Engineering Correlations of Variable-Property Effects on Laminar Forced Convection Mass Transfer for Dilute Vapor Species and Small Particles in Air

Süleyman A. Gökoğlu

Analex Corporation
Cleveland, Ohio

and

Daniel E. Rosner

Yale University
New Haven, Connecticut

January 1984

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Contract NAS3-23293 and NAG3-201
Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air TLSP: Final Report

AUTH: A/GOEKOGLU, S. A.; B/ROSNER, D. E. PAA: B/(Yale Univ, New Haven, Conn.)
CORP: Analex Corp., Cleveland, Ohio. AVAIL:NTIS SAP: HC A02/ME A01
MAJS: /*FLAT PLATES/*FORCED CONVECTION/*LAMINAR BOUNDARY LAYER/*MASS TRANSFER/*STAGNATION POINT
MINS: / POTASSIUM COMPOUNDS/ SODIUM COMPOUNDS/ TRACE ELEMENTS/ VAPORS
ABA: Author
ABS: A simple engineering correlation scheme is developed to predict the
Engineering Correlations of Variable-Property Effects on Laminar Forced Convection Mass Transfer for Dilute Vapor Species and Small Particles in Air†

Süleyman A. Gökoğlu*.
Analex Corporation
Cleveland, Ohio 44135

and

Daniel E. Rosner**
Yale University
Chemical Engineering Department
New Haven, Connecticut 06520

SUMMARY
A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particles, covering the surface to mainstream temperature ratio of $0.25 \leq T_w/T_e \leq 4$. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na$_2$SO$_4$, K, KCl, KOH, or K$_2$SO$_4$ vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 2 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the "constant-property" results.

INTRODUCTION
Although considerable temperature variations are encountered across the boundary layer (BL) in many heat and mass transfer situations, no simple procedure to account for variable (nonconstant) property (ncp) effects on mass transfer rate exists in the literature. For such cases, the application of the constant property (cp) analytic solutions, or the experimental data, may lead to unacceptable errors. Readily available corrections are urgently needed to improve the accuracy of transfer rate predictions and to facilitate engineering design.

† Supported by NASA Lewis Research Center Contract NAS3-23293 [Analex] and Grant NAG3-201 [Yale U.].
* Research scientist.
**Professor of Chemical Engineering, Director, High Temperature Chemical Reaction Engineering Laboratory.
Most of the nonconstant property results for heat transfer prediction purposes indicate that very simple corrections generally suffice over a moderate temperature range. A thorough review of the current literature as well as a detailed discussion of the subject is given in Reference 1 both for liquids and gases for laminar and turbulent flows. One of the common schemes used to correct for variable properties is the property ratio scheme. For gases, the temperature-dependent-property effects for heat transfer can usually be adequately correlated by:

$$F_{ncp,h} \equiv \frac{(q''_w)}{(q''_w)_{cp}} = \frac{Nu_h}{Nu_{h, cp}} = \frac{St_h}{St_{h, cp}} \approx \left(\frac{T_w}{T_e}\right)^a$$

(1)

where the constant-property quantities are evaluated at free-stream temperature for external flows.

For mass transfer across boundary layers with steep temperature gradients, however, a similar correlation scheme is lacking, and the conventional heat and mass transfer analogy is usually and unjustifiably employed. Many engineering fields involving mass transfer such as CVD, surface catalyzed combustion, salt deposition on gas turbine blades associated with hot corrosion, etc. deal with nonisothermal BLs. A carefully formulated mass transfer theory, therefore, explicitly necessitates tractable variable-property correlations to facilitate efficient and accurate mass transfer rate predictions (2 and 3).

A correlation of variable property effects on mass transfer for chemically-frozen laminar BLs has been proposed in Reference 4 using an equivalent "blowing (suction) parameter" for a number of vapor species. The present paper takes a much simpler approach similar to the property ratio scheme as examplified by equation 1 and extends the applicability to larger particle sizes including vapor species ($10^{-3} \leq Le \leq 1$).

