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ABSTRACT

The use of the "degrees of freedom for signal" is proposed as a
design criteria for comparing different designs for satellite and other
measuring systems. It is also proposed that certain eigensequence plots
be examined at the design stage along with appropriate estimates of the
parameter a playing the role of noise to signal ratio. The degrees of
freedom for signal and the eigensequence plots may be determined using prior
information in the spectral domain which is presently available along
with a description of the system, and simulated data for estimating X. This
work extends the 1972 work of Weinreb and Crosby.
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1. INTRODUCTION

Recently Fleming (1983) has suggested that improved temperature
retriovalr from satellite soundings may be obtained by use of data from a

sensor whi , ,h scans forward and back along the satellite track, and thus
"looks" at a particular point in space from several directions as well as
directly down. This idea was suggested by analogy with well known results
from computed tomography techniques in use in medicine. Fleming constructed a
model temperature field and simulated noisy data from three different ray
configurations, one looking straight down only, one having in addition one
forward and one rearward angle, and the third having two forward and two
rearward angles. See Fig. 1. He then recovered the model temperatures on a
two dimensional grid with one axis vertical and one axis along the satellite
track, by a numerically efficient iterative procedure for solving large linear
systems. He performed the necessary regularization in this ill posed problem

by stopping the iteration. See also Fleming (1977),'Wahba (1980). Similar
methods are common in medical applications. Fleming's results in the example
tried were: two additional angles are better than straight down only, and
four are better than two, from the point of view of mean square error.

We are interested in the problem of choice of angles, spacing of
observations, selection of channels and other questions concerning the design

j	 of measuring systems. Weinreb and Crosby (1972) discussed design criteria
which can be used to make an evaluation of alternative satellite designs and

they applied these criteria to the selection of radiometer 	 inels. In this

paper, we begin with what is essentially the design criteri_ rooposed by
Weinreb and Crosb y . However, we propose using prior information concerning
meteorological fields in the frequency or spectral domain, rath%r than the
spatial domain, leading to details which can be different. This approach uses
information which is available at the present time (but not in 1972!) and is
particularly appropriate for the evaluation and comparison of potential
satellite systems that simultaneously use three dimensional information, as
well as Vie evaluation of systems which use combined satellite and radiosonde
data. Implicit in the procedures described here is an algorithm for combining
satellite and radiosonde data. Our approach also makes clear the role of
possibly variable bandwidth parameter(s) in system design, a point which has
traditionally been ignored. In Section 2 we derive the design criteria in our
-form (as opposed to the form used by Weinreb and Crosby) and also note how
data from different systems can be combined. In Section 3 we describe the
idea of the "effective rank" of a system, wh;,;h is roughly equivalent to the
"degrees of freedom for signal" associated with a design. The "degrees of
freedom for signal" is related to but not exactly the same as one of the
criteria used by Weinreb and Crosby, and is analogous to the usual degrees of
freedom for signal in analysis of variance. We suggest the use of
eigensequence plots along with the GCV (generalized cross validation) estimate

of the bandwidth (or signal to noise ratio) parameter on these plots, to
evaluate and compare different systems, from the point of view of degrees of
freedom for signal.

i
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The details of the ap proach descibed here are perfectly general and can
be used to make a prelimin5ry evaluation of combinations of measuring systems,
for example the use of several satellites simultaneously, and the combined
use of direct and indirect measurements.

2. DESIGN CRITERIA

For simplicity we will make assumptions similar to those made by Fleming,
that is, that surface temperature is known accurately, an initial (either
first guess or climatology) value To of the temperature field is known and
that it is adequate .l to linearize the Planck function about To. With these
approximations, given a particular design, the data may be modelled as
follows, after subtracting out the mean:

Yk,e,v = f	 Ke,v(x-xk,p) T I (x,P)dxdp + ek,e,v	 (1)
ray( e,k)

where a is the nadir angle, v is the central frequency of the spectral window,
p is pressure, x is the distance along the subsatellite track, xk the kth
subsatellite point and K represents the instrumental spectral response
function convolved with the atmospheric transmittance along a ray with nadir
angle e. The integral - is along the ray with subsatellite point xk and nadir
angle e. Refer to Fig. 1. Here T 6 (x,p) = T(x,p) -To(x,p) and theek,g,v
represent measurement, quadrature, and modelling errors. See, e . g. Wark and
Fleming (1966), Fritz et al. (1972). We shall assume that the observations
have been normalized so that E e ^, , e, v is roughly constant and the ek, e, v are
roughly independent.

