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TRANSITION TO TURBULENCE IN PLANE CHANNEL FLOW

By

Sedat Biringen

SUMMARY

This work, performed under Grant No. NAG-1-228 from NASA/Langley Re-

search Center, involves a numerical simulation of the final stages”of'

transition to turbulence in plane channel flow. Three-dimensional, incom-
| pressible Navier-Stokes equations are numerically integrated to obtain the
time-evolution of two-‘and threeedimensional finite-amp]itudeAdisturbances.
Computations are performed on the CYBER-203 vector processor for a 32x51x32.
griq. Results are presented for no-s]ip}boundary conditions at the solid
walls as well as for periodic suction-blowing to simu]ate active control of
transition by mass transfer. Solutions indicate that the method is capable
of simulating the complex character of vorticity dynémics during the various
stages of transition and final breakdown. In particular, evidence poihﬁs to
_thé formation of a A-shape vortex and the subsequenf system of horseshoe
vortices inclined to the maﬁn flow direction as the main elements of trans-
ition. Calculations involving ber?odic suction-blowing indicate that.
interference with a wave of suitable phase and amplitude reduces the distur-

bance growth rates.



1. INTRODUCTION |

Recent experiments by Nishioka, Asia & Iida (1981) have shoWn that
transition to turbulence in a plane thannel flow follows a sequence of
events similaf to that observed by Klebanoff, Tidstrom & Sargent (1962) ‘in
the boundary-layer transition. In this work, a direct numerical 1ntegrat1on
of the Navier-Stokes equat1ons is performed in an attempt to 51mu1ate these
events in plane channel flow, during the later stages of transition.

In- their experiments, Nishioka et al. (1981) measured the streamwise
mean and fluctuating velocities, U, and u;, 'respectiVe1y, at a fixed
streamwise location at a subcritical (linearly stable) Reynolds nunber, Re =
5000 and-simulated the various stages of transition by varying the distur-
bance amplitude. Their observations show thét subcritical instability takes
place at a threshold amplitude of (ul)max Jo = 0.01, where Uo is the mean
velocity at the channel cénter]ine The evolution of this instability is
evidenced by the 1nten51f1cat1on of the spanw1se variation of the wavefront
which develops into a peak-valley structure. Nishioka et a]. (1981)
observed that flow development follows a trend which is similar to trans-
ition in the boundary-layer (Klebanoff et al. 1962, Kovasznay, Komoda &
Vasudeva 1962): 1local shear layers are formed away from the wall at span-
wise peak positions (u;/UO = 0.06), these shear layers start to exhibit
a "kink" which is the manifestation of secondary instability and i¢ accom-
panied by a "spike" in the u;/Uo = 0.11). In rapid succession, two-,
three-, five-, and mu]ti-spfke stages are observed with increasing amb]i-
fude of the primary disturbance. Nishioka et al. (1981) presented evidence

that in the final stages of transition, thé flow starts to develop struc-



fures very similar to those found in fully developed wall turbulénée.;_ |
During this stage, the flow field is characterized by the deve]bpment of a
viscous sublayer,‘occurrence of the typical "streaks" close to the wall and
the formation of horseshoe vortices somet imes referked to as the building
blocks of wall turbulence (Theodorsen 1954). The present work simulates
this sequence of events. | |

Ef fects of three dimensionality on trénéition have first been documént—!
ed in detail by Klebanoff et al. (1962). Accord1ng1y, three-dimensionality
manifests 1tse1f mainly in the spanwise velocity variations resulting in the
production of streamwise vorticity which, in turn, interacts with the span-
wise vorticity and drives the flow to breakdown. Orszag & Kells (1980) and
Patera & Orszag (1981) have ekpanded on this idea and studied the~su$cepti-
bi]ity of plane channel flow to three-dimensional disturbances by nunerical-
lyzinfegrating the three-dimensional Navier-Stokes equations. Their compu-
tations at subcritical Reynolds numbers revealed Some interesting aspects of
subcritical transition. They found that initially two-d imensional distur-
bances which aré finite-anplitude two-dimensional Orr-Sommerfeld eigen-.
solutions, decay slowly whereas thé intéraction of two-dimensional and
three-dimensional d1sturbances drives the flow to instability for Reyno]ds
nunbers as low as 1000. In the present work we focus on the three-dimen- f
sional and nonlinear mechanisms that charaqterize transition in the fina]'
stages and during flow breakdown. Hence, we employ the full fhree-dimen-
' siohal time-dependént Navier-Stokes equations. Calculations were performed
at a linearly stable Reynolds number (Re = 1500),>with finite?amplitude t wo-
and three-dimensional eigenso]utiops of the Orr-Somerfeld equation used as

the initial conditions. No attempt was made herein to study the effect of



different initial conditions or of Reynolds nunbers; this is the subject of
~ another investigation. We also investigated the idea of using periodic suc-
tfon-b1owing,at the solid walls as a means df controlling transition. These
computations were performed at Re = 7500 which is the linearly unstable |
range for this flow. Since iransition control must be applied prior to the
fiow breakdown (e.g, before the occurrence of multi-spikes), disturbancé
amplitudes during these calculations were not large enough to impose stiff
restrictions on the a110wa61e time step. |
In section 2, of this report, the numerical methods used in this study

are briefly discussed;_ In section 3, resu]ts'of calculations are presented
and finally in secfion 4 a summary of resuits and some concluding remarks

