mode and

1
Rr > _ r _ nr+l,nr+2,...,c (3.17b)

r

for an elastic mode.

Substituting Eqs.(3.1!b,c) into Eq.(3.15b), and setting

Q11r=W% and Qaar=l, we obtain

i If- 2P + 2P½ (I+P)_] ½

= ' r = 1,2,...,¢ (3.18)
Cr

p½ (i+ p)_

where p is a dummy variable
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p = R w2 r = 1,2,...,c (3.19)r r

Figure 3.1 provides a plot of the modal damping factor _r vs

p. Using this plot and in conjunction with Eq.(3.19), one

can select the desired control weighting factors Rr

(r=l,2 ..... c) to meet certain modal response performance

criteria, such as settling time, etc. A numerical example

for linear optimal control of the beam lattice is presented

in Ch. VI.
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Chapter IV

THE EFFECT OF ACTUATORS PLACEMENT ON THE MODE
PARTICIPATION MATRIX

Most actuators placement concepts discussed so far in

conjunction with the IMSC method [i4,15] are directed toward

minimizing the energy that goes into the uncontrolled modes.

These concepts provide guidelines for achieving this goal.

However, there are some other constraints that must be sa-

tisfied in conjunction with the minimal solution.

It has been shown that the work done to control the

controlled modes does not depend on the actuator locations.

Of course, this statement holds true if the mode participa-

tion matrix is nonsincrular. This is the case for a one-di-

mensional domain if IMSC is used. This cannot be taken for

granted in the case of two-dimensional domains, so that care

must be exercised in choosing the location of the actuators.

In view of this, it is clear that, before discussing minimi-

zation aspects, one must place the actuators so that the

mode participation matrix is nonsingular.

In this chapter we establish a sufficient condition for

participation matrix _CB that asserts its singular-
the mode

6O



61

ity, where UT is the cxn upper part of the modal matrix and
C

B is a full rank nxc actuators placement matrix, in which n

is the order of the system and c is the number of controlled

modes. The analysis provides a method of recognizing unde-

sirable actuators placement configurations.

We starZ by examining the structure of the modal matrix

U. The nxn modal matrix has the modal vectors as its co-

lumns. Furthermore, the modes are arranged in increasing

order of magnitude of the associated eigenva!ues. We con-

fine our discussion to a structure of the type shown in

Fig. 4.1. Because the system possesses symmetric mass and

stiffness properties, in addition to symmetrica! boundary

conditions, the solution of the eigenvalue problem consists

of eigenvectors of two types, namely, symmetric and antisym-

metric with respect to the center lines of the system.

These center lines are chosen to coincide with the reference

axes x and y, as shown in Fig. 4.1. It will prove conve-

nient to work with a triple index notation (i,j,k) where the

first two indices i and j represent nodal coordinates, as

shown in Fig. 4.1 and the third index k represents the actu-

ator type applied at the particular node. Moreover, k=l

represents a force vector or translation in the z direction,

perpendicular to the lattice plane, k=2 and k=3 represent
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torque vectors or rotations in the x and y directions re-

spectively.

and n represent the numbers of beamWe recall that na b

members along the sides of the lattice and that n c is the

number of cable members in each cable branch. With no loss

of generality, we consider one element per member so that

the order of the system in Eq.(2.57) is n=3(na+l)(nb+l).

The modal matrix can be written as

U=(ul uz ...u ...u ) (4.1)
~ ~C ~n

where

I° j
a nb

uZ .-_- , - _-- , 1

-_-- , 2

u£ -_ , -_- , 3

u£-- u£ - + 1 , - y- , 1
• £ e {1,2,....n}

( n 2}
• na na + i a 1

u£ (i,j,k) i G - _- , - _- ,..., _- - ,

u n nb J _ n_ nb nb
-y-, -T-+ 1,...,_-- i ,

£ (_ , _-- , 3] k & {1,2,3}



i%_. ..... i'
: b---------- "

' (-2,l,k) i-l,l,k) (O,l,k) (l,l,k) (2,1,k) "
.4 l " _

X
(-2,0,k) (-l,O,k) _ ._O,O,k) (1,0,k) (2,0,k) _ ,, ,, , , ..._-,"'- 0",

Z _'
(-2,-l,k) C-1,-1,k) (O,-_l,k) (1,-1,k) (2,-1,k).

i m =

n nb] _ nb]_ a , __ k Figure 4.1: Triple Index Notation (i,j,k) k2 2 ' ' 2 '
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in which the arguments of the entries in u£ are ordered tri-

ples of rationals (i,j,k), ordered in increasing lexico-

graphical order of the ordered triples (j,i,k).

Note: (i_,j_,k_) preceedes (iz,jz,kz) in lexicographical

increasing order if and only if

i1<i z

or, i,=i z and j1<jz

or, i1=i z and j1=jz and k1<ka

By virtue of the symmetry and antisymmetry of the modes, we

introduce the following relations:

Definition

A mode is said to be symmetric if

u(i,j,l)= u(-i,j,l)

u(i,j,2)= u(-i,j,2) (_.3a,b,c)

u(i,j,3)=-u(-i,j,3)

implying

u(0,j,3)=0 (4.3d)

A mode is said to be antisymmetric if

u(i,j,l)=-u(-i,j,l)

u(i,j,2)=-u(-i,j,2) (%.4a,b,c)

u(i,j,3)= u(-i,j,3)

implying
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u(0,j,l)= u(0,j,2)=0 (4.4d)

The matrix

uz ....u (4.5)

contains _he first c rows of the transposed modal matrix U.

As far as the actuator placement matrix B is concerned, we

let

E={ (i1,jl,kt), (iz,3z,jz) ..... (ic,j c,kc)} (4.6)

be a subset of the set of all arguments of the entries of

any column in the modal matrix U.

We recal! the definition of the standard unit vector

sn=[0,...,0,1,0....0]T (4.7)
1

which is a vector of n coordinates with a unit in its ith

entry and zeros elsewhere, ie{l.....nI. Using Eqs.(4.6) and

(4.7), the actuators matrix can be written as

B [en(il,j i,kl) en "= . , ... , (_¢,jc,k=)] (4.8)

B has full rank if no two ordered triples of E in Eq.(4.6)

are identical. Multiplication of the matrices in Eqs.(4.6)

and (4.8), results in the product
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u! (il,jl,kl) ... ul (ic,Jc,k¢)"

u2(il,Jl,kl) ... u2(ic,jc,k c)T
U_ B = "
C • (4.9)

luc (il'jl'kl) ... uc(ic,jc,kc )

We recognize that TUcB is a minor of the transposed modal ma-

trix U. We propose to use the shorthand notation

UC (il,Jl ,kl) (i2,J2,k2) ... (ic,Jc,kc)

(_.Io)

Here, the first row indicates the selected rows of UT and

the second row indicates the selected columns of UT in pro-

ducing the minor U_B.

The actuators placement over the domain can have either

symmetric or asymmetric configuration.

Definition

We state that a set E of actuators exhibits a symmetric con-

figuration if

(i,j,k)£S implies (-i,j,k)eE (4.11)

Remark
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Without constraints, any ordered triples of _ of the form

(0,j,k) do not affect the symmetry of the configuration of

actuators.

As illustrations, we selected six cases displayed in

Fig. _.2. The control scheme provides control of the first

six modes by means of six thrust and torque actuators.

Three cases represent asymmetric and three symmetric actua-

tors configurations. Cases a, b, and c present a variety of

asymmetric actuators placement configurations. It is not a

difficult task to show by examining the determinant of the

matrix, that all the three cases yield regular matrices U_B.

On the other hand, the last three cases d, e, and f present

a variety of symmetric actuators placement configurations.

Although cases d, e, and f are of the same kind, namely,

the nature of the resulting matrices U_B is notsymmetric,

of the same kin_ _Cases d and e yield zero determinant of

the matrix UTB proving U_B singular in both, while case fC '

yields a non-zero determinant proving uTB for this case re-' C

gular. Cases e and f seem to be similar, although the first

resulted in a singular matrix, while the second in a regular

one. The question arises now as to how to distinguish beet-

ween such two cases and how to avoid singularity.

Notation

Let _ be a symmetric configuration of actuators
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T

Case Actuators Configuration Nature of U_B

asymmetric

v

a regular

asymmetric

b regular

asymmetric

c b ; regular

Notation: Q force vector in the z direction (k=l)

. torque vector in the x direction (k=2)

i torque vector in the y direction (k=3)

Figure 4.2: Various Actuators Configurations
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Case Actuators Configuration Nasure of U_B

symmetric i

d singulark

m,

symmetric

e k singular

n

symmetric

f i regular

Figure 4.2: (cont.)
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- We denote by 2p the number of actuators in E of the form

(i,j,k) such that i=0.

Remark: There are exactly p actuators in E having i>0

Remark: There are exactly c-2p actuators on the axis of

symmetry i.e., the y axis. Note that c is the total number

of actuators which is also the number of controlled modes.

From this follows that there are in E exactly c-2p actuators

(i,j,k) having i=0.

- We denote by h the number of actuators in E of the forms

(0,j,l) and (0,j,2), for some j.

- We denote by v the number of actuators in _ of the form

(0,j,3), for some j. Clearly, c=2p+h+v

- We denote by s the number of symmetric modes in the modal

matrix U among the selected first c controlled modes.

Prooosition

Let E be a symmetric configuration of actuators with dispo-

sition 2p, h, and v. A sufficient condition for the mode

participation matrix U_B to be singular is

p+h<s (4.12)

Explanation

T
The proposition states that for the matrix UcB to be singu-

lar, the number of actuator pairs p, in addition to the num-

ber of actuators h with force or torque vectors, not paral-
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lel to the axis of symmetry, must be less than the number s

of symmetric modes controlled.

Next, let us examine the cases of Fig. 4.2. The order

of the system in Fig. 4.2 is n=45. The solution to the ei-

genvalue problem can show that amonq the first six eigenvec-

tors, four have symmetric and two have antisymmetric modes

shapes, so that s=4. A summary of the cases in Fig. 4.2, is

given in Tab. 4.1. It is clear from the table that there is

no conflictbetween the results obtained using the theorem

and those obtained by inspecting directly the determinant of
T

the matrix U cB.

Conjecture

If E is not a symmetric configuration or if E is a symmetric

configuration with p+h_s, then U_B is regular. If this con-

jecture is true, then the condition in the theorem is neces-

T
sary and sufficient for UcB to be singular provided that Z

has a symmetric configuration. Otherwise, if E is not a

symmetric configuration set, the conjecture asserts that _cB

is regular. Before proceeding with the proof of the theo-

rem, we will mention the following important lemma

Laplace Expansion of a Determinant

The classical Laplace expansion for determinants has the

form
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TABLE 4.1

Summary of Cases from Fig. 4.2

Case p h v p+h s Result U_B

a 4 _ is not a symmet-

ric configuration,b 4
therefore p, h, and
v are undefined

c 4

d 2 I i 3 4 p+h < s singular

e 2 i i 3 4 p+h < s singular

f 2 2 0 4 4 p+h = s regular
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 ik Jklili2ip] rildet A = _ (-i)k=l det A .det A
• !

all Jl,J2,.-.,J Jl 32 [j_ j_ ... In_p)
such that P

l_j l<j2<. ..<j p_<n

(4.13)

where

denotes the minor of the matrix A obtained by the selected

rows ii,i2, ....ip and selected columns Jl,Jz,--.,Jp-

in the sum, there are (nn) terms as the number of selection
o

of ordered p indices. The sum is extended over all p-tuples

p<n, "' "' denote the complemen-l<j1<3z <.•.<J where J'1,3z,••.3n_p

tary set of indices to Jl,3z ..... J in 1,2 .....n arranged inp
• f .f .f

natural order, and similarly 11,1z,...,l denote the com-
n-p

plementary set of indices to i!,ie, ....i in 1,2 .... ,n (see
P

examples in Appendix A. )

Proof of Proposition

Consider a set E with a symmetric configuration of actua-

tors, with disposition 2p, h, and v. This represents a set

= of the form
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-=-[(il,Jl,kl), ..., (ip,Jp,kp), (-il,jl._l), ... (-ip,jp,kp),

(O,jp+l,kp+l)' "''' (O'jp+h'kp+h)'

(0,jp+h+l,3)' ..-, (0,Jc,3)} (4.14)

where il,...,i are not zero, and kp+1 ....kp+hell 2}.p

Let p+h<s hold true. We have now to show that uTB is
C

singular, i.e., that det(U_B)=O. By virtue of the fact that

a change of rows (columns) in a determinant only affects the

sign of the determinant, the vanishing of det(_cB ) is invar-

iant under such changes. Let us perform changes of rows in

U_B, such that the first s rows will represent the
s symme-

tric modes and the rest c-s rows wil! represent the antisym-

metric modes, renumbering the rows accordingly.

