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TRANSITIONTO TURBULENCEIN PLANECHANNELFLOW

By

Sedat Biri ngen

SUMMARY

This work, performed under Grant No. NAG-I-228 from NASA/Langley Re-

search Center, involves a numerical simulation of the final stages of

transition to turbulence in plane channel flow. Three-dimensional, incom-

pressible Navier-Stokes equations are numerically integrated to obtain the

time-evolution of two- and three-dimensional finite-amplitude disturbances.

Computations are performed on the CYBER-203 vector processor for a 32x51x32

grid. Results are presented for no-slip boundary conditions at the solid

walls as well as for periodic suction-blowing to simulate active control of

transition by mass transfer. Solutions indicate that the method is capable

of simulating the complex character of vorticity dynamics during the various

stages of transition and final breakdown. In particular, evidence points to

the formation of a A-shape vortex and the subsequent system of horseshoe

vortices inclined to the main flow direction as the main elements of trans-

ition. Calculations involving peri'odic suction-blowing indicate that

interference with a wave of suitable phase and amplitude reduces the distur-

bance growth rates.



I. INTRODUCTION

Recent experiments_byNishioka,Asia & lida (1981) have shown that

transitionto turbulencein a planechannel flow fOilows a sequenceof

events similarto that observed by Klebanoff,Tidstrom & Sargent (1962) in

the boundary-layertransiti'on.In this Work, adirect numericalintegration

of the Navier-Stokesequations is performed in an attempt to simulate these

events in plane channel flow, during the later stages of t:ransition..

In their experiments,Nishioka et al. (]981) measured the streamwise
J

mean and fluctuatingvelocities, UI and ul, respectively,at a fixed

streamwise locationat a subcritical (linearlystable) Reynolds nunber, R_ =

5000 and simulatedthe various stages of transitionby varyingthe distur-

bance amplitude. Their observationsshow that subcriticalinstabilitytakes
!

place at a thresholdamplitude of (Ul)max/U0 = O.Ol, where Uo is the mean

velocity at the channel centerline. The evolutionof this instabilityis

evidencedby the intensificationof the spanwisevariation of the wavefront

which develops into a peak-valleystructure. NishiOka et al. (1981)

observed that flow developmentfollows a trend which is similar to trans-

ition in the boundary-layer(Klebanoffet al. 1962, Kovasznay, Komoda &

Vasudeva 1962): local shear layers are formed away from the wall at span-

wise peak positions(ul/Uo = 0.06), these shear layers start to exhibit

a "kink" which is the manifestationof secondary instabilityand iS accom-
!

panied by a "spike" in the ul/Uo = 0.11). In rapid succession,two-,

three-,five-, and multi-spikestages are observed with increasing ampli-

tude of the primary disturbance. Nishioka et al. (1981) presentedevidence

that in the final s.tagesOf transition,the flow starts t_ develop struc-



tures very similarto those found in fully developedwall turbulence.

Duringthis stage, the flow field is characterizedby the developmentof a

viscous sublayer,occurrenceof the typical "streaks"close to the wall and

the formationof horseshoevortices sometimesreferred to as the building

blocks of wall turbulence (Theodorsen1954). The present work simulates

this sequence of events.

Effectsof three dimensionality on transitionhave first been document-

ed in detail by Klebanoff et al. (1962). Accordingly,three-dimensionality

manifests itselfmainly in the spanwise velocity variations resulting in the

productionof streamwisevorticity which, in turn, interacts with the span-

wisevorticity and drives the flow to breakdown. Orszag & Kells (1980) and

Patera& Orszag (1981) have expanded on this idea and studied the suscepti-

bility of plane channel flow to three-dimensionaldisturbancesby numerical-

ly integratingthe three-dimensionalNavier-Stokesequations. Their_compu-

tations at subcriticalReynolds numbers revealed some interestingaspects of

subcriticaltransition. They found that initiallytwo-dimensionaldistur-

bances which are finite-amplitudetwo-dimensionalOrr-Sommerfeldeigen-

solutions,decay slowly whereas the interactionof two-dimensionaland

three-dimensionaldisturbancesdrives the flow to instabilityfor Reynolds

numbers as low as 1000. In the present work we focus on the three-dimen-

sional and nonlinearmechanisms that characterizetransition in the final

stages and during flow breakdown. Hence, we employ the full three-dimen-

sional time-dependentNavier-Stokesequations. Calculationswere performed

at a linearly stable Reynolds number (Re = 1500), with finite-amplitudetwo-

and three-dimensionaleigensolutionsof the Orr-Somerfeldequation used as

the initialconditions. No attempt was made herein to study the effect of

. 4
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different initialconditions or of Reynolds numbers;this i.sthe s._bjectof

anotherinvestigation. We also investigatedthe idea of using periodic suc-

tion-blowingat the solid walls as a means of controllingtransition. These

computationswere performedat Re _ 7500 which is the linearly unstable

range for this flow. Since transition control must be applied prior to the

flow breakdown(e.g, before the occurrence of multi-spikes),disturbance

amplitudesduring these calculationswere not large enough to impose stiff

restrictionson the allowabletime step.