are given,



2. THE CALCULATION PROCEDURE
The calculation procedure is based on the incompressible Navier-Stokes

equations in primitive-variable form,

du du . 3%y
__+u2___=.._l EB__'F\) ! (])
ot ax2 p axi axzaxz

and the continuity equation,
aui ‘ ' .
—=0 | - (2)
i)x.i . -

where hi are the velocities along the X3 directions, p is the density,
v is the kinematic viscosity and p' 1is the total hydrostatic pressure.
The equations are ndn;dimensionalized by the mean centerline ve]ocify Uo
and the channel half-width;  h. The flow is assuned to be driven by a coh-
stant mean pressure gradient 2/Re, where Re is the Reynolds number
given by Ugh/v. Also, the conveCtivevterms are written in a form which
prevents occurrénce of nonlinear instability in the nunericd] solution
procedure by ensuring conservation of momentun and energy (Mansodr, Fer-
ziger, & Reynolds ]978).‘ The final form of‘the Navier-Stokes_equatiohs
 reads, -

du, su, 9y ’ a2u,

T P AN S PR L @)

1 .
3X. 33X axi ) axi Re Re 3x£axzv

272

, s the Kronecker

where P = p'/p + l.u u, is the pressure head and. 61
. 2 .

delta.



The flow is assumed to be periodic in the streamwise Xy and the span-
wise x3 directions along which the flow field variables can be expanded in
terms of Fourier series. This enables the use of the pseudo-spectral method
(Orszag 1972) to ca]cuiate the spatial derivatives alohg X1 and x3 by
use of discrete Fourier transforms. Considering trénsforms in the x; direc-

~ tion, along which there are N, equally spaced mesh points, the velocity

component u, can be written as

N/2-1

u(xy) = z al(kl)e”(lxl

N
n = ~ —
2

where x; = max;, m = 0,1,...,N-1 and ky = 2rny /Njax). Accordingly, the

Fourier transform of up s

~ N]. -1 3 .
U (ky) = = Doy (x)em kX (5)
N1 m=0
The spatial derivative of u along x; can now be written as
au (xy) Ny /2-1 . .
. r iky Gy (ky Je K14 (6)
9X] T omp= =Ny /2 ‘

The derivative can be computed by forming the Fourier transfofm of u (x1)

9.

multiplying the result by ik, and computing the inverse transform, For



periodic functions, the pseudo-spectral method provides a means by which the
spatial derivatives are evaluated with maximum accuracy for a given number
of grid points. Along the x,-direction, a mesh stretching that concen-
trates grid points close to the'sdlid walls is employed (Moin, Reynolds &
Firziger 1978). The resulting mesh enables the resolution of the sublayer
that is formed during transition for y+ < 2, where y+ is the coordinate
along x,, inwall units. Spatial derivatives along x, are evaluéted‘by
a second-order finife-difference scheme on’this non=uniform mesh.

The governing equations were numerically integrated by the semi-implic-
it method of Moin et al. (1978). This procedure employs ﬁhe»explicit Ad ams -
Bashforth method for the convective terms and the implicit Crank-Nicholson
method for pressure and for the viscous diffusion terms. ’In order to start
the two time-level Adams-Bashforth method, the Eu]er-implicit method is used
at the first time step.

}Once the goverﬁing equations are discretized in.-time, a two-dimensional
Fourier transform along the periodic directions x; and x3 .transfokms the
equations into the ky-Kg3 wavé-nunbef space. The transformed equations are
written below in block-tridiagonal form for inversion along x2

vn+1

AEf B ET + C £ < R -

n+l

In (7), A, B, and C are coefficient matrices, Ej is the solution vector

n
at the advanced time level, n+l, and at the xz2-directional node, j; Rj.is

right-hand side vector that contains the convective, diffusive and pressure

terms at the previous time levels. These are given as



N

|

jo>

- - - . 1
El % Czjv 0
Uz -0 C2. 0
=] A~ A= J
ug - 0 0 cl 0
P -0 0 c2 -Re.ClJ. f
_ ) 1
BZJ-cp 0 0 t(kl)JRe
-0 , BZJ.-¢ 0 : ..t(kg)jRe
R B
] ey ReBly |
A2 0 0 0
0 AZ'J.- 0 0
0 0 Al, 0
0 0 A2 -Re.Al,
0,
] 32Uy 4 324y n + Re 3_P_rl - Ref 3
AT a.xlz -a)‘(sz I 3 X1 | 2
2“2 +[3%u, | 32u, n + Re 'Ef.ri 2Re | 3
AT - \ax; ax32 X2
n ni n n
2u3 + 52 us 92 us | + Re'f.)f__ _ 2Re _3- H:? - _]; H;]-l - 32 U
] AT | "3X12 z”(32 , X3 2 2 a)(22



also,

<
H

2 2
2Re k] + k3>.
AT J

aui auz
- u, - (no summation over i)

axi axi

pa =
n

and,

Coefficients of the.finite-difference operators that appear in the matrices

A, B, and C are given as

, = L p (A . 2. = =2/, .A. . = 2/A (A, +A,)
C2J 2/AJ+1(AJ+1 + AJ), 'BZJ 2/ j+1°%5° A2J 2/ J( j+1 J)

1)