T

Let us now perform changes of columns in U_B such that

the new order of the columns will be

(il,jl,kl),(-il,jl,kl) ..... (ip,jp,kp),(-_ ,jp,kp) 2p triples

(O,j p+1,kp+1) .... ,(0,jp+h 'kp+h ) h triples

(O,j p+h+1,3) ..... (O,j ,3) v triplesc

Explicitly,
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det (UT B) =

block P

ful(il,Jl,kl) ul(-ii,3l,kl) ... u!(ip,jp,kp) Ul(-ip,Jp,kp)

lu2(il,Jlkl) u2(-il,31,kl) ... u2(ip,jp u2(-ip,, " ,kp) jp ,kp)I.

= _.det Us(ll,Jl,kl)" Us(-il,Jl,kl) ... Us(ip,jp,kp) Us(-ip,jp,k p)

Us+l(il,Jl,kl) Us.l(-il,Jl,kl) ..- Us_rl(ip,Jp,k p) Us+l(-ip,Jp,k p)

Uc(il,Jl,k I) Uc(-il,31,kl) ... uc(ip, jp,kp) uc(-Ip",3p",kp)

block H block V

ul (0'3p+I' kp+l) """Ul (0'3p+h'kp+h) ul (O'Jp+h+l'3) ""'ul (0'Jc'3) i

u2(0,jp+l,kp+ I) ...u2(0,jp+h,kp+ h) u2(0,jp+h+l,3) •..u2(0,Jc,3) !
Us(0,jp+l,kp+ I) ...Us(0,jp+h,kp+ h) Us(0,jp+h+l,3) •..Us(0,Jc,3)

us+l (0'jp+ i'kp+l )''" Us+ i(0'jp+h' kp+h ) Us+l (0'jp+h+l '3)... Us+ 1 (0,jc' 3)

luc(O " 3) .u (O,Jc,3)uc(O'Jp+l'kp+l ) ""Uc(O'jp+h'kp+h) I '3p+h+l' "" c

where = _ {+i, -i} (4.15)
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Note the blocks division P, H, and V in Eq.(4.15) where

block P relates to the actuators located off the axis of

symmetry, block H to the actuators type k=l and k=2 that are

on this axis and block V relates to the actuators type k=3

located along the axis of symmetry of the domain.

T
Noticing the fact that the vanishing of det(UcB ) is in-

variant under rows (columns) elementary transformations, we

make use of the modes symmetry properties, as described by

Eqs.(4.3) and (4.4) to perform such operations on the co-

lumns of the determinant in Eq.(4.15).

deu B)-
block P

lUl (il 'J 1 'kl) 0 ...U I (ip ,jp ,kp) 0

u2(il ,J1,kl) 0 ...u2 (ip, jp,kp) 0

= a-det Us(il,Jl,kl) 0 .Us(ip,j p•. ,kp) 0

• ,j ,k)l
Us+l(il'Jl'kl)012Us+l(ll'jl'kl)'''Us+l(ip'JP'JP)0p2Us+l(ip P P I
• I

_Uc(il,j l,kl ) Ol2uc(il ,j l,kl) ...u " " _ 2u " Ic(ip'3p'kp ) p c(ip'Jp'kp )
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block H block V

luI(0 " . uI(0 • I0 ... 0
I '3P+I'kp+I) " " '3p+h'kp+h) l

lu2(0 • ... u2(0 • tO 0
I- '3 P+I'kp+I) '-'1P+h'kp+h) " " "

I.

lu (0 " Us(O " k ) 0 ... 0
t s ,3p+l,kp+l ) .... _]p+h, p+h

I0 ... 0 ,Us+l(O,jp+h+l,3) .-. Us+l(0,Jc,3
I-

I-
•.. ,_J

o

J0 0 uc (0,3p+h+l, 3) -.. uc(0,J c

where _ _ {+i, -i} (4.i6)

The final form as obtained in Eq.(4.16) is a result of the

following operations:

Consider column 2 £ and column 2£-1 for any £ e{l,2 .....p}.

If k is 1 or 2, then in order to achieve zeros in the first
£

s rows in column 2£ of block P, we subtract column 2z-I from

column 2£. If k£ is 3, then in order to achieve the same

goal, we add column 2£-1 to column 2 The columns 2£-1 for

£ G{I,2....p} remain as they are.+ The parameter p£ that ap-

pears in block P, represents a sign function

_£(k)=(-l) ½k(3-k) such that 0£(i)=p£(2)=-I and 0£(3)=+1.

Applying Laplace expansion Eq.(4.13) to the determinant of

Eq.(4.16)
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det(UTB) = c;-det(UTB) = oS(-l) 1+2+'''+s+jl+j2+'''+js

• de_ uTB • det U B

i J2 ...Js J{ J_ "'"Jc-s(4.17)

where the sum is as indicated in Eq.(4.13). In this expan-

sion, U TCB denotes the rearranged matrix as in Eq.(_.16), the

rows (columns) numbering is also with respect to the new ar-

rangement, and the choice of first fixed s rows was made.

Claim

rl 2 ... s

U_B[j = 0 (4.18)
det

%J

I Jz --- Js_

for any J:,Jz,--.,Js such that INj:<jz<...<JsKC

Proof of Claim

The matrix

Jl Jz Js

has at most p+h nonzero columns. By assumption, p+h<s.

Therefore, this matrix of order s has at least s-p-h>O null
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columns. Because s, p, and h are integers, s-p-h is an in-

teger also, and a positive one. Hence, at least one column

of the above mentioned matrix is zero, so that the determi-

nant of the matrix is zero. This concludes the proof of the

claim.

In view of this claim, we have

det(U_B)=O (4.19)

because its expansion in Eq.(_.17) is really a sum of zeros.

This proves that U_B is singular, which concludes the proof

of proposition.



Chapter V

MINIMUM FUEL IN HIGH ORDER SYSTEMS

The minimum fuel problem became a very important one in

recent space vehicles, especially in those that are launched

for lengthy missions. The amount of fuel or energy alloted

for the control system is limited to such a degree that it

becomes necessary to treat fuel economy as the predominant

factor in many systems. In such cases, it is natural to de-

sign the control so that it consumes a minimum amount of

fue!.

There are many problems where the control variables

F(t) are directly proportional to the rate of fuel flow,

like the flow from a gas jet for attitude control or shape

control of a large flexible spacecraft. Almost invariably

in these problems, the total fuel available is limited.

Therefore, it is desirable to accomplish each control cor-

rection with a minimum amount of fue!. The total fuel con-

sumed during control action is measured by the time integral

of the absolute value of the control variable. Due to tech-

nical restrictions on the actuators, there are limits on the

magnitude of the control forces. As an example, the thrust

8O
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produced by a gas jet actuator is limited in magnitude due

to the saturation of the power elements. Systems character-

ized by a restriction on the control and subjected to the

minimization of a particular functional, such as the con-

sumed fuel, the required energy, etc., are optimal. We re-

fer to a control system minimizing the amount of consumed

fuel, as a "minimum-fuel system".

About two decades have passed since the development of

powerful variational techniques in the theory of control,

such as the minimum principle of Pontryagin. This principle

can be used to determine necessary and sufficient conditions

for the control function to be optimal [16,17]. The neces-

sary condition usually specifies the nature of the control

and the general structure of the control system. Unfortu-

nately, the derivation of the optimal fedback control law,

i.e., the explicit dependence of the control on the instan-

taneous values of the state variables, is a very complex

task and for most practica! cases it remains an unsolved

problem [18,19]. In these cases, a trial and error process

is unavoidable for the state determination. One may consid-

er such a process as reasonable £or a low-order system

(fourth order at most), but certainly not for a high-order

system, where the computationa! difficulty is insurmontable.
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However, it is unexpected that a reasonably accurate model

of a flexible structure can be represented by a low-order

system.

Formulation of the control law in terms of the costate

variables can be accomplished regardless of the system ord-

er. Yet, determination of the initial conditions of the cos-

tate variables for a high-order system is difficult, if not

impossible. The control task is made considerably simpler

by using the IMSC method, where the complexity inherent in a

high-order system is reduced. Using this method, the ini-

tial constate variables must be determined for a set of in-

dependent second-order ordinary differential equations, so

that treatment of the coupled high-order system is avoided.

According to this approach, to each of the decoupled modes,

independent control policy can be specified so as to permit

independent control of each individa/_mode,- With this meth-

od, the cumbersome minimum fue! problem in the high-order

system is reduced to n fuel minimization problems of the de-

coupled set of n second-order modal space systems.

After the control design task has been carried out in

the modal space, and modal control functions have been

found, these generalized control forces are synthesized to

obtain the actual actuators forces.
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5.1 PROBLEM FORMULATION

In formulating the minimum fuel problem, we begin with

the discretized time-invariant structure equations of motion

of order n

where Q(t) is the discrete forcing vector, generated using c

actuators, or as many as the number of controlled modes,

9(t) = B-FCt) (5.2)

where F(t) is the c-dimensional vector of thrusters and

tourquers and B is a full rank nxc actuators placement

transformation matrix.

The problem of minimum-fuel control can be stated as

follows: Assume that the control Fi(t ) is proportional to

the rate of flow of fuel. Then the total fuel consumed J(F)

during a time interval (O,tf) that is also a measure of con-

trol effort, can be expressed in terms of the time integral

of the sum of the absolute control values as follows:

J(F)- =ilFi(=)l dt0 = (5.3)
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where _i are nonegative weighting factors and _ is some

unspecified final time. In most practical systems, the mag-

nitude of each of the control functions Fi(t) (i=I,2 ....,c)

is limited due to the saturation of the power elements.

Therefore, it is assumed that the controls have to satisfy

the constraints

IFi(t)I _ M.z i = 1,2,...,¢ (5.4)

where M are positive constants.

It is assumed that at t0=O the system (5.1) is in the

initial state q(t0), q(t0). Then, the control task amounts

to driving the system from its initial state to a final spe-

cified state q(tf), q(tf) in finite time.

The essence of _he control problem is to determine a control

vector F(t) subjected to the constraints (5.4), such that

the fina! state is reached with a minimum amount of fue!

J(_).

As stated already, the problem can be decomposed into a set

of n second-order decoupled optimal control problems, which

reduces the amount of complexity arising in high-order sys-

tem. In the formulation, we employ theoretical results de-
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veloped in Refs. 16,17 to obtain the necessary condition for

the optimal minimum-fuel control.

The modal linear time-invariant plant is described by

the matrix differential equation

._r(=)= A x (=)+ b N (=) r = i,~,...,_c (5.5)- r -r - r

where

[o l]xr = [xlr X2rIT , Ar = , b = [0 i]T (5.6a,b,c)
we=0

Xlr(t)--_r(=) ' X2r TM _r(t) (5.6d)

_r(t) and _r(t)• are moda! displacement and modal velocity

respectively, Xr(t) is a 2xl vector, A r is a 2x2 matrix and

N (t) is the scalar modal control function.r

To apply the IMSC method, one must seek the minimiza-

tion of modal cost functions rather than the minimization of

the global cost given in Eq.(5.3). To derive independent

modal cost functions, a decomposition of the global cost

into modal costs, dependent on the associated modal control

forces and modal coordinates only, is essential.
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It turns out that a complete decomposition of the global

cost for fuel minimization problem, as it appears in

Eq.(5.3), into equivalent independent modal costs is not

feasible, so that we resort to another approach.