In section 2, of this report, the numericalmethods used in this study

are brieflydiscussed. In section 3, results of calculationsare presented

and finally in section 4 a summary of results and some concluding rema.rks

are given.

4



2. THE CALCULATIONPROCEDURE

The calculationprocedureis basedon the incompressibleNavier-Stokes

equationsin primitive-variableform,

@u. au a2u.

I + u_ i = _ 1 @P' + v 1 (I)
at @x_ p axi ax_@x£

and the continuityequation,

@ui
:o (2)

BX.
1

where ui are the velocitiesalong the xi directions, p is the density,

v is the kinematic viscosityand p' is the total hydrostaticpressure.

The equations are non-dimensionalizedby the mean centerlinevelocity Uo

and the channel half-width, h. The flow is assumedto be driven by a con-

stant mean pressuregradient 2/Re, where Re is the Reynoldsnumber

given by U0h/v. Also, the convective terms are written in a form which

preventsoccurrenceof nonlinear instabilityin the numericalsolution

procedureby ensuringconservationof momentum and energy (Mansour,Fer-

ziger, & Reynolds 1978). The final form of the Navier-Stokesequations

reads,

_a'ui au_ I : " a2u"aui + u_ \T_x_ " aP + 2 _il + 1 1 (3)
axi axi axi Re Re ax_ax_

1
whereP = p'/p +_ u_u_ is the pressurehead and ai_ is the Kronecker2

delta.

• °
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The flow is assumed to be periodic in the streamwise xI and the span-

wise x3 directions along which the flow field variables can be expanded in

terms of Fourier series. This enables the use of the pseudo-spectral method

?

(Orszag 1972) to calculate the spatial derivatives along xz and x3 by

use of discrete Fourier transforms. Considering transforms in the x I direc-

tion, along which there are NI equally spaced mesh points, the velocity

component uI can be written as

N/2-1

u1(xl) : _ ul(kl)e iklxl (4)
N

n I = -
2

where xl = maxl, m : O,I,...,N-1 and kI = 2_nl/NlAxl. Accordingly, the

Fourier transform of uI is

uz (k I ) 1 NI -1= - s ul (xl)e -Iklxl (5)
NI m:O

The spatial derivative of ul along xl can now be written as

ul (xl) NI/2-1

- s iklul (kl)e iklxl (6)
_xz n1: -NI/2

The derivative can be computed by forming the Fourier transform of _ (xl),

multiplying the result by ik I and computing the inverse transform. For

6



periodicfunctions, the pseudo-spectralmethod provides a means by which the

spatial derivativesare evaluated with maximum accuracy for a given number

of grid points. Along the x2-direction,a mesh stretchingthat concen-

trates grid points close to the solid walls is employed (Moin, Reynolds &

Firziger1978). The resultingmesh enables the resolutionof the sublayer

that is formed during transition for y+ < 2, where y+ is the coordinate

along x2, in wall units. Spatial derivativesalong x2 are evaluated by

a second-orderfinite-differencescheme on this non-uniformmesh.

The governingequationswere numerically integratedby the semi-implic-

it method of Moin et al. (1978). This procedure employsthe explicit Adams-

Bashforthmethod for the convective terms and the implicit Crank-Nicholson

method for pressure and for the viscous diffusionterms. In order to start

the two time-levelAdams-Bashforthmethod, the Euler-implicitmethod is used

at the first time step.

Once the governingequations are discretizedin time, a two,dimensional

Fouriertransform along the periodic directions xl and x3 transforms the

equations into the kl-k3 wave-number space. The transformedequations are

writtenbelow in block-tridiagonalform for inversionalong x2

Fn+l Fn+l _n+l n
A ~j+l + B + C' (7)_ _ ~3 _ rj.1 = Rj

Fn+l is the solution vector
In (7),_A,B_,and C are coefficientmatrices, ~j

n

at the advancedtime level, n+l, and at the x2-directionalnode, j; _j is

right-handside vector that contains the convective,diffusive and pressure

terms at the previous time levels. These are given as

7
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Ul C2j 0 0 0

u2 0 C2j 0 0F= -- A =

" ,,u3 -- 0 0 Clj 0
P 0 0 C2. -Re,CI.

,] J

B2j-¢ 0 0 -.(kl)jRel

0 B2j-¢ 0 -+(k3)jRe ]B_: -T-(k].)j -T.(k3)j BIj " 0

0 0 B2j-@ " -Re.BIj

A2. 0 0 0
J

0 A2j 0 0£
0 0 AI: 0

3
0 0 A2. -Re.A1.

J J

and
!

