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INTRODUCTION

The documentation for the NASTRAN computer program consists of four manuals: the Theoretical
Manual, the User's Manual, the Programmer's Manual and the Demonstration Problem Manual. Since an
effort has been made to avoid duplication of material, a brief statement of the content of the
other three manuals will serve as a useful point of departure in introducing the Thegretical Manual.

The intent of the User's Manual is that it provide all of the information needed to solve
problems with NASTRAN, Users should find it to be both instructional and encyclopedic. It
includes instruction in structural modeling techniques, instructicn in input preparation and infor-
mation to assist the interpretation of output. It contains descriptions of all input data cards,
restart procedures and diagnostic messages. [t is hoped that it can serve as a self-help instruc-
tion book.

The intent of the Programmer's Manual is that it provide a complete description of the program
code, including the mathematical equations that are implemented in the Functional Modules. It des-
cribes the Executive System and the coding practices that have been employed.” It contains the in-
formation that is required for maintenance and modification of the program.

The intent of the Demonstration Problem Manual is to illustrate the formulation of the types
of problems that can be solved with NASTRAN and to show that the results obtained are valid.
Generally, this manual discusses the nature of the problem, the underlying theory, the specific
geometric and physical input quantities, and the comparison of theoretical and NASTRAN results.

At least one problem for each of the rigid formats and nearly all of the elements is provided.

One of the roles that has been assigned to the Theoretical Manual is that of a commentary on
the program. It is, first of all, intended to be an introduction to NASTRAN for all interested
persons, including those who will go on to use the program and those whose interests are less
direct. For this purpose, the structure and the problem solving capabilities of the program are
described in a narrative style. The manual's most important function, however, is to present
developments of the analytical and numerical procedures that underlie the program.

The selection of material for the Theoretical Manual has not been an easy task because not
everyone has the same concept of what the word "theory" means when it is applied to a computer
program. For some, theory is restricted to include only the formulation of the equations that
will be solved; for others, theory also includes the development of the procedures, or algerithms,
that will be used in the solution; still others regard the organization of the program and the

flow of data through the computer as important theoretical topics.
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A broad view concerning the selection of material has been adopted, and the reader will find
that all of the above aspects of the program are treated. Some structural analysts may be sur-
prised at the emphasis on proéram organization and data processing, particularly in the early
sactions of the manual. These subjects are emphasized because they are vitally important to fhe
success of a large computer program and should not be taken for granted.

In regard to the more mathematical subjects, such as the derivation of the equations for
structural elements and the development of eigenvalue extraction procedures, the reader will find
that the level of sophistication is geared to the difficulty of the subject matter. Thus, it is
assumed that a reader with an interest in an advanced topic (such as shell elements) will have the
necessary theoretical background. In most cases the derivations are intended to be complete and
rigorous. For a few of the structural elements, the reader is referred to the Programmer’'s Manual
for thé detailed expression of matrix coefficients that are regarded as too combersome to have
general interest. -

The Theoretical Manual is divided into seventeen major sections and numerous subsections.
Section 1 deals with some of the organizational aspects of NASTRAN and Section 2 with utility
matrix routines. Sections 3, 8, 5 and 7 deal with static structural analysis. It will be noted
that no materiai has been included in Section 6, which is reserved for topics to be defined in
the future. Section 8 treats heat transfer. Sections 9 through 12 deal with dynamic structural
analysis. Sections 13 through 15 deal with miscellaneous topics, including computer graphics,
special structural modeling techniques and error analysis. Section 16 deals with the interaction
between structures and fluids. Section 17 deals with aercelastic anmalysis.

The style of the Theoretical Manual, like that of the other three manuals, has been designed

to accommodate future additions and modifications. Each major subsection stands alone with its

own page numbers, equation numbers and figure numbers, so that changes can be made without signif- .

icant disruption.
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1. PROGRAM ORGANIZATION
1.1 OVERVIEW OF THE PROGRAM

NASTRAN is a finite element computer program for structural analysis that is intended for
general use. As such it must answer to a wide spectrum of requirements. The program must be
efficient, versatile and convenient to use. It must be standardized to permit interchange of
input and output between different users. It must be structured to permit future modification and

extension to new problem areas and to new computer configurations without major redevelopment.

The intended range of applications of the program extends to almost every kind of structure
and to almost every type of construction. Structural elements are provided for the specific
representation of the more common types of construction including rods, beams, shear panels,
plates, and shells of revolution. More general types of construction are treated by combinations
of these elements and by the use of "general" elements. Control systems, aerodynamic transfer

functions, and other nonstructural features can be incorporated into the structural problem.

The range of analysis types in the program includes: static response to concentrated and
distributed loads, to thermal expansion and to enforced deformation; dynamic respanse to transient
loads, to steady-state sinusoidal loads and to random excitation; determination of real and com-
plex eigenvalues for use in vibration analysis, dynamic stability analysis, and elastic stability
analysis. The program includes a limited capability for the solutfon of nonlinear problems,
including piecewise linear amalysis of nonlinear static response and transient analysis of non-

linear dynamic response.

NASTRAN has been specifically designed to treat large problems with many degrees of freedom.
The only Timitations on problem size are those imposed by practical considerations of running
time and by the ultimate capacity of auxiliary storage devices. The program is decidedly not a
core program. Computational procedures have been selected to provide the maximum obtainable

efficiency for large problems.

Research was conducted during the design of the program in order to ensure that the best
available methods were used. The areas of computer program design that are most sensitive to
state-of-the-art considerations are program organization and numerical analysis. The organiza-
tional demands on the program design are severe in view of the multiplicity of problem types and
user conveniences, the multipiicity of operating computer configurations, the requirement for -

large problem capability, the requirement for future modification, and the requirement faor
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PROGRAM ORGANIZATION

responsiveness to improvements in programming systems and computer hardware. The organizational
problems have been solved by applying techniques that are standard in the design of computer
operating systems but have not, as yet, been extensively used in the design of scientific applica-
tions programs. The mafn instrument of program organization in the program {s an executive system
that schedules the operating sequence of functional modules and that pians and allocates the
‘storage of files. An important aspect of the executive routine concept used in NASTRAN is that

it greatly reduces the cost of program coding and checkout by eliminating most module interface

problems and by reducing the remainder to a form that permits systematic treatment.

Most difficulties in numericai analysis ariserin connection with three basic impiicit opera-
tions: matrix decomposition (or inversion), eigenvalue extraction, and integration of differential
equations. The major difficulties that occur in the application of these operations to large
problems are excessive computing time, error accumulation and instability. Many methods that work

well with small or moderate sized problems are not acceptable for large problems.

The method employed for matrix decomposition is especially important due to its extensive
use as a base for the other two implicit operations. The method that is employed in the program
takes maximum advantage of matrix sparsity and bandedness. The latter aspect is particularly
important due to the enormous gain in efficiency that accrues when banding techniques are properly

employed by the user in setting up problems for the displacement method.

In general the solution time for a large structural analysis of any type can be greatly
reduced by taking full advantage of the sparsity and bandwidth of the matrices that describe the -
structurai problem. Other means, in addition to the matrix decomposition routine mentioned
above, have been used to improve efficiency for iarge problems These include storing sparse
matrices in packed form, the avoidance of operations that reduce sparsity or destroy bandwidth,
well designed Input/Qutput strategies, the use of advanced techniques for eigenvalue extraction,
and specially tailored numertcal integration algorithms.

The needs of the structural janai;sit have been considered fn jair'i::aspects of the design of the
program. The first thing to be remembered is that, in view of the wide range of possible appli-
cations of the program. we do not know exactiy what these rieeds may be. For this reason a high
degree of fiexibiiity and generality has been incorporated into certain areas of the program.

For example, in addition to the usual list of structurai elements that refer to specific types

of construction, the user is provided with more general elements that may be used to construct
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OVERVIEW OF THE PROGRAM

any type of special element, to represent part of a structure by deflection influence coefficients,
or to represent part of a structure by its vibration modes. For the more conventional types of
structural analysis, the user is presented with a large number of convenience features, including

plotting routines, which are definite necessities for large problems.

A major difficulty that the user faces in the solution of large problems is the avoidance of
errors in the preparation of input data. Card formats and card ordering are made as simple and
flexible as possible in NASTRAN in order to avoid errors caused by trivial violations of format

rules. A number of aids for the detection of legal but incorrect data are also provided.
The problems that can be solved by NASTRAN-inCIude the following general classes:
1. Static Structural Problems
2, é]astic Stability Problems
3. Dynamic”Structural Problems

4. General Matrix Problems
5. Heat Transfer Problems

6. Aeroelasticity Problems

Each general problem class is further subdivided into case types which differ with regard to
the type of information desired, the environmental factors considered, or the method of analysis.
The mathematical computations required to solve problems are performed by subprogram units called
functional modules. Each case type requires a distinct sequence of functional module calls that

are scheduled by the Executive System.

For structural problem types the sequence of module calls and hence the general method of
solution is established internally for each case type according to a rigid format stored in the
Executive System. Execution of a structural problem proceeds in one run to final solution, or,

at the option of the user, to a desired intermediate point.

A more flexible procedure 1s provided for the solution of general matrix problems. A1l of
the matrix operations (such as addition, multiplication, triangular decomposition, and eigenvalue
extraction) used in the program can be directly addressed by the user according to a system of
macro instructions called OMAP(for Direct Matrix Abstraction Program). The user constructs a —

chain of DMAP instructions in order to effect the solution of general matrix problems.
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PRNGRAM ORGANIZATION

1.2 THE NASTRAN EXECUTIVE SYSTEM
1.2.1 Introduction

The overall effectiveness of a general purpose program depends in Targe measure on how well
the available programming techniques have been employed in the design of its organizational and
cantrol features. It may, therefore, be useful to precede the usual treatment of the engineering
aﬁd mathematical aspects of the program with a discussion of a relatively unfamiliar feature of

general purpose programs, namely the Executive System.

NASTRAN has been designed according to two classes of criterfa. The first class relates to

functional requirements for the solution of an extremely wide range of large and complex problems

in structural analysis with high accuracy and computational efficiency, which are met by develop-
ing advanced mathematical models of the physical phenomena and incorporating their computation
algorithms into the program. The second class of criteria relates to the operational and organiza-
tional aspects of the program, These aspects are somewhat divorced from structural analysis itself;
yet they are of equal importance in determining the usefulness and quality of the program. Chief

among these criteria are:
1. Simplicity of problem input deck preparation.
2. Minimization of chances for human error in problem preparation.
3. Minimization of need for manual intervention during program execution.
4, Capability for step by step problem solution, without penalty of repeated problem set up.

5. {Capability for problem restart following unplanned interruptions or problem preparation

error.
6. Minimization of system overhead, in the three vital areas:
a. Diversion of core storage from functional use in problem solution.
b. Diversion of auxilfary storage units from functional to system usage.

¢. System housekeeping time for performing executive functions that do not directly

further problem solution.

7. Ease of program modification and extension to new functional capability. =

Sl
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PROGRAM ORGANIZATION

8. Ease of program extension to new computer configurations and operating systems, and
generality in ability to operate efficiently under a wide set of configuration
capabilities.

The second class of eight objectives is achieved in NASTRAN through modular separation of

functional capabilities organized under an efficient, probIem-independent executive system. This

approach is abso1ute1y essential for any complex multioperatfon, muTtifile application program
such as NASTRAN. To see this, one must examine the implications of modularity in program

organization.
- Any application computer program provides a selection of computational sequences that are
controlled by the user ihrough externally promidéd'opiions and parameter values. Since no user

will wish to observe the result of each calculation, these options also provide for the selection

of the data to be output. In addition to externally set options, internal decision switches whose

settings depend upon tests performed during the calculations will control the computation

sequences. There is, therefore, a natural separation of computations into functional blocks.

The principal blocks are called functional modules; modules themselves, of course, may and usually

must be further organized on a submodular basis.

Despite this separation, however, 1t {5 clear that moduTes cannot be completeTy independent,

since they are all directed toward solution of the same general problem. In particular, they must

intercommunicate data between themselves. The principal problem in organizing any application

program, large or small, is designing the data interfaces between modules.

For small programs. the standard techniques are to communicate data via subroutine calling
sequences and common data regions in core storage ' For programs that hand]e 1arger amounts of
data, auxiliary storage is used; however, strict specifications of the devices used and of the
data record formats are usually imposed. The penalty paid is that of "side effects". A change
in a2 minor subroutine initiates a modification of the data interfaces that propagates through the
entire program. When the program is small, these effects may not be serious. For a complex pro-

gram 1ike NASTRAN, however, they may be disastrous. -

This problem has been solved in NASTRAN by a separation of system functions, performed by an
executive routine, from problem solution functions, accomplished by modules separated strictly
along functional Tines. Each module is independent from all other modules in the sense that

modification of a module, or addition of a new module, will not, in general, require modfficat1on
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THE NASTRAN EXECUTIVE SYSTEM

of other modules. Even so, programming constraints on module development are minor. The essential

restrictions are:

1. Modules may interface with other modules only through auxiliary storage files that con-

tain data blocks.

2. Since the availability of the auxiliary files required for the execution of a module
depends on the execution of other modules, no module can specify or allocate files for
its input or output data. A1l auxiliary storage allocation is reserved as an executive

function.

3. Modules operate as independent subprograms, and may not call, or be called by, other

modules. They may be entered only from the executive routine.

4, Modules may interface with the executive routine through a parameter table that is main-
tained by the executive routine. User specified options and parameters are communicated
to modules in this way. The major line of communication is one-way, from user to execu-
tive routine to module. However, in addition, an appreciable two-way communication from
module back to executive routine {and, therefore, to other modules) is permitted via the

parameter table.

No other constraints, except those imposed by the resident compilers and operating systems,

are required for functional modules.
The essential functions of the executive system are:

1. To establish and control the sequence of module executions according to options specified

by the user.
2. To establish and communicate values of parameters for each module.

3. To allocate files for all data blocks generated during program execution and perform

input/output to auxilfary files for each module.

4. To maintain a full restart capability for restoring a program execution after either a

schedu]ed or unscheduled interruption.

Each of these functions is essentially independent of any particular feature of structural
analysis and applies to the operational control of any complex multimodule, multifile application

program. The executive system is open-ended in the sense that it can accommodate an essentially
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unlimited number of functional modules, files, and parameters. Modification of the executive
system necessary for modification or extension of functional modules is restricted to changes in

entries in control tables stored within the executive routine.

A description of the way in which these cbjectives and functional capabilities are accom-

plished by the NASTRAN Executive System is included in the following sections.

1.2.2 Executive Operations During the Preface

Program execution is divided into a preface and the program body proper. During the preface
the NASTRAN Executive System analyzes and processes the data which define user options regarding
the structural problem to be‘solved and organizes the overall problem solution sequence. The
sequence of operations during the preface is presented in Figure 1 and is described in detail in
succeeding subsections. During the program body proper, the NASTRAN Executive System controls the

step-by-step problem solution sequence.

1.2.2.1 Generation of the Initial File Allocation Tables

Two file allocatfon tables are maintained by the NASTRAN Executive System. One table defines
the fiTes to which data blocks generated during solution of the problem will be allocated. The
second table 1nc1udes files to which permanent executive data blocks, such as the New Problem

Tape, the 01d Problem Tape, the Plot Tape, and the User's Master File are assfgned.

The New Problem Tape will contain those data blocks generated during the solution that are
necessary for restarting the problem at any point. The 01d Problem Tape contains the data blocks
saved from some previous execution that may serve to bypass steps in the solution of the new
problem. The Plot Tape includes output data and plotting imstructions in a form that will be
accepted by an automatic plotter selected by the user. The User's Master File {s a permanent
collection of useful information, such as material properties, that may be used to generate input

data.

The generation of the file allocation tables is an operation that depends on the particular
“computer model being used since direct interface with the operating system of the computer must be
made. The routine which accomplishes this function interrogates file tables that are located in
the nucleus of the computer's own resident operating system. Files which are available for use

by the NASTRAN program are reserved and the unit numbers are stored in the NASTRAN file allocation

"
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THE NASTRAN EXECUTIVE SYSTEM

tables. An indication of which units are physical tapes is noted. I[f the number of files avail-

able is Insufficient, an error message 15 generated and the run is aborted.
1.2.2.2 Analysis of the Executive Control Deck

The first purpose of executive control is to provide a level of regulation for the many
options within NASTRAN. At this level the executive distinguishes between the broad approaches to
problem solution, e.g., between a matrix abstraction approach by the analyst or a rigid format
approach according to problem ¢lass. Also at this level, the executive distinguishes between
several operational modes, e.g., a first attempt, a continuation, or a modification. Certain
other functions of a general nature are convenient tc include with the executive control such as

problem identification, selection of a level of diagnostics, and the estimation of solution time.