Using Eqs.(2.72a) and (5.2), the modal control vector

is obtained as

Nc(t) = C F(t) (5.7)

where

= (5.S)c

is the system cxc mode participation matrix. We employ

norm-one measurement for the configuration space actuator

force vector F(t). By definition, norm-one is the sum o£

the absolute values of the vector entries which resembles

exactly the global cost presented by Eq.(5.3), or

= [ !Fi(t)I (s.9)
i=l

This norm is defined for the n dimensional Euclidean vector

space Rn and has all the properties of a regular vector

norm, as shown in Ref. 29.

The related matrix norm is defined as

IICIII = max [ Icij I (column sum) (5.10)
j i=l
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Using these norm definitions we can write the norm-one

relation, applied to the contro! vector transformation in

Eq.(5.7), as

I (t)LIc- ill c( )l (5.11)

With no loss of generality, we assign the values = =i for
i

all i=1,2 .... ,c as weighting factors in the cost Eq(5.3).

Note that the derivation can be easily modified if those as-

sumptions are not made. We propose to minimize the modal

fuel expenditure by minimizing the norm-one of the modal

control vector. This vector consists of independent control

entries, so that minimization of its norm-one can be carried

out by minimizing each entry independently. Integrating

Eq.(5.ll) on (O,tf) will result in a cost inequality that

provides an upper bound to the global cost of Eq.(5.3)

where t)1Idt is the fuel cost function and (t)IIdt is

its modal counterpart.

It was stated earlier that the magnitude of each actua-

tor force is bounded due to limitations on the forces char-
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acteristics, as can be seen in Eq.(5.4). These bounds must

be transformed to moda! forces bounds before the modal mini-

mum-fuel problem can be formulated. We use the norm of

Eq. (5.7) to determine moda! control bounds. Eq. (5.4) in

conjunction with the norm-one definition of Eq. (5.9) provide

the bound to the norm of the actuators force vector, or

c c

IF(_)i.: 7.IFi(_)l<_Z M._ (S.13)
i=l i=l

Applying norm-one measurement to Eq.(5.7), we obtain

c

IN(t)I_<llcllIF(_)l_<11c11_ Mi (5.1_.)i=,l
c

and, because INc(t)i i=I !Ni(t)l, it turns out thati=l

c c

Z [Ni(t) I < IICll Z M.z (5.15)
i=,l i=l

which is a total bound.

In the [MSC method, the modal controls act independently of

each other, so that each control must have its own bound.

To achieve this requirement, we introduce weighting coeffi-

cients ao such that
l

C

INil _< ai )IC11 [ M. (5.16)
j=l J

where

C

Z a = i , a. >_0i z ( _,5.17,
i=l
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One way of generating these coefficients is to select them

inversely proportional in some manner to the eigenvalues.

In a case where n rigid body modes are present, as well asr

c-nr elastic modes, one may choose

1 i = 1,2 ,nr (5 18)ai = ' ,...

for the rigid body modes, and

_(c-nr) _.
a. i z

i = nr+l,nr+2,...,c (5.19)z c(C-nr-i) c

j=l

for the elastic modes.

Clearly, any other set of weighting coefficients can be used

as long as Eq.(5.17) is satisfied.

The essence of the IMSC method is to design the control

laws in the modal space for each of the controlled modes in-

dependently. Then, realization of the actual force vector
"7

is made by modal synthesis. It can be shown [!7,18] that

for modal minimum-fuel problem the controls appear as a non-

linear "bang-off-bang" type, that use the maximum values of

the modal control forces. This means that the norm of the

modal control vector will reach its upper bound in Eq.(5.15)

very often. In such case, through substitution of Eq.(5.14)
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into Eq.(5oll), we see that the norm of actuators forces

would exceed its bounds, or

c

{F(t)l<_Zlc-1,IICZlZ Mi (S.20)
i=l

where IIC-lill1_l>I is the condition number of the mode partici-

pation matrix C, which is unacceptable. To circumvent this

problem, it is necessary to modify Eq.(5.13) by dividing

each control bound by the condition number of the matrix C,

so that

C

iF(=)i_< z Y M± (5.21)
" l{c-_l{iIc{1i'--i

Eq.(5.21) provides the effective upper bounds on actuators

forces, where its modal counterpart will be obtained as the

modified Eq.(5.1_)

c

1 _ M. (5.22)INc(:)1-<___{c11i=l

Clearly, the condition number plays the role of a "figure of

merit" in the control effectiveness.
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Now, we are ready to formulate the modal minimum-fuel

problem for the linear time invariant modal plant described

by the modal differential equations (5.5). Because of limi-

tations on actuators power, the norm of the modal control

force vector is bounded as given in Eq.(5.22). Using the

weighted decomposition scheme given by Eqs. (5.16-19), the

modal forces bounds can be given for each mode as

c A
IN (t)I _< a 1 Z M. : N r : 1,2,...,c (5.23)
r r {{C-If{i:l z r

The task of the modal controls is to drive the initial modal

states 50r to final desired states _r (the origin for exam-

ple), by appropriate optimal control signals Nr(t ), minimiz-

ing the performance indices Jr(Nr). In our case, the modal

fuel functiona!s are given by

=f t)Idt r . (5.24)Jr(Nr)= INr( = 1,2, ..,c0

The minimum principle of Pontryagin [16] can be used to der-

ive the necessary condition for the optimal modal minimum-

fuel control. Using Eqs.(5.5) and (5.24), we introduce the

modal Hamiltonian functional
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Hr(Xr'_Pr' t~ Nr,t) = [Nr(_)I + _pT(_)(Ar Xr(t) + b N (t)) (5.25)

r = 1,2,...,c

where Pr(t)=[plr (t) pzr(t)] T is the 2xl vector of Lagrange

multipliers known as the modal costate vector.

The necessary conditions for minimization are given by

8Hr = e {0,tf} , r = 1,2,...,c (5.26)
-r _-Pr

_H

 r(t) r =f}= --_-- = e [0, , r = 1,2,...,c (5.27)
~r

_H

0 = ---[_N = G {0,if} , r = 1,2,...,¢ (5.28)
r

subject to the boundary conditions

Xr(0) = X0r (5.29a)

(5.29b)

Xr(_f) = Xfr

Hr(Xr(tf),pr(tf),Nr(tf),tf)= 0 r = 1,2,...,c (5.29C)

The object is to determine the 2c constants of integration

and if.
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Because the cost functional is not a function of Pr(t),

it follows that Eqs.(5.26) are identical to Eqs.(5.5), the

modal plant equations. Eqs.(5.27) lead to the adjoint-cos-

tate system of differential equations

-Pr(t) = - ATrPr(t) r = 1,2,...,c (5.30)

The control Nr(t) minimizing the HamiltonianH absolutelyr

is a function of _r' _r and t. This functional dependence

of Nr is a necessary condition on the control function

Nr(t), which is the one that minimizes the performance index

Jr(Nr). It can be stated that the optimal control Nr(t )

minimizing the performance index Jr(Nr), Eq.(5.24), must by

necessity minimize the Hamiltonian Hr, Eq.(5.25), absolute-

ly.

The formal minimization technique, Eqs.(5.28), leads to

an unrealistic result. However,

Nr r(Xr'A_Pr'Nr ~ r ~r Nr ^ ~ b~Nr
(=)}

IN=f_<

r = 1,2,...,c (5.31)

does provide an absolute minimum to the Hamiltonian func-

tion.
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The shaded area in Fig. 5.1 provides the value of

INr(t)l+p_(t)bNr(t) versus Pr(t)b depending on the value of

Nr(t ). From the plot, it is clear that Hr takes its small-

est value at each instant t if the term -orINr(t) I+DT-(t)bN-(t)

maintains its largest negative value at all times. This can

be achieved by selecting Nr(t ) a!ong the solid lines provid-

ing the lower bounds of the shaded area. Hence, we consider

the switching functions

N
r ~ 0 (5.32b)

^

0 < N (_) < N p[(t) b = - 1r r ~r ~ (5.32c)

T

< N (t) < 0 p_(u) b
+ 1

- Nr r " " (5.32d)
r = 1,2,...,c

Equations(5.32) describe the characteristics of a relay with

dead zone. We can use the definition of a dead-zone fun(-

tion, denoted by dez(*), as given in Ref. 17, to write these

equations in a compact form

^

N (_) = -N dez {pT(t) b} r = 1,2,...,c (5.33)r r ~ ~
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Nr(t)l+ p_(t) b Nr(t)
_ ~ ~

^

3N
r ^

^ N =+
N = - N r

r

^

2N
r

• =0Nr (t)b

^

-N
r

N =+N N = -N
r r r _"

^

- 2N
r

- 3N
r

Figure 5.1: N-Dependent Part of Modal Hamiltonian Function



96

An illustration of Eqs.(5.33) for the rth mode fuel-optimal

control is given in Fig. 5.2. Equations (5.32) provide the

modal control law for the modal minimum-fuel operation, whe-

re Nr(t ), (r=l,2 ..... c) are piecewise constants functions
^ ^

with values of +Nr,O , or -Nr, as given in Eqs.(5.32a,b). If

however, there are time intervals (tl,tz)r of finite dura-

tions, during which one or more modal necessary conditions,

given by Eqs.(5.31), provide no information about the behav-

ior of the controls Nr(t), then (t:,ta)r are singular inter-

vals and the appropriate Nr(t ) are singular controls in

these particular modes. Such a situation occurs when

Io_bl=l.:~ We observe that Eqs.(5.32a,b) specify the magni-

tude and the polarity of the fuel optimal control Nr(t ) in

T T
terms of Pr(t) uniquely, provided IPrbl=l. When Ierbl=l, as

in Eqs.(5.32c,d), the fuel-optimal control polarity is spe-

cified, but not the magnitude. These considerations lead to

the distinction between normal modal fuel-optimal problem

and singular modal fuel-optimal problem.

We use results from Ref. 16 to show that singular in-

tervals can exist only in the controls of rigid body modes

but never in the controls of elastic modes. The .condition

is based upon the matrix E_A r where A r is the modal plant

matrix and E is the 2x2 modal controllability matrix, givenr

as
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Nr(t)

^

! I I I |l N

l r
l
I
l

-3 -2 I-i i 2 3

I p_(t) b

I
^ I

-N Ir

Figure 5.2: Modal Fuel-Optimal Control Function
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i

E = [b I A b] (5.34)r r

It is shown, that a necessary condition for a singular in-

terval to exist requires that the matrix [b A b]TAT be sin-r r

gular. This occurs when either the modal system, Eqs.(5.5)

and (5.6), is not completely controllable, in which case

[b A b] is singular, or when the modal plant matrix A isr r

singular. The modal controllability matrix has the non-

singular form

I°l]E : (5.35)
r 1 0.

for both rigid or elastic modes, provided all modes are con-

trollable. In contrast to the controllability matrix, the

modal plant matrix At, given by Eq.(5.6b), becomes singular

in the case of a rigid body mode for which mr=0.

Hence, a necessary condition for a singular interval to ex-

ist is for the system given by Eqs.(5.5) and(5.6) not to be

completely controllable, or for the plant matrix A r to be

singular.

In view of the above discussion, it is clear that each

of the nwo mode-types, namely, rigid body modes and elastic
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modes, possesses different properties. Therefore, it is ap-

propriate to discuss the design of modal fuel-optimal con-

trol policies for these two unlike modes separately.

5.2 FUEL-OPTIMAL CONTROL FOR A RIGID BODY MODE

The control of a rigid body mode (RBM) in the modal

space, resembles a single-axis attitude control of a unit-

inertia space vehicle. Rigid body modes from the set of de-

coupled differential equations for the number of controlled

modes described by Eqs. (2.77a), have the form

_r(_) = Nr(t) r = 1,2,...,nr (5.36)

where n is the number of rigid body modes. Using the same

state variable definition as in Eq.(5.6d), the modal state

vector Xr(t ) satisfies the matrix differential equation

= + Nr(_) r = 1,2,...,nr (5.37)2r( ) 0 0llX2r( ) 1

It is desired to drive the modal plant from an arbitrary in-

itial state given by

Xlr(0) = %r(0) = %0r ' X2r(0) = _r(0) = _0r r = 1,2,...,nr (5.38)
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to a desired final state, say the origin, using a minimum

amount of modal fuel, or

Jr(Nr) = Itf {Nr(t)Idt r = 1,2 .... ,nr (5.39)0

subject to the constraints

JNr(t)l_ Nr r 1,2 (54O)= ,...,nr .