R1 = 0

R2 : Re 2u_ + +-@2-u-! + Re _)pn _ 2Re Hn - 1 H_" " _)_u[

i II

R3 : Re + + + Re_ - 2Re HI. _ ..
- 2Un _)2U2' -_)P .n 1 Hn- @2.un

R4 = Re 2u3n + + @2u3 + Re @pn. _ 2Re Hn _ 1 H2- - _)2un

AT \@x12 "@x3 2 Bx22



also,

-- + +

pui
= (no summationover i)

Hi - u_.k--_-xi _xi

and,

R. = R!
J J

Coefficientsof the finite-differenceoperatorsthat appearin the matrices

A, B, andC_are givenas

C2j = 2/Aj+I(Aj+I + Aj), B2j = -2/aj+iaj, A2j = 2/Aj(Aj+I + Aj)

CIj = -Alj = I/(Aj+I - Aj)

Aj+1 = (X2)j+1 - (X2)j

Since all the flow variables in the solutionvector contain an imaginaryand

a real part, the block-inversionprocess is appliedtwice for each pair of

kI and k3, which are the wavenumbersalong xl and x3, respectively.

The assumptionof periodicityin xI and x3 eliminates the necessity

of applying explicitboundary conditions along these directions. However,

due to the presence of solid boundaries along the x2 direction, no-slip

q
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\
boundary conditions are impOsedon ul, u2_ and u3 and the pressure at

the wall is calculatedby a second order approximationfrom the interiorof

the flow field. Thatthe pressureboundary conditions are ConsiStent with

the x2-momentumequation at the wall, has been shown by Moin et al. (1978).

Initialconditionswere presCribedfrom the two- and three-di_ensional

eigensolutionsof the Orr-Sommerfeldequation by consideringthat even for

subcriticalReynolds numbers, plane channel flow can be driven to instabili-

ty if the least stable two-dimensionalfinite-amplitudeOrr-Sommerfeld

eigenmodes are interactedwith finite-amplitudethree-dimensionaleigenmodes

(Orszag& Kells 1981). The most explosivesituationarises when the thr_e-

dimensionaleigenmodes are aligned with the main flow direction at ±45 to

±60 degrees. Accordingly,we have used the following initialcondition:

l

_(_) = U(x2'O'O)+ U2D (x2)ei_x!+ U3D(X2)ei_x1±iBx3 (8)

Here, U(x2,0,O) is the parabolicvelocity profile of plane channel flow.

The eigenfunctions U2D(X2) and U3D(X2) correspondto two-dimenSionaland

three-dimensionalsolutionsof the Orr-Sommerfeldequation at Re = 1500,

respectively. The two-dimensionalsolutionwas obtained for _ _ l whereas,

the three-dimensionalsolutionwas obtained for _ = l, B = ±l. A computer

program, which essentiallyuses the Kaplan filteringtechniquewas used for

the solution of the Orr-Sommerfeldequation (Reynolds1967). The final

amplitudeswere chosen so that the maximum value of the xl-directiona]two-

dimensionaldisturbancewas set equal to O.llUo and the maximum amplitudes

of the xl-directionalthree-dimensionaldisturbanceswere each set equal to

O.05U0.
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3. RESULTS AND DISCUSSION

The finite-differencesystem (7) was solved on the CYBER-203vector

processorat NASA/LangleyResearch Center. A 32x51x32 mesh was employed

along the xl-, x2-, and x3-directions, respectively. The computer code was

fully vectorizedand vectorized library subroutineswere used for the main

computationaloperations that the solutiontechnique employs. These vector

operations are mainly one-dimensionalfast Fourier transform (FFT) to cal-

culate spatial derivativeswith the pseudo-spectralmethod, two-dimensional

FFT to transformthe equations into kl-k3 wave-number space and block-

tridiagonalmatrix inversion along x2. For the FFT operations, typical

vector lengthswere around lO00, which is an optimal vector length to take

full advantageof the vector processor. For the block-tridagonalmatrix

inversion (whichessentially is a scalar operation)' a vectorized subroutine

that inverts a large number of tridiagonalsystemssimultaneouslywas used.

This proceduredecreases CPU time significantlyby reducing the number of

scalar operationsrequired to invert each system separately. The fully

vectorizedcode takes about 10 sec. of CPU time per time step for the 32x51x32

mesh to solve the finite-differencesystem (7) on a computationalbox, in which
,..

the flow is confined between rigid walls at x2 = _+l. Periodicity lengths

(box lengths) along xl and ×3 were chosen so that the smallest wave

numbers allowed in the computationaldomain were equal to _ = l and B = l,

respectively,i.e., the box length was set equal to 2_ along these directions.

It should be recalled that the time-advancementscheme employed in this

work is partly explicit (on the convective terms) and partly implicit (on

the diffusionand pressure terms). Although in view of linear stability

11



ahalysis,implicitmethods are unconditionallyStable ("eXtrapolatiOnto

nonlinearequations is sometime vague), the mixed nature Of the present

scheme as well as the tfme-accuratenature of the pi_obl_einunder investiga-

tion necessitate adherenceto stability bounds of explicit Schelnes. There- °

fore, in all the calculationsreported herein, the convective stability

condition (the Courant-Friedrichs-Lewycondition)that requires the Courant

nunber (C.N.) to be always less than one and the diffusive stabilitycondi-

tion were obeyed. With (AX2)min = 0.0092 and AT : 0.025, where AT is thee

nondimehsionaltime-step, through the course of the calculationsC.N. varied

as

 u21bI)__ + u3 < O.2 (9)
AXl AX2 AX3 max

whereasthe diffusive stab lity criterion, D, Varied as

I -D -: i AT < 0.04 (i0)
Re (aX)2mi n

SO that the diffusive stability condition which requires D < 0.5, was also

always satisfied. The computer program was tested by calculating the growth

rates of small-amplitude Orr-Sommerfeld waves. For a wide range of Reynolds

numbers (betWeen 1000 and 10,000) the agreement between the computed re-

sults and the linear theory was better than 0.5%.