The executive control deck includes cards which describe the nature and type of the solution
to be performed. These include an identification of the problem, an estimated time for sclution
of the problem, a selecticn of an approach to the solution of the problem, a restart deck from a
previous run if the solution is to be restarted, an indication of any special diagnostic printout
to be made, and a specification of whether execution of the problem is to be completed in a single

run, or whether execution will be stopped (check-pointed) at some intermediate step,

Each of the cards comprising the executive control deck is read and analyzed. Depending on
the card, information is either stored in various executive tables maintained in core storage or
written in a Control Table on the New Problem Tape for further processing during a later phase of

the preface.
1.2.2.3 Processing of the Case Control Deck

When the rigid format solution route is selected, further details of control are provided by
the 'Case Control' portion of the executive. In effect, the analyst can manipulate his problem
by means of entries he inserts in the Case Control. He can make choices amongst the sats of data
reprasenting different physical situations which are allowed to be assembled in the Bulk Oata
portion of the problem input. Here also the analyst can regulate his output. Fundamental to the
method of control in this section is the notion of sets. Boundary conditions, loading cases, and —_

output selections are controlled by set selection.

The case control deck includes cards that indicate the following options: selection of
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specific sets of data from the bulk data deck (i.e., from the data deck that describes the details
of a problem), selection of printed or punched output, definition of subcases, and the definition

of plots to be made.

The case control deck is read and processed. Information defining data set selection, output
format selection and subcase definition is written in the Case Control data block. Information

defining plot requests is written in the Plot Control data block.

If the problem is a restart, a comparison with the Case Control data block from the previous
run (stored on the 01d Problem Tape) is made. Differences are noted in an executive restart

table.
1.2.2.4 Sorting of the Bulk Data

In NASTRAN the input to the mathematical operations performed in functional modules is pro-
vided in the form of previously organized data blocks. The data blocks derive from two sources:
those that derive from the bulk input data and those that are generated as output from previous
functional modules. Those that derive from the bulk data are organized into data blocks by the
IFP routine, but prior to the execution of IFP, XSPRT sorts the bulk data. Operation of the XS@RT
routine is influenced by the type of run. If thg run is a cold start (that is, an initial sub-
mittal for a given job) the bulk data 1s read from the system input unit or the User's Master File,
1s sorted, and is written on magnetic files in preparation for problem execution. If the analyst
wants to provide for a future restart, the SORT routine prepares a file on the New Problem Tape
which contains the sorted bulk_data. If the run is a restart, the bulk data is copied from the
01d Problem Tape with the addition of any changes from the system input unit.

An echo of the unsorted bulk data is given if requested. Similarly, the sorted bulk data is

echoed on request.

Since the collating sequence of alphanumeric characters varies from computer to computer, the
sort routine converts all characters to an ihternal code prior to sorting. Following the sort,
the characters are reconverted. In this way, the collating sequence is made computer independent.

The algorithm used by the sort routine is biased toward the case where the data is in sort or
nearly in sort. Consequently, bulk data decks which are nearly in sort will be processed efff-
ciently by the routine.

1.2-6
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THE NASTRAN EXECUTIVE SYSTEM

The sorted bulk data is read from the New Problem Tape by the Input File Processor. Each of
the cards is checked for correctness of format. If any data errors are detected, a message is

written and a switch is set to terminate the run at the conclusion of the preface.

Processing of the bulk data cards depends on the type of jnformation on the card. Each set
of data cards of the same type is written as one Togical record in the data block to which the

card has been assigned.
1.2.2.5 General Problem Initialization

The general pruoblem initialization is the heart of the preface. Its principal function is to
generate the QOperation Sequence Control Array (@SCAR) which defines the sequénce of operations for
an entire problem solution. The #SCAR consists of a sequence of entries, with each entry contain-
ing all of the information required to execute one step of the problem solution. The PSCAR is

generated from {nformation supplied by the user in the executive control deck.

If the problem is a restart, the restart dictionary (contained in the Control Table) and the
executive restart table are analyzed to determine which data blocks are needed to restart the

solution and which operations need to be executed to complete the solution.

To aid in efficient assignment of data blocks to files, two ordinals are computed and includ-
ed with each data block in each entry of the @SCAR. These ordinals are the @SCAR sequence number
indicating when the data block is next used and the GSCARVsequencefnbﬁbé;iiﬁdicating when the data
block will be used for the last time.

when generation of the @SCAR is complete, it is written on the PPPL (an executive data
block). If the problem is a rg;tart, data blocks needed for the current solution are copied from

the 01d Problem Tape to the P@@L, augmented by entries to provide for new current requirements.

1.2.3 Executive Operations During Problem Solution

1.2.3.1 Sequence Monitor

when the preface has been completed, solution of the problem {s initiated. The solution is

controlled by the sequence monitor.
The sequence monitor reads an entry from the PSCAR which defines one step in the problem -

solution in terms of the operation to be performed, data blocks required for input, data blocks to

1.2-7
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be output, scratch (i.a., temporary) files required, and parameters. A status table 1s generated o
which relates the names of data blocks required for operation to the position in the file alloca-

tion table where information about the data block is contained. When the status table is complete

and the parameters required for the operation have been retrieved from the parameter storage

table, the appropriate functional module is called to execute the operation.

1.2.3.2 Segment File Allocation

The segment file allocator is the administrative manager of data blocks for NASTRAN. ANl
large modern computers have sufficient auxiliary storage to accommodate the needs of NASTRAN The
number of separate files into which the storage can be divided is, however. severely limited on
most computers. In general, the number of data blocks required for solution of a problem far ex-

ceeds the number of files avaflable, so that the assignment of data blocks to files is a critical
operation for efficient execution of NASTRAN. ’

The segment file allocator is called whenever a data block is required for execution of an
operation but is not currently assigned to a file. When the segment file allocator is called, it
attempts to allocate files for as much of the problem solution as possible. This depends on the
. type of problem, the nuber of files available, and the range of use of the data blocks. 7

e ———

The segment file allocator reads entries from the §5CAR from the point of current operation
to the end of the problem solution. A table is assembled in which information about data blocks.
Including thefr next use and their last use, s stored. Data blocks which are currently assigned
to files but are no longer required for problem solution are deleted. In certain cases, when the
range of use of a data block {s large, it may not be possbee to allocate a fi1e to the data block
throughout its entire range of use. In this case, pooling of the data block into a single file
with other data blocks is required so that the file to which the data block was assigned may be

freed for another a110cat10n In general, those data blocks whose next use is furthest from the
current point are pooled.

When the segment file allocator has completed its task, a new file allocation table has been
generated. This table is used until the solution again reaches a point where a data b1ock is

required to execute an operation but {s not assigned to a file.
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THE NASTRAN EXECUTIVE SYSTEM
1.2.3.3 Input/Output Operations

A11 {input/output operations in NASTRAN (except reading data from the system input file or
writing data on the system output file) are controlled by a collection of executive routines
called GING (General Input Output) which act as a buffer between the NASTRAN functional modules
and the operating system of the computer. This design feature eliminates computer dependent code
from the functional module programs which are, consequently, written exclusively in FORTRAN. The
use of computer dependent code for the selection of the operating system routines to accomplish

the actual input/output functions is isolated to a single routine within GING.
1.2.3.4 Other Executive Operations
Additional operations in support of a problem solution which are performed by the NASTRAN

Executive System include checkpoint, purge, equivalence and save.

The checkpoint routine copies data blocks required for problem restart onto the New Problem

Tape and makes appropriate entries in the restart dictionary.

The purge and equivalence routines change the status of data block entries in the file allo-
cation table. They are called whenever the nature of a given problem requires less than the full

generality provided within NASTRAN, thereby permitting some computational steps to be bypassed.

The save routine stores the values of parameters in the parameter storage table where they

are retrieved for subsequent use by the sequence monitor.

1.2-9
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Generate Initial File Tables

Read and Analyze
Executive Control Deck

Process Case Control Deck

Sort Bulk Data

Process Bulk Data

Perform General Problem
Initialization

Figure 1.

Flow of operations during the preface.
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1.3 USER CONTROL OF PROBLEM EXECUTION

A11 general purpose programs have formal procedures by which the user controls the calcula-
tions that are performed. In NASTRAN several modes of operation and a large number of options
within each mode are provided to the user. A short discussion of these matters is presented here

for completeness. More extensive treatment will be found in the User's Manual.

During the solution of a problem, the NASTRAN executive system calls a sequence of func-
tional modules that perform the actual calculations, as explained in the preceding section. Two
general types of solution are provided: solution by Rigid Format according to a sequence of module
calls built into the program; and solution according to a sequence of module calls generated by
the user. The latter capability is provided in order to make the program's matrix routines
available for general use and also to provide the sophisticated user with the means for solving
structural problems with features not accounted for in any of the built-in module sequences. It
is intended, however, that the great majority of structural problems will be solved via the rigid

formats.

There are, at present, a total of twelve rigid formats in NASTRAN with provision for adding
an unlimited number in the future. Each corresponds to a particular type of solution or to a
particular method of analysis, such as: Static Analysis, Buckling Anmalysis, Direct Transient
Response, Modal Transient Response, etc. The five Rigid Formats associated with static analysis
are described in Section 3.2. The seven Rigid Formats associated with dynamic analysis are des-

cribed in Section 9.1.

Each rigid format consists of two parts. The first is a sequence of instructions (including
jnstructions for Executive aperations as well as for Functional Module operations) that is stored
in tables maintained by the Executive System. The second part is a set of restart tables that
automatically modify the sequence of instructions to account for any changes in the input data
when a restart is made after partial or complete execution of a problem. The restart tables can
accommodate a change of rigid format such as occurs, for example, when vibration modes are re-
quested for a structure that was previously analyzed statically. The restart tables are, as can
be imagined, quite extensive and their generation constitutes a significant part of the effort
expended in developing a rigid format. They are, however, one of the more important cost-saving —_

features of NASTRAN.
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Many options are available with each rigid format. One such option removes the possibility v
of branching back to previously executed functional modules, and it should, of course, be exer-
cised only when it is known in advance that Tooping will not occur. This option permits the
Executive System to discard files that would otherwise be saved. Other options define the sub-

cases to be executed and the desired output formats, see Section 1.2.2.3.

It 1s also possible for the user to modify a rigid format via the ALTER feature described in
Section 2 of the User's Manual. Typical uses of the ALTER feature are to schedule an exit at an
intermediate point in a solution for the purpose of checking intermediate output, to schedule the
printing of a table or a matrix for diagnostic purposes, and to add or delete a functional module
from the sequence of operating fnstructions.

"For more extensive modifications the user can write his own §équeﬁce of'execdt#ve instruc-
tions. The system by which this is done is called DMAP (for Direct Matrix Abstraction Pragram).
OMAP is a user-oriented programming language of macro instructions which, Tike FORTRAN, has many
rules which must be followed to be interpretable by NASTRAN. DMAP is also used in the construc-
tion of rigid formats, which differ from user-generated sequences mainly in that restart tables

are provided.

The rules for generating a DMAP sequence are explatned in Section 5 of the User's Manual.
The DMAP sequence itself consists of a series of sfatements consisting of Egecutive Operation
instructions and Functional Module calls. Each statement contains the name of the instruction
(or Functional Module), the nameé of the input data blocks, the names of the output data blocks,
and the names and values of parameters. Typical examples of parameter usage are to'indicate
whether an operatfion is to be performed with single or double precision arithmetic, which mathe-

matical method will be used (when there are options), or the desired format of the output.

The names of some of the executive operations are BEGIN; CHKPNT (used when it is desired to
copy data blocks onto the Problem Tape in case an unscheduled restart is necessary); FILE (used
to save an intermediate data block); REPT (used to provide looping capability); PURGE (used to
prevent storage of data blocks); and END.

The functional modules belong to one of the fo11ow1ng categories structural modules, matrix
operatfons uti11ty moduTes' and user moduies The Structura1 Modules are the main subprograms

of NASTRAN. Some exampies of structural modules, taken from dynamic analysis, are: READ (ReaT -
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USER CONTROL OF PROBLEM EXECUTION

aigenvalue analysis); GKAM (Modal dynamic matrix assembler); TOR (Transient Dynamic Response}; and
DDR (Oynamic Data Recovery). The Matrix Operations (add, multiply, transpose, etc.) that are
available to the user of NASTRAN are described in Section 2. The Utility Modules are mainly
concerned with the formats of output data. The User Modules are dummy modules that provide the
user with the ability to write new functional capability that will automatically be recognized by

the executive system.

The usual methods of output for NASTRAN are the operating system print or punch files and the
NASTRAN plot tapes. Procedures for normal output selection are described in Section 2.3 of the
User's Manual. The printing of tables or matrices generated by NASTRAN is controlled by a group
of Utility Modules descriheg in Section 5.3.2 of the User's Manual. In many cases, it is desir-
able to save matrices and tables for use in restart operations. When using rigid formats, it is
possible to save preselected tables and matrices by using the Checkpoint option described in
Section 2.2 of the User's Manual. Checkpointed files are written on the New Problem Tape. It is
also possible for the user to save selected matrices on tape by inserting one of the User Modules
described in Section 5.3.3 of the User's Manual into the DMAP sequence by means of the ALTER

option.

The usual method of input for NASTRAN is the operating system card reader. When performing
restarts, the New PFob1em Tape from a previous run is redesignated as the 01d Problem Tape and
used as an additional source of input., Tapes that have been prepared with User Modules on pre-
vious runs can also be used as additional {nput sources by inserting one of the input User

Modules into the DMAP sequence by means of the ALTER option,
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I



PAGE g/”immnormu.v BLANK

i 2

€



2. MATRIX OPERATIONS

2.1 ELEMENTARY OPERATIONS
2.1.1 Introduction

The operations to be considered (matrix add, multiply, transpose, partition and merge) are
sufficiently elementary that the formal mathematical procedures which accomplish them may safely
be assumed to be well-known tovall readers of the Theoretical Manual. What is not likely to be
known fs the corresponding sequence of physical data manipulations that are performed by the com-
puter. Such matters are not usually considered to be required reading for users or for others
with an interest in "the theory"; they are, accordingly, buried in the programmers' manual as ref-
erence material for maintenance and modification of the program. This practice is not followed

here because the success or failure of NASTRAN depends, to a far greater extent than for smaller

programs, on the efficiency of the subroutines that perform the basic matrix operations. Al]l

matrix operations in NASTRAN are performed by specially designed subroucines.

Questions regarding accuracy, which is an equally important aspect of numerical calculation,
fall into two categories: those that relate to analytical approximations, such as occur in
iterative solutions, and those that relate to simple round-off error accumulation. Elementary
matrix operations do not involve analytical approximations. Nor do the triangular decomposition
of matrices and the solution of simultaneous 1inear equations, described in Sections 2.2 and 2.3.
The errors that occur in efgenvalue extraction and in numerical integration due to analytical

approximation are discussed in the sections dealing with those topics.

Trigonometric and other elementary irratjonal functions are evaluated by library subroutines

provided by the manufacturer of the computer, who guarantees them to be accurate.

The effects of round-off error accumulation in structural analysis are treated in Section
15.1, where reasons are presented for adopting double precision arithmetic (54 or more bits) fn
critical calculatfons. No other measures are employed in NASTRAN for combating round-off error
accumulation. The usual measures of this sort (e.g., rounding rather than truncating arithmetic
rasults, or accumulating sums by starting with the smallest numbers) are only mildly effective and
have the disadvantages that they require machine language coding, or that they substantially

increase running time, or both.

From the viewpoint of data processing, the computer has two main parts: a central processor

that contains an arithmetic unit and a randomly accessible memory device (core storage) with very

2.1-1 (W2731717)
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MATRIX OPERATIONS

short access time; and a collection of peripheral storage devices (tapes, disks and/or drums) with
high capacity but relatively long access times. In general the data contained on the peripheral

storage devices can be accessed effectively by the central processor only in relatively large
blocks, due to the time required to locate the first word in any record. Thus, from the viewpoint
of matrix algebra, data should be sequentially read from and written on peripheral storage devices
as one or two-dimensional arrays. An important convention employed in NASTRAN is that all matrices
are stored on peripheral devices by columns. This fact {s important to the discussion of the mat-

rix multiply and transposition subroutines described below.

1t is assumed, in the design of NASTRAN, that a typical matrix is so large that it cannot all
be held in (high-speed) core storage at any one time, even if it is a sparse matrix that is ex-
pressed in packed form (i.e., by means of its nonzero elements and their row-column indices). In
such situations, the computing time tends to be dominated by the relatively slow rate of data
transfer from peripheral storage to core storage, and optimum computing strategies are designed to

minimize the number of data transfers.

The time to transfer a sparse matrix from peripheral storage to the central processor will be
decreased if only the nonzero terms are stored. The matrices in NASTRAN are packed in nonzero
strings in the following manner. The record for each column begins with a three-word header.

This is followed by an integer (fixed-point number) describing the position (row index) of the
first nonzero term and by a second integer describing the number of consecutive nonzero terms in
the string. The integers are followed in consecutive locations by the floating point numbers
describing the values of the nonzero terms in the string. The remaining nonzero strings follow
in order until the end of the column is reached. The data record describing a typical column

will appear as follows:
I, 1, 1, 2, 2, (X,X), 8, 3, (X,X,X), 17, 1, (X), 27, 1, (X), E.

The three I's are the header for the column. The X's are the numerical values of terms, and E
1nd1éates the end of the record. The nonzero terms in the column are the 2nd, 3rd, 8th, 9th, 10th,
17th, and 27th. Once the record is transferred to core storage, it may, if required, be fully
expanded by addition of the zero terms.