. =Al. = A
c1J A1J ;/(

AJ'+1 = (XZ)J‘+1 - (XZ)J

Since all the flow variab]éS in the so]ution‘vector contain an imaginary and
a real part, the block-inversion process is applied twice for each pair of
ky and k3, which are the wévenunbers along x; and x3, respectively.
The assumption of periodicity in x; and xg eliminatesvthe necessity
of applying explicit boundary conditions along these directions. However,

due to the presence of solid boundaries along the x, direction, no-slip



- 3
boundary conditions are imposed oh Ups Uy, and ‘uy and the pressure at
the wall is calculated by a second order approximation from the intérior.of
the flow field. That the pressure boundary condifions are consistent with
the x,-momentum equation at the wa]1; has beeh shown by Moin et al. (1978).
Initial conditions were préSCribed ?rom the two- and thrée-dimensional
eigensolutions of the Orr-Sommerfe]d equation by conéidering that even for
subcritical Reynolds numbers, plane channel f1ow_can be driven to instabili-
ty if the least.stable two-dimensional finite-amplitude Orr-Sommerfeld
eigenmodes are intéracted with finiteeamplitudé three-dimensionaT eigenmodes
(Orszag & Kells 1981). The most explosive situation arises when the three-
dimensional eigenmodes are aligned with the méin flow direction at‘i45 to

£60 degrees. Accordingly, we have used the following initial condition:
. ; ‘. . t. k |
M%) = U(x2,0,0) + u,p (x2)e1“xl.+ U (xp)e 1183 ®)

Here, U(x,,0,0) is the barabo]ic velocity profile of plane chanﬁei flow.
The 9jgenfunctions uZD(xz) and ru3D(x2) correspond to two-dimensional and
three-dimensional solutions of the'Orr-Sommerfe1d equation at Re = 1500,
respectively. The two-dimgnsiona] solution was obtained for « = ] whereas,
the three-dimensional so]u;ion was obtained for a =1, B = %]. A computer
program, which essentially uses the Kaplan filtering technique was used for
the solution of the Orr-Somme;fe1dfequation (Reynolds 1967). The final
amplitudes were chosen so that the maximum value of the xj-directional two-
dimensional disturbance was set equal to 0.11U0 and the maximum amplitudes

- of the x;-directional three-dimensional disturbances were each set equal to

0.05U,.
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3. RESULTS AND DISCUSSION

The finite-difference system (7) was solved on the CYBER-203 vector
processor at NASA/Langley Research Center. A 32x51x32 mesh was émp]oyed
along the x; -, x-, and x3-directions, respectively. The cbmputer code was
fully vectorized and vectorized library subroutines were used for the main
computatibna1 operations that the solution technique employs. These vector
opérations are mainly one-dimensional fast Fourier tkahsform (FFT) to ca1; ‘
culate spatial derivatives with the pseudo-spectral method, two-d imensional
FFT to transform the equations into ky-k3 wave-number space and block-
tridiagonal matrix inversion along xp. For the FFT operations, typical
vector lengths were around 1000, which is an dptima] vector length to take
full advantage of the vector processor. For the block-tridagonal matrix
inversion (which essentially is a scalar operation); a vectorized subroutine
that inverts a large number of tridiagonal systems simultaneously was used.
‘This procedure decreases CPU time significantly by reducing the number of
scalar operations required to invert each system separately. The fully
vectorized code takes about 10 sec. of CPU time per time step for the 32x51x32
mesh to solve the finite-difference sysfem (7) on a computatidnalvbox, in which
the flow is ;onfined betwe;n rigid walls at x, = z1. Perioditity lengths
(box lengths) along x, and x3 were chosen so that the smallest wave
nunbers allowed in the computétional domain were equal to a« =1 and B =1,
respectively, i.e., the box length was set equal to Zﬁ along these directions.

It should be recal]edbthat the tfme-advancementvschene emplioyed in this -
work is parf]y explicit (on the convective terms) and partly implicit (on

the diffusion and pressure terms). Although in view of linear stability
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analysis, implicit methods aré unconditionally stable (extrapo1at16h to
nonlinear equations is somet ime vague), the mixed nature of the préseﬁt‘
scheme as well as the time-accurate hétUre of the probleém under invéstiga-
tion necessitate adherence to stability bounds of explicit schemes. There-
fore; in all the calculations reported herein,}the convective stability
coﬁdition (the Courant-Friedrichs-Lewy'cohdition) that requires the Courant
nunber (C.N.) to be always less than one and the diffusive stability condi-
tion were obeyed. Mith (axp)yq, = 0.0092 and AT = 0.025, where AT s the
nondimensional time-step, through the course of the calculations C.N. va?féd

as

LR
AX3 |

+

u
AX1 -

u2
AX2

C.N. = AT + < 0.2 9)
max
whereas the diffusive stability criterion, D, varied as

p= L | _ AT l<o.04 | (10)
s Re | (ax)2

min

S0 that the diffusive stability condition which requires D < 0.5, was also
always satisfied. The computer prbgran was tested by calculating the growth
rates of small-amplitude Orr-Sommerfeld waves.  For a wide range of RéynO]ds
nunbers (between 1000 and 10,000) fhé'agreement between the computed re-
sults and the linear theory was better than 0.5%.

