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X-ray line broadening analysis gives quantitative data on structural
changes of ceramic powders ,after different processing steps. 'Various
Al203 powders were investigated and the following points are discussed
on the basis of theeQ results: X-ray line broadening analysis, structural
changes during grinding, structural changes during annealing, influence of
structural properties on sintering behavior and application of line
broadening analysis to quality control of powders.
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CHARACTERIZATION OF CERAMIC POWDERS BY AN X-RAY

MEASURING METHOD

G. Ziegler

Abstract, X-ray line broadening analysis gives quantitative
data on structural changes of ceramic powders after different
processing steps. Various Al 203 powders were investigated and
the following points are discussed on the basis of these results:
X.-ray line broadening analysis, structural changes during
grinding, structural changes during annealing, influence of
structural properties on sintering behav-*.or and application of
line broadening analysis to quality control of powders.

/287*

Definition of the Problem and Setting the Objective

From the point of view of the user, there are still several problems

with ceramic and special ceramic materials with high requirements for

quality. They include:

-	 improvement of the reproducibility of the properties

-	 increase in the absolute values of the mechanical, and of

certain physical properties such as the transparency (1].

-	 reduction in the variability of the mechanical properties in

particular

-	 the controlled establishment of certain mechanical and physical

characteristics.

How can these problems be solved?

The properties of the sintered structures are determined by the

structure and by the chemical composition of the starting material.

The structure can 5e influenced to a large extent by the process

parameters (e. g., sintering temperature, holding time, pressure,

atmosphere, etc) and by the powder properties. The process parameters

can be checked and optimized relatively simply. In order to solve the
	 f

problems outlined, there remains principally the optimization of the

powder characteristics with respect to improved reproducibility and

increased satisfaction on sintering.

^e Numbers in margin indicate foreign pagination.
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Three main questions arise in discussion of this subject:

1. How can the powder properties be optimized?

2. How cnn the methods of characterization be improved?

3. How can the firing control be optimized for specified powder

properties?

Improvement of the powder properties requires optimization of the

manufacturing process and refinement of the preparation methods. Point

2 assumes improved characterization of the powder in the raw material

and during the individual processing steps. On question 3 it should

be noted that in the early stage of sintering there are fine structural

changes that can significantly affect the entire sintering process and,

therefore, the properties of the final product. These structural changes

can be checked and optimized by controlling the sintering process.

For that reason it is necessary to measure the changes of powder properties

up to the actual liquefaction process, and to investigate the fundamental

relations between the individual powder properties and the structure

of the sintered body.

One major point in the further development of high-quality ceramic

and special ceramic materials is, then, the characterization of powders

as supplied and the characterization of the changes of the powder properties

after various processing steps and im the early stage of the sintering

process. The goal of this work is to make a contribution to this problem

by applying an X-ray measuring process. The powder characterization

is usually accomplished by study methods using powder metallurgy, morphology,

chemistry, X-rays, and electron microscopy [2-4]. As is well known,

the important characteristics of the powders are the specific surface,

the mean size and the distribution of the primary particles (see

Nomenclature [51), the geometry and surface structure of the particles,

agglomerate and aggregate formations, as well as the purity and the

phase composition. In the near future, also, surface analytical methods

(Auger and X-ray photoelectron spectroscopy (ESCA)) may play major

roles in making determinations of the chemistry of the thin surface
i

layers. As practice shows, the study methods listed are often not

2
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sufficient. One reason for that is that diffusion and recrystallization	 /288

processes occur during sintering. these processes can be strongly affected

by lattice defects. It follows that, along with the procedures already

mentioned, characterization of ceramic powders should be supplemented

by methods that give information about changes of the crystalline state.

This can be cone by the method of X-ray line width analysis, which

makes possible qualitative and quantitative determinations of the

crystallite size and the lattice distortions,

-	 indicates the lattice defects in the material, and

-	 determines the energy content of the powder due to the small

crystallite size and to lattice defects.

In this contribution, we show what determinations can be provided

by the process of X-ray line width analysis in quality control of raw

materials and in processing ceramic powders after various process steps.

Various consequences of the following points are discussed using Al 203

as an example:

1. X-ray line width analysis as a supplemental method for characteri-

izing ceramic powders. The fundamentals of the method are considered

here, although only insofar as necessary for understanding and 	 `•'

application of the process in. practice. For detailed information

about the individual process steps the reader is referred to the

original literature.

2. Structural changes on grinding. 	 This point also considers the

effect of the properties of the initial powder on the mechanical

activation by the grinding process.

3. Structural changes on annealing. The effect of the mechanical	 #

and chemical activation on the change of crystallite size and

on the lattice distortions in annealing are discussed here.	 i
E

4. Influence of the structural properties on the liquefaction and

sintering behavior.