In the case of triangular factors, the integers describing the row position and the number of

consecutive nonzero terms, are placed at the end, as well as the beginning of each nonzero string.

2.1-2 (12/31/74)
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This manner of storing sparse matrices allows the matrix to be read backward in the same manner as

it is read forward, and thereby allows for improved efficiency in the backward substitution part

of equation solution operations.
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2.1.2 Matrix Multiplication

The multiplication of large matrices can be a time consuming operation. If the matrices are
full, then the time to multiply two matrices of order nxm and mxr is proportional to nmr, If the
matrices are sparse, but no attempt is made to take advantage of the sparsity, the running time

w111 be the same as if the matrices were full.

Most of the matrices used in structural analysis are initially very sparse. They may, how-
ever, become relatively dense as the result of transformations. Consequently, the NASTRAN pro-
gram requires a matrix multiplication routine that works well for sparse matrices as well as for

full matrices.

The matrix multiplication routine in NASTRAN provides two alternative methods of matrix mul-
tiplication. Both of the methods take advantage of sparsity in different ways. The second method
might be described as a truly sparse matrix method in that only the nonzero terms in either the
left-hand or the right-hand matrices are processed. The method which results in the minimum exe-

cution time is automatically selected by the routine.

For the discussion which follows, the general multiply-add form, [D] = [A][B]+[C], s assumed.

In Method One, core storage is allocated to hold as many columns 6f (8] and D] in unpacked
form as possible (columns of [C] being read initially into the storage space for [0]). The [A]
matrix is read interpretively one nonzero element at a time. For each nonzero element in [A], all
combinatorial terms for columns of [B] currently in core are computed and accumulated in the stor-
age for [D]. Let a;, be a nonzero element of [A] and blj be an element of [B]. The formula for
an element of [D] is

dyy = Eamsz*-cij , m

where j runs across the columns of Bl and [0} currently in core. At the completion of one complete
pass of the [A]matrix through the central processor, the product is completed to the extent of the
columns of [B] currently in core. The process is repeated until the [B} matrix is exhausted. It ‘may
be seen that the number of passes of the [Almatrix equals the total number of columns of [B] divided
by the number of columns of {8 that can be held in core at one time. Method One s effective if -
the number of columns of [B] is not large, e.g., when [B] is a small number of load vectors.

Method One is also more effective than Method Two when [8] is a dense matrix.
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In Method Two, only a single term of the [B] matrix is required in main memory at any one time.
One full column in unpacked form of the partially formed [D] matrix fs ;lso stored in core at the
same time. The remaining storage is allocated to as many columns of [A] in packed form as can be
stored, i.e., only nonzero terms and corresponding row positions are stored. For the columns of
[A] in storage at one time, the [8] matrix is passed through the central processor, column by

column, forming partial answers on each pass.

Each column of [B] forms partial answers which are added to the corresponding column of [D].
As may be seen from Equation 1, only the elements in the rows of sz corresponding to the columns
of ay, currently held in core are used. After all columns of [8] have been processed once, new
columns of [A] are placed in core and the [B] matrix is passed through again, The process is

repeated until all the columns of [A] have been used.

In Method Two the [A] matrix is passed through core once and the number of passes of the [B]
matrix equals the total number of columns of [A] divided by the number of columns of [A] that can
be held in core in packed form at one time. The number of passes of the [B] matrix {s the con-
trolling factor in determining computing time. If the [A] matrix is large and sparse, the number of
passes of the [B] matrix in Method Two will typically be less than five. In Method One, on the oo
other hand, the numberrof passes of the [A] matrix will be much Targer if the number of columns T
of [B] is large. The reason fs that, in Method One, the columns of the [B] matrix are not stored

in packed form, whereas, in Method Two, the columns of the [A] matrix are stored in packed form.

Both methods one and two include variations for premultiplication of a matrix by the trans-
pase of another matrix, [D] -’[A]T[B]+[C]. where [A] is stored by columns. This is done in order
to avoid transposing the [A] matrix, which is by no means trivial (see Section 2.1.4). In fact,
the second matrix multiply method provides an efficient means for matrix transposition of sparse

matrices, by setting [B] = [1] and [C] = 0.

A third option is provided for the transpose case 1n order to efficiently handle the case of
[B] sparse and [A] dense. The operations for method three are similar to those described for the
nontranspose case of method two, except the columns of A (rows of [A]T) are held in unpacked
rather than packed form. In the transpose case for method two the computing time is proportional
to the density of the [A] matrix, whereas in method three the computing time is proportional to
the density of the [B] matrix. A nontranspose option is not needed for method three as the com-
puting time for the nontranspose option in method two is proportional to the product of the
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densities of the [A] and (B] matrices.
2.1.3 Matrix Addition
The addition routine computes the general matrix sum,
[C] = a[A] +b[B] , (2)

where a and b are scalars and [A] and [B] matrices. Special provision is made for the case b = 0,

to allow scalar multiplication. No compatibility of types (such as single or double precision,
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real or complex numbers) between a, b, (A], and [B] is required. The nonzero terms of [A] and [B]
are read interpretively one nonzero element at a time. The appropriate sum is formed into [C] and

{mmediately transferred to peripheral storage. The required amount of core storage is very small.

2.1.4 Matrix Transposition

The transposition of large matrices is a distressingly awkward operation. The optimum strat-
egy depends on the location of the nonzera terms, the density of the matrix, and its size. The
NASTRAN algorithm which is used in the transposition of dense matrices is described below. Sparse

matrices are transposed by the matrix multiply subroutine (see above).

If the matrix order is i x j and if only a fraction of the matrix may be held in core at one
time, the usual technique is to read the whole matrix from a peripheral storage device, saving, in
core, the elements from the first R rows of the matrix; these elements are then written row by row
on a peripheral storage device. The operation {s then repeated until all { rows have been rewrit-
ten. The matrix may then be said to be "transposed" because the segments of a sequentially stored

two-dimensional array are treated by NASTRAN as the columns of a matrix. The number of times that

the matrix must be transferred from peripheral storage to high-speed core is T = i/R. The time
for data transfer {1/0 time) will be equivalent to that taken to jnput the full matrix T times and

to output it once.

If the matrices are very large, matrix partitioning may be used effectively to reduce the
computer time. The matrix is first partitioned by rows and the partitions are then transposed as

shown below,

[A] = A, —— | AT A - AT . (3)

The technique is as follows. The matrix [A] is read into core one column at a time, and the ele-
ments in the first P rows of each column are extracted and placed in a peripheral storage file.
The operation is repeated, reading the elements in the next P rows by columns into a second peri-
pheral storage file, etc. Thus, since the[A]matrix has | rows, the [/@ time for partitioning is

equivalent to that for 1/P reads and one write of the complete matrix. Next the[@ﬂ matrix is

2.1-5

PAGE o /- 61”5?{“0“& BLANK PRECEDING PAGE BLANK NOT FILME
. D‘

4



ORIGINAL PAGE 1§’

MATRIX OPERATIONS OF POOR QUALITY

transposed by the first-described method which, since[?ﬂ has P rows, requires P/R reads and one
write, Because the columns of[}ﬂT are also columns of MF, the transposition is complete when all
of the partitions have been transposed. The I/@ time for transposing the partitions is equival-
ent to P/R reads and one write of the complete [A] matrix. Assuming that reads and writes take

the same time, the total time is proportional to the parameter
T -%+l+§+l =T-§+%+2 . (4)

The number of rows in each partition, P, may be freely selected. The minimum value of the time
parameter obtained when 3t/3P = 0, is

T,

min = 20+7T) : - (8)

and occurs when P = R/T . (6)

The time for the second method is less tham that for the first when

200 +7/7 ) < T+ . (7

which is satisfied when T > 6. The second method is automatically selected by the program when
this condition is satisfied.

2.1.5 Matrix Partitioning and Merging

In structural analysis, vectors describing the system variables are frequently separated into
subsets which are then treated differently. For example, in the displacement method matrix parti-
tioning may be applied to the displacement vector {uf}. resulting in two subsets: {uo}. degrees of
of freedom removed by partitioning, and {"a}’ degrees of freedom not removed (see Section 3.5.3).
A1l of the arrays associated with {uf}. such as the load vector, {Pf}, and the stiffness matrix,
[Kff]. must also be partitioned. The partitioning operations are formally indicated as follows;

P
(P} = =% | (8)
PO
1
K22 ! Kao 7
[Kff] = ""r-" . (9)
KaoT’ KOO
2.1-6
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Later in the analysis it will be necessary to recombine the elements of {uo} and {“a}' This

operation, called the "merge" operition, is formally indicated by

--2_.L {u,} . (10)

. 0

The essential feature of the operation is that the original order of the members of {uf) must be

restored. Order must also be maintained during the partition operation,

The partition and merge operations are accomplished in the program with the aid of USET, an
array that describes the membership of each degree of freedom in each of the defined vector sets.
There are approximately fifteen such sets (see Section 3.3). One word of USET is assigned to each
degree of freedom. One binary bit in each word of USET corresponds to a different vector set. A
bit is set equal to unity if the degree of freedom is a member of the corresponding vector seti
USET may, consequently, be regarded as a table with marks in appropriate row-column intersections

as shown below.

ug -- ug Uy Uy -
Y v 4

% 4 4

v % 4

v 4 4
4 v 4

% 4 4
v

4 4 v

4

v/ Y 4
v

4 4 v

In partitioning [Kff] (Equation 9) for example, USET is called into core storage along with
the first column of [Kff]. USET is scanned and the ordinals of the nonzero bits in the positions

corresponding to Ugs Ug» and u, are noted and copied onto separate lists. The Tists are then used

u
o
to separate the elements in the first (and succeeding) colum(s) of [Kff] into [Kaa] and [Kao]T'
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which are then read out of core onto separate files. In the merge operation (Equation 10), the
lists are scanned to determine whether a number from {ua} oF a number from {uo} will be the next

number to be copied into {uf}.

2.1-8
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2.2 TRIANGULAR DECOMPOSITION

The factoring of a matrix into upper and lower triangular forms is a central feature of
structural analysis as performed with the NASTRAN program. For large problems a substantial
fraction of the total computing time is associated with triangular decompositions. The NASTRAN
program requires a decomposition routine that works well for both full and sparse matrices.
Matrices encountered in structural analysis, including structural dynamics, may be efther real

or complex.

Most of the matrices used in structural analysis are initially very sparse; however, they
tend to fill in various degrees as the problem solution proceeds. Under some conditions, matrix
multiplications will fi11 a matrix prior to the beginning of the triangular decomposition. Under
other conditions an initially sparse matrix may completely fill during the triangular decomposi-
tion. However, for many matrices used in structural analysis, much of the original sparsity {s
maintained in the triangular factors. In order to handle all of these situations effectively,
the decomposition routines treat all matrices as sparse. The procedures efficiently treat the

general sparse case as well as the limiting cases of a full matrix or of a simple band matrix.

2.2.1 Trianqular Decomposition of Symmetrical Matrices

It is well known (see, for instance, Reference 1) that any square matrix [A], having nonzero
Teading minors, can be expressed in the form [A] = [L1[D][UT], where [L] and [U] are unit-lTower and
unit-upper triangular matrices respectively, and [D] is a diagonal matrix. The matrix {0] can be
incorporated entirely within either [L] or [U] or part with each. The different ways of incorpora-
ting [D], combined with different orders of operations in determining the terms of [L] and [UT,

have given rise to many named procedures for performing triangular decompositions.

The following discussion will be based on the equation
(Al = [LIV] (M

where {L] is a unit lower triangle. The elements of the upper triangle may be computed by the

following recursion formula:

i-1
Uiy * 345 - RZI Bk Ykt (2) -
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For symmetric matrices without pivoting, the upper and lower triangular elements are related as

follows:

b, = okl - (3)

The substitution of the relation in Equation 3 into Equation 2 gives

j=1 Uy
Ugy T 3y - kZI T Uy (8)
Now, k < f <J, so that only previously computed results occur on the right-hand side of Equation
4 if the elements ugy are computed in order starting with the first row. The unit lower triangle

and the associated diagonal elements are saved on secondary storage for later use in equation

solution operations,--

Figure 1 shows the triangular factor for a sparse matrix. Initial nonzero terms are indi-
cated by X's with 0's indicating nonzero terms created as the decomposition proceeds. The terms

in triangles indicate the relative locatfons for nonzero contributions to the upper triangular

_factor when the first row of the matrix fs the pivotal row. If there fs sufficient main storage ~

to hold all of the nonzero terms associated with éiéﬁ;ﬁfVBta1 row, the decompositidn may proceed
without the need for writing intermediate results on secondary storage. In general, no nonzero
terms will appear in any column of [U] until a nonzero term appears in [A]. The apperance of

the first nonzero term in [A] defines the beginning of an "active column.* Columns 1, 2 and 9

" dre active when the first row 1s the pivotai row. The terms in ‘squares indfcate the refative

locations for nonzero contributions to thg upper triangular factor when the third row of the

matrix is the pivotal row. At this point in the decomposition, rows 3, 7, 9 and 13 are active.

If at some point in the decomposition, the dfagonal term of the pivotal row initiates a new
active column, all existing active columns will terminate in the previous row (change status
from active to passive). In row 4 of Figure 1, columns 7, 9 and 13 become passive. Also in row
7, colums 11 and 14 become passive. Prior to using row 4 as a pivotal row, the passive terms in
rows 7, 9 and 13 (in squares on Figure 1) are transfarred to secondary storage. These terms
remain on secondary storage until gach of the rows 7, 9 and 13 become pivotal rows, at which time
they are transferred to main storage and combined with the original nonzero terms to form each of

the pivotal rows. Columns remain passive until a nonzero term appears in that column for a later _

2.2-2 (12/31/74) g
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TRIANGULAR DECOMPQSITION

pivotal row. Nonzero terms which change the status of columns from passive to active may be either
in the original matrix, such as column 11 of row 10, or they may be created prior to the column
becoming passive, such as columns 9 and 13 of row 7. Figure 1 indicates that these later nonzero

terms were created when row 3 was the pivotal row.

If there is sufficient main storage for all of the terms generated by the second term of
Equation 4 for each pivotal row, the triangular decomposition can be campleted with a single pass
through the matrix. When the number of active columns exceeds the capacity of the working storage
space, an automatic spill logic 1s provided. The decomposition p;oceeds by holding the nonzero
terms for as many rows as possible in main storage. Following the completion of all possible
pivotal row operations, the intermediate results are transferred to temporary storage. All
possible pivotal row operations are then performed on the next group of rows in the matrix, and
the intermediate results are transferred to temporary storage. Next, the temporary file 1s re-
wound and pivotal operations are continued on the first and second spill groups. This sequence
of operations continues, adding the next group of rows an each pass through the matrix, until

each pivotal row is complete and transferred to permanent secondary storage.

A preliminary pass is made over the original matrix in order to estimate the execution time
and create tables which assist in the efficiency of the decomposition operation. The computing
time to perform any calculation may be estimated by counting the number of elementary operations
that it involves and assigning experimentally determined values of time to the various types of
elementary operations. In the case of triangular decomposition by the method described above,

the estimated time is
T-‘Mrfczu(m)gc;zﬂx{czﬂ(;’ +p)Tceep Pfc (5)
2'1,11 1,1112' s 2'Vp g t Pyl 1

where M = time for multiply-add loop,

—
L]

time to read and write one term on spill file,

time to put one term in write buffer,

time to get one term from read buffer,

= a4 o
"

= order of matrix,

Ci = pumber of active columns in the ith row, -

x
[ ]

i number of [/@ transfers for the ith row. R1 may be approximated by the integral part

2.2-3 (12/31/74)
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4

of ci/s, where S = number of core-held rows in the current spill group,

Cs = number of active columns at beginning of spill operations that are out of range of
first spill group (column numbers greater than last row in spill group) for each time
that spill operations begin, _

Ct = sum of number of passive columns on secondary storage and number of active columns
in working space for each time that active column termination occurs, and

n = number of words per term.

The computing time is dominated by the first term in Equation 5, which is assocfated with the
arithmetic operations in the step-by-step elimination procedure. Since the number of active
columns is a function of the ordering of the matrix, the user can shorten the computing time by
ordering the matrix in the most favorable manner. A discussion of the sequencing of grid points
to minimize the time required for triangular decomposition is given in Section 1 of the User's

Manual.

The second and third terms of Equatfon 5 are zero, unless spill operations require the
transfer of intermediate results to secondary storage. The fourth term is the modest overhead
associated with passive columns, and the last term is the time required to transfer the final %%;3

result of the triangular decomposition to secondary storage.

In order to assist the user in locating singularities, or near singularities in the matrix,
information relative to the magnitude of the diagonal elements of the triangular factor is fur-
nished to the user. The absolute value (e) of the ratio of the diagonal element in the original
matrix to the diagonal element in the triangular factor is determined for each row of the matrix.
The maximum value of ¢ along with the distribution of the values of ¢ is furnished as diagnostic
information. The row numbers for the five largest values of ¢ are also furnished along with the

number of negative values for the diagonal element in the triangular factor.
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Figure 1. Triangular factor for sparse matrix
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2.2.2 Triangular Decomposition of Unsymmetrical Matrices

The pracedures for the triangular decomposition of unsymmetrical partially banded matrices
are similar to those used for symmetrical matrices. The lack of symmetry means that the upper
and lower triangular faétors are not related, and that the widths of the upper and Tower bands
(which replace the symmetrical semi-bands of the symmetrical matrix) may be different. However,

the band structure of the original matrix will be maintained in the triangular factors.