In the subsequent parts of this section, results obtained from the'
nunerical integration of the finite-difference system (7) for the time-evo-
lution of the initial disturbances are compared with the expé?iméhts of
Nishioka et al. (1981). It should be noted that this expeériment Was done at
Re = 5000 (subcritical) whereas the computation was done at a lower

aubcritical Reynolds nunber, Re = 1500. The seléction of a higher Reynolds



nunbgr (e.g., in the linearly unstable range) makes the governing equations
very stiff and requires the use of extremely small time steps for numerical
stability. Hence; the selection of Re = 1500 was mainly to force the
computationsvinto transition and breakdown with the 1east.anount ofvcomputer
expense. It should be noted that wall phénomena characteristic of the fina]
stages of transition are essentiélly independent of Reynolds nunber as
observed by Nishioka et al. (1981) for channel flow and by Smith &,Mefz]er'
(1982) for boundary-layer transition. Therefore, the difference between the
Reynolds nunbers of the experiment and the simulation should not have any |

important consequences for the qualitative comparisons between the two sets

of results.

3a. Plane Channel Flow with No Mass Transfer

In their experiments, Nishioka et al. (1981) identified the various
stages of transition according to the number of spikes éppearing.in the os~
cilloscope traces of the disturbance velocity, u;.' Sinée the timeéaxis_of
the expefiment is interchangeable with the x;-axis of the computation, we
obtain similar traces by pTotting u{ along x, (ovek two periods) as shown
in figure 1. In this figure, the first frame shows the sinusofdal variation
of the initial conditions qt T = O. This is followed by the nonlineaer dis-
tortions of the initial co;ditions resulting in variations of u; which
Strbng]y resemble the oscilloscope traces at the one-, three-, and five-
spike siages of the laborator; flow. In particular, the variathns of u{
with x, at T = 44 are very similar to the ensemble-averaged waveforms
presented by Nishioka et al. (1981) at the fiVe-spike st age. Thé_last frame
in figure 1 shows variations of u; at a time (T = 79) much later than the

occurrence of the five-spike stage (T = 44).E Hence, we note the absence of

13



fluctations of rich frequency content that are characteristic of fully-
develépéd turbulence; this lends support to the idea that the TdSt stage of
transition may not be spontaneous and;explosive a phenomenon as generally
supposed. However, at this stage, the~u; variations are very similar to
velocity oscillations observed in wave packets and indicate the occurrehce
of “patches" of turbulent fluid. For the remainder of this discussion,
results from the simulatibn at the spike stages (shown in figure 1) will be
used, whenever possible, for comparisons with the corresponding spike stages
of the experiments of Nishioka et al. (1981). |

In'figure 2, we show a history of the time-evolution of the flow in
terms of the maximum amplitude of the two dimensional primary disturbance,
its two-dimensional harmmonic and the three-dimensional primary disturbance.
The trends displayed by these quantities are genérally similar to the re-
sults of Orszag & Kells (1980) which they obtained from computations. per-
formed at Re = 1250. The main features of these trends are the rapid de-
crease in the two-dimensional pr1mary wave amplitude and the rapid increase
of the amplitude of its harmonic. Also, the three-dqmens1onal primary-wave
amplitude first_incréases, then gradually decreases at Around T =30. In
the present calculations, we obser?e that variations of the amplitudes start
to fluctuafe as early as T = 15 'but, even at later times, the fluctua-
tions do not display an explosive trend. That no "explosive" instabilities
were found in the present computations is in accord with the f1nd1ngs of
N1sh1oka, Asai & Tida (1980), which imply that breakdown in channel flow is
as gradual as the growth of instabilities found in free shear flows.

In figure 3, we present plots of maximum root-mean-square (rms) ampli-

14



tudes of wup, (w rms)max' over two periods along x3. Here, we define‘the

rms value as an average over x,. We note that at T'= 0, the wave pat-
tern is sinusoidal and corresponds to peaks at x3 =0, 2r, 4ﬂvand tQ o
valleys at x; =g, 3zr. Subsequently, at later times the nonlinear diSA
tortions of the wave front result in minima occurring>at the peaks ahd.vv 
maxima occurring at the valleys in accordance with the experiments of |
Nishioka et al. (1980). At later times,:an increase in the frequency of the
peak-valley structures is clearly evidentlsuggesting an increase in thé num-
ber of characteristic vortex structures along x3.
Plots of velocity profiles averaged over the Xy=Xx3 plane, <ui>, are
shown in figure 4 for laminar (initial), late transition and "early turbu-
lence" stages at T =0, T =44 and T =79, respectively. The <up>
distribution at T =79 has a strong resemblance to the turbulent -
channel flow profile, with increased velocity gradient at the waT]'ahd_with
a full profile indicative of turbulent mixfng. Although, as.expected, <uy >
prdfiles do not show any fluctuations (or,inflections), plots of instantan-_
eous velocity profiles do show very strong inflections, especially in the
regions close to the walls (figure 5). ~This indicates that the fnterac-
tion of two- and three-dimgnsional waves close to the walls is the central
mechanism that drives the flow to instability. This is‘in accord Qithfthe
idea that the flow will undergo transition only for a selected band.of span-
wise wave numbers, the most "dangerous" of Which result in three-dimensidnall
disturbances with maxima occurring close to the walls (Orszag &erlls 1980).
In figure 6, the velocity profile <ut+> = <u1>/uT versus y+ = xz.uT/v is

plotted; here u.is the friction velocity and is calculated from d<ur >/dx2

2
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at the wall times 1/Re. Although, the plots indicate the formation of a
sublayer, and the change from T =44 to T = 79 Sshoiis a gradual approach
to the law-of-the-wall, the difference is still espacially apparent in the
Togarithmic region. At f = 44, the Reynolds number based on friction
velocity is equal to 69'and, as expected, is larger than its initial
(Vaminar) value of 55.