^

where N is the saturation value for the modal control
r

force, as defined by Eq.(5.23), and _ is the final time,

which is free.

To this end, introduce the modal Hamiltonian

Hr(Xr,pr,N=,t)= fNr(t)I+ p!r(t)Xzr(t)+ pzr(t)Nr(t) (5.41)

r = 1,2,...,nr

where, the costate variables Pir (i=I,2) are the solutions

of the adjoint system differential equations

°I{p!_2r(t) = P2r(t) r = 1,2....,nr (5.42)
0

Note that even if the controls Nr(t ) are given as a function

of time, Eqs.(5.42) will not uniquely define a vector p (t),
~ r
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because both the initial and terminal (final) conditions

have been imposed on x r, and no pr(0) boundary condition has

been specified.

The minimization of the Hamiltonian Hr with respect to

Nr(t ), leads to the control law

^

Nr(t) = - Nr dez {P2r(t)} r = 1,2,...,nr (5.43)

The optimization problem Eqs.(5.37) and (5.39) has thus been

transformed into the problem of finding the solutions to the

set of simultaneous Eqs.(5.37) and (5.42), with the control

Nr(t ) given by Eqs.(5.43), with the boundary conditions

x (0)=x 9 (544)~r -or ' 5r(_f) =

specified, but with the final time tf unspecified. The

knowledge that the optimum Nr(t ) has the form of Eqs.(5.43)

simplifies the optimization problem immeasurably. An impor-

tant comment should be made at this stage: The Pontryaqin

theorem provides a necessary condition for the optimal con-

tro! but not a sufficient one. In other words, if the theo-

rem provides as a solution only one control function, this

function is an optimum. However, more than one control

function may satisfy the theorem, in which case it is neces-

sary to search further for the optimum.

The solution to the costate equations, Eqs.(5.42) becomes
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Plr(t) = nlr (5.45a)

P2r(c) = _2r - nlrc (5.45b)

where

-- ,r(0) --'71r P ' q2r PZr(0) r = 1,2 ... n (5 45c)

are unspecified constants.

Even though P2r(t) is not known as a function of time, the

mere fact that Pzr(t) is linear in time requires that Nr(t )

from Eqs.(5.43), must proceed in time as a nonrepeating se-

quence of values of the form {±N ,O,_N } or any part of it.

In view of this realization, if nlr=O the only nine modal

control sequences that can be candidates for the fuel-opti-

mal control are

{0}{+Nr} {-Nr},{+N0} {-_r,0}{0,+Nr}{0,-Nr}

{+N0,-_r} {-_,0,+N} =--1,2...,nrr' ' r r ' (5 46)

Figure 5.3 provides a description of these control sequences

versus their costate counterparts. A control sequence like

{-Nr,O,+Nrl means that first N (t)=-Nr, then Nr(t)=O and fi-

nally Nr(t)=+N r are applied in this order. Therefore, in

order to'transfer the state to the origin from any point in

the state plane, it will be necessary to use one of the con-
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trol sequences given in Eqs.(5.46). Clearly, any other con-

tro! sequence will violate the necessary condition for mini-

mum-fuel contro!.

Solution to the state equations is obtained simply

through a direct integration of Eqs.(5.37) with the initial

state given by Eqs. (5.38) for the optimal control given by

Eqs. (5.43). The solutions are

xlr(t) = _0r + _0r t r = 1,2,...,nr (5.47a)

X2r(_) = __0r r --1,2,...,nr (5.47b)

for Nr(t)=O and

1 _2
Xlr(t) = _0r + _0r _ + _ Ar r - 1,2,...,nr (5.48a)

X2r(t) = _0r + Ar t r = 1,2,...,nr (5.48b)

^
for Nr(t)=±Nr=_ r"

State plane trajectories are then obtained by eliminating

the time t from Eqs. (5.47) and (5.48)

X2r = _0r _ const r = 1,2,...,nr (5.49)

1 "2 1 2 r = _~I,_ ..,nrxl --_ - 2-7-_Or +2-E-X2rr Or '" (5.50)r r
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N P2

.o@o control sequence

+N +i P2L_/r t
P2r

(a) {0} tf
^

-N -i ,,, N
r r

P2r

Nr P2r {+Nr} N̂r
i i i i i

+N +N
r +i

r +i t t

(b) tf (c) t

-N -i -N -i {-Nr} f
r r

P2r

^r P2r ^r ,

r +l {+N,0} r
(d) r t (e) t

_f tf
-N -i -N ' ,

r _/_P 2r r

N N
^r P2r .r P2r

+Nr +i {O,+Nr } t t
(f) (g) -

tf _ tf^ ^ -i {0 ,-Nr}
-N -Nr "--.._

P2r

N {-N ,0,+N }
N , P2 ^r 2r r r
^r P2r +N

+N r $ir +i

(h) t (i) _ t

/ tf ^ _ tf-N -i -N -i
r ^ 1

{+Nr'0'-Nr} P2r

Figure 5.3: Candidates for Modal Fuel-Optimal Control for RBM
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Equations (5.49) and (5.50), as well as Fig. 5.4a,b display

these trajectories in the cases for which Nr(t)=O and
^

Nr(t)=±N r, respectively. Clearly, from Fig. 5.4, the only

state that may be driven to the origin, using the control

Nr(t)=0 is the state (0,0) itself. Moreover, for any other

state, it is necessary that either Nr(t)=+N r or Nr(t)=-N r

will be the final control portion, approaching the origin

along the trajectories labeled as r+ and r- in Fig. 5._b re-

spectively.

From Eq.(5.50) it is clear that

Yr+ = {(xlr'X2r) : Xlr = -!-12Nx22r ; X2r _<0} r = 1,2,...,nr (5.51)
r

- 1 2 > o} (5.52)v = { : = - --T--X2r ; X2r
'r (Xlr'X2r) Xlr 2N

r
r = 1,2,...,nr

The union of these two curves constructs the final switch

curve _ for the modal minimum-fuel operation
r

i
= -----_XzrlI) r=i 2, n= (553)Yr {(xlr'Xzr) : Xir X2r .... ' "2N

r

Based on these observations, clearly the fuel optimal solu-

tion depends on the modal initia! state (_r,_ar). Hence,

we observe four regions in the modal state plane
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Figure 5.4: State Plane Trajectories for RBM

(a) Nr(t) = 0 ^

(b) Nr(t) = -_ Nr
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i x2-- ; > --r- } (554a)RI ((Xlr,X2r) : X2r i>0 Xlr 2r2N
r

-- > 0 , <_ 1 x2 } (5 54b)R2 ((Xlr'X2r) : X2r " Xlr ^ 2r
2N

r

--Ix2} (5.54c)
R3 = {(X!r r) 2r ir 2N 2r

,x2 : x _ 0 ; x <
r

1 2 (5 54d)
R_ = {(Xlr,X2r) : X2r < 0 ; xlr I>--2--X2r}2N

r

These four regions are displayed in Fig. 5.5, as well as

four cases of modal initial states, one in each of these re-

gions.

It is shown in Appen. B that if (_0r,_0r)GRIURs, then mini-

mum-fuel control does not exist. If (_0r,_0r)GRzUR4, then

the control sequence [O,-Nr} is a minimum-fuel control for

(_0r,_0r)_R2, and {0,+Nrl is a minimum-fuel control for

(_0r,_0r)6R4. Hence, depending on the initial state, there

may or may not exist a fuel-optimal solution.

Fuel optimal systems with unspecified final time have

the unfortunate property that the control resulting for the

minimum expenditure of fuel, usually requires infinite final
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Figure 5.5: Four Regions of Control in the State Plane for RBM
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time (See Appen. B). We could accept limitations of this

type if the space under consideration is the configuration

space, by limiting the initial state of the problem with

unspecified final time just to a state subspace RzUR4. In

genera!, it is very unlikely to expect the modal initial

conditions obtained by the linear transformation Eq.(2.66)

to have a specified distribution in the modal space and

stil! deal with a practical problem. Solution to the mini-

mum-fue! problem must be capable of handling any initial

conditions in the moda! state plane. We can clearly con-

clude from Eq.(BI.7) that, to assure the existence of a so-

lution in region RIURs, the response time, i.e., the final

time tf, must be either fixed a priori, or bounded from

above by a fixed time Tf such that tf_Tf. Thus we have to

recognize the fact that bounding the response time will pe-

nalize fuel expenditure.

From the minimum-fuel solution, we can see that mode r

arrives at the origin at a final time tf, depending on the

initial state, such that tf min min <tfr<'' where tf min min

is the lower bound, i.e., the shortest time period in the

minimum-time solution to reach the origin among all cont-
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rolled modes, and tf is the final time of the rth mode (See

Appen. C for the minimum time solution for a second-order

system). It is understood that the "modal mission" is in-

complete as long as the last mode in the control scheme has

not reached the specified target. Thus, the control task is

to drive all the modes in the control scheme to the target

(origin) in a bounded period of time. For the same reason,

it is clear that no advantage is gained in driving one mode

in a shorter time period then the others, consuming uneces-

sary fuel. Therefore, we base our discussion on the premise

that all the modes in the contro! scheme are designed to ar-

rive at the oriqin simultaneously.

Definition

We shall say that Tf is a minimum upper bound for the con-

trol operation if

_f min_max _ Tf _ = (5.55)

where _f min max is the largest minimum-time solution to

reach the origin among all controlled modes. Certainly, Tf

may be selected larger then the minimum upper bound to meet

some fuel constrains.

Figure 5.6 displays a typica! optimal path in the state

plane for fixed final time with the control sequence
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{-Nr O,+N } To specify the control uniquely, two switch• r "

times _ and tw must be determined. This is done in Ap-

pen. C, where the switch times are obtained in the form

I if 12 2 0ri >I :_Or _Or 4_or

tz = _ Tf + t0 + Nr Tf - to - --Nr ] N^ N2_"j (5.56a)r r

4_0r 2_0r (5.56b)
1 + tO + _Or + Tf - t 0 - ^ --.

From Eqs. (5.56) it is clear that both switch times depend on

the modal initia! conditions ($ar,_0r) as well as on the

specified final time Tf.

Before describing the optimal control for the minimum-

fuel problem with specified final time, we recall one of the

results obtained in Appen. B. It has been shown in case

B.2, for the initial modal state ($_ ,$0r)6R4, that the fi-

nal time for the minimum-fuel problem, given by Eq.(B2.2),

is

tf = to _ 1 _0r + T---_0r) (5.57)
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Figure 5.6: Modal State Plane Trajectories for RBM with Fixed Final
Time
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If the specified final time is Tf>tf, where tf is given by

Eq.(5.57), clearly the state will reach the origin in less

than the specified final time Tf with the minimum-fuel opti-

mal control sequence {0,+Nr}. In this case, an exception is

made by permitting the state to arrive at the origin not at

the specified final time, because any adjustment to the fi-

nal time will either result in the same fuel consumption or

it will increase the fuel consumption, in contradiction to

the basic approach for fuel minimization.

Related to the four state space regions R I to R4, the

minimum-fuel optimal control law has the following expres-

sions:
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A

Nr(t) = 0 for tz _ t < t (_0r'_0r) e R4 for Tf _< t

Nr(t) = + Nr for tw _< t _<Tf.l

and we will select

"
Nr(t) = 0 for t0 _ t < tI ({Or,_Or) e R4 for Tf > t_

N (t) = + N for tI _< t < t
r r .

Nr(t) = 0 for t_ _< t _<TfJ

where
!

_ _;o___r (5.5Sa)
tl= to+2C,_"or- {or

r

i {or
t} = to --r- i0r .

2N _0r
r

tz =_ Tf + tO + rf - tO - ^ N2
Nr Nr " r r

1 _or -.t0 - Or 4_Or

tw - _ Tf + to + T--- + Tf _-r • ^ N2Nr Nr r
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Nr(t) = + Nr for to _<t < tz](_0r,_0r),e R3 for all Tf

N (t) -- 0 for t _< t < =w_ 0r ^ z (_0r,_0r)e R2 for Tf _<=|
Nr(t) = - Nr for tw _ t <_ TfJ

and we will select

Nr(t) = - Nr for tI _ t < INr(t) = 0 for t_ _ t < Tf

where

_ _!l _0r (5.58b)

r

i - _0r
t_ = to +--2-- - T---

2N C'Or E,Orr

z = _ Tf + to _ Tf - to + + _Or __.