NOMENCLATURE

- **a**: power of temperature ratio for variable property effects on heat transfer, equation (1)
- **b**: power of temperature ratio for variable property effects on mass transfer, equation (14)
- **c_p**: specific heat at constant pressure per unit mass of mixture
- **D**: Brownian (Fick) diffusion coefficient
- **Eu**: Euler number, $d \ln u_e/d \ln x$
- **F**: function describing variable property effects, equations (1) and (7)
- **j''_w**: mass (diffusion) flux
- **Kn**: Knudsen number based on particle diameter
k Boltzmann constant
Le Lewis number (ratio of Brownian (Fick) diffusivity to carrier gas thermal diffusivity)
Nu Nusselt number
n power of temperature for Brownian (Fick) diffusion coefficient
Pr Prandtl number (ratio of carrier gas kinematic viscosity to thermal diffusivity)
q" heat flux
Re Reynolds number based on x
r power of temperature for thermal conductivity
Sc Schmidt number (ratio of gas kinematic viscosity to particle Brownian (Fick) diffusivity)
St Stanton number
T absolute temperature
u velocity along x
W dimensionless mass fraction of particles in prevailing mixture, equation (3)
x distance along the surface
y distance normal to surface
α power of temperature for specific heat
β power of temperature for viscosity
c Lennard-Jones molecular interaction energy (well-depth) parameter
η dimensionless BL coordinate, equation (4)
θ dimensionless temperature, equation (2)
λ thermal conductivity of carrier gas mixture
μ viscosity of carrier gas mixture
ρ density of carrier gas mixture
ω mass fraction of particles in the carrier gas mixture
Ω collision integral
Subscripts:

- \(\text{av} \): averaged quantity
- \(\text{cp} \): constant property
- \(\text{D} \): pertaining to Brownian (Fick) diffusion coefficient
- \(\text{e} \): outer edge of BL, mainstream conditions
- \(\text{h} \): heat transfer
- \(\text{i} \): species \(i \)
- \(\text{j} \): species \(j \)
- \(\text{m} \): mass transfer or outer edge of the mass transfer BL (e.g. \(T_m \))
- \(\text{ncp} \): nonconstant (variable) properties
- \(\text{w} \): wall (surface) conditions

Superscripts:

- \(' \): differentiation with respect to \(\eta \)
- \(* \): pertaining to dimensionless temperature, \(kT / \epsilon_{av} \)

Miscellaneous:

- \(\text{BL} \): boundary layer
- \(\text{CVD} \): chemical vapor deposition

CORRELATION APPROACH

Here we concentrate on chemically-frozen, gaseous, laminar BLs where the host gas thermodynamic properties and the trace gaseous species transport properties are assumed to have simple power-law temperature dependencies given by:

\[
\rho \sim T^{-\eta}, \quad \lambda \sim T^{\gamma}, \quad \nu \sim T^\beta, \quad c_p \sim T^\alpha, \quad D \sim T^n
\]

If one applies the conventional self-similarity transformation to the two-dimensional laminar BL equations and uses the nondimensional variables defined by:
\[\theta(n) \equiv \frac{T - T_w}{T_e - T_w} \]
(2)

\[W(n) \equiv \frac{\omega - \omega_w}{\omega_e - \omega_w} \]
(3)

where \(n \) is

\[n = \frac{\gamma}{x} \cdot \text{Re}_{w}^{1/2} \]
(4)

Equation (1) can then be reexpressed as:

\[F_{ncp,h} = \left(\frac{T_w}{T_e} \right)^{r-\frac{\beta+1}{2}} \cdot \frac{\theta_w}{\Theta_w,\text{cp}} \]
(5)

Tables of eigenvalues, \(\theta'_w \), are presented for a family of wedge solutions by Brown and Donoughe (ref. 5) when air is used as the host gas (\(r = 0.85, \beta = 0.70, \alpha = 0.19, \text{Pr} = 0.70 \)). Based on these solutions, equation (5) combined with equation (1) reduces to:

\[F_{ncp,h} = \frac{\theta'_w}{\Theta_w,\text{cp}} \equiv \left(\frac{T_w}{T_e} \right)^{a} \]
(6)

where the best temperature ratio exponent, \(a \), is given in Table 1 as obtained from reference 1.