Plots of p]ane—aVeraged fluctuations intensities, ’<(u1~ <up>)2>,
are‘shbwn in figure 7 at various T. There are several interesting featu%és
of this figure. Firsﬂy, at T =17, the'shift in the position of peak
anplitude towards the channel center (x2 = -0.6), as well as the increash
in the maximun amplitude indicate that the development of thé computed flow
field is compatible with experimental observations peftaihfhg to the one-
spike stage of the transition process (Tani 1969). It will later be Shown
that during this stage there is a substantial increase in the spaniise
vorticity, w_, away from the lower wall around x, = - 0.6, Secondly, in
accordance with the laboratory flow of Nishioka et al. (1981) at 1atér
stages, the computed intensity profile diﬁp]&ys a second peak occurring
close to the wall associated with turbulence production. At T = 44 cor-
kéSpoﬁding'to the five-spike stagé, we see that peak intensity has reached a
value typical of turbu]ent.chénnei flow; however, the peak occurs$ uncharace
teristically away from the Qall. Finally at T - 79, the pedk in the .inten-
sity profile has'moved towards the wall but even at this stage, the distri-
bution has not assured the asymptotic fully-turbulént form. In figire 8;
plots of plane-averaged shear stress, <up - <upd> >, profiles éhé shown .
The increase in thé magnitudé of shear stress from T = 0 f¢ T =17 CTéakiy

indicates the effects of nonlinearity in transferring ehérgy from the mean
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flow to the fluctuating motion. At the five-spike stage (T = 44), the |
max1mum shear stress has attained a value typical of turbulent channe] f]ow
»However, the locatiion of the maximum is away from the wall and roughly cor-
responds to the location of the peak in the respect1ve intensity profile
(figure 7). It can thus be inferred that at this stage of the comutat1on,
the energy-exchange mechanisms of fully-developed wal] turbulence is not yet
-reflected by the plane-averaged velocity correlations. |

Spanwise variaﬁions of u; are plotted at'vqrious distances along x,
in figures 9a-9ef In figure 9a, we show initial distributions which are
highly three-dimensional. At T = 17 (figure 9b), the distributions-indicate}
a'velocity defect both at peak and valley as well as a velocity excess in:
_between. This is indicative of intensification of the initial streamwise
vortices and appearance of weaker streamwise vortex pairs in accordance wifh,'
the Benney-Lin (1960) theory. Subsequently, figures 9c-9e display‘the form-
ation of additional vortex pairs indicating transport of energy}down»the
-waveénunber spectrun. The spanwise symmetry imposed by the initial éondi-
tions is retained through the five-spike stage. At this stage, an estimate
of the flow field resolution can be obtained from the spanwise distance be-
tweén peak positions, Age 'Nondimensionalised by up and vV, typically -XZ=
115.  This is larger than but comparable to A = 80, which is the typica]_'
spanwise length in the laboratory flow during the five-spike stage.(NiShioka
et al. 1981). It should be néted that the spanwise characteristic length in
wall turbulence is about 100. Therefore, it could be asserted that at this
stage present results are representative of initial wa11'turbu1ence.

A more detailed description of the transition process can be obtained

from contour plots of equi-shear lines, au143x2 (which correspond to
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approximate spanwise vorticity, w,) in the x; - x, plane at the position of
maximum Uy;Upg. Results from the'cbmputation that correspond to the vdriogs
stages of the laboratory flow are presented in figures 10-15 between the
lower wall (x, = -1.0) and channel center (x, = 0.0). In figures 1lla -
13a, figures 4-6 of Nishioka et al. (1981) are also shown for a qualitative
comparison with the preseht results. In figure 10, contour plots corre-
sponding to the initial cOnditions and in figure 11, contour plots corre-,
sponding to the "one spike" stage (Tv; 0 and T = 17, respectively) are
shown; In both the'1aboratory flow and the computation, the typical head of
the shear layer appears very ciear]y at the‘dne-spike.sxage, indicating the
formation of a shear layer away from the wall at about x, = - 0.6 due to the
induced velocity from the streamwise vortex system. In addition, the sud-
den dip of ihe shear layer from the high-veiocity outer flow to the lowy-
velocity region clearly appears as a kink in both the computation and the
laboratory flow. Since the grﬁd points are finely clustered along Xy
close to the wall, vorticity concentrations in this region are also ade-
quately resolved by the numerical simulation. |

Figure 12 shows equi-shear lines at T = 27 correqunding to the three-
spike stage of the 1aboratory’f10w. Due to the secondary instability mani-
fested in the previous Stage,‘breakdqwn of flow structures into sna]]gr
scales is observed in both the exper1ment and the computation. The growth
of the k1nked portions of the equi-shear Tines into the so-called "ha1rp1n
eddies" is clearly depicted in the experiment. The compuytation qlsp]gys a
similar evolution: the head of the shear layer is Tifted up towards the
channel center11ne, and the kink in the shear Tayer is quite apparent in

this stage of the simulation. Simultaneously with this activity taking
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blace-in the outer (high speed) portions/of the flow field, both the
experiment and the computation ghdw an intense shear layer developing close
tb the wall, which is indicative'of turbulence generation. It is generally
agreed that hairpin eddies which are lifted towards thé centerline ekupt
“into turbulent spots. However, figure 12 indicates that wall turbu]éncé
may also be closely associated with vorticity dynamics simultaneously taking
piace‘with the erdption of hairpin eddies. Contours of equi-sheér ]iﬁes‘at
T = 44 corresponding to the five-spike stage of the experiment are shown in
figure 13. In both the experiment and the computation, the intense éhear
layer deve]oped_in the wall region is closely discernible. It should also
be noted that, the spanWise position of maximum mz which>appears véry -
“close to the wall and doe§ not necessarily coincide with the spanwise
location of maximum‘ u1/U0 where the contours are presented. AThe’most sig-
nificant feature of figure 13 is the existence of distinct vortex structures‘
in the wall region both in the laboratory flow and in the computation.

