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1. SUMMARY

The overall objective of this program is the development of

device design and process techniques for the fabrication of a double-
2

injection, deep-impurity l(DI) ] silicon switch that operates in the

1-10 kV range with conduction current values of 10 and 1 A, respectively.

Other major specifications include a holding voltage of 0 to 5 volts at

1 A anode current, 10 usec switching time, and power dissipation of 50 W

at 75°C.

This report describes work that shows how the results obtained

at the University of Cincinnati under NASA Grant NSG-3022 have been

applied to larger area and higher voltage devices. The investigations

include theoretical, analytical, and experimental studies of device

design and processing. Methods to introduce deep levels, such as Au

diffusion and electron irradiation, have been carried out to "pin down"

the Fermi level and control device-switching characteristics. Different

anode, cathode, and gate configurations are presented. Techniques to
r\

control the surface electric field of planar structures used for (DI)

switches are examined.

Various sections of this report describe the device design,

wafer-processing techniques, and various measurements which include ac

and dc characteristics, 4-point probe, and spreading resistance.



2. INTRODUCTION

Double injection in semi-insulators is of considerable interest

because of the unique current-voltage characteristics which can be put

into practical use 'in high-voltage switching applications. Double

injection has been exclusively referred to as the simultaneous injection

of both electrons and holes from n- and p-type electrodes, respectively,

into the semi-insulating region. They are essentially p-i-n diodes.

Double injection into insulators and semi-insulators in which

carrier trapping is present has been treated theoretically, ' ' and

some experimental investigations have been made for devices fabricated

from semi-insulating Si and other semiconductor materials. ' '

Of particular interest is the case resulting from the

introduction of deep-lying energy levels in the intrinsic region. These
o

devices, referred to as deep-impurity and double-injection or (DI)

devices, give rise to current-controlled negative resistance (CCNR)

under proper conditions of doping and bias.

2
Planar configuration (DI) devices (Figure 1) are of greatest

interest for their 1C process compatibility and gating convenience.

These devices exhibit an s-type switching behavior similar to the one

shown in Figure 2.

The threshold voltage, VT, for the onset of the Negative

Differential Resistance (DNR) and the corresponding holding voltage, V

subsequent to the NDR regime can be simply expressed as :

T 2

Vu = N v o - (2)
H t n n \i

P
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Figure 1. Cross section of a (DI) planar device.
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where, U = hole mobility

v , v = thermal velocity of electrons and holes, respectively

Nfc = trap concentration

L = device channel length (Figure 1)

Efforts have been made to maximize the threshold voltage

and minimize the corresponding holding voltage (V,,) of these devices for

power-switching applications.

This report describes work that shows how the results obtained

at the University of Cincinnati under a NASA grant have been extended to

higher voltage and higher current devices. Rather than simply scaling

up mask dimensions, a number of. new ideas and modifications have been

made. These include:

1. Circular concentric anode/cathode planar configurations with or

without MOS gates.

2. Vertical symmetric rectangular electrodes with different

electrode surface areas.

3. Lateral rectangular electrodes with different anode/cathode

electrode spacing.

4. Electron irradiation and Co diffusion as well as Au diffusion

for creation of deep-energy levels in Si.

5. Field plate and SIPOS termination for control of surface field.

Various sections of this report describe the design, processing,

electrical measurements, and analysis of these new device structures.

The report concludes with various projections and recommendations for

future work.



3. DEVICE DESIGN

3.1 Background

2
As is true in many situations, the design of the (DI) switch

requires a compromise. The requirement for the device to achieve a high

threshold voltage, VTH, conflicts with the need to have a low holding

voltage, V... This is apparent from Equations 1 and 2:

Vu v a

V v a
TH p p

The challenge would be, then, to find the energy level and doping for

the lowest electron-capture cross section and highest hole-capture cross

section to minimize VH/VTH. At the same time, the surface electric

field has to be controlled to achieve bulk breakdown voltages, while the

contribution of contact resistance to holding voltage is minimized.

Moreover, carrier injection and gate triggering have to be optimized for

I-V control.

3.2 Mask Design

Two different mask sets were obtained from the University of

Cincinnati. One mask set is a symmetrical rectangular anode/cathode

configuration without a gate. The other set is an asymmetrical

configuration with a separate guard ring diffusion. The guard ring

diffusion is carried out with the cathode diffusion.

New mask sets which incorporate a number of features that

improve the overall performance have been designed. These features are:

1. Planar circular concentric anode/cathode configurations with

symmetric electrodes (Figure 3). One design has no gate and the
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Figure 3. Planar concentric anode/cathode (DI) device with symmetric
electrodes.



other design has a MOS gate with the spacing between electrode

and gate of 5, 10, and 15 mils. A similar configuration has

been employed before at Westinghouse for high-voltage planar

devices/7^

2. Vertical double-alignment symmetric electrodes (Figure 4). Four

different electrode surface areas have been investigated. These

are: a) 25 x 10~4 cm2, b) 100 x 10~4 cm2, c) 225 x 10~4 cm2,

and d) 400 x 10~4 cm2.