Although the Jack of symmetry means that the pattern of scattered terms outside the upper
band may be different than the pattern outside the lower band, it still remains true that no non-
zero terms will appear in any column of the upper triangular fac;gr until a nonzero term appears
in the same column of the orig{nal matrix. Likewise, nb nonieroriénms will appear in any row
of the lower triangular factor until a nonzero term appears in the same row of the original
matrix. Hence the partially banded nature of the matrix is maintained after the completion of

the triangular decompositon.

The lack of any assurance that all leading minors are nonsingular requires that pivoting
(i.e., interchange of rows) be used to mafntain the numerical stability of the triangular decompo-

sition. Pivoting is restricted to take place within the lower band. This will increase the band-

width of the upper triangular factor by the width of the lower band, but will not otherwise affect

the partially banded character of the triangular factors.

The general procedure for an unsymmetrical decomposition will be discussed with reference to
Figure 2, which shows an unsymmetrical partially banded matrix of order N, upper bandwidth B,
and Tower bandwidth B, with several nonzero terms outside the bands. Initial nonzero terms
are' indicated by x's, with Q's indicating nonzero terms created outside the original bands as
the decomposition proceeds; The 0's within the expanded upper band B indicate the maximum number
of nonzerc terms that can be created by the pivoting. The existence of initial zero tarms inside
the lower band B and the expanded upper band 8 + B {s ignored as, in general, these tarms will

become nonzero as the decomposition proceeds.

If there is sufficient core storage to hold B + B columns of the lower triangular factor, as
indicated inside the solid parallelogram of Figure 2, along with the associated active column
and active row terms, the triangular decomposition can be cdmp1eted with a single pass through

the matrix. OQtherwise secondary storage must be used for intermediate results and provision is

2.2-6 (4/1/72)
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TRIANGULAR DECOMPQSITION

made in main storage to hold R columns of the lower triangular factor, a single column of the

upper triangular factor, and the current active columns and active rows.

The decomposition begins by reading the original matrix one column at a time, pivoting the
largest term in absolute value within the Tower band to the diagonal position, and determining
the inner products for the current column, including the active row terms, The portion of the
column in the lower triangular factor, including active row terms, 15 Eetained in working storage.
The portion of the column in the upper triangular factor within the expanded upper band is com-
plete and no longer needed; hence it can be written on a secondary storage device, This contin-
ues until R columns have been processed. At this point the procedure is changed cnly to the
extent that the portion of the current column within the lower band is temporarily stored on a

sacondary device.

The decomposition continues until 8 + B columns have baen processed. At this point, the
First column of the lower triangular factor, including the active row terms, is no Tonger needed
and can be written on a secondary storage device. This releases B spaces in working storage.

This procedure continues until the decompositiecn is completed.

The active column terms are transposed prior to beginning the decomposition, so they are
available by rows and can be read into main storage as needed, If an active column term exists in

the 1th row, it is stored along with the 1 + B column of the upper triangu1af factor.

A prelimirary pass {s made over the original matrix in order to locate the extreme non-
zero terms for each row in the lower triangle and each column in the upper triangle. The maximum
number of active columns is determined by counting the maximum number of intersections for any
row with columns defined by drawing lines from the most extreme nonzero term in the upper tri-
angle to the outside edge of the upper band. The maximum number of active rows is determined by
counting the maximum number of intersections for any column with rows defined by drawing lines
from the most extreme nonzero term in the lower triangle to the outside edge of the upper bard.
An examination of the matrix shown in Figure 2 reveals that the maximum number of active columns
{s 2 even though the total number of nonzero columns cutside the upper band is 3. The lower

triangle contains 3 active rows and 4 nonzero rows outsida the lower band,

As with the symmetrical decomposition, the routine selects the bandwidths that give the
minimum computing time based on the ordering of the matrix presented. Proper sequencing is -

similar to that used for symmetrical matrices.

2.2-7 (4/1/72)
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The computing time will again be a function of the working storage available fcr the
execution of the routine, Working storage consists of space for R columns of terms inside the
band for the Tower triangular factor, B + 8 spaces for the current column of the upper triangular

factor, BC spaces for active column terms, (B + 8)T spaces for active row terms, CC spaces for

interaction of active row and active column terms, and B + B spaces for the permutation matrix.

This results in working storage as follows:
W o= BR+ 2B+ 28+ CB+ C(B+8) +CT, (14)

where R > 1, Rs B+ B, R <N, ¢ is the maximum number of active columns, and C is the maximum

number of active rows.

The computing time to perform an unsymmetrical triangular decomposition is:

T = T] + Tz + T3 + T4 ’ (15)

where T is the time r‘;quired to process the first N V-V 8 - 28 colums of terms inside the upper
and lower bands, T3 is the time required to process the last B columns of terms inside the bands,
and T2 is the time required to process the remaining intermediate B + B columns of terms inside

the bands. T4 is the time required to process the active row and active column terms.

T = K.l[MBER +18(B+ 8 -R)+pP(B+28)] , (15)

where MB is the arithmetic time required to process one term inside the bands, [ is the time
required to store and retrieve one term inside the lower band, and P is the time required to
store one term of the final result ¢n a secondary storage device. If N > B + 28, then

Ky = N-B8-28. If N< B+ 28, then K, = 0.

K
Ty = 2 I + (Ky - RI(I = Mg)E + 208 + PR)] (17)

IfFN2B+2B, thenkK, = K, = 8+8 . IfN<B+2B, thenK, = N -5 and K. = 8+ 8,
2 3 2 3

unless N < B + 8, then Ky = N

—‘
w

[]
c.1cm

K3
A S (18)
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IFN28+28, thenk, = B+8-RandKs=8+ % B, unless B > R, then K, = § . If
N < B + 28, then Ky = N - Rand K = N, unless N - R > B, then Ky = B.

T, = (N - E)[Mc(ﬁc +8C + BE + c) +p(C+ T (19)

4

where MC {s the arithmetic time required to process one active row or active column term.

If N is assumed large compared to both B and B and the final storage terms are neglected,

Equation 15 can be simplified as follows:

T = N[MBB'R + Mc(ic + BT+ 3T+ CT) + IB(B +F -R)]. (20)

This simplified equation is used for making timing calculations in selecting the optirum band

widths and active elements.

Tre sequence of events in selecting the bandwidths and active elements cutside the bands

may be summarized as follows:

1. Locate extreme nonzero lerms in each column for the upper triangle and in each row of
the lower triangle.

2. Prepare a table of unique pairs of upper bands and active columns.

3. For the working storage available, compute R using Equation 14,

4. Assuming B = § and C = T, and using Equation 2¢ determine the upper bandwidth and the
asscciated number of active columns that result in minimum computer time to perform the
triangular decomposition.

5. Using the previously determined upper band and active columns, determine the lower
bandwidth and the associated number of active rows that result in minimum computer time
to perform the triangular decomposition according to Equations 14 and 20.

6. Select the values of the bandwidths and active elements that result in minimum time to
perform the trangular decomposition and recalculate the time using Equatior 15. This
more accurate time estimate is needed because decisions are made by modules using the
decomposition routines that are based on the estimated running time.

The complex decomposition routine is the same as the real unsymmetric routine, except that

twice as much storage is needed for complex numbers and the real arithmetic is replaced with

complex arithmetic.

2.2-9 (4/1/72)
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Figure 1.

TRIANGULAR DECOMPOSITION
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2.3 SOLUTION OF [Al{x} = {b}
The solution of the eguation
[Al{x} = ({b} , {1

is accomplished using the results of the decomposition procedure described in Section 2.2.

Replacing [A] by its triangular factors, Equation 1 becomes
[LIudixy = (b} . {2)

where [L] is a lower unit triangle and [U] is an upper triangle.

Cefine

{y} = [Ulx} . (3)

Then, substituting into Equation 2,
[LIy} = {b} . (4)

The solution of Equation 4 for {y} is called the forward pass, and the subsequent solution of

Equation 3 for {x} is called the backward pass.

In the solution algorithm, N is evaluated from the leading element of [L], and the nonzero
elements in the first column of (L] are multiplied by v, and transferred to the right hand side
of Equation 4. The procedure 1s repeated for the secand and succeeding columns of [L] until
all elements of {y} have been evaluated. The algorithm for obtaining {x} is similar except that
the columns of [U] are required in reverse order. Multiple {b} vectors can be handled simul-
taneously up to the limit of the working space available in main memory. The same general pro-

cedures are uysed for both symmetric and unsymmetric matrices.

The forward pass requires the reading of both the right hand vectors and the lower triangular
factor from secondary storage devices. In the case of symmetric matrices, the processor time
associated with the Tocation of the terms in the lower triangular factor is minimized by working
directly in the I/@ buffers. Also, in the case of symmetric matrices, successive values of {y}
are tested for zero prior to the multiplication. In this manner full advantage is taken of the

sparsity of the right hand side on the forward pass. =
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For symmetric matrices, a term in the upper triangular factor is easily obtained from the cor-
responding term in the transposed Tocation of the lower triangular factor (see Equation 3 of
Section 2.2.1). Thus, the backward pass utilizes a special packing format which allows for the
backward reading of the lower triangular factor. For unsymmetric operations, the backward pass’
is accomplished in two steps. First, the upper triangular factor is read backward and written
forward on a separate file so that the last column of [U] appears first. This 1s part of the
triangular decomposition routine and takes place immediately after the completion of the decom-
posftion. The second step consists of solving Equation 3 for {x}. It is made part of the

equation solution routine. -
Following the determination of the solution vectors, a residual vector is determined for
each solutfon vector as follows:

(éb} = {b} - [AJ{x} . (4)

The residual vector is used to calculate the following error ratio which is printed with the

output.

T
{x} {éb}

€ wSy— . (5)
{x}"{b} - - ’ - T

The magnitude of this error ratio gives an indication of the numerical accuracy of the solution
vectors. The computer time required to calculate this error ratio is only a small fraction of

the time required to determine the solution vector.
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3, STATIC ANALYSIS BY THE DISPLACEMENT METHOD

3.1 INTRODUCTION

From a theoretical viewpoint, the formulation of a static structural problem for solution by

the displacement method is completely described by the matrix equation
[kJfu} = ({P}L. (m

As a matter of practical calculation, there is rather more to the problem than this simple
Formula would imply, since it is necessary to generate the stiffnass matrix [X] and the load vec-
tor (P} from the available information about the structure, and to calculate stresses and other
quantities of interest from the independent displacement vector, {u}. In the early days of com-
puter-aided analysis these tasks were left to the analyst and the computer busied itself with
obtaining the solution to Equation 1. It was soon discovered that, for most practical problems,
the computer had oniy partly unburdened the user and that larger savings of time and cost could
be achieved if the computer took over the major share of input data preparation and output data
processing. Automatic performance of these additional tasks requires that a particular approach

to structural analysis be selected and incorporated into the program.

NASTRAN embodies a Tumped element approach, i.e., the distributed physical properties of a
structure are represented by a model consisting of a finite number of idealized substructures or
elements that are interconnected at a finite number of points. A1l input and output data per-

tain to the idealized structural model.

The {dealized structural model in NASTRAN consists of "grid points " (G) to which "loads"
(P) are applied, and at which degrees of freedom are defined, and "elements" (E) that are connec-
ted between the points, as shown in Figure 1. Two general types of grid points are employed in

static analysis. They are:

1. Geometric grid point - a point in three-dimensicnal space at which three components of
displacement and three components of rotation are defined. The coordinates of each grid
point are specified by the user. Components of displacement and rotation can be elimi-

nated as degrees of freedom by means of "single-point constraints".

2. Scalar point - a point in vector space at which one degree of freedom is defined. A
geometric grid point contains from one to six scalar points. Scalar points may exist -
that are not associated with grid points. Such points can be coupled to geometric grid

points by means of scalar structural elements and by constraint relationships.
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(

The structural element is a convenient Tocalizing concept for specifying many of the proper-
ties of the structure, including material proserties, mass distribution and some types of applied

Toads. In static analysis by the displacement method, stiffness properties are input exclusively

by means of structural elements. Mass properties (used in the generation of gravity and inertia
Toads) are input either as properties of structural elements or as properties of grid points. In
dynamic analysis mass, damping, and stiffness properties may be input either as the properties of

structural elements or as the properties of grid points.

The structural elements are described in detail in Section 5 of the Theoretical Manual.

There are four general classes of structural elements as follows:

1. Metric elements which are connected between geometric grid points. Examples include rod,

plate and shell elements.

2. Scalar (or zero-dimensional) elements which are connected between pairs of scalar points,
or between one scalar point and “ground". Note that, since each geometric grid point

contains a number of scalar points corresponding to specific components of motion, sca-

1 IRPHOARER 1 |

Tar elements can be connected between selected components of motion at geometric grid

¢

points.

3. General elements, whose properties are defined in terms of deflection infTuencercoeffi-

L LTI

cients (i.e., compliance matrices), and which may be 1nterconhécted between any number of

geometric and scalar grid points. An important application of general elements is the

representation of large pieces of structure by means of test data.

i

4, Constraint E!eﬁeﬁtér(or Constraints). The existence of a constraint element implies a

Tinear relationship among the degrees of freedom to which it is attached of the form

11}

IRegly = Ve 2)

where ug are degrees of freedom and Yc is an enforced displacement. A linear relation-

ship among the forces of constraint is also implied, since it is required that the forces

of constraint do no work.

RRE

Constraint eiements are émp1oyed for the following purposes:

a. To introduce enforced'dfsplaceﬁeﬁts.

b. To enforce zero motion in specified directions at points of reaction.

3.1-2 -
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¢. To simulate very stiff (rigid) structural members.

d. To describe part of a structure by experimentally determined vibration mcdes. (The
matrix of eigenvectors expresses a relationship of constraint between physical and

modal coordinates.)

e. To generate nonstandard structiural elements by combining scalar structural elements

and constraints,

The constraint concept is important for the displacement method in order to eliminate
ill-conditioning genérated by very stiff members. Two types of constraint elements are
provided: single-point constraints, wherein Equation 2 includes only a single term on
the left hand side; and multipoint constraints and rigid elements wheraein Equation 2
includes more than one term. The main reason for the distinction is that due to the

simplicity of single-point constraints, they are processed separately {n the proaram.

Solution of a linear static structural problem by the displacement method requires a set of
preliminary operations which reduce the input data tc the matrix form given in Equation 1., Among
these operations are the elimination of displacement compdnents that are declared to be dependent
by virtue of constraints and the transfer of all applied loads to the independent displacement

companents.
As input data in static analysis, the loads are specified in a variety of ways including:
1. Concentrated loads at geometric and scalar grid points.
2. Pressure Toads cn two-dimensional structural elements.
3. Indirectly, by means of the mass and thermal expansion properties of structural elements,

Enforced deformations are also reducad to a set of equivalent loads on the independent dis-

placement components. See Section 3.6.1.

Once Equation 1 has been formed it is solved for each specific loading condition. Stresses
in the structura! elements and other desired results are then obtained from {u} by a set of data

recovery operations,
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Figure 1. Topology of the idealized structural model,
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3.2 GENERAL PROBLEM FLOW

As has been explained in Section 1 (Program Organization), NASTRAN consists of a number of
subprograms, or modules, that are executed according to a sequence of macro-instructfons that is
controlled by the Executive System. A number of such sequences, called Rigid Formats, are per-
manently stored in the program and can be selected by means of control cards. Each rigid format
corresponds to a particular type of structural analysis. The user may, in addition, devise his
awn sequence of module calls (referred to as a DMAP sequence) for problems that do not conform to

one of the available rigid formats.

The following rigid formats are currently avajlable for the solution of static problems by

the displacement method:
1. (Basic) Static Analysis
2. Static Analysis with Inertia Relief
4, Static Analysis with Differential Stiffness
5. Buckling
6. Piecewise Linear Analysis
14, Static Analysis using Cyclic Symmetry

Figure 1 shows a simplified flow diagram for Basic Static Analysis. Each block in the flow
diagram represents a number of program modules. The actual number of modules called is approxi-
mately equal to thirty. The functions indicated in Figure 1 are described in succeeding subsec-
tions of the Theoretical Manual. It suffices at present to indicate the general nature of the

tasks performed.

The Input File Processor, as the name implies, reorganizes the information on input data

cards into Data Blocks consisting of Tists of similar quantities.

The Geometry Processor generates coordinate system transformation matrices, tables of grid
point locations, a table defining the structural elements connected to each grid point, and other

miscellaneous tables such as those defining static Toads and temperatures at grid points.

The Structure Plotter generates tape output for an automatic plotter that will plot the _
structure (i.e., the location of grid points and the boundaries of elements) in one of several
available three-dimensional projections. The structure plotter is particularly useful for the .

detection of errors in grid point coordinates and in the connection of elements to grid points.
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STATIC ANALYSIS BY THE DISPLACEMENT METHOD

Note that the structures plotter may also be used at the end of the program to superimpose images

of the deformed and undeformed structure.