These vortices are inclined to the main flow direction at‘dn angle that
varies between approximately 14° to 40° and show a close resemblence to the
energetic horseshoe vortices characteristic of initial ya]] turbu]ence:(Hama
& Nutant 1963, Klebanoff et al. 1962). It is these vortices roughly aligned
along the direction of maximum extensional stress that are mainly responsi-
ble for extracting energy from the mean shear (Tennekes & Lum]ey,1972);

In figure 14, equi-shear lines at spanwise locations x3‘= (x3)g *+ 24ax,
and. x3 = (x3)y + 4Ax3 at T = 44 are compared. Here, we define (x3)g  as
the spanwise positibn corresponding to figure 13 and- Ax5 is the mesh size
along x3. Figure 14 suggests that the shear layer is formed from a system

of horseshoe vortices in succession such that as the first-born vortex
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erupts into the channel center, a new one forms at the wall. As evidenced
in Figure 5, the vortex Tift-up is still clearly discernible at the “early
turbulence" stage (T = 79). Here, we note the vortex lift-up towards the
channel center but its extension is considerably shorter than that observed
previously at the five-spike stage. This varfance suggests the existence of
different vortex structurés characteristic of these two stages. In fact, we
shall later show that the typical horseshoe vortex of late transition is not
the basic structure of early turbulence.

‘AS we have noted before, the mechanism that is responsib]é for the
generation of vorticity concentrations is usually explained as vortex
stretching (and deformation) by the mean flow. The stfetching and deformed
Tayer moves downstream with a'ﬁranslation velocity that induces lower local
velocity of the upstream edge of the vorticity layer than its downstream
edge (Komoda 1967). An examination of up contours of (figures 16 and 17)
along}with the approximate spanwise’vorticity contours at T = 27 (figure
12b) and at T = 44 (figure 13b) in the x; - x3 plane clearly shows a similar
trend. We observe that the nose of tHe vorticity layer is generally associ-
ated with higher velocities than the upstream region and large variations of
the local velocity exist within the Tayer.

Finally, normal velocify, U, contours are shown in figures 18-21
during the three-spike, multi- -spike and early-turbulence stages at the
position of max imum ul/U0 F1gure 26 shows u2-contours in the x - x
plane at T = 27, ¢orresponding to the three-spike stage of the laboratory |
flow. In this figure, there is clear evidence of the beginning of an alter-
nating up-and-down flow similar to the pattern described by Kovaszny et_al.

(1967), which is characterized by the intense updrift accompanied by fluid
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drifting down at both sides. This alternating structure of up-and-down flow

in the x; - xp plane is more evident at T = 44 (figure 19), cbrrespondingvto
the multi-spike stage of.the expekiment. Also in this figure; alternéting
regions of f]uid with scales smaller than those at T = 27 Are.depic;ed. In
figure 20 and 21, normal velocity contours are shown in the x, -'x3 plane'at
T =44 and T = 79 corresponding to the multi-spike and early-turbulence
stages,‘respective]y. - These contours are'plotted in the region befweén{thé“
lower wall (x, = -1.0) and x, = -0.92, display the evo]dtion of alternating
structures very similar to the characteristic streak-like structures found
in the wall regioh of turbulent channel f]dw (Moin & Kin 1982).

3b.  Active Control of Transition by Periodic Suction-Blowing

" In this section we demonstrate the uSefulness of employing periodic'i

~ suction-blowing boundary conditions at the solid walls for contr6111ng
transition. All these calculations were performed at a Reyno1ds nunber well
within the linearly unstable fange, i.e. at Re = 7500. The maih idea here
is-to cancel or modify the "most dangerous" disturbance by 1nterferihg Withvv
a wave of suitable amplitude and phase. This idea has been proven to be
feffective in controlling boundary-layer transition in an'experiment in which
the two-dfmensiona] Tolimien-Schlichting wave was effectively cénceT]ed'by a
control wave generated dowﬁstreaﬁ of the initial disturbance. The amplitude
and phase of the control wave (produced by a second wave generator-placed
downstream of the first) was Adjusted to minimize the max imum disturbance
from the first wave generator (Milling 1981). Expanding on this idea and
assuming the two-dimensional primary wave to be the most dangerous disturb-

ance, in this work we prescribe the boundary conditions at the solid walls

such that
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(a)  the resulting control wave is compatible with flow periodicity
along x, and X, SO that there will be no net mass»transﬁer into
- the flow field;
(b) the resulting control wave will be 180° out of phase with the two-
dimensional primary wave;
(¢) the control wave amplitude is adjusted for maximum attenuation of
the primary disturbance.