I



5.	 Consequences for the characterization of ceramic powders.

On the basis of the results of points 1 to 4, we present here

an evaluation of the process of line width analysis with respect to

simple and rapid routine characterization of ceramic powders,

X-ray Line Width Analysis For Determination of Crystallite

Size and Lattice Distortions

Crystallites are defined as monocrystalline lattice regions which

have essentially no inhomogeneous lattice distortions, and which therefore

contain no crystallite boundaries or similar strong lattice distortions

(Figure la). Primary particles visible with optical systems usually

consist of several crystallites. By lattice distortions we mean the

mean relative deviation of the lattice plane distances from their mean,

due to the incorporation of lattice defects (Figure Ib). With this

process it is possible to demonstrate the lattice defects that disturb

the coherence of the lattice and which lead to a local distortion of

the lattice. Using X-ray measurements, and especially by analysis of

the shape of the interference lines, it is possible to measure these

structural properties of ceramic materials.

The process for determining structural properties is based on the

fact that the X-ray interference lines are broadened if the crystallite

size in a crystalline material goes below a certain limiting value,

and if the lattice distances are dispersed about their mean (Figure 2).

The broadening is greater the smaller the crystallite size and the greater

the stress in the lattice. Information about the crystallite size and

the lattice distortions can be obtained both by quantitative evaluation

of the widths of the interference lines -- half-peak widths (HWB)

or integral widths (B) (Figure. 2) -- and also by evaluation of the

entire line profile. In this work we describe the process of lire width

analysis made possible from the mean crystallite size and by the average

lattice distortions. The basis for separating the contributions of

crystallite size and lattice distortions to the total line width broadening

is the different dependence of the two broadening effects on the

Y
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a) Crystallite size A
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b) Lattice distortions 6ata	 i

Figure 1. Schematic representation of the crystallite size and the
lattice distortions.

diffraction angle 9 of the X-rays (Table 1). The broadening due to

small crystallites is inve r sely proportional to cos 8, while the broadening

from lattice distortions .s proportional to tan A. Therefore, it is

possible to make quantitative statements about both the mean crystallite

size and the mean lattice distortions by measuring several interference

lines of the material being studied as functions of the diffraction

angle 6. That means that is order to determine crystallite size and

lattice distortions severax - at least two -- X-ray interference Lines

must be measured. The process assumes some corrections so as to obtain

only the broadening due to the crystalline state of the bhe sample. The

fundamental equations forthe process and the corrections needed for

application of the process are shown in Table 1.

461"
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Interference ( 226)	 29

Starting powder with low activation

a) starting powder with low activation
separation of the Ka,/K% , doublet
determination of the half-peak width (HWB)

u

ai Area	 r---
H eq,uivalencet

Brte--- L

Diffraction 	 26

Strongly mechanically activated powder

b) Strongly mechanically activated powder
—Determination of the integral, width
(B) evaluated in this work

a
i

	Figure 2. Evaluation of the measured line profile. Effect of the 	 }

	

activation on the width of the interference line [226]. 	 ;: E
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F pOF 	 QUALITYOF P

*.	 TABLE 1. FUNDAME rALS OF THE MEASURING PROCESS OF LINE WIDTH ANALYSTS
FOR QUANTITATIVE DETERMINATION OF CRYSTALLITE SIZE AND
LATTICE DISTjR''"IONS

Fundamentals of the method:

p	 t o- A	 ^v '" 4 A.n)

Corrections: - separation of the Kcal/Ka2 doublet
- splitting of the line broadening by geometric influences
(natural spectral line width included)

Determination of the true broadening ( determined by the crystalline state
of the material.

Separation of the broadening influences from crystallite size and
lattice distortions:

cc's (91 + 4	 a	 sin
A	 ^	 ^_ A

h	 Line broadening due to small crystallites
(V	 Line broadening due to lattice distortions

True line width due to the crystalline state of the materials
A	 Mean crystallite size

a	 Mean lattice distortions
K	 Crystallite form factor
a	 Wavelength of the X-rays used
0	 Bragg diffraction angle

TABLE 2. PROCEDURE FOR THE QUANTITATIVE DETERMINATION OF CRYSTALLITE
SIZE AND LATTICE DISTORTIONS IN Al203 POWDERS.

A.