Next, we shall assume that T a possess a (generalized) Fourier series
expansion in some appropriate basis functions in x and p, for example:

TI (x, p ) =	 I T a,Y ^C, ( x ) ^-Y(P).	 (2)
a, Y

If the temperature is going to be retrieved around a circle, it may be
appropriate to let the 'Pa be sines and cosines, the ^ are appropriate
(continuous) orthogonal functions in the vertical. U one was carrying out
this study on the globe, spherical harmonics might be appropriate. In
general, the {*a(x)^y(p)) are most conveniently taken to be orthonormal over
an appropriate region. In other contexts Hough functions might be used. See
Wahba ( 1982a).

lor a more careful approach to the nonlinearity, the linearization in
O'Sullivan, (1983) p. 78 may be used.

jl^ t
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The observations are now modelled as:

Yk,e,v ° E Ta,Y f	 Ke,v(x-xk,p) Ta ( x , p ) + ck,e,v	 (3)
a, -Y	 ray(e,k)

which we can rewrite as

y = X a+e	 (4)

where y is the (rearranged) vector, of the observations yk e v, a is the
(rearranged) ` vector of the T. Y 's and a is the rearranged'vector of the

ck e,v• Letting i stand for k,e,v and j stand for a,y we have that the i,jth
entry of X is

x i j =	 f	 Ke,v(x-xk,P) ^a( x ) ^-y( p ) d xd p .	 (6)
ray( e,k)

Letting a = T a Y,
se 

if To has been obtained from climatology and the *'s and
¢'s have been cAon appropriately, a fair amount of information may be
constructed or assumed concerning the prior distribution of the 6 J• 's. See,
for example, Baer (1980), Stanford (1979), Kasahara and Puri (1981), Smith 	 r
and Woolf (1976). An illustration of the explicit use of Stanford's results
in this context can be found in Wahba (1982b). We shall suppose that the Rj's
have a prior mean of zero, and a prior covariance matrix given by

Eaj ak = bcajk,	 E = { vjk )	 .

In the sequel we will be assuming that aj k is known, but the scale factor b
may not be. We suppose that the errors can be modelled (approximately) as 	 !

independent Gaussian random variables with a common (possibly unknown)
variance Q2. Then a regularized estimate of a is as given by the minimizer of

i	 1	 1
--IIy- X a1 I2+ ^R
n

The minimizer, as is given by

as = EX ` (XEX' + nXI)- ly	 (7)
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and the temperature estimate is To(x,p) + Ta a(x,p) where

Taa(x,p) - E T X,a, y *a( x ) ^Y(P)
a, 'y

and the Ta i a yare the components of sa. This can also be shown to be the
Bayes estimate (Gaudin estimate) of s with the choice X = a 2/nb. That is, sX
is the conditional expectation of $ given the data. This result is found in a
more general setting in Kimeldorf and Wahba (1971), see also Wahba ( 1978a).
In practice the estimate can be extremely sensitive to the choice of 2 X and not
"robust" to misspecification of a 2/nb or other modelling assumpticns^1 and so a
should be chosen either from experience ( " by eyeball") or by a good data based
method such as generalized cross validation (GCV) (see e.g. Craven and Wahba
(1979), Golub, Heath and Wahba ( 1979) Halem and Kalnay (1983), Wahba and
Wendelberger (1980). We will, for the moment, however, leave a as a
parameter. Now, suppose our criteria for preferring one design over another

"	 is to minimize the expected integrated mean square error, (IMSE) where

IMSE = f	 (Txa(x,p) - T 6 (x,p)) 2dxdp.	 (a)
area of
interest

Expanding (8) in the {v (,Oy) gives

IMSE = E (sj - s ). , j )g jk ( sk - 4,0	 (9)

where, if j = (a, y) and k = (a' , Y') , then

qjk	 f	 *a(x) ^ Y(PH)a' ( x ) ^y 1 ( p ) dxdp , j = (a,Y), k = ( a ' ,Y' )

area of
interest	

(I
We now take the expected value of (9), over both the distribution of the sj	 I
and the ej. Substitution of

sa = EX'(XEX' + naI)-1(XS+e)

into ( 9) gives

.tee Appendix 8

- J 1j
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E IMSE(X) = E{0'Ml'QM16 + 20'Ml'QM2e + e'M2'QM2e}	 (10)	 1"

where Q is the matrix with jkth entry qjk and

Ml = I • EX'(XEX' + nXI)-1X

M2 = EX'(XEX' + nXI)-1.