3. Planar devices that have rectangular electrodes with spacings of

5, 10, 15, 20, and 25 mils to study the effect of anode/cathode

electrode spacing on threshold voltage, Vj. There are both

injection gates and MOS gates. The electrodes have different

surface areas and are symmetrical (Figure 5).

In addition to the above device masks, test pattern masks have

been designed to check the gettering effects of phosphorus and boron on

Au and Co.
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4. RESULTS

4.1 Device Fabrication

A processing flow diagram indicating the various steps and

appropriate device cross section is shown in Figure 6. Most of the

steps involve conventional silicon-processing procedures. Gated devices

are processed with the injection gate diffused at the same time with the

anode p electrode, or with the MOS gate involving no diffusion, as

shown in Figure 7.

A completed processed wafer with many devices is shown in Figure 8,

4.2 Gold Diffusion

Diffusion of gold into Si has been performed using a spin-on

indirect method developed at the University of Cincinnati. Gold silica

was applied onto a source Si wafer which is then used as a Au source

during the device Au diffusion process.

Table 1 shows change in resistivity after a one-hour Au diffusion

into n-type Si at 1100 C. Spreading resistance and 4-point probe

measurement techniques were used.

To study the optimum Au diffusion temperature and time cycle,

diffusion was carried out at different temperatures into Si with

different starting resistivities. Figures 9 and 10 show spreading

resistance profile results for diffusion temperatures of 950, 1000,

1050, 1100, and 1138°C into Si with 10 and 100 ohm-cm starting

resistivity.

It is apparent from Figures 9 and 10 that a flat profile is

obtained at 1100°C for both 10 and 100 ohm-cm resistivities. The

diffusion was performed on Si test wafers without n and p electrode

11
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' o

Figure 8. A completed processed (DI) wafer.



Table 1

Gold Diffusion in Si at 1100°C for One Hour
(2-inch diameter, 11.5 -»• 12.0 mil <111>, n-type)

R E S I S T I V I T Y

Sample
Number

1

2

3

4

4-Point Probe

Before
Diffusion

9.8 ft-cm

9.1

6.2

8.2

After
Diffusion

4
2.4 x 10 ft-cm

2.6 x 104

.81 x 104

1.02 x 104

Spreading Resistance

Before
Diffusion

10 ft-cm

9.5

6.4

10

After
Diffusion

5.5 x 103 fi-cm

5.3 x 103

4.5 x 103

4.0 x 103

15
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Figure 9. Spreading resistance measurement of Si wafers that have
been Au doped at temperatures (950°C ->• 1138°C) for one hour
using an indirect source; starting material is n-type,
10 ohm-era Si.
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Figure 10. Spreading resistance measurement of Si wafers that have
been Au doped at temperatures (950°C ->• H38°C) for one
hour using an indirect source; starting material is
n-type, 100 ohm-cm Si.
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processing. It is expected that different profiles will be obtained

when Au diffusion is performed on device wafers after electrode

processing. This is due to the gettering effects of the n> phosphorus

electrode.. It is believed that gold atoms diffusing through the back

surface of the device will be gettered toward the highly phosphorus-

doped diffusion on the front side. This will result in a nonuniform

diffusion profile with higher Au concentration under the diffused

electrodes. Nevertheless, it has been found that a uniform gold

concentration profile along the device channel does not give the best
f Q \

switching characteristics. This is because the deep traps near the

cathode provide more contribution to the blocking voltage than do the

traps near the anode. Moreover, the deep traps near the anode tend to

increase the holding voltage after the device switches on. Therefore,

the graded profile caused by gold gettering toward the n electrode may

improve the device switching characteristics.

4.3 Electron Irradiation

An alternate means of introducing deep centers in Si is by

electron bombardment. The deep centers result from defects created in
( 9)the lattice by the bombarding electrons. The most attractive feature

of the technique is the ability to tailor the device characteristics

after complete fabrication without disturbing the p and n diffusion

doping profile. Moreover, no gettering effect is encountered during

this process. However, electron irradiation introduces several deep

centers/10'11' and it is difficult to establish the effectiveness or

contribution of the various centers in controlling the switching
o

characteristics of (DI) devices.

We have measured the effect of different doses of electron

irradiation on Si wafers of different starting resistivities. Table 2

shows resistivity results using 4-point probe and spreading resistance

measurement techniques. Due to the difficulties associated with high-

resistivity measurements using these techniques, these results are

indicative of the changes in resistivity values. The device electrical

18



Table 2

The Effect of Different Doses of Electron Irradiation on
the Resistivity of Silicon of Different Starting

Resistivities. (All samples are n-type with <111> orientation.)