Similar to equation (1), the effect of variable properties on mass transfer, in the absence of thermal diffusion ("thermophoresis" for small particles), can be described as:

\[F_{ncp,m} \equiv \frac{(-J'_w)}{(-J'_w)_{\text{cp}}} = \frac{\text{Nu}_m}{\text{St}_m,\text{cp}} = \frac{\text{St}_m}{\text{St}_m,\text{cp}} \]
(7)

Combining with equations (3) and (4) we have:

\[F_{ncp,m} = \left(\frac{T_w}{T_e} \right)^{n-\frac{\beta+3}{2}} \cdot \frac{W'_w}{W'_w,\text{cp}} \]
(8)

which for air reduces to:
\[F_{n, cp} = \left(\frac{T_C}{T_e} \right)^{n-1.85} \cdot \frac{W_{w,c}'}{W_{w,cp}'} \] (9)

The eigenvalues for mass transfer rate including variable properties, \(W_{w}' \), are obtained from the numerical solutions of the BL equations for any size of diffusing trace species, as outlined in reference 6. The eigenvalues for heat transfer rate, \(\theta_{w} \), generated as by-products by the calculations of reference 6, agree excellently with the values reported in reference 5, and confirm the temperature ratio exponent given in Table 1.

Based on equation 8, attention is directed toward correlating the mass transfer eigenvalue ratio, \(W_{w}/W_{w,cp} \). It is known that in the limiting case of \(Sc >> 1 \) for small particles, the mass transfer BL is very thin compared to the momentum (or heat) transfer BL. Therefore, constant-property results obtained by evaluating the properties at the wall temperature will give correct answers. It is also known from asymptotic laminar BL theory for \(Sc >> 1 \) that, in the absence of thermophoresis, \(W_{w}' \) is proportional to \(Sc^{1/3} \) (ref. 7). Hence, for \(Sc >> 1 \):

\[\frac{W_{w}'}{W_{w,cp}'} = \frac{W_{w,c}, T=T_{w}}{W_{w,c}, T=T_{e}} = \frac{Sc^{1/3}}{Sc^{1/3}} = \left(\frac{T_{w}}{T_{e}} \right)^{\beta+1-n} \] (10)

which for air reduces to:

\[\frac{W_{w}'}{W_{w,cp}'} = \left(\frac{T_{w}}{T_{e}} \right)^{1.70-n} \] (11)

Equation (11) is confirmed also by the calculations of reference 6.

In the limiting case where \(Le \to 1 \), however, it is expected that \(F_{n, cp} \) comes close to \(F_{n, h} \), the difference being due primarily to the temperature dependence of the diffusion coefficient of the species (D \(\sim T^n \)). Note that in the case of air as the host gas, the temperature dependence of the Prandtl number is:

\[Pr \sim T^{\beta+\alpha} = 10.04 \] (12)

and the temperature dependence of the Schmidt number is:

\[Sc \sim T^{\beta+1-n} = T^{1.70-n} \] (13)
Hence, for $Le = 1$, $F_{ncp,m} = F_{ncp,h}$ only if $n = 1.66$. This should be compared with $n = 1.652$ used for the vapor species considered in reference 4. In fact, $n = 1.66$ is a good approximation for species diffusing in a gas with $T^* = kT/c_{av}$ greater than about 4, where $c_{av} = (c_1 c_4)^{1/2}$ (see also the "DISCUSSION" section). Based on the arguments given above, we propose the following simple correlation:

$$\frac{W_i}{W_i, cp} = \left(\frac{T_m}{T_e}\right)^{\frac{\beta+1-n}{3}} \cdot \left(\frac{T_w}{T_m}\right)^{b-n}$$ \hspace{1cm} (14)

which for air reduces to:

$$\frac{W_i}{W_i, cp} = \left(\frac{T_m}{T_e}\right)^{\frac{1.70-n}{3}} \cdot \left(\frac{T_w}{T_m}\right)^{b-n}$$ \hspace{1cm} (15)

where b is a constant and T_m is the temperature at the outer edge of the mass transfer BL. In the absence of thermophoresis T_m is well approximated by:

$$\frac{1}{3} T_m = T_w + Le_{av} (T_e - T_w)$$ \hspace{1cm} (16)

where Le_{av} is evaluated at $T_{av} = (T_w + T_m)/2$. In equations (14) and (15) the first term in the parentheses accounts for the temperature dependence of Sc, and the second term in the parentheses accounts for the property variation across the mass transfer BL. Note that for $Le = 1$, equation (8) becomes:

$$F_{ncp,m} = \left(\frac{T_w}{T_e}\right)^{\frac{n-\beta+3}{2}} \cdot \left(\frac{T_w}{T_e}\right)^{b-n} = \left(\frac{T_w}{T_e}\right)^{b-\frac{\beta+3}{2}}$$ \hspace{1cm} (17)

which is independent of n, and, for air, reduces to:

$$F_{ncp,m} = \left(\frac{T_w}{T_e}\right)^{b-1.85}$$ \hspace{1cm} (18)