The Structural Matrix Assembler generates stiffness and mass matrices referred to the grid
points from tabular information generated by the Input File Processor and the Geometry Processor.
The mass matrix is used in static analysis for the generation of gravity loads and inertia Toads

on unsupported structures.

In block 5 of Figure 1, the stiffness matrix is reduced to the form in which it is finally
solved through the imposition of single and multi-point constraints, and the use of matrix par-

titioning {optional).

Load vectors are then generated from a variety of sources (concentrated loads at grid points,
pressure loads on surfaces, gravity, temperature, and enforced deformations) and are reduced to

final form by the application of constraints and matrix partitioning.

The solution for independent displacements is accomplished in two steps: Decomposition of
the stiffness matrix [K] into upper and lower triangular factors; and solution for {u} for speci-
fic load vectors, (P}, by means of successive substitution into the equations rebresgnted by the
triangular factors of [K] (the so-called forward and backward passes). All load vectors are pro-

cessed before proceeding to the next functional block.

In block 8 of Figure 1, dependent displacements are determined from the independent displace-
ments by means of the equations of constraint. The internal forces and stresses in each element
are then computed from knowledge of the displacement components at the corners of the elements
and the intrinsic structural equations of the element. Finally the Output File Processor pre-

pares the results of the analysis for printing.

The Loop for Additicnal Constraint Sets shown in Figure 1, fs introduced to facilitate solu-
tions for different boundary conditions, which are applied by means of single point constraints.
In particular, the symmetric and antisymmetric responses of a symmetric structure are treated in

this manner.

’

The flow diagram for Rigid Format No. 2, Static Analysis with Inertia Relief, is, to the
Tevel of detail considered here, jdentical to Figure 1. The inertia relief effect consists of a
modification to the load vector to include inertia loads due to the acceleration of an unre-

strained structure. The manner in which the 1ncrementél load is calculated is explained in

3.2-2
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GENERAL PROBLEM FLOW

Section 3.6.3

A simplified flow diagram for Rigid Format No. 4, Static Analysis with Differential Stiffness,
is shown in Figure 2. A comparison between Figures 1 and 2 shows that the first eight blocks are

identical.

Contributions tc the differential stiffness matrix are not defined for all elements currently
in NASTRAN, and they may not be defined for a new element. The differential stiffness matrix,
which is a first order approximation to larage deformation effects, is a function of the most
recently iterated displacement. Functional Module, DSCHK, (block 23 of Figure 2) performs differ-
ential stiffness calculations based on user-supplied iteration parameters. The solutfon strategy
basically involves a load adjustment (the "inner” loop) in order to satisfy iterated displacements

within a specified converaence critericn.

A simplified flow diagram for Rigid Format No. 5, Buckling, is shown in Figure 3. In it the
differential stiffness matrix [Kd] corresponding to a particular applied loading condition is

used in conjunction with the structural stiffness matrix [K] to formulate an efgenvalue problem
el =
(K + xK"J{u} = 0. (1)

The eigenvalues, Ay, are the load level factors for various buckling modes. They and the corres-
ponding eigenvectors,{ai}, are extracted by the Real Eigenvalue Analysis module. Additional data
(constrained displacement components and stress patterns for each buckling mode) are recovered in
Block 15, which is virtually a duplicate of Block 8, and the buckling mode shapes are plotted, if

desired.

A simplified flow diagram for Rigid Format No. 6, Piecewise Linear Analysis, is shown in
Figure 4. In piecewise linear analysis solutions are obtained for structures with nonlinear,
stress-dependent, material properties. The load level is increased to its full value by small
increments, such that stiffness properties can be assumed to be constant over each increment.
After each increment, the combined strains in nonlinear elements due to all load increments are
used, in conjunction with stress-strain diagrams, to determine the appropriate stiffnesses for

the next load increment. The procedures, summarized in Figure 4, are described in Section 3.8.
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Figure 3, Simplified flow diagram for buckling.
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STATIC ANALYSIS BY THE DISPLACEMENT METHOD

3.3 NOTATION SYSTEM

Many of the operations performed in computerized structural analysis are conveniently
expressed in the notation of matrix algebra. In NASTRAN matrix arrays are represented by a root
symbol that indicates the type of physical quantity and by one or more subscripts and superscripts
that act as modifiers. The root symbols used in static analysis by the displacement method are
listed in Table 1. Square brackets, [ ], indicate two-dimensional arrays and twisted brackets,

{ }, indicate column vectors. Row vectors, which are less common, are usually indfcated by ap-

pending the transpose symbol, T, to the twisted brackets.

Subscripts are used exclusively to designate the subsets of displacement components to which

the root symbol applies as for example in the equation,
T
lagd = -(Pg} + [KeD fugh + K Hugh, (M

which is used to recover single point forces of constraint, (qs}. from displacements at constrai-
ned points, {us}, and at unconstrained {free) points, (uf}. Nearly all of the matrix operations
in static analysis are concerned with partitioning, merging and transforming matrix arrays from
one subset of displacement components to another. A11 the components of displacement of a given
type (such as all points constrained by single-point constraints) form a vector set that is dis-
tinguished by a subscript from other sets. A given component of displacement can belong to se-
veral vector sets. The mutually exciusive vector sets, the sum of whose members are the set of

all physical components of displacement, {up}, are listed in Table 2a.

In addition, a number of vector sets are defined as the union of two Or more independent

sets. See Table 2b.

In dynamic analysis, additional vector sets are obtained by a modal transformation derived

from real eigenvalue analysis of the set {"a}' See Table 2¢.

In aeroelastic analysis, additional vector sets are defined by the aerodynamic degrees of

freedom. See Table 2d.

The nesting of the vector sets in Table 2 is depicted by the following diagram:
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In static analysis we are concerned only with the grid point set, {u }, and its subsets. i
The application of constraints and partitioning to the stiffness matrix 1nvoTves essentially,
the elimination of {um} (us} {uo} and {ur} from {ug} to form a stiffness matrix referred to
(“z}‘
The physical and computational sianificances of these operations are explained In Section
3.5. For the present it will only be emphasized that the concept of nested vector sets is ex-
tremely important in the theoretical develooment of NASTRAN. The reader may, in fact, find it
useful at some point to memorize the relations, defined in Table 2, among the displacement sets.
Load vectors are distinguished by the same notation. Rectangular matrices are, whenever
necessary to clarify the meaning of the symbol, distinguished by double subscripts referring to
the vector sets associated with the rows and columns of the array. Supersc¢ripts have no ten-
sorial character and are used to identify arrays of different type or origin that refer to the
same sets such as in the eqdatidn.
Mgl = Mg + 2] (2)
dd dd dd ’ -
whare [M;d] is the structural mass matrix and [Mid] is the direct input mass matrix. .
3.3-2 (12/31/77) b
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NOTATION SYSTEM '

Two types of operations occur repeatedly. These are the partitioning (or sort) operation,

for example,

% . (3)

. 1l

and the recombining (or merge) operation

In the sort operation indicated, the elements of {ug} are sorted into two lists. In the
merge cperation {un} and {um} are combined into a single list. In all sort and marge operations
the resulting arrays are ordered according to the grid point sequence numbers of the displacement

components.,

In addition to the formal symbols used in matrix operations, many other symbols are
required in the reduction of physical properties to matrix form. No special system is used for
the Tatter class of symbols. An attempt has been made, however, to adhere to established engineer-

ing conventions.
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Table 1.

{u}
{P}
{q}
v}
(]
M1
(e]
(R]
(6]
(o]
[m]
(x]
{t]
(ul

STATIC ANALYSIS BY THE DISPLACEMENT METHOD

vector of displacement components

vector of applied Toad components

vector of forces of reaction

vector of enforced displacements

stiffness matrix

mass matrix

damping matrix

matrix of constraint coefficients, as in [R]
transformation matrix, as in {um} = [Gm]{u
rigid body transformation matrix

rigid body mass matrix

rigid body stiffness matrix

Tower triangular factor of [K]

upper triangular factor of [K]

3.3-4 (12/31/77)
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= £, + Ugs the set used in dynamic analysis by the modal method.

NOTATION SYSTEM

Table 2a. Mutually Independent Vector Sets. '

coordinates eliminated as independent degrees of freedom by multi-point constraints
and rigid elements ’

coordinates eliminated by single point constraints

coordinates omitted by structural matrix partitioning

coordinates to which determinate reactions are applied in static analysis
the remaining structural coordinates used in static analysis (points left over)

extra degrees of freedom introduced in dynamic analysis to describe control sys-
tems, etc.

Table 2b. Combined Vector Sets.

U+ Uy, the set used in real eigenvalue analysis
Uy * ugs the set used in dynamic analysis by the direct method

u. + u_, unconstrained {free) structural coordinates

all structural coordinates not constrained by multi-point constraints
or rigid elements

u +u_, all structural (grid) poirts including scalar points
Uy + Ugs all physical coordinates

Note: (+) sign indicates the union of sets.

Table 2c. Modal Coordinate Sets.

rigid body (zero frequency) modal coordinates

finite frequency modal coordinates

= Eo * & the set of all modal coordinates.

A

Note: (+) sign indicates the union of sets. -
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STATIC ANALYSIS BY THE DISPLACEMENT METHOD
Table 2d. Aerodynamic Coordinate Sets.

Uy aerodynamic box and body coordinates

Uga permanently constrained aerodynamic coordinates

Uy =y + Ueps all aerodynamic cocordinates

U = Up * Uga

upA = up + Up» all physizal and aerodynamic coordinates

Note: (+) sign indicates the union of sets.
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3.4 PROBLEM FORMULATION

The explanation of any complex activity must be subdivided into phases or steps in order to
be intelligible. In the case of a computer program for structural analysis 1t {s convenient to
divide the total effort into a Problem Formulation Phase and a Problem Solution Phase. The ter-
mination of the Problem Formulation Phase is arbitrarily chosen to occur at the point where the
properties of the structure have been reduced to matrix form. (In the case of basic static an-

alysis this occurs between blocks 4 and 5 in the flow diagram of Figure 1, Section 3.2.)

3.4.1 Structural Modeling

The beginning of the Problem Formulation Phase occurs in the mind of the analyst. He con-
templates the problem, decides what he needs to know, and constructs a mathematical model whose
solution, he hopes, will provide relevant answers to his questions. He will, naturally, require
computational tools to solve his mathematical problem and, fortunately or unfortunately, the
available tools have a strong influence on the analyst's choice of a mathematical problem. It

would, after all, do no good to formulate a problem that could not be solved.

The range of choice in mathematical problem formulation provided by NASTRAN is, however rich
in detail, 1imited to0 one Easic approach, namely the use of finite element structural models.
This means that the substitute mathematical problem refers to an idealized model with a finite
number of degrees of freedom, a particular selection of topologfcal objects (grid points and ele-
ments), and a limited range of structural behavior. The relevance of the behavior of the ideal-
ized structural model to the analyst's questions clearly depends on tha particular choice of
components for the model. This procedure, referred to as "structural modeling,” is the most im-
portant step in the problem formulation phasa, since the results of an analysis can be no better

than the initial assumptions.

The User's Manual contains a chapter on structural modeling. Section 14 of the Theoretical
Manual describes some advanced modeling techniques that utilize special features of NASTRAN. For
the present, a small example will serve to indicate the general nature of the modeling process

and some of the features of NASTRAN that relate to t.
Figure 1a shows a typical aircraft structure, a ring frame with a partial bulkhead acting as

a floor support. Although poor results are obtained when such structures are analyzed without

3.4-1 (12/31/77)
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considering the shell to which the frame is attached, the analyst may have a special reason for -
doing so. The resulting idealized model of the frame can, in any case, serve as part of the model

for the complete shell.
The idealized model selected by the analyst, Figure 1b, contains
13 grid points
4 Bar elements (B)
2 Rod elements (R)
2 Triangular Plate Elements (T)
3 Quadrilateral Plate Elements (Q)

Each grid point has six degrees of freedom (three translations and three rotations). The
analyst has, however, elected to analyze the response of the frame to a pair of vertical loads so
that it is unnecessary to consider out-of-plane motions of the frame. The out-of-plane motions
are eliminated by applying single point constraints to three of ihgmdegrees of freedom (two rota- |
tions and one translatign) at each gridpoint (This can be implemented with a single data card).

One of thg necessary tasks in preparing input data is to specify the location of grid points. = =

In NASTRAN grid point locations can be specified by rectangular, cylindrical or spherical coordi-

ng;gﬁ;ystems (seevFigure 2)7§nd”;here may be an un]imitg@inumbgr of coordinate systems gﬁteach

type in a given problem. A1l that is required is that they be related, directly or indirectly,
to each other and:to a “Easic" coordinate systeﬁ, which is rectangular. In the eximple of Figure
1, the analyst found it convenient to Tocate grid points on the ring frame (points 1 to 4) with a
cylindrical coordinate system and to locate points on the floor bulkhead (points 5 to 13) with a

rectangular coordinate system.

. A separate task is the selection of coordinate systems to express the components of motion
at grid points. In the example of Figure 1, the coordinate systems for motion have been salected

to be identical to the coordinate systems for grid point location, although this is not required.

It will be noted in Figure 1b that the grid points for the ring frame are located on the outer
edge of the frame rather than along its centerline. This will not result in poor accuracy if the

_provision for offsetting the neutral axis of Bar elements is exercised. Reinforcing Rod elements

11BN C OO A

(RT and R2), which have axial stiffness only, are placed bétween grid points 11, 12, and 13 to
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simulate the stiffener along the centerline.

The Plate elements (T's and Q's) are selected to contain membrane {plane stress) properties
only, since out of plane bending s precluded by the nature of the loading. No restraint on in-
plane rotation (ez) is provided by the plate elements so that the 6, component of motion must be
eliminated by more single point constraints at gridpoints 6 to 13. A special problem occurs at
grid point 5 because of the requirement to maintain compatibility of inplane rotation between the
adjacent bar element (84) and the adjacent triangular plate (T1). The problem is solved by means
of a multipoint constraint between inplane rotation (ez) at grid point 5 and the vertical motions
(uy) at grid points 5 and 6. Tha equation of constraint is

u

- 5
8zS

L ()

*s = %

Additional single point constraints are required along the centerline of symmetry to con-
strain motions in the x direction {including the 6 direction at gridpoint 1). A special type of
single point constraint, known as a reaction, is used to constrain vertical motion at grid point
13. Constraints of this type are automatically removed when a static analysis is followed by a
dynamic analysis. In addition, & special check calculation is provided {see Section 3.5.5) to

determine whether the input impedance at reaction points is correct.

It will be noted that the grid points in Figure 1 have been numbered consecutively starting at
the top. More than a sense of orderiiness is involved since the sequencing of grid point numbers
affects the bandwidth of the stiffness matrix and the resulting computer solution time (see
Section 2.2). Grid point sequencing strategy is discussed in the User's Manual., The main idea is
that the arithmetic differences between the sequence numbers of grid points that are physically

adjacent should be minimized.

In order to facilitate grid point sequencing for the preservation of bandwidth, the user is
permitted to specify grid point numbers in two different ways. The external identification numbers
can be assigned to grid points in any manner the user desires. Element connaction and load infor-
mation prepared by the user refers to the external identification numbers. The internal sequence
numbers are generated by the user in a paired list that relates externalvand internal numbers.
Since the internal sequence numbers appear nowhere else in the input data, they may easily be -

changed, {f desired, to reflect an improved banding strategy. Preparation of the paired list is
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1
|

(

optional and the sequence of the external identification numbers will be used if the naired list

is not provided.

Another sequencing feature of NASTRAN is the ability to insert new grid point sequence numbers
anywhere in an established Tist. This is done by the use of Dewey decimal notation, similar to

that found in public Tibraries.

3.4.2 Input Data Analysis

We have now arrived at the point in problem formulation where the digital computer appears on
the scene. The user assembles the information discussed above (plus a great many details that
weré not mentioned) and enters it an punched cards that are input to the computer. In problems
that have many grid points arranged in regular patterns he may elect to write a small auxiliary
program that will prepare and punch most of the input data cards (or their card images on magnetic
tape). Such "supermarket" programs (so called because they can produce a shopping cartload of
data cards) are a reqular internal feature of some structural analysis programs but not of
NASTRAN. They were not included because they become guite intricate, and hence, difficult to use,
as they are given the generality that is needed for diverse applications. It is easfer, on fhe )
average, to write a new supermarket program for each type of application. The user can, by means Ao

of the ALTER feature (see Section 1.2), incorporate such subroutines into NASTRAN.
When assembled the NASTRAN data deck consists of the fallowing four parts:

1. Executive Control Deck

2. Substructure Control Deck (optional)

3. Case Control Deck

4. Bulk Data Deck

The Executive Control Deck fdentifies the job and the type of solution to be performed. It

also declares the general conditions under which the job is to be executed, such as, maximum time
allowed, type of system diagnostics desired, restart conditions and whether or not the Job is to be
checkpointed. If the job s to be executed with a rigid format, the number of the rigid format fis
declared along with any alterrations to the rigid format that may be desired. If Direct Matrix

Abstruction is used, the complete DMAP sequence must appear in the Executive Control Deck.

