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INTRODUCTION

Water contained in the soil surface plays an important role in '
infiltration, runoff, heat transfer, evapotranspiration, seed germination,
and many other aspects of Agriculture and hydrologic systems. Due to
the direct contact to the atmosphere, the status of this moisture is
highly dynamic. The variation is mainly related to the soil type and
the microclimalological parameters adjacent to the soil surface.

Knowledge of the quantity of the moisture stored at this region
of the soil can be very useful in predicting crop yield, and will
increase the efficiency of water use management. Several methods have
been followed to estimate the amount of this moisture. With the continuous
increase in interest to manage this resource properly, remote sensing
offers a potentially accurate technique to evaluate the moisture stored
at this region of the soil (4).

Three spectral regions are used in remote sensing, visible and near-
infrared, thermal infrared, and microwave. The microwave region has
been used to study the moisture content status near the soil surface (5).

The dependence of microwave emissivity of the soil on the soil
moisture content has been studied at the Institude of Rural Engineering
1n 1977 and 1978 (5).

Peake (1959), Lundien (1966) have stated that the microwave emission
of the so1l is highly affected by the moisture content of the soil.
The influence of the soil moisture on the microwave reflectivity at the
soil surface is mostly through the magnitude of the complex dielectric

constant of soil (2 to 5 for dry soil and near 80 for pure water) (5).




Since 1971, many measurements have been conducted on the complex
dielectric constant of soils as a function of soil moisture content.
anoung these measurements, some have shown the existence of a strong
aependence for the functional relationships between soil moisture
content and the magnitude of the dielectric constant, on the soil type
(7).

The primary objective of this study is to evaluate the relationships
between soil moisture and reflectivity of a bare soil, using microwave
techniques. A drainage experiment was conducted on a Captina silt
loam in cooperation with personal in the Electrical Engineering Depart-
ment. Measurements included, soil moisture pressures at various depths,
neutron probe measurements, gravimetric moisture samples, and reflec-
tivity of the soil surface at selected frequencies including 1.5 and
0.0 GHZ and at the incident angle of 45°., All measurenments were made in

conjuction with that of reflectivity data.




METHODS AND MATERIALS

Plot Preparation

The experimental site was located on the west side of the main
Experiment Station, at Fayetteville in an area mapped as Captina silt
loam. The morphological description of the Captina soil at the site
is given in Appendix A, Table 1.

A plot with dimensions of 3.66 x 3.05m2 was constructed by removing
the grass vegetation and confining the area with a wooden frame. The
boards of the frame were placed into the soil to a depth of approxi-
mately 20cm, leaving l10cm above the soil surface, this was designed
to confine the soil moisture redistribution within the plot area. A
drainage ditch also was added around the plot to detect lateral move-
ment of water caused by rainfall into the plot area. A wooden frame
roof consisting of three pieces of corrugated fiberglass was constructed
in order to keep out precipitation after the saturation of the plot
and during the drying cycle. The roof was made of three sections so
that it could be easily removed to allow access to the instruments
used to monitor soil water movements. The roof was slopped at 10%
to prevent leakage caused by the accumulation of water from the rainfall,

Experimental Instrumentation

After the initial preparation, the plot was instrumented with a
bistatic reflectometer for soil reflectivity measurements. Three banks
of tensiometers (macro, and microtensiometers) with mercury manometers
were positioned at l, 3, 5, 10cm depths for microtensiometers, and l5cm
increments ranging from soil depth of 15cm to 137cm for macrotensiometers.

Lach bank contained one neutron probe access tube in order to complement




the tensiometers (Figure 1, Appendix B).

The reflectivity data were obtained by installation of the trans-
mitter and receiver antennas at the north and south sides of the plot.
The height of the antennas from the ground surface was approximately
3m, and was adjusted to an angle of 45° through the soil target (Fig. 2).
The band widths of the two antennas ranged from the frequency of 1l to 2
GHZ and from 4 to 8 GHZ. The receivers were furnished with a network
analyzer as a ratiometer and an X-Y plotter to give a continuous recording
system. The reflectometer system was calibrated with a thin sheet of
aluminum. This aluminum sheet was placed over the soil surface and
was removed af;er the reflectivities were taken. The ratio of the relec-
tivity from the aluminum sheet and the reflectivity from the bare soil
eliminates system parameters.