'sY^

Recording of the line profile
Interferences evaluated
Separation of the Kal-Ka2 doublet
Determination of the
Measurement of the apparatus
broadening b
Determination of the true integral R
width after removal of the apparatus
broadening
Separation of the broadening effects

(014),(113),(116)

(300) , (226) , (416)
according to Rachinger [6)
integral width B

annealed Al 20 3 sample

B " ii

of crystallite size and lattice dis-	 Coso w 1	 na sln(^

tortions	 ^'- A 4 `a" -^^
Recording conditions:	 - Cu Ka radiation

- X-ray diffractometer
- Steppping mechanism
- Diaphragmed sample size <3 mm

B	 Measured, still uncorrected integral width of the material studied
b	 Integral width of a stress-free comparison sample with the same crystallites

for separation of the apparatus broadening; (annealing at temperatures >1400°C)

R	 Corrected integral width of the material studied after separation of the
apparatus broadening.
Otherwis e , see Table 1.
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The evaluation procedure explained in Table 2 has proved good for

measurements on Al 203 and on various other ceramic and metallic materials (3].

This table summarizes the individual steps of the process for characterization

of Al 203 powder interference lines and the recording conditions. The

procedure of line width analysis includes essentially three procedural

steps:

I.	 Recording of the line profiles of various interference lines,

Measurements on Al 203 have shown that the evaluation of several

interference lines h,,knln is necessary for high accuracy.

2.	 Determination of the true line width caused only by the crystalline

state of the material being studied.

After splitting up the 	 Kai-K(12 doublet it is necessary to eliminate

the broadening effects of the Apparatus (See Table	 1).	 This is

done by recording the line profile, under the same measuring conditions,

using an annealed, stress--free Al 203 sample with large crystallites.

From the line widths of this comparison sample., 	 which are broadened

only by the instrument geometry, 	 and the measured line widths

of the powder being studied, 	 the true line widths determined by

the crystalline state of the powder can be determined [3].

3.	 Quantitative determination of the crystallite size and the lattice

'	 distortions by separating the two broadening effects.

In this work,	 determination of crystallite s yze and lattice dis-

tortions is accomplished by the Hall-Williamson relation [7,8].

(Figure 3).	 In this process, evaluation of the line widths of

various interference lines leads to a plot of (f 	 w%014 =f41n(M.)•

With the assumption that the crystallite size and lattice distortions }

are independent of the measured lattice direction,	 this plot yields

a;traight line.	 The slope of the linear relation leads to statements

about the mean lattice distortions perpendicular to the reflection

planes.	 The reciprocal of the intersection at the ordinate gives
i

the mean crystallite size perpendicular to the reflecting lattice

planes.	 Lat*ice distortion and crystallite size distributions

are approximated by Cauchy functions in the Hall —Williamson evaluation

9
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Figure 4. Line width analysis of various Al 203 powders as supplied.
Quantitative evaluation:

Material	 Crystallite size	 Lattice distortions
(Pm)	 (^)

1 0,14
0

2 01109
0,02

3 (),()8 0103
4 01.14 0107
5 0131 0119

Milling duration
0,6 150 h

PM-1 n 	 `
120h

0,4

0,3 90h 

s
0,2 60h

n -	 40h

0,1  _._ _^	 20h

not milled

0 10	 20 30	 40	 pm 1 60
sin 9/1

{

Figure 5. Line width analysis of an Al 203 powder after different milling }
times. jf

10 1

-D



method [7,81. Variations can be compensated for well using

this method.

This procedure is well known from metals [31. With ceramic materials
it has been used principally for characterizing oxide ceramics [3, 9°201

but can also be applied directly to other ceramic materials such as

nitrides and carbides. G. Ziegler [31 has presented an evaluation of
the measurement process and a summary of various evaluation procedures.
Figures 4 to 6 show three examples that make clear the changes in crystallite

size and lattice distortions from the cot;r yes of the lattice lines.

Small values for the ordin, , , intersection indicate large crystallite

size, and the. increasing slopes of the lattice lines indicates an

increase in the lattice distortions.

Example l:

Characterization of various Al 203 powders as supplied (Figure 4).

The distinct changes in the course of the lattice lines indicate that

there are substantial differences in crystallite size and lattice distortions

in the	 powder charges. The quantitative data are summarized

in Figure 4. The results of the variations between the individual powder 	 ]

charges can be taken from the further results in this report.

Example 2:

Changes in the structural, properties of Al 203 powders due to grinding

(Figure 5).

The increase in the ordinate intersection and the slopes of the

lattice lines with longer grinding duration show the increasing mechanical

activation of these powders in the milling process (decreasing crystallite

size, increasing lattice distortion).
9

Example 3:

Change in the lattice lines on annealing of a mechanically activated

Al 203 powder (Figure 6).

The decrease in the ordinate intersection with increasing annealing

temperature indicates continuous growth of the crystallites. The decrease

in the slope shows the healing of lattice defects at higher temperatures.

11
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Figure 6. Line width analysis on a mechanically activated Al 0 3 powder
after annealing at different- temperatures (annealing time
) hour).
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