• r

It is shown in Appen. C that the locus of the first optimal

switch time tz is a section of a second-order parabola in

the forth quadrant, having the expression

3 _0r

Zl = - Z2 + Tf - to - _--r J z2 (5.59)
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For various values of the modal initial velocity, a family

of parabolas will be necessary to describe the state at the

first optimal switch time. Clearly, the second optimal

switch time tw occurs when the state trajectory intercepts

the [ curve.

Definition

An initial modal state is said to be in reachable zone in

the state plane, if the origin can be reached using the ap-

propriate optimal control sequence in the prescribed final

time bound.

It is shown in Appen. C that the reachable zone is bounded

by two sectors of a second-order parabola

Z1 = 4N 22+ 2(Tf - tO Z2 - (Tf - t0) 2 N (5.60)
r

and its reflected image about the origin. To guarantee that

all rigid body modes are inside the reachable zone, the fi-

nal time Tf can be determined by the modified Eq. (5.60), or

Tf>I to + max _--_r L [NrI +4T] (s6m)
r_l,2,... ,nr r

for a modal initial state (_ar,_0r)eRIUR4- Similarly, for

(_ar,_0r)EReURs- we obtain

Tf >ito + max - =---+ - 4 (5.62)
Nr IN= ) Nr=l,2, ...,n r

r
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Clearly, Eqs.(5.6!) and (5.62) resemble the minimum-time

solution, Eqs.(Ci.5) and (CI.6), respectively.

A dimensionless plot of Eqs.(5.51), (5.57), (5.5g) and

$5.60) is shown in Appen. C, Fig. C.2. The plot provides

also a description of reachable zones for the various con-

trol regions, and switching curves for the optimal control

law, Eqs.(5.58).

5.2.1 Fuel Consumed - RBM

The fue! consumption depends on the initia! condition

point _-"in the modal state plane. Refering to Fig. C.2, for

a point in region R" (R.), the moda! fuel depends also on

the first and second switch times tz and tw as shown in

Fig. 5.6 and is given by

i flJr(Nr) = Nr dt + dt = - tO + tf - tw) (5.63)
J_O w

For a point in region R D, the modal fuel is given by

Jr(Nr) = [t_ &r dt = N (t_ - tI) (5.64)
tl r

Expressions for the times to, _, tw, tf, tl and t" are pro-f

vided in Eqs.(5.58). The total modal fuel for the RBM's is



118

obtained by summing all modal fuels in Eqs. (5.63) and

(5.64), depending on the different modal initial conditions,

or

J(Nnr)~= Jr(Nr) (5 .65)
r=l

5.3 FUEL-OPTIMAL CONTROL FOR AN ELASTIC MODE

Formulation of the control problem for an Elastic Mode

(EM) has a similar pattern, to the one of a rigid body mode.

The control of an elastic mode in the moda! space is tanta-

mount to controlling a set of linear oscillators system.

The derivation of the control law in terms of the costate

variables can be accomplished very easily. However, the

task of determining the initial conditions of the costate

variable is not a straightforward procedure. In practice, a

common technique is to assume a final value of the costate

variables and run the system backward in time from the ori-

gin, using the optimal control law, until the state trajec-

tory intercepts the initial state in the state plane. The

idea of running time backwards is most useful for second-

order syszems, because all the switching is determined by a

switching curve. It is of decreasing usefulness as the ord-
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er of the system increases, as this would require switching

surfaces in the phase space. Clearly, the ability of using

second-order system techniques in the analysis of a high-

order system is another advantage of the IMSC method.

The differential equations for the elastic modes have

the decoupled form

%'r(t)+ m2r_r(t) = Nr(_) r = 1,2,...,ne (5.66)

where n e is the number of elastic modes in the control

scheme. Using the same state variable definition as in

Eq.(5.6d), the modal state vector Xr(t) satisfies the matrix

differential equation

Here again, it is the control task to drive the modal plant

form an arbitrary initial state given by

• T

Xr(0) = [Xlr(0) X2r(0)]T = [_0r _0r] (5.68)

to the state origin in the final time tf, or

Xr(tf) = 9 (5.69)

while minimizing the modal fuel expenditure
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Jr(Nr) = J0 INr(t)I dt r = 1,2 .... ,ne (5.70)

The control signal Nr(t) is bounded in magnitude by

^

r 1 2 (5 71)
[Nr(=) I _<Nr = , ,...,n e •

while the control bounds are defined by Eq.(5.23).

The modal Hamiltonian associated with Eqs.(5.67) and

(5.70) has the form

Hr(Xr'_Pr,Nr't) = {Nr(t){ + Plr (t) Xzr(t) - P2r(t) 92rXlr (t)

(5.72)
+ pzr(_) Nr(_ ) r = 1,2,...,ne

where the costate variables Pir (i=1,2) are the solution of

the adjoint system differential equations

[p!r(t)' = 0 Plr r = 1,2,...,n e (5.73)

L-i _ [P2r

The minimization of the Hamiltonian H with respect tor

N (t), leads to a control law similar to that obtained pre-r

viously for the rigid body mode solution, namely,

^

Nr(t) = - Nr dez (P2r(t)} r = 1,2,...,ne (5.7_)
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However, here, Pzr(t) is the solution to the costate

Eqs.(5.73). Rewriting these equations in scalar form, we

obtain

_62r(t)+ _2 P2r(t)= 0r (5.75a)

P!r(t) = - P2r(t) r = 1,2,...,ne (5.75b)

The solution to Eqs.(5.75a) becomes

P2r(_) = Pr sin (mrt + %r) r = 1,2,...,ne (5.76)

where Pr and 8r are unspecified modal constants, since no

boundary conditions were imposed on the costate vector

Pr(t). To determine a control law in Eqs.(5.7_) that will

drive the state to the origin, these constants must be spe-

cified.

To obtain the optimal solution to the state equations,

we can rewrite Eqs.(5.67) in scalar form by substituting the

optimal control law of Eqs.(5.7_), so that

Xlr(t) + _r Xlr(t) --N (=) (5 77a)r

Xzr(t)= Xlr(t) r = 1,2,...,ne (5.77b)

Equations (5.77) are subject to the boundary conditions

(5.68). Considering the elements of control Nr(t)=O and

Nr(t)=±N r, one obtains the solutions
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r(t) _0r sin ,_t + _0 cos w t (5 78a)
x_ = --1 w r r r

r

X2r(t) = ___0rcos _ t - _ sin w t r = 1,2,...,ne (5.78b)
_ r or rr r

for Nr(t)=O and

Xlr(t) %0r sin _r_ + cos _ _ + r
_ _ o

_r r _ (5 79a)r

X2r(t) = --_0rcos _ t - _0r - sin _ t r --1,2,...,ne (5 79b)
_r "_r r r "

A
for Nr(t)=±Nr=Ar

State plane trajectories are obtained by eliminating the

time t from Eqs. (5.78) and (5.79), with the result

x2 + 2 + Or
Ir _0r r i _ (5.80)= = ,_,...,ne

r = 1,2,...,ne
for Nr(t)=O and Nr(t)=A r, respectively.

Depending upon the modal initial conditions, Eqs.(5.80) and

(5.81) represent families of circles in the modal state

plane with coordinates X_r and Xzr/W The centers of these

circles lie at O, +N /_%, -Nr/_% on the Xlr axis for the
^

control actions 0, +Nr, -Nr respectively, as given by
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Eqs.(5.74) and (5.76). We designate these families accord-

ing to the related controls, such as the 0, the +N and ther
^

-Nr family. Figure 5.7 shows these circles in the state

plane, as well as an arbitrary state trajectory formed by
^ ^

the contro! sequence -N r for t0<tKtl, 0 for t1<tKtz, +N forr
^

t2,tSt3, 0 for t3<tKt4 and +Nr for t4<tStf. C!early, any

arbitrary trajectory in the state plane that terminates at

the origin, must use circle r+ or r- as the last portion ofr r

the trajectory.

Based on this observation and utilizing the harmonic

nature of the costate functions in Eqs.(5.73), one can con-

struct qualitatively a trajectory pattern in the modal state

plane. Figure 5.8 provides a description of the costate

function for a certain control sequence, as well as the as-

sociated trajectory.

To recover the time frq5_e state plane, we use the defini-

tion of the normalized time scale T=_t, where t is the real

time. It is shown in Appen. D that

_=AB (5.82)

where AB is an angle segment of a circular arc As along the

trajectory.
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Figure 5.8: Modal State Trajectory vs Modal Costate Function for _M

l(a) Modal Costate Function P2r(t)
(b) The Associated Modal State Plane Trajectories
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Because the optimal controls, Eqs.(5.7_) are functions of

the costate functions par(t), to construct the optimal state

trajectory we utilize geometric information available from

the description of the costate function. The fact that the

trajectory is a path constructed from circular arcs given by

Eqs. (5.80) and (5.81) is utilized as well. As can be seen

from Fig. 5.8a, all the control portions are of the same du-

ration, i.e., tAB=tCD=tEO . This observation, using

Eq.(5.82), implies that the angles of the control segments

in the s_ate plane must be of the same magnitude, i.e.,

angle (AO-B)= angle (COFD)= angle (EO0) _ _ (5.83)
r

etc. These observations play an imnportant role in the con-

struction of the state plane trajectory. A simple geometric

approach shows that for Eqs.(5.83) to hold true in the state

plane, the control sector angle _ must be symmetric aboutr

the Xar axis. In addition, it can be shown that

=

These observations enable us to calculate the costate cons-

tants Pr and 8r.
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In Appen. D, two cases corresponding to different types of

initial condition points in the state plane are investigat-

ed. In the first, the point lies outside the control sector

as shown in Fig. D.2. For this case the costate amplitude

constant is obtained as

where

f _o

[.2 j r = 1,2 ...,ne (5.86)
r0 = &0r

is the length of the initial condition position vector in

the state plane and n is the number of ful! non-zero con-

trol strokes. The costate phase constant is obtained as

_r = g - '_r = _ - arctan . r = 1,2,...,n (5 87)
[_r %0 e •

where the argument in Eq.(5.87) depends on the quadrant of

location of the initial condition point E(_0r,_0r/_r). In

the second case, the initia! condition point lies inside the

contro! sector I#£e'/2) in the state plane, as shown in

Fig. D.3. For this case, the costate amplitude constant is

obtained as

-½[ Nr
r_ - 2 _--Tr0 sin@

P = l - r r = 1,2,...,ne (5.88)r 2

_ A
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ra has the expression of Eq.(5.86).

The costate phase constant for this case has the form

_0r + _ r = i 2, ..n (5.89)
6r = _ - '_r+ 6r = "q- arctan ['_r r ' " ' e

where, from Appen. D

N
r

7 eos$
r

= arcsin

2 + - 2tO _rr sin*

[ N

I r _w

""7" COS

- arcsin r r = 1,9 ,..... 'he (5.90)
Nr r

+ - 2ro 7 sin*
r

is the phase constant correction factor. In these expres-

sions, Sr=_r-_/2, as can be seen in Fig. 5.8, D.2 and D.3.

5.3.1 Fuel Consumed and Final Time Selection - EM

I. Initial condition point lies outside the control sector

_>%2
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In view of Eig. 5.8, the modal fuel consumed can be calcu-

lated as follows:

F = X n _ (5.91)
r r c ar

In this expression, nct_r is the total time for non-zero

control applications, t_r is obtained by using the concept

of normalized time, or

F / _. _"'3 \=_
er

r

Using Eq. (D2.6),

2n N r0 m2
c r r (5.93)F = arcsin ^

r
r 2n N

c r

so that letting

r0 _2
r = Pl 0 _<Pl_<1 (5 94)^

2n N
c r

the normalized fuel is obtained from Eq.(5.93) in the form

F
I (5.95)r = -- arcsin Pl

r0 _ Plr

Using again Fig. 5.8, the normalized time for solution can

be calculated as

T = € + (nc -- 1)= + arcsln Pl (5.96)

Clearly, from Eq.(5.96) x.- as n .- or in view of Eq.(5.94),

as p1.O. However, the fuel in Eq.(5.95) reaches its abso-
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lute minimum at the same time and it is a simple task to

show that

Fr min lim F = r0 mr r (5.97)
Pl_0

A similar result was obtained in the case of RBM, where in

order to obtain minimum fuel solution, the time had to ap-

proach infinity. Here again, a realization of such a solu-

tion is made by a selection of finite time for solution, in

a similar manner as to the RBM case.