In the subsequent parts of this section, results obtained from the

numerical integration of the finite-difference system (7) for the time-evo-

lution of the initial disturbances are compared with the experiments of

Nishioka et al. (1981). It should be noted that this experiment was done at

Re = 5000 (subcritical)whereas the computationwas done at a lower

aubcriticalReynolds number, Re = 1500. The sel_ecti.onof a higher Reynolds "

•12



number (e.g., in the linearly unstable range) makes the governingequations

very stiff and requires the use of extremely small time steps for numerical

stability. Hence, the selectionof Re = 1500 was mainly to force the

computationsinto transition and breakdownwith the least amount of computer

expense. It should be noted that wall phenomena characteristicof the final

stages of transition are essentiallyindependentof Re_olds number as

observed by Nishioka et al. (1981) for channelflow and by Smith & Metzler

(1982) for boundary-layertransition. Therefore,the difference between the

Reyn.oldsnumbersof the experiment and the simulationshould not have any

importantconsequencesfor the qualitativecomparisonsbetween the two sets

of results.

3a. Plane ChannelFlow with No Mass Transfer

In their experiments,Nishioka et al. (1981) identifiedthe various

stages of transitionaccordingto the number of spikes appearing in the os-
!

cilloscope traces of the disturbancevelocity, uI. Since the time-axis of

the experimentis interchangeablewith the xl-axisof the computation,we
!

obtain similartraces by plotting uI along xI (over two periods) asshown

in figure 1. In this figure, the first frame shows the sinusoidal variation

of the initialconditions at T = O. This is followed by the nonlineaer dis-..
!

tortions of the initial conditions resulting in variationsof uI which

strongly resemble the oscilloscopetraces at the one-, three-, and five-
!

spike stages of the laboratory flow. In particular,the variations of ul

with xI at T = 44 are very similar to the ensemble-averagedwaveforms

presentedby Nishioka et al. (1981) at the five-spike stage. The last frame
i

in figure 1 shows variations of uI at a time (T = 79) much later than the

occurrenceof the five-spike stage (T = 44). Hence, we note the absenceof

13



fluctationsof rich frequency content that are characteristicof fuJly-

developedturbulence;this lends support to the idea that the last stage of

transitionmay not be spontaneousand.explosive a phenomenonas generally
!

supposed. However, at this stage, the ul variations are very similar to

veloci:tyoscillationsobserved in wave packets and indicate the occurrence

of "patches"of turbulent fluid. For the remainderof this discussion,

resultsfrom the simulation at the spike stages (shown in figure 1) will be

used, whenever possible, for comparisonswith the correspondingspike stages

of the experimentsof Nishioka et al. (1981).

In figure 2, we show a history of the time-evolutionof the flow in

terms of the maximum amplitudeof the two dimensionalprimary disturbance,

its two-dimensionalharmonic and the three-dimensionalprimarydisturbance.

The trends displayedby these quantities are generally similarto the re-

sults of Orszag & Kells (1980) which they obtained from computationsper,

formed at Re = 1250. The main features of these trends are the rapid de-

crease in the two-dimensionalprimary-waveamplitudeand the rapid increase

of the amplitudeof its harmonic. Also, the three-dimensionalprimary-wave

amplitudefirst increases,then graduallydecreases at around T = 30. In

the presentcalculations,we observe that variationsof the amplitudes start

to fluctuateas early as T = 15 but, even at later times, the fluctua-

tions do not display an explosivetrend. That no "explosive,instabilities

were found in the presentcomputationsis in accord with the findings of

Nishioka,Asai & lida (1980),which imply that breakdown in channel flow is

as gradual as the growth of instabilitiesfound in free shear flows.

In figure 3, we present plots of maximum root-mean-square(rms) ampli-

14



tudes of ul, (ul rms)max,over two periods along x3. Here, we define the

rms value as an average over xI. We note that at T = O, the wave pat-

tern is sinusoidaland corresponds to peaks at x3 = O, 2_, 4_ and to

valleys at x3 = x, 3,. Subsequently,at later times the nonlinear dis-

tortions of the wave front result in minima occurring at the peaks and

maxima occurring at the valleys in accordancewith the experimentsof

Nishiokaet al. (1980). At later times, an increase in the frequencyof the

peak-valleystructures is clearly evident suggesting an increase in the num-

ber of characteristicvortex structures along x3.