In figure 22, resuits for a case in which thé initial disturbances are
two-dimensional solutions of the Orr-Sommerfeld equation are shown. The
maximum amplitude of u; was set equal to 1% of the channel centerline
velocity. Periodic suction-b]owing boundary conditions were prescribed at
each-wall at T = 5,3 for one time stop, before and after which the channel
walls weré made impermeable via the no-slip boundary condﬁtions,} The most
effective wave produced by the suction-blowing boundary conditions was found 
to be 180‘ out of phase with the twa-dimensidna} primary u; (corresponding
to 02(1,0) in the Fourier space) with twice its amplitude. The effect of
the control wave to reduce the growth rates of both (u;)ZD—primary and fts'
harmonic is evident from figure 22. In fact, the control wave has resulted
in a décaying harmonic preQenting energy transfer down the wave-number
spectrum, consequently 1nhib1fing the proper development of the transition
process. )

To test the effects of threé—dimensionality a similar ca%culation‘was
performed in which three-dimensional solutions of the Orr-Sommerfeld equa-
tion were also included into the initial disturbance field. For this case,

the maximum amplitudes of the two- and three-dimensional disturbances were
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set at 3% and 1% of the channel centerline velocity, kespectivély. .fhe ﬁoSt
effective control Wave was.found to be 180° 6ut of phase with_(u;)éo"wfth
2.5 times its amplitude. The characteristics of the resulting flow field
are shown in figure 23, after the periodic suction-blowing boundary |
conditions are applied at T = 5.3 for one time stép. In summary, the i
control wave attenuated the gr?wth rates of (u;)total ahd (u;)zo- primary;
and resulted in a decaying (“1)20 - harmonic as.in the previous case.”'NOte
that (u;)30~ primary remained unchanged. |

It is apparent from the preceding discussion that the applicatioh of
periodic suction-b]dwing boundary conditions on the solid walls of thé
channel has a considerab]e»effeﬁt in reducing the growth ratesﬁof3two-vand'
three-dimensional disturbance fields. In practice the technique can be im-
plemented via a suction-blowing strip along the body span. The}spectrun of
the disturbance field just upstream‘of the strip must be available in order
to activate the correct boundary conditions and obtain the most effective

cohtrol'wave. Further work is necessary to evaluate the frequency-response'

and feédback de]ay of such a mechanism.
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4.  SWMMARY AND CONCLUDING REMARKS
In this study, final stagés of transitioh to turbulence in plane

channel flow have been s1mu1ated by a d1rect nunerical solution of the
Nav1er-5tokes equations. It is found that, in spite of the limited resolu-
tion of the 32x51x32 grid employed in the computations, the simulation is
capable of reproducing mdst of the essential features of wall phenomena
observed in the laboratory. Grid resolution in the X1 and x3 directions,
~along which the f]ow is periodic,-is found to be adequate to capture the
sequence of events that lead to ear]y turbulence. Vorticity contours in the
vicinity of the lower wa]] indicate format1on of a system of horseshoe
vortices with legs or extensions in the X - x3 plane comprised of
counter-fotating streaﬁWise vortex pairs. Our findings are also in accord
with the Benney-Lin (1960) theory, e.g., the present computations_cleaf]y
depict-frequenqy-doub]ing of streamwise vorticity. It should be noted that
the initial conditions used in this wofk are of the Benney-Lin type and
consist of a vorticity field with a strong spanwise component and weak
streamwiée and transverse components. Therefore, the question of the origin
of sfream-wise vortiéity and its'precise-relatipn to distortions of spanwise
vorticity remain to be add(essed in future work. |

At Tater stages of the computation, transverse velocity contours indi-
cate thé formation of streak-like structures alternating in the spanwise
diréction. Typically, the spénwise characteristic 1emgth of these vortices,
inferred from the spanwise variations of wu, was found to be approxiémtely
AZ = 115; this is close to A, =j100 of fully-developed wall turbulence.
It was found that during the later stages of transition, flow field

statistics indicate the formation of a Taminér sublayer; however, the
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development of the logarithmic region and consequently the approach to‘f
fully-developed turbulence is slow. This‘gradual approach to steady sfate

is also reflected in the profiles of plane-averaged intensity and shear

stress.

The main deficiency of this study stems ihevitably.from Timited spatial
resolution and manifests itself in several ways. Firstly, at‘later stages
of the‘computatiqn,'ihsufficient mesh resolution results in lower'grédienté
of the mean vélocipy in the viscous sublayer. This, in turn, cauées less
turbulence production in the wall region as eVidehcéd:byvthe absence of
peaks in the intensity énd shear-stress profiles close to the wall. Sécond-
ly, the finite cut-off wave nunbers along x, and x, preeveht the formation
of a proper wave-nunber spectrum. .As a consequence, pollution of Fourier
modes and accumulation of excess energy at low wave nuunbers become very
significant sources of accuracy at large T. Hence, proper éimulation}of
transition beyond the early-tdrbulence Stage necessitates the use’of.highér
~ grid resolution. Even then, the incorporation of a mechanism to account for
the subgrid scale turbulence would be required for a more acéurate.ahd
realistic representation of the flow field phenomena. |

- This work was supported by NASA/Lang]ey Research Center Qnder Grant -
No. NAG-1-228. The author is indebted to P. J. Bobbitt and W. D. Harvey for

their interest and encouragement during the course of this work.
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Figure 2. Time-history of maximum disturbance amplitudes.
(a) Two-dimensional primary; (b) three~dimensional
primary; (c) two-dimensional harmonic.
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Figure 4. Plots of plane-averaged mean velocity profiles.
’ (a) T=0; (b) T=44; (c) T= 79.
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Figure 5. Plots of instantaneous velocity profiles at X)= 3n/2,
x3= m/2. (a) T=17; (b) T=44; (c) T= 79,
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Figure 8.
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Plots of plane~averaged shear stress.
() T =44, ‘

(a) T = 0; (b) T = 17;
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Figure 9. Spanwise '\i\a"ri'a"t':iahs of ’ull; (a) 'r = 0; (b) T = 17;

(d) T = 445 (&) T = 79.
(111) top, x5 = -0.764.