The Substructure Control Deck is included only when Automated Multi-stage Substructuring is -
used. It defines the general attributes of the Automated Multi-stage Substructuring capability
and establishes the control of the Substructure Operating File (S@F)

3.4-4 (12/31/77)
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The Case Control Deck defines the subcase structure for the problem, makes selections from
the Bulk Data Deck, and makes output requests for printing, punching, and plotting. The subcase
structure for each of the rigid formats is described in the User's Manual. Loading conditions,
boundary conditions, and other items are selected from the Bulk Data Deck in order to define the

structural model for eacn subcase.

The Bulk Data Deck contains all of the details of the structural model. Much of this deck is
associated with the definition of the grid points (grid cards) and the manner of connacting the

grid points with elements (connection cards).

A number of important preliminary operations are performed on the data deck by the Input File
Processor. It sorts the Bulk Data Deck, and stores 1t on the New Problem Tape. It checks the
data cards for fatal errors. It creates the data blocks used by functional modules. If fatal

errors are detected, suitable error messages are written and the execution is terminated.

3.4.3 Geometry Processor and Structure Plotter

The various parts of the Geometry Processor (see Figure 1 of Section 3.2) perform the follow-

ing general tasks:

1. Generate all required coordinate system transformation matrices and determine the

locations of all grid points in the basic coordinate system.
2. Replace external grid paint numbers with their internal (sequential) indices.
3. Generate multipoint constraint equations and 1ists of single-point constraints.

4. Generate flags indicating the displacement components which zre members of each displace-

ment vector set (see Section 2.1.5).

Grid points may be defined in terms of the basic coordinate system or in terms of "Tocal”
coordinate systems (see Section 3.4.1). The Geometry Processor calculates the location and orien-
tation of each local coordinate system relative to the basic system. This information is saved
for later use by the various modules in making coordinate system transformations. The basic

system is used for plotting (see Section 13).

As explained in Section 3.4.71, coordinate systems for expressing components of motion can be
freely selected so that, for example, each grid point may have a unique displacement coordinate -

system associated with 1t. The collection of all displacement component directions in their own
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coordinate systems is known as the "global" coordinate system. All matrices are formed and all

displacements are calculated in the global coordinate system.

The Structure Plotter is run after the second phase of the Geometry Processor. At this stage
of the execution there is sufficient geometrical information in suitable form to prepare a plot of

the undeformed structurs.

3.4.4 Assembly of Structrual Matrices

The Element Matrix Generator (EMG) and the Element Matrix Assembler (EMA) generate the
stiffness, mass, and damping matrices for the structural model. For efficiency in restart,
particularly when changing from statics to dynamics problems, the structural matrices, [Kgg],
[qug]’ [Mgg] and [ng], are assembled by four separate executions of EMA. EMG generates the var-
fous types of structural matrices on a selective basis. A third part of the matrix assembly matrix
operation (SMA3) adds the contributions of the general elements {see Section 5.7) to the stiffness

matrix.

The Element Matrix Generator refers to the appropriate "element” routines for calculation

of the stiffness, mass and damping matrices for each element. The elements available for use are

described in Section 5. The matrices for each element are initially generated in an element \ " 4

coordinate system that is characteristic for each element type. The element matriceé afevtrans-

formed to the global coordinate system prior to transfer to direct access secondary storage.

The Element Matrix Assembler assembles several columns of the structural matrices at one
time. The number of columns assembled in one operation is limited by the space avajlable in
main storage. The required element matrices are transferred from secondary storage using the
direct access read operation. The completed columns of the structural matrices are written on

secondary storage by using the regular NASTRAN pack routines.

Prior to writing the éompleted matrices for each grid point on secondary storage devices, they
are checked for singularities at the grid point level. Singularities remaining at this level,
following a check of a 1ist of the single-point constraints and the dependent coordinates of the
multipoint constraint equations and/or riéid elements, are treated as warnings to the user or, on
option, are automatically constrained. They are treated only as warnings because it cannot be
determined at the grid point level whether or not the singularities are removed by other means, -
such as by general elements or by multipoint constraints and/or rigid elements in which these

singularities are associated with independent coordinates. -
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The user has the option* of requesting the program to automatically remove the strongest com-
bination (weakest structure) singularities. However, this is not failsafe since the orientation
of the actual grid point singularities may not be parallel to the displacement coardinate systems
at the corresponding grid points and, in dynamic problems, the inertial forces due to the masses
may be constrained incorrectly. Also, if the user has specified omitted points, rigid body support
points, and/or multipoint constraint equations and rigid elements, these affected degrees of freedom

may be averridden by requesting autamatic removal of the strongest combination singularities.

Singularities are detected by examining the diagonal term for scalar grid points and the 3x3
matrices located along the diagonal of the stiffness matrix and associated with the rotational and
translational degrees of freedom for geometric grid points. If the diagonal term for a scalar
point is null, this fact is noted in the Grid Point Sinqularity Table (GPST). [If either of the
3 x 3 matrices, associated with a geometric point, is singular, the diagonal terms and the 2 x 2
minors are examined to determine the order of singularity and the column or columns associated
with the singularity. The order and locations of any singularities at gecmetric grid points are

added to the GPST.

Although the matrices generated by the Structural Matrix Assembler are symmetric, complete
columns are generated and retained for efficiency in succeeding matrix operations. This is nec-
essary because all matrix operations are performed one column at a time (see Section 2) and in
dynamics applications the matrices are not necessarily symmetric. Moreover, the availability of

symmetric matrices by rows or by columns is advantageous in some of the matrix operations.

'At present, this option can be exercised only by means of a DMAP alter in the Executive Control
Deck. See Section 5.10 of the User's Manual for details.
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a. Ring frame with floor bulkhead .

b. Idealized structural model.

Figure 1. Example of structural modeling.

3.4-8

' g— . =

1 I I



)

-
, e

PROBLEM FORMULATION

CEILAL FAQE 'S
CF PCCR QUALITY
Y
U2
Grid Point
4
(a) Rectangular
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Local System

us - 2 direction

- 0y

uy - g direction

up - T direction

(b) Cylindrical Grid Point

Local System

uy - p direction

uy - ¢ direction

(c) spherical u, - @ direction

Local System Grid Point

Figure 2. Displacement coordinate systems.
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3.5 CONSTRAINTS AND PARTITIONING

Structural matrices are initially assembled in terms of the set, ug of all structural grid
points, which excludes only the set, Ug» of extra points used in dynamic analysis. This section
will describe the subsequent reduction of the structural matrices to the set, u,, which is the
set of coordinates that remain after all constraint and bartitioning operations have been perfor-

med, and which is, therefore, the first set to be evaluated in static analysis.
The structural matrices whose assembly is discussed in the preceding section are:
[Kgg] the structural stiffness matrix due to elastic structural alements
[Kgg] the structural damping matrix of imaginary stiffness coefficients
[ng] the viscous damping matrix due to damper elements
[ng] the structural mass matrix

The reduction procedures will be explained in full for the [Kgg] matrix. Procedures for the

other matrices will be shown only when they differ from those for [Kgg].

Repeated use will be made of the notation system described in Section 3.3, to which the

reader's attention is directed.

3.5.1 Multipoint Constraints and Rigid Elements

Multipoint constraints and rigid elements are used to constrain one or more degrees of
freedom to be equal to linear combinations of the values of other degrees of freedom. In
the former case, the user must provide explicitly the coefficients of the constraint equa-
tions while, in the latter case, he needs to provide only the connection data; the program
internally generates the required coefficients. The mathematical details of the generation

of these coefficients are discussed in Section 3.5.6.

The constraint equations resulting from the use of multipoint constraints and rigid ele-

ments together can be expressed in the form

[Rg] {ug} =q, M

3.5-1 (12/31/77)
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where the coefficients are either supplied explicitly by the user (in the form of multipoint -
constraint equations} or are internally generated by the program (in the case of rigid elements;
see Section 3.5.6). The user also specifies the degrees of freedom that are made dependent by
the equations of multipoint constraint and by the rigid elements, so that the {ug} matrix may
immediately be partitioned into two subsets,
Un]
{u} = {'D s (2)
9 {Un}
where the set, Ups is the set of dependent degrees of freedom. The matrix of constraint coeffi-
clients is similarly partitioned
Ry = Ry R, (3)
so that Equation 1 becomes
(Rn](un} + [Rm]{um) = 0 . (4)
[&“] is a nonsingular matrix. The constraint matrix can, therefore, be formed as
-1 L=
6, = -[RI7'IRJ, , (5)
so that Equation 4 may be stated as
{um} = [Gm]{un} . (6)
Prior to the imposition of constraints, the structural problem may be written as
K = ’
[ gg]{”g} {Pg} (7)
or, partitioning in terms of the coordinate sets, u, and Un
‘ —
nn { nm U"Z P
iyl Al (8)
Knm : \um 4 pm
3.5-Ta (12/29/78) N
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, \ 4
Bars over symbols are used to designate arrays that are replaced in the reduction process.
The addition of constraints to the structure requires that the forces of constraint be added
to the equilibrium equations. It is shown in Section 5.4 that the forces of constraint are pro-
portional to the corresponding coefficients in the constraint equations. Thus, writing the equi-
Tibrium and constraint equations together in partitioned form,
-— Tom # 5
Kon | ¥am :Gm U L i
aal e _P- _
Kam :Kmu! T3l * 3P ’ (9)
———===-f|-- -
Gp 171 4 0dlqn \0
where (qz:} is the vector of constraint forces on {um}. Straightforward elimination of u, and q;"'
gives
- T, T, T T E
(Kan * KomBn * Gy Kam * Gp KpmSpllu b = Pb + (6,1 (P} : (19) =
or )
(Knpllugt = P}, () E
where \ 4
. % T, T T
[Knn] l:Krm + Kanm * Gm Kmn * Gm ‘me] ' (12) =
and =
=
T =
{Pn} = {Fn} + [Gm] {Pm} . (13)
The initial partition of Kgg and the operations indicated by Equations 5, 12 and 13 are per- E

formed by appropriate modules of the program. The constraint matrix, Gm, is used in structural

matrix reduction (Equation 12), load vector reduction {Equation 13) and data recovery

(Equation 6). It is saved for these purposes in an auxiliary storage fila.

The other structural matrices, [Kgg]’ [ng] and [Mgg], are transformed by formulas that are

!

identical in form to Equation 12.

m
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The forces of constraint due to multipoint constraints and rigid elements are not available as
part of the standard calculations in the program, but may be obtained in statics and real eigen-
value problems by ALTERing in the module EQMCK and requesting these forces in the Case Control

Deck.

The vector of constraint forces {qm} on {u_} is obtained from the middle row of Equation 9
m m

as
@M o= - pd e Ik 1T Cugd e o] Gud (13a)

Let q: be the vector of constraint forces on {un}. Then, from the first row of Equation

9, it is clear that
s ST (-3 LR CUS T (13b)

The resultant forces of constraint due to multipoint constraints and rigid elements are

therefore given by

—— e,

(q';‘} = ----% . (13¢)

Fa -
EETRIE]

3.5.2 Single Point Constraints

Single point constraints are applied to the set, Ugs in the form

ugd v 0, (14)

where {Ys} is a vector of enforced deformations, any or all of whose elements may be zero, The

set, U, is partitioned into ug and uf(the free or unconstrained set)

u
tu} = -0 (15)

(Ys

The stiffness matrix, K is similarly partitioned

Kee !K
[X,,] = [.Kff. :.Kfi . (16)
fs | s

The complete structural equations including the single point forces of constraint, qg» may be

nn’

written in partitioned matrix form as

3.8-3 (12/3/77)
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! 1 g s
fﬁ;fﬁLESﬁz fi
§
Kes 1 Kss }'I ug> * <P (17)
0 | I t 4] qs‘ YS;
Straightforward elimination gives
(Keplugl = Pe} - [k TG = Pey , (18)
The forces of constraint are recovered by means of the middle row of Equation 17, i.e.,
.} = -Pb+ [Ke T Tlugd + (K. T(u} (19)
s’ s fs f TEALN '
Thus all three of the distinct partitions of Knn {i.e., Kff, Kfs and Kss) are needed in subse-
quent calculations, and are placed in auxiliary storage. For the other structural matrices
(K:n, Bnn‘ and Mnn) only the (ff) partitions are saved. The assumption is made, implicitly, that
the effects of the other structural matrices on the single point forces of constraint may be ig-
nored.
3.5.3 Partitioning ; L
) ) -
At user option the set of free coordinates, Ugs may be partitioned into two sets, Uy and Ugs
such that the Uy set is eliminated first. Thus
” )
fugd = ¢35 .
f %u (‘ (20)
o
The equilibrium equations after the elimination of constraints (Equation 18) may be written
in partitioned form as
— 1 N
aa 1%, Sua ﬁ;
- e dee = - - O
T ( = ; (21}
Kao IKoo Uy o/
Rearrange the bottom half of Equation 21:
kK Ju} = (P} =[x 1{u} (22)
00" 0 0 a0 a ’
mdsﬂvefM'mqh =
i o= 0k, 1Py -tk 17k, 1)
0 00 0 00 20 a’ . {(23) -
-
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(Note that in practice stiffness matrices are never inverted due to excessive computer running
time. The practical alternative will be explained presently.)

Substitute for u, into the top half of Equation 21:

-1, T -1
Cﬁéa - KaoKoo Kao ]{ua} = (BA} - [Kao][Koo] {po} ’ (24)

It is convenient to define the matrix
6] = -0x 17k, 17 (25)
o] 00 ao ’
so that Equation 24 becomes

(R, + Kyolollu,t = (Fb + [6,1(R.) (26)

where advantage is taken of the symmetry of [Koo].

Following the practice of condensation established in preceding subsections,

[Kaa]{ua} = (Pa} s (27)
where
[kl = [Ryad + (K, I06,] (29)
w = Pl T . (29)
The [Go] matrix defined in Equation 25 is obtained practically from the solution of
Ik, 16,1 = [k, (30)
00 0 ao”

whare [Kao]T is treated as a set of load vectors. Each such vector produces 2 column of [GOJ,
The [Koo] matrix is first decomposed into lower and upper triangular factors, using a subroutine
based on the technigues described in Section 2.2. The additional steps required in solving the

matrix equation [A]J{(x} = (b} are described in Section 2.3.

Once {ua} is obtained the set of omitted coordinates, {uo}, js obtained as folTows. Define

the set {ug} as the solution ofr
[Kyollugt = (P} . (31) =

Note that the triangular factors of [Koo] obtained in connection with Equation 30 are saved N

3.5-5
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for use 1in connection with Equation 31 which cannot be solved until the load vector {PO} is for-

ned, Then, using Equations 25 and 31 in Equation 22,

b = (ud} + [6 1y} . (22)

Partitioning, which is an optional feature of the program, has a number of important usas.
The first 1s as an aid to improved efficiency in the solution of ordinary static problems where it
functions as an alternative to the Active Column technique (see Section 2.2) in reducing matrix
bandwidth. In this application the user puts into the set uy those degrees of freedom that are

excessively coupled to the remainder,

In a related application, members of the set u, are placed along lines or in planes of the
structure such that the remainfng Uy grid points in differént re;ions are uncoupled from each other
as shown in the wing structure of Figure 1. The grid points are sequenced so that all grid points
in region (1) precede those in region (2), etc. As a result the decomposition of [Koo] is faster
oecause the bandwidth {s smaller (reduced to approximately 1/3 in the exampie). The u, set is
small compared to u, so that its solution is not particularly time consuming. Even here proper

grid point sequencing can introduce banding into the [Kan matrix.

Matrix partitioning also improves efficiency when salving a number of similar cases with
stiffness changes in local regions of the structure. The u, and U, sets are selected so that the
structural elements that will be changed are connected only to grid points in the u, set. The
[Koo] matrix is then unaffected by the structural changes and only the smaller [Kaa] matrix reed be
decomposed for each case. An application of partitioning that is important for dynamics is the

Guyan Reduction, described in the next subsection.

3.5.4 The Guyan Reduction

The Guyan Reduction (Reference 1) is a means for reducing the number of degrees of freedom
used in dynamic analysis with minimum loss of accuracy. Its basis is that many fewer grid points
are needed to describe the inertia of a structure than are needed to describe its elasticity with
comparable accuracy. If inertia properties are rationally redistributed to a smaller set of grid
points, the remaining grid points can be assigned to the u, set described in the preceding sub-

section and eliminated, leaving only the smaller u, set for dynamic analysis.

3.5-6 (12/29/78)
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In the Guyan Reduction, the means by which inertia (and damping) are redistributed is to

consider the [Go] matrix of the preceding subsection as a set of rigid constraints, such that

lugt = [Go](ua} . {33)

The [Go] matrix now has the same impiications for the Uy coordinates that the muitipoint con-
straint matrix, [Gm], has for the u coordinates (see Equation 6). The reduced structural mass

matrix is, by analogy with Equation 12,

. " Ty T T,
(Aaa] = [Maa + Maoeo + Go Mo * G, AooGo] . (34)
The reduced damping matrices, [Kaa4] and [Baa]' are formed in the same manner. The structural

stiffness matrix, [Kaa]' is given by Equation 28. The reduced dynamic load vector is, by analogy

with Equation 13,
.} = (P, +6 P} (35)
a a Q0 0 ’

The approximation made in the Guyan Reduction is that the term (ug} in Equation 32 is neglec-
ted; i.e. that the deformations of the Uy set relative to the Uy set due to inertia and other
loads applied to the Uo set are neglected. The error in the approximation is small provided that
the u, set is judiciously chosen. The selection should be based, in part, on an estimate of the
relative deformations, {ug}. Thus the members of u, should be uniformly dispersed throughout the
structure and should include all Jarge mass items. The basic assumption made in the Guyan
Reduction is identical to that made in forming consistent mass matrices for individual elements,

see Section 5.5.