Plots of velocity profiles averaged over the xl-x3 plane, <u1>, are

shown in figure 4 for laminar (initial),late transition and "early turbu-

lence" stages at T = O, T = 44 and T = 79, respectively. The <u1>

distributionat T = 79 has a strong resemblanceto the turbulent

channelflow profile, with increased velocity gradient at the wall and with

a full profile indicativeof turbulentmixing. Although, as expected, <u1>

profiles do not show any fluctuations(or inflections),plots of instantan-

eous velocity profiles do show very strong inflections,especially in the

regions close to the walls (figure5). This indicatesthat the interac-

tion of two- and three-dimensionalwaves close to the walls is the central

mechanism that drives the flow to instability. This is in accord with the

idea that the flow will undergotransition only for a selected band of span-

wise wave numbers, the most "dangerous"of which result in three-dimensional

disturbanceswith maxima occurring close to the walls (Orszag& Kells 1980).

In figure 6, the velocity profile <u+> = <ul>/u_ versus Y+ = x2 uT/u is

plotted;here uTis the friction velocity and is calculated from d<u1>/dx2

I.

15



at the Wall times l/Re. Although, the plots indicatethe formation of a

sublayer,and the change from T = 44 to T = 79 shows a gradual approach

to the law-of-the-wall,the difference is still especially apparent in the
i

logarithm,icregion. At T = 44, the Reynolds nunber based on friction

velocity is equal to 69 and, as expected, is larger than its initial

(laminar)value of 55.

Plots of plane-averagedfluctuationsintensities, <(uI- <ui>)2>,

are shown in figure 7 at various T. There are several interestingfeatures

of this figure. Firstly, at T = 17, the shift in the position Of peak

amplitudetowards the channel center (x2 = -0.6), as well as the increase

in the maximum amplitudeindicate that the developmentof the computed flo£v

field is compatible with experimentalobserVationspertainingto the one-

spike stage of the transition process (Tani 1969). It will later be Shown

that during this stage there is a substantialincrease in the spanWise

vorticity, _z' away frointhe lower wall around x2 : - 0.6. Secondly, in

accordancewith the laboratoryflow of Nishioka et al. (1981) at later

stages, the computed intensity profiledisplays a second peak occurring

close to the wall associatedwith turbulenceproduction. At T = 44 cor-

respondingto the five-spikestag_, we see that peak intensityhas reached a

value typical of turbulentchannel flow; however, the peak occurs uncharac-

teristicallyaway from the wall. Finallyat T = 79, the peak in the:inten-

sity profile has moved towards the wall but even at this stage, the distri-

bution has not assumed the asymptoticfUlly-turbulentform. In figure 8,

plots of plane-averagedshear stress, <Ul - <ul>)u2>, profiles are shown.

The increase in the magnitude Of shea_ Stress from T = 0 tO T = 17 clearly

indicatesthe effects of nonlinearityin transferringenergy from the mean

16



flow to the fluctuatingmotion. At the five-spike stage (T = 44), the

maximum shear stress has attained a value typicalof turbulentchannel flow.

However, the locatiionof the maximum is away from the wall and roughly cor-

responds to the locationof the peak in the respective intensity profile

(figure7). It can thus be inferred that at this stage of the comutation,

the energy-exchangemechanisms of fully-developedwall turbulence is not yet

reflected by the plane-averagedvelocity correlations.

Spanwise variationsof uI are plotted at various distances along x2

in figures 9a-9e. In figure 9a, we show initial distributionswhich are

highly three-dimensional. At T = 17 (figure9b), the distributionsindicate

a velocity defect both at peak and valley as well as a velocity excess in

between. This is indicativeof intensificationof the initial streamwise

vortices and appearanceof weaker streamwisevortex pairs in accordance with

the Benney-Lin (1960) theory. Subsequently,figures 9c-9e display the form-

ation of additionalvortex pairs indicatingtransportof energy down the

wave-numberspectrum. The spanwise s_mmetry imposed by the initial condi-

tions is retainedthrough the five-spike stage. At this stage• an estimate

of the flow field resolution can be obtained from the spanwise distance be-

tween peak positions _z" Nondimensionalisedby u2 and _ typically _ =• • ' Z

115. This is larger than but comparable to _ = 80, which is the typical

spanwise length in the laboratory flow during the five-spike stage (Nishioka

et al. 1981). It should be noted that the spanwisecharacteristiclength in

wall turbulence is about 100. Therefore, it could be asserted that at this

stage presentresults are representativeof initialwall turbulence.