If one assumes that $F_{ncp,m} = F_{ncp,h}$ for $Le = 1$, then the value of b is fixed and is given by $b = a < 1.85$, as tabulated in table 2. The accuracy of equation (15) with the values of b given in table 2 is checked against rigorous numerical calculations as shown in figure 1, where air is the carrier gas. Indeed, our suggested correlation is found to be generally applicable and successful for many different vapor species like Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, K2SO4 and clusters made of these molecules. The cases considered covered the ranges $0.25 \leq T_w/T_e \leq 4$ and $10^{-3} \leq Le \leq 1$ for both the flat plate ($Eu = 0$) and two-dimensional stagnation point ($Eu = 1$) flows. Our correlation gave a mean absolute error of only 2 percent (maximum 13 percent) as opposed
to a mean absolute error of 18 percent (maximum 54 percent) if the "constant-property" results were used.

DISCUSSION

The generality of the correlation suggested above is accomplished by condensing the temperature dependence of the individual transport characteristics of different species into a single parameter n. Therefore, in order to utilize the correlation one needs to be able to readily obtain the temperature dependence of the diffusion coefficient for any species in question. For vapor molecules the temperature dependence of the diffusion coefficient is given by the Chapman-Enskog theory as:

$$D \sim \frac{T^{3/2}}{\Omega_0(T^*)} = T^n$$ \hspace{1cm} (19)$$

where Ω_0 is the collision integral which is a function of the dimensionless temperature $T^* = kT_{av}/c_{av}$ evaluated at the average mass transfer BL temperature $T_{av} = \frac{1}{2}(T_m + T_w)$. From equation (19) one obtains that:

$$n = \frac{3}{2} - \frac{d \ln \Omega_0}{d \ln T^*}$$ \hspace{1cm} (20)$$

The calculation of the collision integral is cumbersome and is given in reference 8. In order to facilitate the calculation of n, the tabulated data given in reference 7 is numerically differentiated to get an approximation to $d \ln \Omega_0/d \ln T^*$. A curve, based on the Ω expression given in reference 8, is fitted through these points as shown in figure 2. The analytical expression describing this curve-fit is given by:

$$- \frac{d \ln \Omega_0}{d \ln T^*} \approx 0.150 + 0.385 \exp[-(1.637 \log_{10}T^* + 0.340)]$$ \hspace{1cm} (21)$$

As can be seen from figure 2, for high temperature situations with air as the carrier gas where T^* is usually greater than about 4, $n = 1.66$ is a good approximation for many vapor species. This supports the assumption made earlier that $F_{ncp,m} = F_{ncp,h}$ for $Le = 1$.

In the extreme limit where the diffusing particles are large enough to be treated as if they were in a continuum (Sc >> 1, Kn << 1), the temperature dependence of the diffusion coefficient is given by the Stokes-Einstein theory as:

$$D \sim \frac{T}{\mu} \sim T^{1-\beta}$$ \hspace{1cm} (22)$$
and therefore, \(n = 1 - \beta \). In this case we have from equations (8) and (10):

\[
F_{\text{ncp}, m} = \left(\frac{T_w}{T_e} \right)^{1-\beta} \left(\frac{T_w}{R} \right)^{\beta+3} \left(\frac{T_w}{T_e} \right)^{3+5\beta} \frac{1-\beta-1+4\beta}{3-6} \quad (23)
\]

which for air reduces to:

\[
F_{\text{ncp}, m} = \left(\frac{T_w}{T_e} \right)^{-1.08} \quad (24)
\]

For intermediate size particles which are not in the continuum regime there is no straightforward method to obtain \(n \). For such cases, the diffusion coefficient can be calculated as outlined in reference 9, and then \(n \) can be obtained from:

\[
n = \frac{\ln \left[\frac{D(T_m)}{D(T_w)} \right]}{\ln \left(\frac{T_m}{T_w} \right)} \quad (25)
\]

One should bear in mind, however, that whenever \(\text{Sc} \) is large enough to validate the \(\text{Sc} \gg 1 \) asymptotic theory obtained for constant properties, the mass transfer BL becomes extremely thin compared to the momentum (or heat) transfer BL. For such cases we suggest that \(F_{\text{ncp}, m} \) be exactly obtained from the asymptotic theory only with properties evaluated at the "wall" conditions, instead of using the variable property correction recommended above.