3,5.5 Special Provisions for Free Bodies

A free body is defined as a structure that is capable of motion without internal stress.
The stiffness matrix for a free body is singular with the defect equal to the number of stress-
free {or free body) modes. A solid three-dimensional body has six or fewer free body modes.
Linkages and mechanisms can have a greater number. No restriction is placed in the program on

the number of stress-free modes in order to permit the analysis of mechanisms.

The presence of free body modes alters the details of many of the calculations in structural
analysis. In static analysis by the displacement method, for example, the free body modes must be

restrained in order to remove the singularity of the stiffness matrix. We are concerned, in this

3.5-7
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section, with some of the special provisions of the program for the treatment of free bodies in-
cluding the specification of determinate reactions for use in static analysis, the evaluation of
the inertia properties of free body modes for use in dynamic analysis, and a special diagnostic
procedure for the detection of inconsistent constraints. Other special provisions are the calcu-
_ lation of inertia relief loads, treated in Section 3.6.3, and the procedures employed in the mode

acceleration method of dynamic data recovery, treated in Section 9.4.

If a problem concerning a free body includes both static and dynamic solution cases, a sub-
set, s of the displacement vector, Uys must be constrained during static analysis. The subset,
U, is specified by the user such that the members of the set are just sufficient to eliminate the
stress-free motions without introducing redundant constraints. The complete static equilibrium

equations are

K Ju} = P}, (36)
or, partitioning uy into u. and Ugs
K, 1k, Jlu P
'
e R (37)
Kzr | Krr Y Pr

In static analysis the u. set is rigidly constrained to zero motion so that the final prob-

Tem solved in static analysis is
[Kzz]{ul} = {Pg} . (38)

The forces of reaction, {qr}, which are of interest in thefr own right and which are also

needed in the solution of inertia relief problems, are evaluated from the equation
(b = -(P)+ [k, 1w} (39)
or, substituting for {“z} from the solution to Equation 38,
(b = -t} + [k, 170K, 17T ep, 0 (40)
It is convenient to define the matrix

0] = [k, 17k, 1, (41)
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so that, taking advantage of the symmetry of [Kzz]’
@} = -(}-[017P,) (42)
r r PR

The [D] matrix is also used in the evaluation of the free body inertia properties of the structure.

It is obtained practically by solution of the matrix equation
(k0] = [K,J. (43)

[Kgg] is decomposed into triangular factors, [LQE] and [UIQ]' which are saved and used in the

solution of Equation 38 after the load vector {Pz} has been evaluated.

It may be seen from Equation 37 that, in the absence of forces on the u, coordinates,
= - -1 =
tud = =[x, 17 K T ) = [0JGu} (44)

Thus the [D] matrix expresses the rigid body motions of the structure in response to displace-

ments imposed at the reaction points.

The mass matrix, partitioned according to the u, and u,. sets, is

I
”zz I er

] - |-=a--| - (45)
M Tim
ar o e

If Equation 44 is taken as an equation of constraint for free body motion, the reduced mass

matrix referred to the . coordinates fs, by analogy with Equation 34,

T

. T T
(m.] (Mo # My 0 # DMy +0°M,, 0] . (46)

The free body mass matrix, [mr], and the rigid body transformation matrix, [D], complete the spe-

cification of the free body inertia properties that are used in dynamic analysis.

It is desirable to have a check on the compatibility of the single point and multipoint con-
straints previously placed on the structure (including the constraints imposed by the rigid
elements) with the constraints placed on the reaction points, U Such a check is obtained
by noting that, jf the u, set is eliminated from Equation 37, the reduced stiffness matrix

referred to the u,. set should be completely null. The reduced stiffness matrix is

3.5-9 (12/31/77)

75



STATIC ANALYSIS BY THE DISPLACEMENT METHOD

X1 = [K.. -k 'k, "'k

rr ™ Kor Koo Kgpd

T

[Ker + Ky

0] . (47)

The [X] matrix is computed by the program and its largest term is given to the user so that
he may take appropriate action. No automatic test is built into the program. The [X] matrix may

be nonzero for any of the following reasons:
1. Round-off error accumulation
2. {ur} is overdetermined (redundant supports)
3. {ur} is underdetermined (Klz is singular)
4. The multipoint constraints and/or rigid element connectivities are incompatible.

5. There are too many single point constraints.

3.5.6 Rigid Elements

3.5.6.1 Introduction

Rigid elements provide a convenient means of specifying very stiff connections. The user
does not provide the required coefficients of the constraint equations directly. The program

internally generates them from the connaction data.

Four rigid elements are presently available. One of them is a rigid pin-ended rod element
(RIGDR) and the other three are rigid body elements (RIGDT, RIGD2, and RIGD3). The use of these

elements is discussed in Section 1.4.2.2 of the User's Manual.
3.5.6.2 The RIGOR Element

The RIGDR element (specified by the CRIGDR bulk data card) represents a pin-ended connection
between two grid points that is rigid in extension-compression.

Let A and B be two grid points connected by a RIGDR element and let ”A1’ qu, uA3 and uB],
uBZ, u83 represent the translational components of motion (in the basic coordinate system) at
these points respectively. Let 21. 22, and 23 be the directfon cosines (with respect to the
basic coordinate system) of the 1ine joining A to 8. Then, since the distance between the points

A and 8 remains unchanged, the following condition is satisfied for small displacements:

3.5-10 (12/29/78)
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(uy =up Y + (uy =g Y2 + (u, =ug 2o =0 {48)
A1 B] 1 AZ B2 2 A3 B3 3
or, in matrix form,
u u
A 8
u - u
[z] % 23] A, [z] %, 9,3] B, . (49)
u u
A3 B3

Let u! , u! , ut and ul , u, , uh be the translational components of motion at A and B 1in
Ay AT Ay 8" By’ By

in their respective local displacement coordinate systems. These are related to the motion in the

basic coordinate system by the equations

UA1 UA]
Uny p = [T,] S YA, : (50)
uA3 UAB
and
UB] ué1
ug, o= [Tg1 48, - (51)
‘8 ‘8

where [TA] and [TB] are (3 x 3) transformation matrices from the respective Tocal displacement

coordinate systems to the basic coordinate system.

Substitution of Equations 50 and 51 in Equation 49 gives

uI ul
A B
[2y 2, £4][T,] u'l‘z = [2) 2, 4,][T,] uéz . (82)
u, T
A3 B3
The above equation can be rewritten as
TH U
A B
[2, 2, 2, ] Zu; = (2, 2, Zn 1 Jug . (53) =
Ay TRy AT YA, B; "B, 83" (B
uI uI
A3 . 83

3.5-11 (12/31/77)
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where 2A1’ EAZ, 1A3 and EB]' 282' 283 represent the modified direction cosines and are given by

2 L A = (2, 2, 2 T 54
[A] A2A3] [123][A] s (54)

and

["B] 9.32 9.83] =02 2, 2,0(Tg] | (55)

Equation 53 is the single equation of constraint that represents a rigid pin-ended rod element
connection between the grid points A and B. Note that only the three translational components of
motion at each of the two points are involved in this equation. The rotations at the points are
not involved. Any one of the six translational components may be specified as the dependent degree
of freedom in a RIGDR element. The other five translational components are considered as reference

deqrees of freedom. This is summarized in Table 1.

If Equation 53 is to be valid, it is necessary that the grid points A and B be non-coincident.
Otherwise, the direction cosines 11, 12, and 23 will be undefined. The program checks for this

condition.

Equation 53 will also not be meaningful if the direction of motion defined by the dependent
translational degree of freedom is perpendicular (or nearly perpendicular) to the rod element
because, in that case, the corresponding modified direction cosine will be zero (or nearly zero).

The program checks for this condition also.
3.5.6.3 The RIGD! and RIGD2 Elements

The RIGDT and RIGD2 elements (specified by the CRIGD! and CRIGDZ2 bulk data cards) are similar
in that they both involve a single reference grid point and one or more dependent grid points. The
RIGD1 element is the simpler and defines a rigid element connection in which all six degrees of
freedom of each of the dependent grid points are coupled to all six degrees of freedom of the ref-
erence grid point. The"RiéDéhelement is more gené}al ahd defines a rigid element connection in
which selected degrees of freedom of the dependent grid points are coupled to all six deqrees of

freedom of the reference grid point.

Consider a dependent grid point A that is rigidly coupled by means of a RIGD] or RIGD2 element
to a reference grid point B. For small displacements, the motion {uA} at the point A is related to

the motion {uB} at the point B by the equation

3.5-12 (12/29/78)
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r .

(UA1 \ 1 00 0 (ZB-ZA) '(.YB‘.YA) (UB1\
UAZ 0 ] 0 ‘(ZB‘ZA) o (XB'XA) uBZ

< uAa > 0 01 (-YB'yA) -(xB-xA) 0 < u83
g, {10 0 0 1 0 0 w (56)
A4 34
u 0 00 0 1 0 u
As Bs
u 0 0 @ 0 0] 1 u

\ A/ L I\ %)

whera the motions are in the basic coordinate system and Xp Ypr 2 and Xgs Yg» Zg are the basic

coordinates of the points A and B'respective1y.

Using relations similar to Equations 50 and 51, Equation 56 can be expressed in terms of the

motion in the local displacement coordinate systems of A and B by

(ot ) o] Lo zey ] ; (0 )
A] : ¥ 1 B]
T | - - '

TH ! I t-z2 0 x ; Up
Ay T b0 b Tg i 0 B,
up ! 1ty -x 0 ! ug
) T - SN I —— R TR i S — {3y o

up i | | Up
\ » s | \
YA, 0 iT 0 i I 0 ! T U8
TH ! ! I u’

\ %6 / L i 4 L : 4 L : . \ % /

where TA and TB are (3 x 3) transformation matrices from the local displacement coordinate systems

to the basic coordinate system and X = Xg=Xp s y= Yg=Ya and z = 2g-2y. I is a (3 x 3) unit matrix.

Equation 57 can be written in compact form as

fup} = [Glpglug) (58)

where [G]AB is a (6 x 6) matrix. Each row of this [G]AB matrix corresponds to a dependent degree
of freedom of grid point A, and each column corresponds to a reference degree of freedom of grid
point B. Each element of this matrix represents a coefficient that corresponds to the coupling
of a particular dependent degree of freedom of grid point A with a particular reference degree

of freedom of grid point 8.
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Equation 58 defines a set of six linear equations of constraint that mathematically repre-
sent the rigid coupling of dependent grid point A to reference grid point B. In the case of a
RIGDT element, six equations of constraint are generated for each of the specified dependent grid
points. In the case of a RIGD2 element, the equations generated correspond to those rows of

[G]AB that represent the specified dependent degrees of freedom of grid point A.

Let m be the total number of dependent degrees of freedom specified on a RIGDT or RIGD2
element. Then, the combination of Equations 58 for all of the dependent grid points yields m linear

equations of constraint represented in matrix form by
{u'} = [G]B{ué} » (59)

where {u'} is an (m x 1) vector of dependent degrees of freedom (in global coordinate system) and
[G]B is an (m x 6) matrix that rapresents the rigid coupling of the m dependent degrees of free-
dom to the six degrees of freedom of reference grid point B. Note that, in the case of a RIGD
element, m is equal to six times the number of dependent grid points specified for the element.

The above results are summarized in Table 1.

3.5.6.4 The .RIG-DB Element .- <7
The RIGD3 element (speéified b} the CRIGD3 bulk data card) is the most general rigid element
and defines a rigid connection in which selected degrees of freedom of the dependent grid points
are coupled to six selected reference degrees of freedom. The six reference degrees of freedom can
be selected at one or more (up to six) reference grid points, but they should together be capable
of fully describing rigid body motion. In other words, the six reference degrees of freedom should

be so selected that they together represent six independent components of motion. The program checks

for this condition since otherwise it leads to the inversion of a singular matrix.

Let B be one of the (up to six) reference grid points in a RIGD3 element and let m be the
total number of dependent degrees of freedom specified on the element. Then, for small displace-
ments, just as in the case of a RIGD] or RIGDZ element, the m equations of constraint can be
expressed in terms of the motion of grid point B by the matrix equation
{u'} = [G]B{ué} ’ (60} °
which is a re-statement of Equation 59. Note, however, in this case that the six degrees of

freedom of grid point B will not, in general, all be the required six reference degrees of freedom.
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Hence, Equation 60 does not give the required constraint equations.

Let uh]. uhzs Ués, U§4, uﬁs. and Uﬁs be the six specified reference degrees of freedom (at least
some of which will be the degrees of freedom of grid point B) in the global coordinate system. Then,

these six degrees of freedom are related to the motion of grid point B by the matrix equation
{U&} = [G]Ra{ué} ) (6])

which is similar to Equation 60 and where [G]RB is a (6 x 6) matrix.

Equation 61 can be re-written as

) = ‘] i
{ug} [G]RB{UR} . (62)
Note that [G]Eé will not exist if the six specified reference degrees of freedom do not together

define six independent components of motion. The program checks for this condition.

Substitution of Equation 62 in Equation 60 yields

fu'} = [6]glGeglug}t . (63)

The above matrix equation gives the required equétions of constraint for a RIGD3 element.

‘This is summarized in Table 1.
3.5.6.5 Resultant Constraint Equations

The constraint equations for the rigid elements are generated in subroutine CRIGGP in module
GP4. This routine computes the required constraint equations for all rigid elements in a model by
means of Equation 53 (for all RIGDR elements), Equation 59 (for all RIGDI and RIGD2 elements}),
and Equation 63 (for all RIGD3 elements). Module GP4 then combines these constraint equations
for all rigid elements with the multipoint constraint equations suppiied by the user to obtain the
resultant constraint equations (Equation 1 in Section 3.5.1) for the model as a whole. Once the
rigid elements and the multipoint constraint data are processed and the resultant constraint
equations are obtained by module GP4, no distinction is subsequently made between those constraint

equations that are due to rigid elements and those that are due to multipoint constraint data.
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Grid points in the
interiors of regions
are placed in the
u, set
(1) (2) (3)
- Grid points along
these interior lines
are placed in the
~ N \ ‘\ u, set
(4) (s) (6)
AR R A RN
Figure 1, Use of partitioning to decouple regions of the structure,
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3.6 STATIC LOADS

3.6.1 Generation of Loads

In NASTRAN, static loads are applied to geometric and scalar grid points in a variety of

ways, including
1. Loads applied directly to grid points.
2. Pressure on surfaces.
3. Gravity Toads, (internally generated).
4. Centrifugal forces due to steady rotation.
5. Equivalent loads resulting from thermal expansion.
6. Equivalent loads resulting from enforced deformations of structural elements.
7. Equivalent Toads resulting from enforced displacements of grid points.

A force or a moment applied directly to a geometric grid point may be specified in terms of
components along the axes of any coordinate system that has been defined. Alternatively, the di-
rection of a force or a moment may be specified by a vector connecting a pair of specified grid
points or as the cross-product of two such vectors. A load on a scalar point is specified by a

single number since only one component of motion exists at a scalar point.

pressure Toads may be applied to trianqular and quadrilateral plates and to axisymmetric
shell elements. The posi;ive direction of loading on a triangle is determined by the order of the
corner grid points, using the right hand rule. The magnitude and direction of the load is auto-
matically computed from the value of the pressure and the coordinates of the grid points. The

Toad is divided equally to the three grid points.

The direction of pressure load on a quadrilateral plateris determined by the order of its
corner grid points which need not 1ie in a plane. The grid point Toads are calculated by dividing
the quadrilateral into triangles in each of the two possible ways and applying one-half of the
prassure to each of the four resulting triangles. Severaly warped quadrilaterals should ba sub-

divided into triangles by the user in order to provide better definition of the surfaca.

The user specifies a gravity load by providing the components of the gravity vector in any -~

defined coordinate system. The gravitational acceleration of a translational component of motion,

3.6-1
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a;, at a geometric grid point is
a‘i = a'ei ’ (])

where § is the gravity vector and Ei is a unit vector in the direction of uy- For rotations, L

is zero. The gravity Toad is then computed from
PITy = (M
="} [ gg] fa} (2)

where (Mgg] is the mass matrix referred to the ug displacement set. It should be noted that the
gravitational acceleration is not calculated at scalar points. The direction of motion at scalar
points s established indirectly by constraints and by other forms of coupling with geometric grid

points. The user is required to introduce gravity loads at scalar points directly.

A centrifugal force load is specified by the designation of a grid point that lies on the
axis of rotation and by the components of rotational velocity in a defined coordinate system. The
companents of force acting on a rigid body in a centrifugal force field are most simply expressed
in a Cartesian coordinate system that is centered at the center of gravity of the body with axes

directed as shown below.