Starting 4 Pt. Spreading
Electron Dosage Resistivity Probe Resistance

, n ! 6 electrons i n n i / n n c r ,10 — 5 10 fi-cm 14 fl-cm 11.5 ft-cm
17

10 cm 10 2,300 300

1018 10 26,000 700

1015 100 1,600 441

1016 100 19,000 >10,000

1017 100 1,600 270

1014 1,300 2,300 1,569

1015 1,300 21,000 8,006

1016 1,300 75,000 >10,000

19



measurements corresponding to these electron irradiation results are

discussed below.

4.4 Device Test and Analysis

Table 3 shows a summary of the results obtained for the circular

lateral devices with deep levels introduced by Au diffusion. The

threshold voltage, VT, holding voltage, V^, and resistance in the Ohm's

Law regime blocking region, RR, are measured before and after Al

sintering. A high threshold voltage of 1350 V with a holding voltage of

50 V is shown for devices with Si starting resistivity of 10 ohm-cm

after Au diffusion at 1100°C and before Al sintering. However, this

threshold voltage deteriorated upon Al sintering at 450 C. Similar

results were obtained for other Au-diffusion temperatures and Si

starting resistivities. This can be explained as due to change in

surface-state density, which may be contributing to the shift in device

current-voltage characteristics. The surface-state density is expected

to change after Al sintering at 450 C.

A shift in the I—V characteristics in the direction of increased

current was also observed with increased field and time. This

phenomenon is illustrated in Figure 11. The shift in current-voltage

characteristics was recovered with decreasing field, an effect which can

be attributed to heating or carrier trapping.

Similar effects were observed for electron-irradiation lateral

circular devices. Table 4 shows current-voltage characteristic

parameters, i.e., V , V , and R_, as a function of electron irradiation

dose. It is interesting to observe inversion from n-type to p-type

conductivity with increasing electron dosage level, an effect we have
(12)

also observed in neutron transmutation doping of Si.

For the vertical "sandwich" devices the same inversion effect was

also observed. Tables 5, 6, and 7 show I-V results with electron irradi-

ation. The effect of the electrode area is noted in Table 8. It is

20



Table 3

Circular Lateral Devices That Have Been Gold Diffused
(The electrode spacing is 760 urn [̂ 30 mil].)

Starting
Resistivity

10 n-cm

10 fi-cm

10 fi-cm

10 n-cm

100 ft-cm

100 ft-cm

100 Q-cm

100 n-cm

Al
Sinter
450°C

No

Yes

No

Yes

No

Yes

No

Yes

Gold
Diffusion
Temperature

1050°C

1050°C

1100°C

1100°C

950°C

950°C

1000°C

1000°C

VT

850 V

450 V

1350 V

670 V

450 V

200 V

320 V

300 V

VH

70 V

50 V

50 V

50 V

100 V

120 V

60 V

150 V

V /V
V H

12

9

27

13.4

4.5

1.7

5.3

2

s
400 Kfl

70 Kfl

2.5 Mft

70 Kn

*2nn

-

* 2 Mfl
_

21



Figure 11. Current-voltage characteristics, in ac mode, showing
shift in the direction of increasing current and
decreasing voltage.
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Table 5

Vertical Devices Made From 1300 ft-cm Material Irradiated
With 2 MeV Electron At a Dosage Level of 6.7 x lO1^ cm-2
(The measurements have been made on the smallest electrodes
[500 ym x 500 ym] and Vn is taken at 400 mA)H

Sample

2-2

2-6

2-9

Thickness

10 mil

20 mil

40 mil

VT

250 V

600 V

1250 V

VH

50 V

80 V

180 V

V /V
V H

5

7.5

6.9'

KB

"- 400 K fi

-\. 400 K C

^ 400 K n

Table 6

Vertical Devices Made from 1300 fi-cm Material Irradiated
With 2 MeV Electron At a Dosage Level of 6.7 x 1016 cm"2

(The measurements have been made on the largest electrodes
[2000 ym x 2000 ym] and VR is taken at 400 mA)

Sample

2-2

2-6

2-9

Thickness

10 mil

20 mil

40 mil

VT

300 V

480 V

750 V

VH

40 V

80 V

200 V

V /V
V H

7.5

6.0

3.75

H

-v 300 K Q

^ 300 K fj

^ 400 K fi

24
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Table 8

Vertical Devices Made From 1300 fi-cm Material 40 mil Thick
and Irradiated With 2 MeV Electrodes (The measurements
have been made on sample if 2-9 which has been given a dose
of 6.7 x 10!6 cm"2)

Dimensions
of Electrodes

500 y x 500 y

1000 y x 1000 y

1500 y x 1500 y

2000 y x 2000 y

1200 V

1000 V

900 V

750 V

180 V

190 V

190 V

200 V

V /V
V H

6.7

5.3

4.7

3.8

400 K n

320 K f>

320 K n

80 K n
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clear that the smaller electrode areas result in the highest threshold

voltage and lowest holding voltage.