Carrying out . the expectation operation in (10), after assuming that EeiBj = 0
gives

i

E IMSF(X,X) = Trace {bMl'QMIE + a 2M2'QM2}	 (11)

Letting Q 1 / 2 and E 1/ 2 be the symmetric square roots of Q and E, it is shown in
q-V per,dcx A	 that rearranging (11) results in

1
°- IMSE(X,X) - Trace Q 1 / 2 {E - EX' (X EX '. + nXI)- 1 XE}Q1/2
b

+ (a
2
- nX)Trace Q 1/2 {EX'(XEX'+nX I)- 2XE}Q 1 / 2	(12)

b	 G
It can be shown that the right hand side of (12) is minimized over X for
n X = a 2/b. Making this choice for X gives

cz E

1 IMSE(X) = Trace Q 1 / 2 {E - F,X' (XEX' +	 I)-1 XE} Q 1/2	 (13)

b	 b ,i
Typically it will be possible to choose the {^,n^Y} so that E is diagonal
(Usually, information about cross covariances is not readily available
anyway.) If the area of interest and the area over which the {1^a¢ Y} are
orthonornal coincide, then Q will be diagonal, thus making (13) more

	

transparent. In any case, we want to choose X so that the right hand side of 	 f
(13) is as small.as possible. We have the following

	

Theorem: Let X1 and X2 be two design matrices of the same dimension and 	 j
suppose tat 6 X1 Xl s a R X2 X2B for al l a. (That i s, X1 'X 1 - X2 X2 is non	 j
negative definite).
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Then

IMSE(X1) a IMSE(X2)	
(14)

x 02

for any non negative definite Q and -- > 0.
b4

t

Proof: See Appendix A

Unfortunately this provides only a partial ordering. We would like to find a
more graphic way of evaluating a design, or comparing two designs, independent
of Q. We will do this in the next Section.

We remark that if radiosonde information is to be combined with satellite
information, then one ,just increases the dimension of the data vector y in
(4). If Ais a direct measurement of temperature at a point'(x I•̂p ^c ) then
this just adds a raw to the X matrix with entries xkj - *a(xk)0-Y;3-
If different measuring systems are being combined it is appropriate to scale
the observations in units chosen so that the c i are about the same size.

3. EIGENSEQUENCE PLOTS, EFFECTIVE RANK, AND DEGREES OF FREEDOM FOR SIGNAL.

Letting the dimension of X be nxp, we have not discussed the relative
size of n and p. 	 In meteorological 	 ,,pork	 it is frequently reasonable thatb	
p > n, since meteorological	 fields corLain	 information at all 	 scales.
Certainly in the design phase one should allow p to be as large as
computationally feasible consistent with the availability of (measured,
theoretical, or conjectured) 	 prior variances.	 'One does not expect to get very
good estimates of individual	 $J with p > n,	 however, it is T d (x,p)	 that is
actually desired and good estimates of T a (x,p) may be obtainable even though f
some of the individual	 coefficient estimates appear poor. 	 Inspection of (7)
shows that the number of linearly independent pieces of information in y
available for estimating 	 B (and hence T a )	 is limited by the number of
eigenvalues of XZX' which are at least not negligible compared to n a.Y. 	 The
"signal" along an eigenvector with eigenvalue much less than na will 	 be down
in	 the "noise".	 Proceeding under the assumption that n < p, 	 it is typical
nevertheless,	 in ill	 poked problems, that the 	 "effective rank" of mptrices
playing the role of XEX	 is much less than	 n, when n is	 large.	 The "effective
rank" of XZX	 can be roughly defined as the number of eigenvalues of XrX 	 not I
smal l	compared to the noise (relative to b) 	 in the system.	 (See Wahba
(1980)).	 This	 "noise"	 in practice includes not only the measurement error, p
but the errors in modelling the atmospheric transmittance functions, in
linearizing	 Planck's	 function,	 and	 in computing the	 integrals	 in	 (5), using k
quadrature formulae. 	 The effective rank of XEX	 can easily be studied by
plotting the eigenvalues of XZX 	 on a log-log plot.

I
t

Ahere na is appropriately chosen, see appendix B.