Figure 5.9 provides a description of the normalized fuel

given by Eq.(5.95) and the normalized time of Eq.(5.96) for

the case €=_/2, nc=kl/p, for various values of k,, where

r0 _2
kI =------[

2N (5.98)
r

is a modal parameter. For this case, Eq.(5.96) has the spe-

cial form

_ = - _ + arcsin Pl (5.99)

and, in addition,

lim r = k1
p_l (5.1oo)

2. Initial condition point lies inside the control sector
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Figure 5.9: Realization of Minimum-Fuel Solution (case i)
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Following a similar pattern, the fuel consumed is obtained

as follows

i

N r_ - _ _-r ro sine

F = _ _ arcsin r i + :?- ,5 (5.101)

r _r i(2nc-l) 4(nZc-nc) 1

[ ]

Letting
^

N
r

r2 - 2 _/ r0 sine

r ^ = p2 0 _<p2_< l (5.102)

4(n 2 - nc) N(_-'_I2

defining the modal parameter

N
2 r

r0 - 2- r0 sino
r

--ko (5.103)

and inserting Eq.(5.103) into Eq.(5.102), we obtain

i + (p22 + 4k2)_
n = (5.104)
c 2P2

Assuming that the correction factor 6 is smal! compared to

other terms, Eq.(5.101) can be written as

F 11+(2

P2 + 4k2 )_ -I

r = - iI arcsin P2 +

N /_ P2 J (5.105)r r
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Equation (5.105) represents an expression for the normalized

modal rue!.

In view of Fig. D.3a and using the same assumption for 6,

the normalized time for solution is obtained in the form

r = (nl-n2) + (nc-l)e' + (n -l)(,_-e')c
^

N
r

r 2 - 2 _ r 0 sins

= t + (nc-1),_ + arcsin r 2 (5.106)

4(n2c- nc)[_]

Using the notation of Eq.(5.102)0 Eq.(5.!06) can be reduced

to

r = $ + (nc-l)_ + arcsin P2 (5.107)

Clearly, from Eq.(5.107) _- as n c+-, or in view of

Eq.(5.102), as pz+O. However, the fuel in Eq.(5.105) reach-

es then its absolute minimum

F " lira Fr = __r(i + 2ko2) + € (5.108)r rain _
p2_0 r

Using the notation of Eqs.(5.102) and (5.103), the normal-

ized time in Eq. (5. 107) can be written as

i + (p22+ 4k2) _ ]
$ + L - i ,_+ arcsin P2 (5.109)JI[ 2p2
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Fibre 5.10 provides a description of the normalized fuel of

Eq.(5.105) and the normalized time of Eq.(5.109) for the

case _=0. For this case, Eq.(5.109) has the special form

r = - 1 _ + arcsin P2 (5.110)2p2

In addition,

lira r = _ i
(i + 4k2)2 (5.111)

P2_l

After the time for solution has been selected then the modal

fuel is calculated according to the process described in

Figs. (5.9)and (5.10).

The total modal fuel for the EM's is obtained by su_ing all

the modal fuels in Eqs.(5.95) and (5.105), depending on the

different modal initia! conditions. A numerical example for

the fue! minimization problem is presented in Ch. VI.
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B
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Figure 5.10: Realization of Minimum-Fuel Solution (case 2)



Chapter VI

NUMERICALEXAMPLES

The control concepts presented in the last three chap-

ters are illustrated by two numerical examples. The equa-

tions of motion for the structure were derived by the finite

element method, as described in Chapter II. Considering one

element per beam member and four members per cable branch,

the order of the system displayed in Fig. i.I is n=270. For

the present examples, a reduced order model of the struc-

ture, such as the one displayed in Fig. 2.1, is used. The

mode! has 45 degrees of freedom.

The following structure parameters were considered:

Beam member (aluminum)

length of member 1=12 inches

cross-sectiona! width a=2 inches

cross-sectional thickness b=0.25 inches

mass density p=9.93xlO-Zlb/in 3

modulus of elasticity E=lOxlO6psi

Poisson ratio v=0.3

rectangular cross-section torsion factor k=0.3
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Cable member (steel)

length of member 1=20 inches

equivalent diameter d=0.0442 inches

mass density p=lg.75x10"Zlb/in _

modulus of elasticity E=24x106psi

Poisson ratio u=0.3

Other structure configuration parameters, are as in Fig. 2.1

An eigenvalue problem was solved for the reduced-order

system. The first twelve natural frequencies are given in

Tab. 6.1 and the associated modes are displayed in Fig. 6.1.

The system is excited by initia! velocities, generated by an

impulsive force, as shown in Fig. 6.2. Mode participation

factors for the first twelve modes are displayed in

Fig. 6.3, in view of which we retain the first six modes for

control, because no further benefits are gained by controll-

ing higher modes.

We propose to control the structure by the IMSC method,

which requires as many actuators as the number of controlled

modes. Placement of these actuators is based on results ob-

tained in Chapter IV, as well as on the location of the no-

dal lines in the higher uncontrolled modes. Examining the
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first six modes in Fig. 6.1, we observe that four of them

have symmetric mode shapes, while the remaining two, have

antisymmetric mode shapes. Actuators placed as shown in

Fig. 6.4, meet the requirement of Eq.(4.12) for system cont-

rollability. Moreover, actuators in this configuration

barely excite the seventh, eight and ninth mcdes, because

their !ocations are on, or close to noda! lines of these

higher modes. Clearly, the given impulse at node 8 excites

only the symmetric modes. The given actuators configuration

represents a symmetric set. To this end, the actuators at

nodes 1 and ii must have identical characteristics to those

at nodes 5 and 15 respectively.
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Figure 6.1: The Twelve Lowest Modes of Vibration
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Figure 6.1: (cont.)
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6.1 LINEAR OPTIMAL CONTROL WITH QUADRATIC PERFORMANCE
INDEX

Implementation of Linear Optimal Control policy, using

the IMSC method is based on the derivations of Chapter III.

The control effort weighting factors R r, are chosen so that

the lowest controlled mode reach an approximate settling

time of 3 seconds for 5_ of the initial amplitude. To ob-

tain the appropriate modal damping ratio of _=0.33, we use

Eq.(3.18) or Fig. 3.1, and select p=4.00. In addition, a

structural damping ratio of _=0.05 was considered. The res-

ponse parameters of Eqs.(3.15) are displayed in Tab. 6.1.

The response is presented in the form of the transverse mo-

tion in four selected nodes. Figure 6.5 displays the actual

response at nodes 1,3,8, and 14 for the uncontrolled as well

as for the controlled cases. Figure 6.6 presents the modal

forces while Fig. 6.7 presents actuators forces versus time.

Finally, assuming that _he control forces are proportiona!

to the rate of flow of fuel, Fig. 6.8 provides the total

consumed fue! versus time.
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TABLE 6.1

System Parameters in the Linear Optimal Control Framework

Natural Damping Modified Damped Phase

Mode Frequency Ratio Frequency Frequency Angle

r _ _r _r nr mdr r

i 2.995780 0.379679 3.167651 2.930451 0.389449

2 3.259080 0.379679 3.446057 3.188010 0.389449

3 4.161381 0.379679 4.400122 4.070633 0.389449

4 8.371135 0.379679 8.851396 8.188587 0.389449

5 10.537362 0.379679 11.141903 10.307579 0.389449

6 12.932981 0.379679 13.674960 12.650956 0.389449

7 15.402695

8 18.471893

9 19.938034

i0 23.332260

ii 32.394440

12 38.127151
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Figure 6.5: Actual Response at Nodes 1,3,8 and 14
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6.2 MINIMUM-FUEL PROBLEM

Implementation of Minimum-Fuel Control policy, using

the IMSC method is based on the derivations of Chapter V.

It has been shown that the modal minimum fuel control is

nonlinear of the "bang-off-bang" type. Most of the control

techniques for this type of problem were developed as

state(phase)- plane concepts. Therefore it proves conve-

nient to show how the control task is achieved for each mode

in the control scheme, using state-plane trajectories.

Table 6.2 provides the system parameters for three cases of

control bounds. The modal state-plane trajectories for

these cases are shown in Fig. 6.9. Figure 6.10 presents the

modal on-off control forces, while Fig. 6.11 presents actua-

tors quantized forces versus time. Finally, ....assuming that

the control forces are proporti0nal_to the rate of flow of

fuel, Fig. 6.12 gives the total consumed fuel versus time.

A comparison between fuel consumption in the linear op-

timal control design, Fig. 6.8, and the minimum fue! design,

Fig. 6.12, reveals a saving of about 20_ for the latter.
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TABLE 6.2

System Parameters in the Minimum-Fuel Control Framework

Modal State-Plane Number Modal

Control Mode Initial Conditions of Control Final

Case Bound Strokes Time

M r r0 _ (rad) n tf (sec)c

i 0.039649 0.0 3 2.27

2 0.0 0.0 - -

3 0.074399 0.0 7 4.71

I i00
4 0.033788 0.0 15 5.34

5 0.0 0.0 - -

6 0.003797 -3.14 6 1.03

i 0.039649 0.0 2 1.20

2 0.0 0.0 - -

3 0.074399 0.0 5 3.16

2 180

4 0.033788 0.0 9 3.08

5 0.0 0.0 - -

6 0.003797 -3.14 4 0.53

1 0.039649 0.0 2 1.20

2 0.0 0.0 - -

3 0.074399 0.0 4 2.44

3 200

4 0.033788 0.0 8 2.71

5 0.0 0.0 - -

6 0.003797 -3.14 4 0.53
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Figure 6.9: Modal State-Plane Trajectories (Cases 1,2,3)
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Chapter VII

CONCLUSIONS AND RECOMMENDATIONS

Recent designs of large structures require distributed-

parameter models described by partial differential equa-

tions. Exact solutions to these equations are limited to

relatively simple geometries. However, in most practical

problems, closed-form solutions are not feasible and system '

discretization is unavoidable. The discretization process

converts the distributed-parameter system equations into a

coupled multivariable linear eqations of motion. Control of

the high-order model is not feasible due to computation li-

mitations and errors that arise in modeling the higher modes

by the discretization process. The fundamental problem of

active control of flexible systems is the control of a

large-order system, using a much smaller-order controller.

The particular number of modes chosen to represent the trun-

cated system model is often difficult to justify. One can

measure the significance of the modes by computing their

participation factors in generating the actual response.

The increased order of models representing modern

structures and the associated control problems have provided

159
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the motivation for developing methods permitting analysis of

such systems, and solutions to the control problems with

little computation effort. Such a method is the Independent

Modal Space Control (IMSC). Using this method, the 2n-order

coupled system equations of motiom is reduced to n indepen-

dent second-order modal space systems. This approach allows

complete flexibility as to which mode to control, because

the control law is designed in the modal space for each mode

independently. The ability of using second-order system

techniques in the analysis of a high-order system is a dis-

tinct advantage typical of the IMSC method and not possible

for any other method.

in this study, IMSC method was employed in the design

of a linear optimal control law, as well as in the design of

a minimum-fuel control law for a two dimensional domain

problem. Due to the use of the IMSC method, some response

performance indices, like settling time, can simply be met.

At the same time, no control forces were applied to the

modes that were not excited. These tasks are very hard to

achieve, if not impossible, by any other method.

An important factor in any control scheme is the place-

ment of the actuators. Actuators placement becomes even
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more critical when two dimensional domains are considered in

conjunction with the IMSC method, especially if the system

possesses some symmetry properties. In such cases, actua-

torsplacement must be carefully made to prevent the occu-

rence of a singular mode participation matrix. Because ac-

tuators location affect this matrix directly, knowledge of

the modes shape permits a correct actuators placement. Re-

lating to the modes shape of such systems, a method was de-

veloped in this study as to how to recognize such singular

cases just by examining the location, as well as the type of

actuators used in the control framework. This method is

very helpful in the design and placement of actuators, as

well as of sensors when the IMSC method is applied to two-

dimensional domain problems.