A more detailed descriptionof the transitionprocess can De obtained

from contour plots of equi-shear lines, @uz_@x2 (which correspond to

17



apprQximatespanwisevorticity, mz) in the xI - X2 Plane at the position of

maximum ul/U0. Resultsfrom the computationthat correspond to the various

stages of the laboratoryflow are presentedin figures 10-15 between the

lower wall (x2 = -1.0) and channel center (x2 = 0.0). In figures 11a -

13a, figures 4-6 of Nishiokaet al. (1981) are also shown for a qualitative

comparisonwith the present results. In figure 10, contour plots corre-

sponding to the initialconditions and in figure 11, contour Plots corre-_

sponding to the "one spike" stage (T = 0 and T = 17, respectively)are .

shown. In both the laboratoryflow and the computation,the typical head of

the shear layer appearsvery clearly at the one-spike stage, indicatingthe

formationof a shear layer away from the wall at about x2 = - 0.6 due to the

induced velocity from the streamwisevortex system. In addition,the sud-

den dip of the shear layer from the high-velocityouter flow to the low-

velocityregion clearly appears as a kink in both the computationand the

laboratoryflow. Since the grid points are finely clustered along x2

close to the wall, vorticityconcentrationsin this region are also ade-

quately resolved by the numerical simulation.

Figure 12 shows equi-shear lines at T = 27 correspondingto the three-

spike stage of the laboratoryflow. Due to the secondary instabilitymani-

fested in the previous stage, breakdQwnof flow structures into smaller

scales is observed in both the experimentand the computation. The growth

of the kinked portionsof the equi-shear lines into the so-called"hairpin

eddies" is clearlydepicted in the experiment. The computationdisplaYs a

similar evolution: the head of the shear layer is lifted up towards the

channelcenterline,and the kink in the shear layer is quite apparent in

this stage of the simulation. Simultaneouslywi..ththis activity taking
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place in the outer (high speed) portionsof the flow field, both the

experiment and the computationshow an intenseshear layer developingclose

to the wall, which is indicativeof turbulencegeneration. It is generally

agreed that hairpineddies which are lifted towardsthe centerlineerupt

into turbulentspots. However, figure 12 indicatesthat wall turbulence

may also be closely associatedwith vorticitydynamics simultaneouslytaking

place with the eruption of hairpin eddies. Contours of equi-shearlines at

T = 44 correspondingto the five-spike stage of the experiment are shown in

figure 13. In both the experiment and the computation,the intense shear

layer developed in the wall region is closely discernible. It should also

be noted that, the spanwise position of maximum mz which appears very

close to the wall and does not necessarilycoincide with the spanwise

location of maximum ul/U0 where the contours are presented. The most sig-

nificant feature of figure 13 is the existenceof distinct vortex structures

in the wall region both in the laboratoryflow and in the computation.

These vortices are inclinedto the main flow directionat an angle that

varies between approximately14" to 40" and show a close resemblenceto the

energetichorseshoevortices characteristicof initialwall turbulence (Hama

& Nutant 1963, Klebanoffet al. 1962). It is these vortices roughly aligned

along the directionof maxim_n extensionalstress that are mainly responsi-

ble for extracting energy from the mean shear (Tennekes& Lumley 1972).

In figure 14, equi-shearlines at spanwise locations x3 = (x3)0 + 2Ax3

and x3 = (x3)0 + 4ax3 at T = 44 are compared. Here, we define (x3)0 as

the spanwise positioncorrespondingto figure 13 and ax3 is the mesh size

along x3. Figure 14 suggests that the shear layer is formed from a system

of horseshoevortices in successionsuch that as the first,bornvortex
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erupts into the channelcenter, a new one forms at the wall. As evidenced

in Figure 5, the vortex lift-up is still clearly discernible at the "early

turbulence"stage (T = 79). Here, we note the vortex lift-up towards the

channel center but its extension is considerablyshorter than that observed

previously at the five-spike stage. This variance suggests the existence of

different vortex structurescharacteristicof these two stages. In fact, we

shall later show that the typical horseshoevortex of late transition is not

the basic structureof early turbulence.

As we have noted before, the mechanismthat is responsiblefor the

generationof vorticityconcentrationsis usually explainedas vortex

stretching(and deformation)by the mean flow. The stretchingand deformed

layer moves downstream with a translationvelocity that induces lower local

velocity of the upstream edge of the vorticity layer than its downstream

edge (Komoda 1967). An examinationof ul contours of (figures16 and 17)

along with the approximatespanwise vorticitycontours at T = 27 (figure

12b) and at T = 44 (figure 13b) in the xI - X2 plane clearly shows a similar

trend. We observe that the nose of the vorticity layer is generallyassoci-

ated with higher velocities than the upstream region and large variationsof

the local velocity exist within the layer.

Finally, normal velocity, u2, contours are shown in figures 18-21

during the three-spike,multi-spikeand early-turbulencestages at the

position of maximum ul/U0. Figure 26 shows u2-contoursin the xI - x2

plane at T = 27, correspondingto the three-spikestage of the laboratory

flow. In this figure, there is clear evidence of the beginningof an alter-

nating up-and-downflow similar to the patterndescribed by Kovaszny et al.