• i`
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Figure 2 gives an eigensequence p1r,„ of the eigenvalues reprinted from
Nychka, Wahba, Goldfarb and Pugh (1983; ^NWGP). The problem in NWPG is a
mildly ill posed problem concerned with the recovery of three dimensional
tumor size distributions from tumor radii observed from two dimensional
slices. This is a tomographic problem of a somewhat different form than the
one under study. Nevertheless, there are some common problems. There were n
z 80 observations, 68 of the 80 eigenvalues appear on this plot. The
precipitous drop off of the last few eigenvalues has been attributed to
artifacts of the quad rature procedure. Data from an active experiment using

the design behind this plot was actually analyzed and na estimated by GCV

appears on the figure. In practice n1 would appear instead of n X in (7),
G

where, in the design phase, I would be obtained by simulating realistic
examples. One can see that there are only 6 eigenvalues at least as large

as n X. Strictly speaking, comparing the eigensequence plots for X1EX1' and

X 2 EX 2
I
 does not necessarily provide enough information for choosing between X1

and X2 on the bast T cr'iteP'1 (I3), nev^rth le55, these plots can be quite

informative.

R measure of comparison between X1 and X2 which depends only on the
respective eigenvalues and a is the "degrees of freedom.for signal. 	 We may

define M. signal (X,X*) as

d.f. signal (X,a*) - trace(XEX')(XEX' + na*I)-IV

n	 aV
- E

X vi, n a*

where Xv, v=1 1 2 9 ...n are the eigenvalues of XEX
I
, and X* is a good choice of

X. To understand this definition, which is analogous to similar definitions
in analysis of variance, observe that y can be decom pos,d into signal and

noise as follows	 q

y = y a* + e X*

4einreb and Crosby's trace M, of their eqn. (10) would correspond to trace
XE 2X (XEX + na I)- 1 . The present criteria is likely to be less sensitive

to mi sspecification of E.

_µ	 __4
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where

yX* . XOX* - XEX I (XEX' + nX* I) - 1 y	 (estimated signal)

eX* i
s na(XEX' -I, nX*I )- 1 y,	 (estimated noise)

and

n a trace I = trace XEX'(X EX' + n^* I)- 1 	(d.f. for signal)

+ trace nX* (XEX' + na* I)- 1 	(d,f for noise).

It is necessary, of course, that the X* used provides a good partition of y
into signal and noise for this definition to be valid. It is clear that one
wants as many eigenvalues as possible to be large compared to n X* . One can
make a loose association of the d.f. for signal with the "effective rank."
Thus. X1 is to be preferred to X2 if

d.f. signal (X1, a 1* ) > d.f. signal . (X2,%2* ).	 (15)

We have deliberately allowed a1 * and a2 * to be different, and not necessarily
equal to c 2/b, since in practice, as well as in Monte Carlo experiments with a	 -'
small number of examples, the optimum a may depend oro X as well as T S and the
noise in the system.

The GCV estimate R of X is the minimizer of

1

1 1 ly,-XEX' (XEX'+n a I )- ly 
1 

12

n
V(a) _

[1 Trace(I-XEX'(XEX'+naI)-1)]
n

and can be obtained as part of a realistic Monte Carlo study. Of course, it
is quite possible that the eigensequence plots will show that the choice

between X1 and X2 on the basis of d.f. signal is insensitive to the choice of
A.

Eigenvalues of symmetric nonnegative definite matrices of dimension up to
several hundred can be computed using double precision EISPACK (Smith et al.
(1976)). If E is diag g n al, it may be cheaper and more accurate to compute the
singular values of E l 2X' using the singular valug decomposition in UNPACK
(Dongarra et al. (1979)). The eigenvalues of XEX are the squares of the
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singular values of E 1/ W . Approximate information concerning very
much larger matrices may be obtained using the truncated singular value
decomposition in Bates and Wahba (1982). It is conjecturec that eigensequence
plots comparing different satellite scanning designs will show that, e.g.
combining side looking scans from successive passes of a satellite along with
data in the plane of the orbit (as suggested by Suomi (1983)) would have
highly desirable properties.

We close with r few remarks. Quadrature error, in e.g. evaluating the

x ij in (5) can be surprisingly important in ill posed problems and should not
be treated cavalierly, either at the design stage or at the data analysis
stage. This point is discussed in some detail in NWGP, where the use of
matched quadrature for ill posed problems is discussed. Eigensequence plots
obtained via inaccurate quadrature may present a different appearance than
those from a highly accurate quadrature, and a poor quadrature procedure or
unrealistic value of a may mask differences between systems.
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Appendix A. Proofs.

Proof of (12).