The minimum-fuel problem is a very important one in

space vehicles, especially in those designed for lengthy

missions. The amount of fuel available for control is at

times limited to such an extent that fuel economy is the

predominant factor in control system design. The explicit

dependence of the control on the instantaneous values of the

state variables in a coupled high-order system, is a very

complex task, and for most practical cases it remains an un-

solved problem. In these cases, a trial and error process
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is unavoidable for the state determination. Such a process

may be reasonable for a low-order system (fourth order at

most), but certainly not for a high-order system, where the

computational difficulties are insurmontable. The control

task is made considerably simpler by using the IMSC method,

which obviates the complexity inherent in a high-order sys-

tem. In this study, IMSC method was employed, and the dif-

ficult minimum-fuel problem for a 2n-order coupled system

was reduced to n fuel minimization problems for a decoupled

set of n second-order modal space systems. In using the

IMSC method, one must minimize modal cost functions instead

of a global cost function. This decomposition allows the

use of second-order system techniques in the control scheme

rather than the multivariable system control techniques,

which are hard to implement.

In the derivation of the minimum-fuel control problem

via the IMSC method, the condition number of the mode parti-

cipation matrix plays an important role in determining actu-

ators efficiency. Observing the characteristics of the ac-

tuators quantized forces, one can easily determine this

effectiveness to be less than 70_. It is suggested that

further research be carried out on the dependence of the

condition number on actuators placement and how to decrease
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this condition number in order to increase actuators effec-

tiveness.

The fuel minimization technique depends on correct

switching times in the process of driving the modes to the

system origin. Variations in these times create an offset

in reaching the final state. Further study of the sensitiv-

ity of these switching times to parameters variation and

their influence on the final state is strongly recommended.
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Appendix A

LAPLACE EXPANSION FOR DETERMINANTS

See also Karlin [28], Chapter O.

The classical Laplace expansion for determinants has

the form

(12.:i lli2ipdet A = [ (-i)k det A

2 ... Jz J2 ...Jp (A.1)

• det A [i( i_ ...in,pl

tJ{J_..J'Jn-p-

where

i: iz ...i
P

A

Jl J2 ..-J
P

denotes the minor of the matrix A obtained by the selected

rows il,ig.....i and selected columns J,,Jz.....Jp-P

In the sum, there are (_) terms as the number of selec-

tions of ordered p indices. The sum is extended over all
! ! !

p-tuples l_j1<ja<...<j _n, where Jl,Ja....,]n-p denote thep
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complementary set of indices to Jl,Ja, ....Jp in 1,2 ..... n,
.I . ! .!

arranged in natural order, and similarly l:,l z..... In_p de-

note the complementary set of indices to il,ia ..... ip in

1,2 .....n.

Example 1

Expand the determinant

all a12 a13 a14

a21 a22 a23 a2_
det a = (A.2)

a31 a32 a33 a34

a%l a_2 a_3 a_

using Laplace expansion.

For the expansion, we will select two fixed rows, for exam-

ple, the second and the third rows. The number of terms in

the expansion will be

n)=( _)=6(p
Using Eq.(A.I)
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!
a21 a22 a13 a14 a21 a23 la12 a14

det A = + I
a31 a32 a43 a4_ a31 a33 Ia42 a44

a31 a3_ a_2 au3 a32 a33 a_l a_

ilaiaalla1- +

a32 a3_ a41 a43 a33 a3g a_l au2

Example 2

We attempt to control the first six modes in a n=_5

order system, where the actuators are placed as shown in

Fig. A.I.

The mode participation matrix U_B for this case is

mode
shape 17 18 23 24 29 30 . actuator #

+

S "aI a2 a3 0 aI -a2"

A b I b2 0 b% -b I b2

S ¢i c2 c3 0 ¢I -¢2 - U_B (A.4)
S dI d2 d3 0 dI -d2

A eI e2 0 e4 -eI e2

S fl f2 f3 0 fl -f2
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(-2,0,3) (0,0,3)
18 & 24 30 (2,0,3)

(-2,0,2) (0.0,2) (2,0,2)
• ---4m..

17 23 29

Figure A.l: Beam Lattice with Symmetric Actuators Configuration
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where "S" and "A" denote symmetric and antisymmetric modes,

respectively. Here, p+h=2+l=3 and s=4. Hence, p+h<s and

the proposition states clearly that for this case, the mode

participation matrix is singular. It is an easy task to

show this, using rows and columns elementary transformation.

We change the rows order having first the symmetric modes

and then the antisymmetric modes (not necessary), so that

S ral a2 a3 0 aI -a2_

S Cl c2 ¢3 0 cI -c2

S dI d2 d3 0 dl -d2 (A.5)
S fl f2 f3 0 fl -f2

A bI b2 0 b_ -bI b 2

A ,eI e2 0 e_ -eI e2

Substracting Ist column from the 5th and adding the 2nd to

the 6th, we obtain

raI a2 a3 0 0 0

cI c2 c3 0 0 0

dI d2 d3 0 0 0

fl f2 f3 0 0 0 (A.6)

bI b2 0 b_ -2b I 2b2

eI e2 0 e_ -2eI 2e2

Then, expanding the determinant of (A.6), we obtain
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aI a2 a3 0 0 aI a2 a3 0 0

cl ¢2 c3 0 0 cI c2 c3 0 0

det( ) = - b% dI d2 d3 0 0 + e% dI d2 d3 0 0

fl f2 f3 0 0 fl f2 f3 0 0

eI e2 0 -2e I -2e 2 bI b2 0 -2b I -2b 2

= 0 + 0 = 0 (A.7)

which means that uTB is singular.



Appendix.B

MINIMUMFUEL CONTROLWITH UNSPECIFIED FINAL
TIME: RIGID BODY MODE

See also Athans [17].

To obtain the minimum-fuel solution and to indicate the

set of initial states for which no minimum-fuel solution ex-

ists, we divide the xt-x z state plane into four sets, using

the _+ and _- curves defined by Eqs.(5.51) and (5.52) re-

spectively, and the Xlr axis.

We recall the following equations to describe the state

plane trajectories for Nr(t)=0 , and Nr(t)=_+Nr_Ar.

Solution to the state equations

" _or + -£or = (B.1)

X2r( )= (B.2)

for N (t)=0r

1
+_0 _ +Xlr(t) = _0r r _ Ar (B.3)

t2

X2r(t) = _0r + Ar t (B.4)

^h
for Nr(t)=_+Nr= A r
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The state plane trajectories are

- = const , for N (t)= 0 (B 5)X2r( )- r

i _ + 1 x2 for N (t) = + N = A (B.6)
Xlr(t) = _0r 2A r r _ 2r ' r - r r

The regions in the state plane are described in Fig. B.I°

Now we show the regions of existance and non-existance for a

minimum-fuel _olution.

B. I REGION RI

If the initial state is in region RI, given by

Eq.(5.56a), or region Rs, given by Eq.(5.56c) (note that the

switching curve _ is not included), then a minimum-fuel s_oo-

lution for the control driving the plant to the origin does

not exist.

For any Nr(t), we have from the second state equation

Xzr(t)=Nr(t), which implies that

= + Nr(r)dr (BI.I)
x2r(=) to

from which
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Yr X2r _

RI

A(_0r,_0r) ,to

Nr(t:) = _ Nr

0(0,0)t:f
i , I I i Xlr

_r(t:)= +

-e _ Nr(t:)- _ J B(x' ,-e) ,t'

_C (x",-_) ,t:"

K _--_kl G R2

H _- "_]F D(_or'_Or)_"t:OR3

E x'" " ) t:" " "

_Yr

Figure B.I: Cont:rol Dependence on Init:ial Condit:ion Point: for RBM

Regions RI, R2, R3, R_ Are Defined by Eq. (5.54).
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It Nr(r)drl = IX2r(t)- _orl (BI.2)to

Dividing the path to the origin ABCO into segments on which

the contro! is a constant function of time, we can calculate

the consumed fuel

Jr(Nr) = tO INr(t)Idt + t' INr(t) Idt + =" INr(t )Idt

= l-e - _0r I + I-e -(-_)[ + I0- (-e) I = I_0r I + 2e (BI.3)

The elapsed time for this operation can be calculated as

follows:

on AB

_0r + 6
t' - c0 = ^ (BI.4)

N
r

on BC

. I G 2

x"-x ' _0r + --=---_2_r _0r Nr (BI.5)
t" -- _I ___ __

-6 e

on CO

tf - t" = e___ (BI.6)N
r

The final time tf is

+ i _2
+ e _0r 2_r _0r_0r (BI.7)

tf = to + ^ + 6
N
r
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Clearly, the fuel in Eq.(BI.3) will reach its minimum in the

limit as e.0. The required fuel, then, approaches the lower

bound on fuel expenditure. However, as G .0, the elapsed

time in Eq.(BI.7) increases without bounds, tf.-. Hence,

the fuel required can be arbitrarily close to, but never at-

tain the lower bound. This means that a minimum-fuel con-

trol does not exist.

B.2 REGION R2

If the initial state is in region R4 given by

Eq.(5.54d), or region Rz given by Eq.(5.54b), then the mini-

mum-fuel solution for the control driving the plant to the

origin is not unicrue.

In this statement we excluded the case in which the in-

itial state is on the switching curve rr- For such a case

it is clear that a minimum-fuel solution exists and it is

unique. {+Nr} is applied to an initial state on _ as well
^

as I-Nr} to an initial state on r_. Any other initial state

can be represented by point D in Fig. B.I



178

Clearly, the fuel consumption would be the same for all

paths DEO, DFGHO, DFGIJKO

Jr(Nr) = [_0r[ (B2.1)

Hence, there are infinitely many ways of reaching the origin

from D with the same amount of fuel. The associated control
^

sequences with paths DEOo DFGHO and DFGIJKO are {0,+Nrl,

{O,+Nr,0,+Nr} and [O,+Nr,O,+Nr, O,+Nr], respectively. The

last two sequences, are certainly not from the set of candi-

dates for the fuel-optimal control in Eq.(5.46), that minim-

ize the Hamiltonian absolutely. In contrast to the same

fuel consumption for those paths, the response time tf is

different. The shortest response time among all minimum-

fuel controls mentioned above is the one associated with

path DEO and is given as

x,,,-0-+ - = =o- _Or
+

Fina!ly, the contro! sequence I-Nr,O,.Nr] along path DLMO

cannot be fue!-optimal although it belongs to the set of

candidates for the fuel-optimal control in Eq.(5.46).

To show this, we assume that {-Nr,O, +_r} is fuel-optimal in

driving the plant from its initial state at D to the origin.

This control sequence is ploted in Fig. 5.3i, from which we

can draw conclusions concerning the costate function pzr(t).

Using Eqs.(5.45), in view of Fig. 5.3i at t=0, we obtain
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P2r(0) = n2r > i Plr(0) = n!r (B2.3)

A

Because Nr(O)=-Nr, substitution of Eq.(B2.3) into the Hamil-

tonian Eq. (5.41) at t=O yields

Hr t=0 r Ir _0r 2r r (B2.4)

Because the final time tf is free and the Hamiltonian does

not depend explicitly on time, the Hamiltonian must vanish

on the extremal trajectory. The relation Nr(l-_zr)<0 im-

plies that nlr_0r>O. But, (_0r,_0r)G R4, so that _0r<O, from

which we obtain nlr<O. In view of this result, we have

_ir<0 and _zr>I such that from the costate equation,

Eq.(5.45b), we obtain

P2r(t) = n2r - _Ir t > O2r > 1 for all _ > 0 (B2.5)

This corresponds to Fig. 5.3c with the associate control se-

quence I-Nr} , which contradicts the assumed sequence

[-Nr,O,+Nr }. Hence, the latter control sequence cannot be

fuel-optimal.



Appendix C

MINIMUM-FUEL CONTROL WITH BOUNDED FINAL TIME:
RIGID BODY MODE

See also Athans [17].

C.I MINIMUM-TIME SOLUTION

It will prove convenient to begin with the expression

for the minimum-time solution. This expression appears fre-

quently in the derivation for the minimum-fuel problem as it

provides the lower bound for the final time. Figure C.I de-

scribes a minimum-time optimal trajectory, where the optimal

control law is a sequence as {-Nr,+Nr} or {+Nr,-Nr} for an

initial state in region R- or R. respectively. Regions R"

and R+ are the parts of the state plane created by the

curve such that R- is to the right of this curve and R. is

to the left.