(1967),which is characterizedby the intense updrift accompaniedby fluid

• q
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drifting down at both sides. This alternatingstructureof up-and-downflow

in the xl - x2 plane is more evident at T = 44 (figure19), correspondingto

the multi-spikestage of the experiment. Also in this figure, alternating

regionsof fluid with scales smallerthan those at T = 27 are depicted. In

figure 20 and 21, normal velocity contours are shown in the x2 - x3 plane at

T = 44 and T = 79 correspondingto the multi-spikeand early-turbulence

stages, respectively. These contours are plotted in the region between the

lower wall (x2 = -l.O) and x2 = -0.92, display the evolutionof alternating

structuresvery similar to the characteristicstreak-likestructures found

in the wall region of turbulentchannel flow (Moin & Kin 1982).

3b. Active Control of Transition by Periodic Suction-Blowin9

In this section we demonstratethe usefulnessof employingperiodic

suction-blowingboundary conditions at the solid walls for controlling

transition. All these calculationswere performedat a Reynolds numberwell

within the linearlyunstable range, i.e. at Re = 7500. The main idea here

is to cancel or modify the "most dangerous" disturbanceby interfering with

a wave of suitable amplitude and phase. This idea has been proven to be

.,effectivein controllingboundary-layertransition in an experiment in which

the two-dimensionalTollmien-Schlichtingwave was effectively cancelled by a

control wave generateddownstreamof the initial disturbance. The amplitude

and phase of the control wave (producedby a second wave generator placed

downstreamof the first) was adjusted to minimize the maximum disturbance

from the first wave generator (Milling 1981). Expandingon this idea and

assumingthe two-dimensionalprimary wave to be the most dangerous disturb-

ance, in this work we prescribethe boundary conditions at the solid walls

such that
I

q
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(a) the resultingcontrol wave is compatiblewith fl'owperiodicity

along xI and x3 so that there will be no net mass transfer into

the flow field;

(b) the resultingcontrol wave will be 180° out of phase wi,ththe two-

dimensionalprimary wave;

(c) the control wave amplitudeis adjusted for maximum attenuationof

the primarydisturbance.

In figure 22, results for a case in.which the initialdisturbancesare

two-dimensionalsolutionsof the Qrr-Sommerfeldequation are shown. The
!

maximum amplitude of uI was set equal to i% of the channel centerline

velocity. Periodic suction-blowing boundary conditions were pre.scr,ibed at

each.wall at T = 5.3 for one time stop, before and after which the channel

walls were made impermeable via the no-slip boundary conditions. The most

effective wave produced by the suction-blowing boundary conditions was found.
!

to be 180° out of phase with the two-dimensional,_primary u2 (correspondi,ng

to Q2(1,0) in the Fourierspace) with twice its ampJi:tude.The effect of
!

the control wave to reduce the _rowth rates of both (ul)2D-primaryand its.

harmonic is evident from figure 22. In fact, the control wave has resulted

in a decayi.n9 harmonic preventingenergy transferdown the wave-number

spectrum,consequentlyinhibitingthe proper developmentof the transition

process.

To test the effects of three-dimensionalitya similar cal_culation.w_s

performedin which three-dimensionalsolutionsof the Orr-Sommerfeldequa-

tion were also included into the initialdisturbancefield. For t,ni:scase,

the maximum amplitudesof the two- and three-dimensionaldisturbanceswere
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set at 3% and 1% of the channel centerline velocity,respectively. The most
I

effective controlwave was found to be 180° out of phase with (u2)2D with

2.5 times its amplitude. The characteristicsof the resulting flow field

are shown in figure 23, after the periodic suction-blowingboundary

conditionsare applied at T = 5.3 for one time step. In summary, the
{ I

control wave attenuatedthe growth rates of (ul)totaI and (uI)2D- primary,
I

and resulted in a decaying (Ul)2D - harmonic as in the previous case. Note
I

that (u_)3D-primary remained unchanged.

It is apparentfrom the precedingdiscussionthat the applicationof

periodic suction-blowingboundary conditions on the solid walls of the

channel has a considerableeffect in reducing the growth rates of two- and

three-dimensionaldisturbancefields. In practicethe techniquecan be im-

plementedvia a suction-blowingstrip along the body span. The spectrum of

the disturbancefield just upstream of the strip must be availablein order

to activatethe correct boundary conditions and obtain the most effective

control wave. Further work is necessary to evaluate the frequency-response

and feedback delay of such a mechanism.
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4. SUMMARY AND-CONCLUDINGREMARKS

In this study, final stages of transitionto turbulence in plane

channel flow have been simulated by a direct numerical solution of the

Navier-Stokesequations. It is found that, in spite of the limited resolu-

tion of the 32x51x32 grid employed in the computations,the simulation is

capable of reproducingmost of the essenti.alfeatures of wall phenomena

observed in the laboratory. Grid resolution in the xl and x3 directions,

along which the flow is periodic,,is found to be adequate to capture the

sequenceof events that lead to early turbulence. Vorticitycontours in the

vicinityof the lower wall indicate formationof a system o.fho,rseshoe

vortices with legs or extensions in the xl - _3 plane comprisedof

counter-rotatingstreamwise vortex pairs. Our findings are also in accord

with the Benney-Lin (1960)theory, e.g., the present computationsclearly

depict frequency-doublingof streamwisevorticity. It should be noted that

the initial conditionsused in this work are of the Benney-Lintype and

consist of a vorticityfield with a strong spanwise component and weak

streamwiseand transverse components. Therefore,the question of th.eorigin

of stream-wisevorticityand its precise relation to distortionsof spanwi_se

vorticityremain to be addressedin future work.