4.5 High-Voltage Planar p-j-n Diodes

The occurrence of a negative differential resistance (NDR)

region in the I-V characteristics of p-i-n diodes containing deep levels

has been observed by several workers. In this section the

influence of recombination centers, introduced by electron irradiation,

on p-i-n diode current-voltage characteristics is discussed. The p-i-n

diodes processed for this investigation are similar to the ones we

published earlier. '

Electrical measurements of these devices exhibited the I-V

characteristics shown in Figure 12. The ac measurements show ideal

diode characteristics with a blocking voltage of 5 kV, which is beyond

the limit of the curve tracer used for this picture, and leakage current

in the uA range. Upon electron irradiation with 2 MeV electrons to 10
_2

cm dose, these devices showed a negative differential resistance in

both forward and reverse direction. Figure 13 is a typical I-V

measurement which shows a threshold voltage, VT = 1600 volts, and

holding voltage, VH = 140 volts. Due to the continuous shift in the I-V

characteristics discussed earlier, this measurement was taken as a

multiple exposure using ac pulsed testing to show the values of V^, and

VH. However, when these devices were annealed at 475°C for 90 minutes

in No ambient, the shifting phenomenon disappeared. At the same timez •
the threshold voltage was decreased and the holding voltage also

decreased. Moreover, this display was only exhibited in the reverse

direction. Figure 14 shows the ac I-V characteristics exhibiting a

threshold voltage, VT = 300 volts, with RB = 600 ohm and, holding

voltage, V = 50 volts, at a holding current, Iu = 1.5 amps. The
n n

influence of increasing total recombination center on the I-V

characteristics has been investigated using different electron

irradiation doses. Results similar to what is discussed in Table 4 have
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Figure 12. Reverse and forward current-voltage characteristics of a
p-i-n diode before electron irradiation.
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Figure 13. Reverse current-voltage characteristics of p-i-n diode
after electron irradiation (forward characteristics are
similar).
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Figure 14. Reverse and forward I-V characteristics of p-i-n diode
after electron irradiation and annealing.
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been also observed. It is obvious that the variation of trapping center

concentrations influences all the I-V characteristics with changes in V™

and VH- This is again plausible, since the total trapping center

concentration, Nf, determines the carrier lifetime and since an

increasing Nt yields an increasing fixed-space charge, producing a shift

of the I-V curves to higher voltages.
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5. CONCLUSIONS, PROJECTIONS, AND RECOMMENDATIONS FOR FUTURE WORK

Perhaps the most important point to be conveyed here is that
2

(DI) devices offer real performance advantages over conventional p-n

junction devices. The upper limit of power levels in these devices is

not completely controlled by the p-n junction characteristics.

We have successfully demonstrated the feasibility of manufacturing

(DI) switches with 1600 volt blocking capability and 1.5 ampere holding
2

current. Further understanding of (DI) device physics and more optimi-

zation of design parameters will pave the way for higher power levels,

decrease the "on-state" holding voltage, and increase the holding

current. The dynamic switching characteristics can also be improved.

The exact nature and concentration of trapoing centers required

for optimum device design have not been determined. The contribution of

the different n and p electrodes to the threshold voltage and holding

voltage is not yet understood. However, the results reported for p-i-n

diodes suggest the importance of these diffusions for improved device

characteristics.

The work has been very successful and the results obtained
2

represent the highest blocking voltage reported for (DI) devices.

While there are many engineering problems to be solved in realizing

higher power switching performance, it is expected that further
2

improvements will extend the power of (DI) devices to the multi-kW to

megawatt power levels.

It is hoped that these results will stimulate further investiga-

tion and future research work for careful analysis of the following

tasks:

32



1. Optimization of electrode topology and device structures to

attain specific current-voltage ratings and switching

characteristics.

2. Investigations of methods and design techniques to study bulk,

surface, and contact contribution to the threshold and holding

voltages.

3. Development of practical methods to introduce deep levels into

bulk Si as a function of base resistivity, device structure, and

switching requirements.

4. Study of gold-diffusion profile and deep-center energy level

requirements as a function of device-switching characteristics.
o

5. Methods of gating (DI) devices and methods of electrical

control of their characteristics.

Tt is believed that progress in solving these problems will

yield the technology for a new family of semiconductor switching devices

with the power level and requirements for NASA applications.
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