The effect of variable properties on mass transfer naturally depends on (1) the magnitude of the difference between the mainstream temperature, \(T_e \), and some average temperature that the mass transfer BL experiences, and (2) the sensitivity of the species diffusion coefficient to temperature (namely, \(n \)). Therefore, similar to the argument given for \(\text{Sc} \gg 1 \) (\(L_e \ll l \)) cases, for \(\text{Sc} \ll 1 \) (\(L_e \gg l \)) most of the mass transfer BL experiences a constant temperature profile equal to the mainstream temperature, \(T_e \). Considering the fact that \(n \) is almost the same for most vapor species, we expect, therefore, that the effect of variable properties on vapor species with \(L_e > 1 \) will be even smaller than the effect observed for vapor species with \(L_e < 1 \).

Table 3 lists the exact numerical results obtained for two vapor species, namely \(\text{K}_2\text{SO}_4 \) and Na. At 1500 K \(\text{K}_2\text{SO}_4 \) has \(L_e = 0.344 \) (smallest among the vapor species tried) and Na has \(L_e = 0.807 \) (largest among the vapor species tried). As expected, the effect of variable properties for the Na case with the larger \(L_e \) is less than for the \(\text{K}_2\text{SO}_4 \) case. For the other vapor species tried, with intermediate \(L_e \), it is confirmed that the effect of variable properties ranks according to the magnitude of \(L_e \). Based on the above argument and given the fact that variable property effects for Na are already negligibly small, we propose that \(F_{\text{ncp}, m} \) for vapor species with \(L_e > 1 \) should be taken as unity.

The following is an outline of the recommended procedure that one should follow to obtain the correction factor, \(F_{\text{ncp}, m} \), for any given nonisothermal laminar forced convection trace species mass transfer application. It is
assumed that conventional BL procedures have already been fully exploited to determine the mass transfer rate for constant properties, i.e., $-j_w, cp$ or N_u_m, cp or S_t_m, cp are accurately known. When air is the carrier (host) gas:

Step 1: Calculate the Le of the trace species. If $Le > 1$, then take $F_{ncp,m} = 1$. If $Le < 10^{-3}$, then use the constant-property solutions with properties evaluated at T_w.

Step 2: If the trace species is a vapor molecule, determine $d \ln \omega_D / d \ln T^*$ from equation (21) (or fig. 2) and calculate n from equation (20).

Step 3: If the trace species is a small particle (cluster), determine n from equation (25).

Step 4: Calculate T_m from equation (16).

Step 5: Obtain the proper value of b from table 2. If it is not a flat plate or a stagnation point flow (e.g., wedge flow, etc.) use some average value of b from table 2.

Step 6: Use equation (15) to obtain $W_w'/W_w, cp$.

Step 7: Use equation (9) to obtain $F_{ncp,m}$.

Step 8: Use equation (7) to obtain the mass flux j_w, N_u_m or S_t_m corrected for variable property effects.

If the carrier gas is not air, the formulation in the paper is kept general to allow Steps 1 to 8 (except Step 5) to be repeated with the proper values of α, β and r corresponding to the temperature dependencies of carrier gas properties. However, the values of b as listed in table 2 (Step 5) are only for air and have to be determined for other gases.

CONCLUDING REMARKS

Interfacial mass transport rate formulations including thermal (Soret) diffusion ("thermophoresis" for small particles) effects require explicit knowledge of both $F_{ncp,h}$ and $F_{ncp,m}$ as shown in references 2 and 3. Toward this end, a simple correlation scheme is developed to predict the variable property effects on mass transfer. The applicability range of the correlation covers $0.25 < T_w/T_e < 4$ and $10^{-3} \leq Le \leq 1$. When checked against rigorous numerical calculations for (1) dilute vapor species Na, NaCl, NaOH, Na$_2$SO$_4$, K, KCl, KOH, K$_2$SO$_4$, (2) their clusters, and for (1) laminar flat plate flows and (2) laminar stagnation point flows, it is found that the correlation had an average absolute error of only 2 percent (maximum 13 percent) as opposed to an average absolute error of 18 percent (maximum 54 percent) one would have made by using "constant-property" results. We propose that constant property solutions evaluated at the "wall" temperature be used for larger particles than those with $Le = 10^{-3}$ and expect the variable property effect to be negligibly small for cases where $Le > 1$.