(1) bottom, Xy = -0.968; (ii) middle,

() T = 27;

X2 = "O¢903;
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Figure 10. Contour plots of aullax2 at T = 0 in the X) =X, plane; contours
from -4.0 to 4.2,

(b)

Figure 11. Contour plots of duy /3x,. (a) One-spike stage, figure 4 from
Nishioka et al. (1981); (b) computations at T = 17 in the x;-x,
plane, contours from -0.2 to 2.6.
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Figure 12. Contour plots of du) /3%,. (a) Three-spike stage, figure 5 from
Nishioka et al. (1981); (b) computdtions at T = 27 in the X)~Xgy
plane, contours from 0.3 to 6.8.



~Figure 13. Contour plots. of 8u1/8x . (a) five-spike stage, figure
6 from Nishioka et al. %1981); (b) computations at T=44
in the X1-X7 plane; contours from 0.7 to 7.0. At this .
spanwise position, we define_x35(x3)°.
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Figure 14, Contour plots of du) /3%y in the x)-x, plane at T = 44; (a) kg =
(x3)0 + 2Axg; (b) x3=(x3)y + 4dxy. Here Ax3 is the mesh size

along xj.

Figure 15. Contour plots of 3u,/dx, in the X|rX, plane at T = 79;
contours from 0.25 to 6.25. .
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Figure 16. Contour plots of u; in the x,-x, plane at T =-.'> 27. * Countours
from 0.0 to 1.08.
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Figure 17. . Contour plots of u) in the x,-x, plane at T = 44. Contours from

0.0 to 1.02.
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Figure 18. Contour plots of uy in the X=Xy plane at T = 27. Contours from

=0.24 to 0.24.

Figure 19. Contour plots of uy in. the x,-x, ﬁlane at T = 44. Contours from
-0.09 to 0.11.
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Contour plots of u, in the x,-x5 plane at T = 4.
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Figure 21,

the xp,-x3 plane at T = 79,

41



-1

10

10 _

(ui)» | -

max

10 "~

L]

-4

10 -#:-

107

e 1-1'T‘

o — v ——— ——

2-D Primary

2¥D_Harmonic

15

Figure 22. Two-dimensional wave cancellation,

42



(uy)

max

10-2_4 |
Iy

Total
10-3—;-,' — — — 2-D Primary |
'F ——— 3—D Pfimary
== 2=D Harmomic
Hi
1074 | | |
0 5 10 15

Figure 23. Three-dimensional wave cancellation.

43






b
i "




w

1. Report No. 2. Government Accession ‘No. . Recipient’s Catalog No.
NASA CR-172298 -

4. Title and Subtitle N e 5 R‘epldrinbaiev o

‘ February 1984

6. Performing Organization Code

Transition to Turbulence in Plane Channe1'F10ws

7. Author(s) : : : | s Perfortning Organization Report No.

Sedat Biringen

] 10. Work Unit No,

9.. Performing Organization Name and Address

Otd Dominion University B 11, Contract or Grant No.
Mechanical Engineering & Mechanics Dept. _ o
Norfolk, VA 23508 . . NAG1-228

12, Sponso_(ing Agency Name and Address

Nationa!l Aeronautics and Space Administration : 14
Washington, DC 20546

13. Type of Report ‘and Period Covered
Contractor Report
. Sponsoring Agency Code

15. Supplementary Notes

Dr. G. Goglia: 0.D.U. Principal Investigator
W. D. Harvey: Langley Technical Monitor
Final Report for the period ending October 31, 1983

6. AbSact  This report describes results obtained from a numerical simulation of the
final stages of transition to turbulence in plane channel flow. Three-dimensional, in-"
compressible Navier-Stokes equations are numerically integrated to obtain the time-
evolution of two- and three-dimensional finite-ampl1tude disturbances. Computations are
| performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented
for no-s1ip boundary conditions at the solid walls as well as for periodic suction-
blowing to simulate active control of transition by mass transfer. Solutions indicate
that the method is capable of smmulating the complex character of vorticity dynamics
during the various stages of transition and final breakdown. In particular, evidence
points ‘to the formation of a A-shape vortex and the subsequent system of horseshoe
vortices inclined to the main flow direction as the main elements of transition.
Calculations involving periodic suction-blowing indicate that interference with a wave
of suitable phase and amplitude reduces the disturbance growth rates.

17. Key Words (Suggested by Author(s) ) 18. Distribution Statement
| Fluid Mechanics

Channel Flows
Transition Simulation
-Navier Stokes Equations

Unclassified - Unlimited

Subject Category 34

19. ‘Security Classif. (of this report) 20. Security Classif. {of this page) 1 21. No. of -Paées é?, Price
Unclassified Unclassified i 46 A03

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161







3