Tensiometer data along with the access tubes measurements were
used to determine the soil moisture potentials and corresponding moisture
coutents at various depths for each bank. Three banks of tensiometers
and access tubs were placed in the plot as shown in Figure 1. 1In order
to minimize the effect of the plot boundary on the tensiometers, attempts
were made to kKeep the distance between tensiometers and plot boundary
more than l5cm, the same distance also was used to locate the access
tubes and the tensiometers. This was done to detect the effects of the
water in the tensiometers on the neutron probe readings. Figure 3 App. B
shows the cross-sectional area of each bank and indicates the location
of the two types of tensiometers which were used in this study. Due

to the importance of the soil moisture status at the surface, micro-

tensiometers were placed with small increments at 1, 3, 5, 10cm soil depths.




Final Plot Preparation

After the plot was instrumented the soil surface was tilled lightly
and leveled. This was done to have a relatively smooth surface. Water
then was applied to the plot through a perforated plastic garden hose.
In order to keep water from ponding, a steady state was established
between the application rate and infiltration rate of water in the plot.
The application rate was found to be approximately 1.4 centimeters of
water in an hour. The wetting process at this rate was continued until
the plot appeared saturated.

So1l Samples

Five soil cores with the dimensions 6cm x Scm and five slurry soil
samples were taken from the depths corresponding to the tensiometer
positions. Soil core samples were used to determine saturated, hydraulic

conductivity, moisture retention characteristics for pressures less

than one bar, aqd bulk density. Soil slurry samples were used to deter-
mine particle density, particle size distribution, and moisture reten-
tion characteristics for pressures from one to fifteen bars.

1

Characterization of Soil Physical Properties

Immediately after the plot was considered to be saturated, time
zero, the time when all surface water infiltrated the soil was assumed
to be the start of the drying cycle. Tne plot then was allowed to dry.

teasurements taken included reflectivity at frequencies, 1.5, and
0.0 bHZ, tensiometer redaings, neutron probe measurements, and soil
yravimetric samples. At the initiation of the drying cycle, the soil
was nearly saturated and the rate of water movement decreased sharply

with time. Therefore, measurements of the water status were taken every




two hours for approximately three days. As the soil dried by evapora-
tion and drainage, the frequency of the measurements were reduced to
three times a day, morning, solar noon, and late afternoon. Later

the number of measurements was reduced to two times a day, and finally
to one daily measurement in the afternoon. There were three drying
cycles, the first drying cycle was stopped in the fourth day due to a
heavy rain, which caused flooding in the plot. The second and third

drying cycles were complete cycles. The data obtained from each cycle

included soil samples, tensiometer readings, and soil surface reflec-

tivities. Soil Core Samples were used to determine saturated hydraulic

conductivity by the constant head method using Darcy's Law as follow.

K = GQL/AtAH (1]

Soil moisture retention characteristics at pressures ranging from
U-1 bar, using the pressure plate method. In order to show the unformity
of the Captina soil, soil water contents were plotted against the natural
logarithm of matric potentials. The regression line is defined by the

following equation.

o = Aaexpl 8 ) (2]

Bulk density was determined by dividing the weight of dry soil
in each core by its volume. The slurry soil samples were used to deter-
mine particle density using the pycnometer method, particle size distri-
bution by mechanical analysis, and to determine soil moisture characteristics

for pressure more than one bar.




Unsaturated hydraulic conductivity was determined from the hydraulic
gradient and soil water flux. Hydraulic gradients were obtained from
tensiometer measurements at various soil depths. The flux of water was
calculated by determining the position of the "'zero flux plane'. In
a soil profile which is subjected to both evaporation and drainage the
zero flux plane will separate the portion of soil water which moves
upward in respounse to evaporation from that which moves downward in
response to drainage. There is no water movement across this plane.

The flux of water at any depth, is obtained by integrating the rate of
change in moisture content with time for a distance from the zero flux
plane to the depth in question. The position of the plane of zero

flux moves downward as the soil profile dries. fhe hydraulic conduc-
tivity can be determined by dividing the soil water flux by the potential

gradient as follows;

K@) = [fgg (36/30)d81% (av/33) (3]
K@), = [fgb (30/3t)d2]+ (3¥/3 2) [4]
Q

where a and b are the depths in soil profile above and below the depth of
zero flux plane, ZU and K(@)a, K(@)b are the hydraulic conductivities

corresponding to the water contents at specified depths a and b (1).