Letting Q 1/2 be the symmetric square root of Q,

Ea 0 Ml I QM10 =

= b Trace M1'QM1E

= b trace Q1/2M1EM1'Q1/2

= b Trace Q 1 / 2 {E - 2EX' (XEX' + nXI)- 1 XT.

+ EX ' (XEX ' + nAI)- 1 XEX ' (XEX ' + naI)- 1 XE}Q 1/2 (A.1)

s
J

rj

n	 1

i

r

E c'M2'QM2c

= a2 Trace M2 ' QM2

= a2 Trace Q 1/2 M2M2'Q1 /2

= Q2 Trace Q 1 /2 {EX ' (XFX ' + naI)-2XE)

Using

(XEX ' + naI)- 1 XEX ' (XEX ' + naI)- 1

(XEX I + naI)
-1
 - na(XEX ' + nXI) -2

and adding (A.1) and (A.2) gives,

(A.2)

f

a

j
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Trace Q 1 / 2 E 1 / 2 (b[I - E 1 / 2X(XEX' + nXl)-1XE1/2]

+ ( 02 - 0b ) E 1/ 2X(XEX' + naI )- 2X E 1 / 2 )E 1/ 2Q 1 / 2	 (A.3)

which gives (12).

Proof of Theorem

Suppose that 01'Xjs' > BX2'X2B I for any B. We will show that this

implies that

Trace Q 1 / 2 EX1'(X1EX1' + nXI) - 1 X1EQ1/2

> Trace Q 1 / 2 EX2'(X2EX2' + nXI)- 1 X2EQ 1 / 2 	(A.6)

for any Q and X.

We will assume that E is nonsingular. Then our hypotheses imply that-

$ 1 E l/2X1'X1E 1 / 2 B >	 E 1/ 2X2'X2E 1 / 2 6 for any	 in other words,

E1/2X1'X1E1 /2 	 E 1 / 2	 1/2,

where A >,-B means A-B is nonnegative definite.

Let A = E 1 / 2X1, B = r1 /2 
X2, where A and B are p x n.
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We have to show that

A A',`B B' _>	 A(A'A + naI)- 1 A'	 B(B'B + nXI)-1B'

We first show that A(A'A + nXI)- 1 A' =AA'(AA' + nXI) -1.

This is equivalent to showing

A(A'A + naI)- 1 A' (AA A + naI) = AAA

Expanding the left hand side gives

A(A'A + naI)- 1 (A A A) A' + nM(A'A + naI) -1 A'

= A(A I A + naI)- 1 (A A A + nhI) A' - nM(A I A + naI) -1 A' + naA(A'A + naI)-IA'

AA 1

Now, let (AA I + naI) = C and (BB B + naI) = D.

Therefore

AA A (AA A + naI)- 1 = (C -, naI)C- 1 = I - naC-1

BB B (BBB+naI)=(D-naI)0-1=I-Ob-1

Now AA A },. BB B _> C ?,.D, and C ;,.D => C-- 1A— D- 1 (See, e.g. Marshall and

Olkin, p. 464), which in turn implies that I - naC- 1 r,.I - nXD- 1 , so the proof

is finished.

P

"^	 E

i
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r	 A
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Appendix B. Remarks on the specification of a2/nb.

Suppose that T a has an infinite series expansion in the *any. Under the
2

assumption that E8 =
j	

uajj, j = 1,2,..-, and (for mathematical convenience

only) Esjsk = 0, j at k, then for each p =

1	 1	 1 p	 sojj
Eg (P) E-1 (P) s(P) _ — E	 = b,	 (B.1)

P	 P j=1 ajj

where s(p) and E(p) are the first p and p x p componen t s of a and E

respectively. A different modelling assumption is, that T d has the property

a 1.
611a 4

C a^ 2
E	 < OD	 (B.2)

j=1 aj j

Under this assumption Ra of (7) is still an appropriate estimate of the first

p components of $, for appropriately chosen X. ( See, e.g. Wahba (1977a)),

but

1 0, (P) E-1 ( p ) s(P) + 0
P

as p + - so that b is not readily defined independent of p. GCV will return a

good estimate of a under either assumption (B.1) or (B.2) (see Wahba 1977b)

I

r'^ J
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and the design criteria resulting from the assumptions of this paper (i.e.

assumption B.1) appear eminently plausible even if (B.2) is true. A related

but somewhat harder to study design criteria under assumption (B.2) ap pears in

Wahba (1978b),

t

i
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