3.6-2
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The components of load are

Px mr'°
P 0
y
p 0
cf z 2
{P-"'} = = Q ’ (3)
M 'Iyz
My Ixz
Mz 0

where m is the mass of the body, Ixz = [pxzdV, and Iyz a fpyzdV. For use in the program, the com-
ponents of force and moment are transferred from the center of gravity to the grid point and its
local coordinate system; the elements of the mass matrix, Mgg, are used in the calculation of the
loads. Note, however, that the mass matrix is regarded as pertaining to a set of distinct rigid
bodies connected to grid points. Deviations from this viewpoint, such as the use of scalar masses

or the use of mass coupling between grid points, can result in errors.

The equivalent loads due to thermal expansion are calculated by separate subroutines for each
type of structural element, and are then transferred from the internal coordinates of the element
to the coordinates of the surrounding grid points. The equations that define the equivalent forces

and moments are derived for each element in Section 5.

The user may define temperatures by more than one method. For BARS, R@DS, and PLATES the
temperature may be specified for each individual element. The temperature specification for BARS
and R@DS includes the average temperature and, in the case of the BAR element, the effective trans-
verse thermal gradient at each end. The temperature of a PLATE element can vary arbitrarily in
the direction of the thickness, but 1t {s assumed to be independent of position on the surface.

For all other elements that permit thermal expansion, and for BARS, R@DS, and PLATES {f their tem-
peratures are not individually specified, the temperature {s obtained by averaging the temperatures
specified at the grid points to which the element is attached. Temperature-dependent thermal
expansion coefficients and elastic moduli are stored in material properties tables which the user
applies to each structural element by specifying the code number of its material. The average

temperature of an element {s used to determine its temperature-dependent material properties.
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Enforced axial deformations can be applied to the one-dimensional elements (BARS and RODS).
They are useful in the simulation of misfit and misalignment in engineering structures. As in the
case of thermal expansion, the equivalent loads are calculated by separate subroutines for each
type of structural element. In the case of a bar, for example, the equivalent loads placed at the
ends are equal to EASu/% where E is the modulus, A is the cross-sectional area, du is the enforced
expansion, and & is the length of the bar.
Enforced displacements at grid points are discussed in connection with single point con-
straints, Section 3.5.2.
3.6.2 Reduction of Load Vectors to Final Form and Solution for Displacements
The operations by which structural matrices and load vectors are reduced from the ug set to
the u, set have been described in Section 3.5. In the program, the reduction of load vectors to
final form is performed in a single module, {SSG2). The operations are summarized below.
1. Partition the load vector, {Pg}. whose generation is described in the preceding subsection,
according to the set of coordinates, Un» that are restrained by multipoint constraints,
and the set, Un» that are not. %
ﬁh
p 3 (== 4
{ g} (4)
Pm
2. Eliminate multipoint constraints.
P} = Fr+[6IP} . (5)
n n m m
3. Partition {Pn} according to the set of coordinataes, U that are restrained by single
point constraints and the set, Ugs of free coordinates.
Ff
{Pn} = = . (6)
ps
4. Eliminate single point constraints. -
{Pf} = {F}} - [Kfs]{Ys} . (7) o
<
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5. Partition {Pf} according to the optional partition scheme described in Section 3.5.3.

Fa

e} = - . (8)

/

6. ECliminate the set of omitted coordinates, Uy

= T
P} = P e )P} . (9)

7. Partition {Pa} according to the set of coordinates, Ups that are restrained by free body

reactions, and the set, Ugs that are not.

\
Py} = 7—-— . (10)

{Pl} is the load vector in final form.

In the program the displacement vector set, Ups is obtained from solution of the equation
[Kzzl{“z} = {Pl} . (1)

in a separate module, (SSG3). It will be recalled, Section 3.5.5, that the triangular factors of
cKlEJ were previously computed in order to form the rigid body matrix, [D]. The operations per-
formed in SSG3 are the forward and backward passes through the triangular factors of [Kmil (see

Section 2.3) for each loading condition.
The vector set, ug. that describes displacements of the omitted set relative to the re-

maining set (see Section 3.5.3) is also obtained in SSG3 from solution of the equation

[Kodtud} = (P} . (12)

The triangular factors of (KOOJ were previously computed in order to form [GOJ.

Double precision arithmetic is used in the formation and triangular decomposition of struc-
tural matrices, so that significant error due to the accumulation of round-off is regarded as un-

likely. Such errors can occur, however, in exceptionally ill1-conditioned problems (see Section

3.6-5 (7/1/70)
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15.1). A test is provided in NASTRAN on the solution of Equations (11) and (12) that will indi-

cate the presence of trouble to the user.

In the test a residual load vector is first obtained from
tsP,} = “’z} - [Ku]{ul} (13)

The work done by the residual load vector is then compared with the work done by the applied load

vector in the residual energy criterion,

r
{u,} {6P,}
g, =2 L (18)

e
T
{"2} {Pl}

Iterative fmprovement, such as might be obtained by computing second and higher order resi-

dual load vectors,
t6Mpy = sy L sy (15)

is not attempted. The gain in accuracy from iterative improvement is Targely illusory because
errors made in the formation of [K], which are of the same order as those made in the triangular

decomposition of [K], are uncorrected. This matter is discussed more fully in Section 15.7.
3.6.3 Inertia Relief

When a free body is subjected to loads that are not in equilibrium, the body is accelerated
in its rigid body (or more generally, free body) modes. I[f the time rate of change of the applied
loads is small compared to the frequency of the lowest elastic mode of the system, an approximate
state of equilibrium exists between the applied loads and the inertia forces due to acceleration.
Stresses in the body may be computed, in this case, from an applied load distribution that in-
cludes the inertia forces. The term "inertia relief" is applied to the effect that the fnertia
forces have on the stresses. In order for an "effect" to be defined, a condition in which the
effect does not exist must be imagined. In the case of inertia relief, the "effect-free" condi-
tion is one in which the free body is restrained by determinate supports. The choice of support
points is arbitrary, but usually corresponds to a natural or customary location (e.g. the inter-
section between wing and fuselage of an aircraft). Although the condition including inertia ef- -
fects s the correct solution, the analyst may also be interested in the results for the supported

condition. : -
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The general pracedure for including fnertia relief in static analysis is as follows:

1. Select, from the displacement vector {ua}, a subset (ur} of determinate support points as

has been discussed in Section 3.5.5.

2. Find the accelerations {ﬁr} due to the applied loads (Pa}. This requires evaluation of

the rigid body mass matrix [mr] referred to points {ur}.

3. Calculate accelerations at all other points {up} and the corresponding inertia forces.

4. Add the inertia force vector to the applied load vector and solve for the displacements
{ul} while the structure is rigidly restrained at points, {ur}. The forces of reaction

will be zero.

The equations of motion for the body, expressed in temms of the displacements, u., can be

written
(mJi} = ®) = -{q} . . (16)

[mr] is the mass matrix reduced to the u. coordinates. It is evaluated from partitions of the
[Maa] matrix by means of Equation 46 of Section 3.5.5. (F}} is the applied load vector reduced
to the u. coordinates. It is numerically equal to -{qr}. the set of determinate reactions, eva-

Tuated in Equation 42 of Section 3.5.5.

Solution of Equation 16 gives
o -1
(ur} = -[mr] (qr} . (17)

The accelerations of the remaining points {"z}’ assuming uniform acceleration as a rigid

body, are obtained from Equation 44 of Section 3.5.5,
{”z} = [0]{ur} . (18)

The inertia forces acting on the u, coordinates are, utilizing the partitions of the [Maa]

matrix shown in Equation 45 of Section 3.5.5.

i . .
SN 0 [ R (AR [T

-1
= M0+ M Jm] (a} . (19)
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The vector {P;} is added to the applied load vector (PQ} in problems where the inertia relief ef-
fect is included. Since [mr] is usually of small order, its inversion is not troublesome.
The inertia relief effect is also included in the calculation of the displacement set, ug,
that expresses the motions of the omitted coordinates, Ugs relative to the Uy coordinates. The
inertia force vector for the omitted coordinates is
i, . . T
(Po} = {-Moouo - Mao ua} . (20)
Now, if acceleration as a rigid body is assumed,
Wy = fi% - iy« [Ymaap (21)
a i T [tMed 197 s
and
(uo} = [Go]{ua} . (22)
Thus, the inertia force vector for the omitted coordinates is
i, . T [u] -1 ]
(Po}r (MaeSo * Mo LT [mr] ta,} (23) =4
which should be added to {PO} in Equation 12.
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3.7 DATA RECOVERY

Data recovery in static analysis by the displacement method is performed in two steps:

1.

Recovery of displacement sets that were eliminated during the reduction of the stiffness
matrix to final form, resulting in the formation of the complete grid point displacement
vector, u_.
g

Recovery of internal forces and stresses in structural elements, using the grid point
displacement vector, ug. to define the displacements at the corners of each element.

Margins of safety are also calculated. Separate subroutines are used for each type of

element.

The above steps are discussed in separate subsections.

3.7

Solutions for the vector sets, u

Recovery of Displacements

% and ug, are discussed in Section 3.6.2. The remaining

operations required to recover the complete grid point displacement vector, ug, are as follows:

1.

Merge Ups whose elements are all zero in static analysis, with u, to form u,-

Yy
{U;} - {ua} . (1)

Recover the omitted coordinates, Uy

fu,} = [6,]0u b + tug} . (2)

Merge Uy and uy to form the vectors of free coordinates, Ug-

u
{i—} - (ugh. (3)

Evaluate the single point constraint set, u

.

H

fugd = (Y} . (4)

(Ys} is the vector of enforced displacements. -

Merge Ug and ug to form u,-
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el oy (5) ~
=t =+ {U . 5
l"s n
6. Recover the multipoint constraint (and rigid element) set, U
{um} = [Gm] {un} (6)

The forces of constraint due to multipoint constraints and rigid elements are not available

as part of the standard calculations in the program, but may be_obtained in statics and real

eigenvalue problems by ALTERing in the module EQMCK and requesting these forces in the Case Control
Deck. The constraint forces are given by

qm
{qs} = {-;£-§ s (6a)

m
where

fagt = = Py + [k 37 Cud + (KD (o} s (6b)
and

@ = -] @ (6c) ~

7. Merge u, and uy to form u

e
su
n
- + {u} (7)
Y 9
The matrices [GOJ and [Gm], used in the data recovery process, were generated during the

reduction of the structural matrices to final form and were placed in auxiliary storage.

A miscellaneous task that 1s performed in the same module that recovers ug 1s the recovery
of the single point forces of constraint,

lagh = =g} + [k Tugh + [k Tug} (8)

3.7.2 Recovery of Stress Data

Internal forces and stresses in structural elements (as well as strains and curvatures in
certain elements) are calculated from knowledge of the displacements at the grid points bounding

the element and the physical parameters of the element, including geometric properties, elastic
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properties, and temperature. The equations by which internal forces and stresses are calculated are

contained in a separate subroutine for each type of element. They are discussed in Section 5.

In the calculation procedure, the stress recovery parameters for as many elements as possible
are placed in the high speed memory. The stresses are computed from the ug vector for the first
loading condition, and are placed in peripheral storage. The ug vectors for other loading condi-
tions are then processed sequentially. The procedure is repeated for additional structural elements
(if any) that could not be stored initially. The procedure that has been described makes minimum
use of INPUT/OUTPUT data transfers. For most elements, I/0 transfers are the 1imiting factor on

computational speed in stress data recovery.

A number of different kinds of étress data are available for each type of =lement. With the

BAR element, for example, the user can request any or all of the following:

Bending moments at both ends in two planes.
- Transverse shear forces in two planes.

- Axial force.

- Torque.

- The average axial stress.

- The extensional stress due to bending at four points on the cross-section at both ends.
The points are specified by the user.

- The maximum and minimum extensional stresses at both ends.
- Margins of safety in tension and compression for the whole element.
- Number of digits of accuracy for the element forces.

The capability exists for certain elements to indicate the number of significant digits of
accuracy for stresses and forces. Numerical problems may exist in using the differences in dis-
placements to calculate stresses and forces. For instance, displacements may be large relative
to the overall structure, yet the differences may be small relative to an individual element.
The precision is calculated by
£ S;.u
13 >13%] o,
h1 = - 10910 m = -10910—5-1—- , (8a) -
3
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where a4 is the specific stress component; Di is calculated using absolute values for the stress

equations, Sij are the stress matrix components and uj are the displacement components. The number

of signi?fcant'afgffs,'Ndi, is calculated by
Ngg = 10gy(2P) - ny (8b)

- where p is approximately the number of bits in the mantissa for the machine being used.

The‘resdits"ére printed directly in a format unique to the element type 1nstead of by the
output file processor. Only the results for those elements with an entry less than the user-

defined precision are pr1nted

3.7.3 Grid Point Force Balance and Element Strain Energy Distribution

The new method of element matrix generation introduced in NASTRAN Level 16 includes the
feature that the elastic stiffness matrix for each element is individually saved 1n peripheral
storage. This feature makes practical a number of capabi11ties which would othehwise be pro-
hibitively expensive, including the determination of force balances at grid points and the cal-

culation of the strain energy distribution by elements throughout the structure.
The vector of elastic forces exerted by a structural element on its connecting grid points
s related to the displacements at these points by
{Fe} = -[Kee]{ue} s (9)
where {ue} s the subset of the global degrees of freedom, {ug}, to which the element is con-
nected. The matrix EKee] is computed by module EMG and stored.

The grid point force balances computed by NASTRAN include the force and moment contributions
in the global coordinate system of element elastic forces computed by Equation 9, applied loads

and single point forces of constraint They do not 1n 2, at present forces due to differen-

AtiaT stiffness nu]tipoint constraints genera1 elements or any dynamic effects NASTRAN prints
the individual contributions of the fonner effects and the1r sum at each grid point. If none of
the latter effects are present, the sum is due to round-off error. The sum is not the same as

the residual used in the € tast (see Section 2.3) because {t is calculated at a different time in

a different manner.
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The straip energy within an Individya] element jsg

3.7.4

Overall Eguilibrium Check

The quality op closure in the so

Tution of 4 statics problem op the net momentum in a real
efgenvalye problem jg Indicated p

y

the equilibrium of the forcas about the basic coordinate System
origin op any selecteq grid point, T|

he forces on the structure are obtained in modyie EQMCK from
the fo]lowfng sources

1. Directly applied Joads: {Pg}

2. Forces of single-point constraint: {qs}
3. Forces due to multipoint Constraints ang rigid elements : fqg}
4. Forces of reaction: {qr}

(1)

resulting in the Summation,

2 m =
{St} fSp + Sg + Sg}

gt (12)
where qg 1s the union of the fo

rces 9 and 9.
n the [p] matrix,

and the forces resulting from »
not calculateq.

Each of the {s}

vectors in Equation 1
Mments, 1s output Separately along
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3.8 PIECEWISE LINEAR ANALYSIS

The Piecewise Linear Analysis option of NASTRAN 1s used to solve problems in material plas-
ticity. The load is applied in increments such that the stiffness properties can be assumed to
be constant over each increment. The stiffness matrix for each increment is dependent on the cur-
rent states of stress in the structural elements. The increments in displacements and stresses are
accumulated to produce the final, nonlinear results. Since the algorithm assumes linearity between
sequential Toads, the results will depend on the user's choice of Toad increments. When the user
selects large load increments and the material properties are changing rapidly, the results may be
unacceptably inaccurate. If small load increments are used when the structure is near1y411near the

solution will be very accurate but relatively costly.

3.8.1 Limitations and Available Options

The nonlinearity of a structural element is defined by the material used by the element. Any
isotropic material may be made nonlinear by including a stress-strain table defining its extension

test characteristics.

The stress-strain table must define a nondecreasing sequence of both stresses and strains.
Because the stiffness matrix for the first load increment uses the elastic material coefficients,

the initial slope should correspond to the defined Young's Modulus, E.

The nonlinear effects depend on the element type. The elements which utilize the plastic

mater1a1 properties are described in Section 3.8.4.

Linear elements and materials may be used in any combination with the nonlinear elements.
Elements with low stress states may be included in this category by providing them with "Tinear"
material properties even though their actual properties are decidedly nonlinear at high stress

levels. Linear elements are used in a more efficient manner than the nonlihearie1ements.

A1l static load options except temperature and enforced element deformation are allowed with
piecewise linear analysis. The reason for the exceptions is that the equivalent grid point Toads
depend on the stiffness of the structure and_ hence on the sequence of their appiication. For ex-
ampie, changing temperature after a load is applied gives different results than changing tempera-

ture before the load is applied. -

A1l statics constraint options are available including enforced displacement at grid points.

The use of enforced deformation in combination with applied loads has the ambiguity discussed
' 3.81
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<7
above. In the program enforced displacements are increased simultaneously with the other Toads.

No protective steps are taken to prevent the attempted decomposition of a singular stiffness

matrix. If the structure fails by buckling or yielding, a solution is still attempted and the re-

sults will be obviously erroneous.

3.8.2 Qverall Solution Logic

Althou