At later stages of the computation, transverse velocity contou_rs indi-

cate the formation of streak-like structures alternating in the spanwlse

direction. Typically, the spanwise characterist$c length of these vortices,,

inferred from the spanwise variations of uI, was fo,un.dto_be a,p_oxiamt,el_y

_'z= 115; this is close to _'z= 100 of fully-devel!Qpedw,allturbu4ence.

It was found that during the later s,tages o:ftransi_ti_on,flow fiel,d,

statisticsindicate the formationof a laminar sublayer.;,ho.wever,the
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developmentof the logarithmicregion and consequentlythe approach to

fully-developedturbulence is slow. This gradual approach to steady state

is also reflected in the profiles of plane-averagedintensity and shear

stress.

The main deficiency of this study stems inevitablyfrom limited spatial

resolutionand manifests itself in several ways. Firstly, at later stages

of the computation,insufficientmesh resolution results in lower gradients

of the mean velocity in the viscous sublayer. This, in turn, causes less

turbulenceproductionin the wall region as evidencedby the absence of

peaks in the intensityand shear-stressprofilesclose to the wall, Second-

ly, the finite cut-off wave numbers along xI and x3 preevent the formation

of a proper wave-numberspectrum. As a consequence,pollutionof Fourier

modes and accumulationof excess energy at low wave numbers become very

significantsourcesof accuracy at large T. Hence, proper simulation of

transition beyond the early-turbulencestage necessitatesthe use of;higher

grid resolution. Even then, the incorporationof a mechanism to account for

the subgrid scale turbulencewould be required for a more accurate and

realistic representationof the flow field phenomena.

This work was supported by NASA/LangleyResearch Center under Grant

No. NAG-I-228. The author is indebted to P. J. Bobbitt and W. D. Harvey for

their interest and encouragementduring the course of this work.
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Figure i. Development of u_ fluctuation _n time along xI.
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Figure 2. Time-history of maximum disturbance amplitudes.
(a) Two-dimensional primary; (b) three'dimensional
primary; (c) two-dimenslonal harmonic.
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Figure 4. Plots of plane-averaged mean velocity profiles.
(a) T--0; (b) T_44; (c) T--79.
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Figure 5. Plots of instantaneous velocity profiles at Xl-- 3_/2,
x3= _/2. (a) T=I7; (b) T--44; (c) T= 79.
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Figure 8. Plots of plane-averaged shear stress. (a) T = O; (b) T = 17;
(c) T = 44.
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Figure I0. Contour plots of _Ul/_X2 at T = 0 in the Xl-X2 plane; contours
from -4.0 to 4.2.
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Figure ll. Contour plots of _Ul/_X 2. (a) One-spike stage, figure 4 from
Nishioka eta[. (1981); (b) computations at T = 17 in the xl-x 2
plane, contours from-0.2 to 2.6.
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Figure 12. Contour plots of @Ul/_ (a)_ Three-spike s:tage, ff,gure 5 from• • 2 ° .

N_shioka et al. (1981!)_;(_b)_'¢oraputat_ons •at T = 27 in the Xl,-X2
plane, contours from 0.3 to 6:.8.
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Figure 13. Contour plots,of _Ul/_Xo . (a) flve-spike stage, figure
6 from Nishioka et al. [1981); (b) computations at T=44
in the xl,x2 plane; contours from 0.7 to 7.0. At this

spanwise position, we define x3_(X3)o.
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Figure 14. Contour plots of 8Ul/_X 2 in the Xl-X 2 plane at T = 44; (a) x3 =

(x3) 0 + 2hx3; (b) x3=(x3) 0 + 4Ax 3. Here AX 3 is the mesh size
along x3.
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Figure 15. Contour plots of @Ul/@X 2 in the Xl-X 2 plane at T = 79;
contours from 0.25 to 6.25.
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Figure 16. Contour plots of uI in the xl-x 2 plane at T = 27. Contours
from 0.0 to 1.08.
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Figure 17. Contour plots of uI in the xl-x 2 plane at T --44. Contours from
0.0 to 1.02.

Figure 18. Contour plots of u2 _n the Xl-X 2 plane at T : 27. Contours from
-0.24 to 0.2'4.
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Figure 19. Contour plots of u2 in the Xl-X 2 plane at T: 44. Contours from
-0.09 to 0.11.
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Figure 20. Contour plots of u2 in the X2-X 3 plane at T = 44. Contours from
-0.08 to 0.08.

x2

Figure 21. Contour plots of u2 in the x2-x 3 plane at T w 79. Contours from
-0.06 to 0.06.
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Figure 22. Two-dimen'sional wave •cancellation.
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Figure 23. Three-dimensional wave cancellation.
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