10
REFERENCES

5. Brown, W. Byron; and Donoughe, Patrick L.: Tables of Exact Laminar Boundary Layer Solutions When the Wall is Porous and Fluid Properties are Variable. NACA TN-2479, 1951.

TABLE I. - EXponent of temperature ratio for variable property effects on heat transfer, a

<table>
<thead>
<tr>
<th></th>
<th>$T_e < T_w$</th>
<th>$T_e > T_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat plate</td>
<td>(Eu = 0)</td>
<td>-0.01</td>
</tr>
<tr>
<td>Two-dimensional stagnation point</td>
<td>(Eu = 1)</td>
<td>.10</td>
</tr>
</tbody>
</table>

TABLE II. - Exponent of temperature ratio for variable property effects on mass transfer, b

<table>
<thead>
<tr>
<th></th>
<th>$T_e < T_w$</th>
<th>$T_e > T_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat plate</td>
<td>(Eu = 0)</td>
<td>1.84</td>
</tr>
<tr>
<td>Two-dimensional stagnation point</td>
<td>(Eu = 1)</td>
<td>1.95</td>
</tr>
</tbody>
</table>

TABLE III. - Exact calculations of variable property effects for K_2SO_4 and Na in air

<table>
<thead>
<tr>
<th></th>
<th>K_2SO_4: Le (1500 K) = 0.344</th>
<th>Na: Le (1500 K) = 0.807</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_w/T_e</td>
<td>$F_{ncp,m}$</td>
<td>T_w/T_e</td>
</tr>
<tr>
<td>0.25</td>
<td>0.985</td>
<td>0.25</td>
</tr>
<tr>
<td>.40</td>
<td>.992</td>
<td>.40</td>
</tr>
<tr>
<td>.50</td>
<td>.994</td>
<td>.50</td>
</tr>
<tr>
<td>.60</td>
<td>.997</td>
<td>.60</td>
</tr>
<tr>
<td>.80</td>
<td>1.000</td>
<td>.80</td>
</tr>
<tr>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>1.50</td>
<td>1.046</td>
<td>1.50</td>
</tr>
<tr>
<td>2.00</td>
<td>1.060</td>
<td>2.00</td>
</tr>
<tr>
<td>3.00</td>
<td>1.054</td>
<td>3.00</td>
</tr>
<tr>
<td>4.00</td>
<td>1.034</td>
<td>4.00</td>
</tr>
</tbody>
</table>
LEGEND
- Eu = 1
- Eu = 0

First No. T_w/T_e
1 0.25
2 0.40
3 0.50
4 0.60
5 0.80
6 1.00
7 1.50
8 2.00
9 3.00
10 4.00

Second No. Le
1 $10^{-1} < Le < 10^{0}$
2 $10^{-2} < Le < 10^{-1}$
3 $10^{-3} < Le < 10^{-2}$

Third No. Species
1 Na
2 NaCl
3 NaOH
4 Na$_2$SO$_4$
5 K
6 KCl
7 KOH
8 K$_2$SO$_4$

Figure 1. - Accuracy of correlations for flat plate and two-dimensional stagnation point flows in the range $0.25 < T_w/T_e < 4$ and $10^{-3} < Le < 1$.
Figure 2. $-d \ln \Omega_B/d \ln T^*$ as a function of T^* obtained by numerical differentiation of tabulated Ω_B versus T^* values of ref. 7. A curve fit through the points is given by eq. (21).
Title and Subtitle:

Engineering Correlations of Variable-Property Effects on Laminar Forced Convection Mass Transfer for Dilute Vapor Species and Small Particles in Air

Abstract:

A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particles, covering the surface to mainstream temperature ratio of $0.25 < T_v/T_e < 4$. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na$_2$SO$_4$, K, KCl, KOH, or K$_2$SO$_4$ vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 2 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the "constant-property" results.

Distribution Statement:

Unclassified - unlimited

STAR Category 34

Supplementary Notes:

Final report. Project Manager, Carl A. Stearns, Materials Division, NASA Lewis Research Center, Cleveland, Ohio 44135.