For an initial state in region R"

-- + i^ t2Zl _0r - _ Nr (CI.I)

^

z2 = g0r - Nr tl (CI.2)

1 A 0
0 = zI + z2 t2 + _ Nr =_ (CI.3)
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x
r

^

Nr(t) = _ Nr

o(o,o)t,
x
Ir

^

_r(t) = + Nr tl

z(zl'z2)'_z

Figure C.I: State Plane Minimum-Time Trajectory for RBM
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0 = Z2 + Nr t2 (CI.4)

where t1=_-t0 and tz=tf- _ . From Eqs.(C.l) (C.2) and (C.3)

(C.4), we obtain

• 1

_f = _i + t2 = t0 + _0r + ___ir+ (CI.5)

r r

For an initial state in region R+, we obtain in a similar

way

Cf = to - _ + r r (CI.6)

C.2 SWITCHING TIMES TZ__TW

Refering to Fig. 5.6, tz is the first switch time and

t is the second. The determination of these times is done
w

upon solving the following trajectories equation

((_0r,_0r)gRIUR4 )

path _-Z

l ^

= + %Or (tz CO) - 2- Nr(tz - _0)2zl _0r - (C2.I)

I

zo = _EOr - Nr(t. - tO) (C2 2)
Z

path Z-W

w I = zI + z2(tw --t )z (C2.3)
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w 2 = Z2 (C2. _)

path W-O

i_ (rf 20 = w I + w2 (=f - tw) +y r - =w) (C2.5)

0 = w2 + Nr (Tf - tw) (C2.6)

We express tz and tw in terms of the initial state ($0r,_0r)

and the prescribed final time Tf. Using Eqs.(C2._) (C2.5)'

and (C2.6), we obtain

iz22
Wl = _-- (C2.7)N

r

From Eqs. (C2.4) and (C2.6)

z2

tw = Tf+T--N (c2.s)
r

and from Eq.(C2.2)

1
tz - 10 _ T--(_0r- z2) (C2.9)N

r

Substituting Eq. (C2.9) into Eq. (C2.1), we obtain

" z__0r
(c2.1o)

zl = _0r + 2N 2N
r r

From Eqs.(C2.8) and (C2.9)

2z2 _0r
- _ ^ + Tf - tOw z N N (C2.II)

r r
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Substitution of Eqs.(C2.7) (C2.I0) and (C2.II) into

Eq.(C2.3), yields a quadratic equation in Za in terms of the

initial state and the final time

2 [" _ 1

which has the solution

I ^ - i [Nr(Tf tO ) _ 2= - _ [Nr(rf - C0) - .0r ] -+ - _ =Or]Z 2

- 4 _ + Or! (C2.13)

r _0r -[-I

In view of Eq.(Cl.5), the terms in the curly brackets in

Eq.(C2.13) add up to a positive value. Moreover, Eq.(C2.1!)

and knowledge that tw-tz>O imply Zz>-I/2,[Nr(Tf-ta)-_'0r] , so

that only the plus sign in Eq.(C2.13) is applicable. Sub-

stitution of Eq.(C2.13) into Eq.(C2.9) and into Eq.(C2.8),

yields

i _0r _0r] 2 4_0r 2_0r (C2.In_)_..

1 =0r _0r ] (C2.15)=- Tf+ to +--+ Tf- t0 -

respectively.
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C.3 FIRST SWITCH TIMES LOCI

Substitution of Eqs.(C2.7) and (C2.11) into Eq.(C2.3),

yields the equation for the loci of the first optimal switch

time tz

I II_0r (C3.I)
Zl = _ 3 z2 + Tf - t0 Z2

Nr J.
(Z_ ,Zz)eR4

C._ BOUNDARIES FOR THE REACHABLE STATES

Since tz and tw are real, the terms in the square

brackets in Eq.(C2.14) or Eq (C2.15) must add to be a posi-

tive value. This condition yields the expression for the

boundary to al! modal initial conditions that can reach the

origin in the prescribed final time bound, or

1 [Z_ + 2(Tf t0) N Z2 (Tf t0) 2 Nr] (C_.I)ZI _<---r- - - -
4N r

r

(ZI,Zz)eRIUR 4 Eq.(C_.l)can be modified to allow the determi-

nation of the minimum final time bound for a given system,

such that all the initial states in the control scheme will

be located in the reachable zone.

Tf >i to + max -r---+ 2 -- + 4 (C4.2)

r=l,2,. ..,nr [Nr [Nr J Nr J J(E,0r,_0r)eRiUR u



186

similarly,

Tf >I tO + max - 4 Or

r=l,2,. ..,nr ---_r + (C4.3)INr ) f(_0r,%0r)eR2UR3

Obviously, Eqs.(C_.2) and (C4.3) resemble the form of

the minimum-time solution, in Eqs.(CI.5) and (CI.6), respec-

tively.

C.5 PLOT OF THE MODAL STATE PLANE

Figure C.2 presents a nondimensionalplot of the modal

state plane. The following scale factors have been used

xI = - Nr (Tf - _0)2r xlr (C5.1)

X2r = X2r Nr (Tf - tO) (C5.2)

Inserting Eqs.(C5.1) and (C5.2) into Eqs.(5.57) (C3.1)

and (C4.1), we obtain the following nondimensional forms:
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X2r Scale: x =
Xlr

Ir Nr(Tf_t0)2

i ~ X2r

X2r ^
Nr(rf-t0)

/ R0
/

I

\
\

\ ff- i (c5.5)
\

(C 5.4)
R

.25 0.5 Xlr
I

-0.5 -0.

R+ (C 5.6)

(C 5.3)

X2r

-/f+ i \\\_ l

Xlr R0 /-i

Figure C.2: Optimal Control Regions and Switching Curves in the
Modal State Plane for RBM
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i. For Eq.(5.57) - the curve that isolates moda! initial

states reaching the origin in less then the final time Tf

_0r: - _0r+ or (C5.3)

2. For Eq.(C3.1) - the fami!yof the first switching curves

depending on the modal initial velocity

_ =_ _2 + (i- _o_) z2 (c5._)

for _0r=const.

3. For Eq.(C4.1) - the boundary curve for the reachable

states

" l "2 "
%0r = - _ (_0r + 2_0r - l) (C5.5)

_. For Eq.(5.51) - the _ curve, which is the final switch-

ing curve

! ~
£_ : _ z2 (cs.6)

Note that Eqs.(C5.3)-(C5.6) describe only one half of

the plot in Fig. C.2, while the other part was obtained us-

ing the symmetry about the origin.
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Regions R-,R °,R+ in the plot designate the following

control sequences to reach the origin. From region
^

I. R- : {-Nr,0,.Nr}

2. R° : {0,.Nr} fourth quadrant

{O,-Nr} second quadrant

3. R. : {+N_,0,-Nr}



Appendix D

MINIMUM-FUELCONTROL: ELASTIC MODE

See also Flugge-Lotz [23].

D.I TIME SCALING OF THE STATE PLANE TRAJECTORIES

Figure D.I displays the construction for one short in-

terval. Because time increases in clockwise direction in

the state plane, the radius line R rotates in a clockwise

direction. A positve increment As along the solution curve

and a positive increment AB as well, are likewise taken in

the clockwise direction of increasing time. From the geome-

try of the figure, we obtain

_xl x2

A--s-= wR (DI.I)

Using the relations &6=As/R, Ax1=xzAt and the definition for

normalized time _=wt, where t is real time, we obtain

Ar - AS (DI.2)

Equation (DI.2) implies that the normalized time is equal to

the sector angle of the circle or circle approximation in-

crement As of the state plane trajectory.

190
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X2/_

I

I
I

I
i , X1

Figure D.I: Time Recovery from State Plane Description



192

D.2 DETERMINATION OF THE COSTATE CONSTANTS FOR INITIAL
CONDITION POINT OUTSIDE THE CONTROL SECTOR

The determination of the amplitude P and phase angle 8

in the costate equation pz(t)=P-sin(_t+8) for a point out-

side the control sector, is based on the following relations

from Fig. D.2a

O- _2 = r_ + r - 2r0 _ cos - (D2.1)

A

H2 Nr (D2 2)
_-_2 = _2 + - 20B _--Zcos +

Because O'A=O-B, we obtain
^

N
r a (D2 3)Ar0 --2 _ sin _

Note that Ar0=r0-OB is the decrease in the distance of the

state from the origin of the state plane during one nonzero

control stroke. Clearly, each such control action decreases

this distance in equal steps. Defining the integer nc as

the total number of control actions, we must have

n¢ Ar0 = r0 (D2.4)

to reach the origin, where

10 l'r0 = _ + (D2.5)

Substitution of Eq.(D2.3) into (D2.4), yields
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A x2/_

P2(t)

P

(b) _ t' _ wt

'IT C_

Figure D,2: Initial Condition Point Outside the Control Sector
for EM

(a) State Plane Trajectory

(b) Costate Function
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r0 _2

sin _ = 2n N _ 1 (D2.6)
c

so that the only restriction on nc becomes

Ir _2] (D2.7)
nc > Integer [TJ

The solution to the costate equation is given in Eq.(5.73)

as

P2 = P sin (_= + e) (D2.8)

Writing Eq.(D2.8) for point B in Fig. D.2b, we obtain

i = P sin [_+2) (D2.9)

from which, the amplitude constant P is obtained as

p = 1 = i - _ (D2.10)

cos_ [2nc_

The phase angle 8 is obtained directly from Fig. D.2b.

Clearly,

from which

e + € +_ TM = (D2.12)

and because

_ + _ = "# (D2.13)
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we obtain

where the argument in Eq.(D2.14) depends on the quadrant Of

the initial condition point (_0,_0/w).

D.3 DETERMINATION OF THE COSTATE CONSTANTS FOR INITIAL
CONDITION POINT INSIDE THE CONTROL SECTOR

The determination of the amplitude P and phase angle 8

in the costate equation pz(t)=P.sin(_t+8) for a point inside

the contro! sector, is based on the following relations from

Fig. D.3a

-_'___2= rZo+ - 2to_-rcos - _

0--_2= _2 + - 20B_ cos + (D3.2)

Because O-=_=O-B,

rz _ _2 = 2 r0 sin,+ OB sin (D3.3)

As in Eq.(D2.4),

(n-l)_r0=O-B (D3.4)c
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(a) i____2_2_ _ xI

p2(t)

P

• Ii/If ...... I 1 mt
(b)

Figure D.3: Initial Condition Point Inside the Control Sector for
EM

(a) State Plane Trajectory
(b) Costate Function
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where n_-i is the number of full nonzero control strokes and

_ra has the expression of Eq.(D2.3). Substitution of

Eqs.(D2.3) and (D3.4) into Eq.(D3.3), yields

2 N

.a' r0 - 2 ._Zr0 sine
sin 2 -- =

4 (no2- n¢) _,_

Using the same argument as for Eqs.(D2.8) and (D2.9), we ob-

rain the amplitude constant P for this case as (

I1 2 ]-½

r0 - 2 N-_ r0 sine

P = - _- ^ ' (D3.6)

The phase angle 8 is obtained directly from Fig. D.3b.

Clearly,

9 + (nl - n2) + = a'-._-- = _ (D3.7)

From Fig. D.3a we obtain the relations

nl + Yl + [[_-€I= n2 + Y2 + 12+_I = _ (D3.8)

from which

ql - r12 = Y2 - YI + € 4-e.._' (D3.9)2
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Substitution of Eq.(D3.9) into Eq.(D3.7), yields

e + Y2 - Yl + _ + _ = _ (D3.10)

or

8 =_ -_+6
(D3.Ii)

where 6=r1-rz, is a correction factor to the phase angle 8.

rl and rz are obtained from the triangular relations in

Fig. D.3a, or

^

sin - # N _ cos€

sinYl ---2- _ N 2 N 2
0 _= + - 2r0 _ sin_

sin + N w--rcos_-
sin Y2 _ 7 _ (D3.13)

O B + - 2r0 sins
[_ j 7

It is easy to show that 6=0 for the case where the initial

condition point is outside the control sector (_>=/2).
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