Functional relationships were developed between hydraulic conductivity
data and both volumetric water content, Gv and the deficit volumetric
water content from the saturation, (QS- Gv). The equations are

described as follows.

b
]

Ko exp[ﬁ@v] (5]

S
1]

K exp[B(Qs— ev)] (6]

Daily flux of water across the soil surface or evaporation after
each day was calculated, using Eq. {3]. The evaporation rates were then
plotted as a function of time in day to indicate the separation of
the theoretical two stages of evaporation.

Soil Water Diffusivity

The soil water diffusivity, D, for Captina silt loam was calculated
depending upon the water content in two ways, for the water contents
during the first stage of evaporation, D was determined from the K at
that water content and the slope of the water retention curve (specific
water capacity). The relation between D, K, and specific water capacity

1s described as follows.

D = -K(ev)(a?m/ae) (7]

For the water content at the beginning of the second stage of

evapordation or less, D was determined from the solution of unsaturated

flow equation described by Fick's first law.




F=-D30/3x [8]

where, F is the flux of water (cm3/cm2 sec.).
Combining Eq. [8] with the law of conservation of mass gives the

equation which has become known as Fick's second law.
38/at = 3/3x[D(®) 39/3x] (9]

According to Crank, (3) Eq. [9] can be solved analytically for a
semi-infinite slab with constant diffusivity, D, to calculate flux at

the boundary, the solution is as follows,

L
F=(, -0) D/rt)° [10]
i o
|
where: Qi = the initial water content, water content at the beginning
of the stage II.
90 = the water content at the soil surface, assumed to be zero.

Cumulative evaporation, E, will be obtained by integrating the

Eq. [lu] with respect to time.
5
E= (6, -
( i 90)(D t/w) [11]
For further sumplification we assume a coefficient, A to be,

1
. “3
A = z(ei - eo)(D/u) [12]




B
i

Z(Qi - 90)(D/1r)li [12]

Then

_4
E = At ° (13]

In order to calculate the diffusivity for the period of stage II,
the cumulative evaporations were plotted against the square root of
time in days, coefficient A is the slope of the regression line.
Rnowing this coefficient, and the values of Oi, Qo, the soil water
diffusivity was calculated using Eq. [8].

Soil Reflectivity

Reflectivity of the soil during this experiment are presented in
Appendix A, Table 9-11. The type of reflectometer frequency of the band
width, and the incident angle were discussed in the Experimental
Instrumentation. Data obtained at various frequencies were converted
to reflectivi. It is to be noted that, reflection coefficient is a

square root of the reflectivity value.

10




RESULTS AND DISCUSSION

Soil Profile Description

A soil profile description made at the study site is given in
Table 1, Appendix A. The soil is in an area mapped as Captina silt loam.
The Captina soil is described as a moderately well drained, slowly
permeable, and dominated in the lower horizons by a firm, brittle,
fragipan. It is classified as a Typic Fragiudalf with a predominate
texture of silt loam.

The most distinguishing characteristic of the Captina soil at the
study site is the presence of a fragipan located at depths ranging
from 70 to 120cm. The boundary between fragipan and nonfragipan was
found to be wavy (tong shapped), which will causé a large variabilities
in the water transport data obtained within this region of the soil
profile. The Ap horizon, the first 18cm of the top soil, has a fine
granular structure, where as in Ap2 a massive structure was observed
from 18 to 30cm. The B horizon starts at the 30cm depth, where a sudden
change in color from brown to yellowish brown was observed. As the data
1n Table 2, Appendix A shows at the beginning of the B horizon contains
4 zreater clay content; the maximum clay content was in the depth range
£ rom 38 to 93cm in the B23t horian.

Bulk Density

The bulk density values range from 1.27 gm/cmB, the lowest value

, . 3. . ,
1n the Ap horicon, to a value of 1.4l gm/cm™ in the same horizon. This
increase in bulk density within the same horizon could be due to the
presence of a plow pan. Bulk density remained essentially constant

around 1.40 gm/cm3 along the Ap2 horizon starting at 13cm to the end of

11




the Bl horizon at 45cm. From B2lt at 45cm, the values of bulk densities
increase to a maximum in the middle of the fragipan. The maximum bulk
density was l.b64 gm/cm3 which is considered to be a fairly high for

silt loam soils. Finally the overall average bulk density of the soil
profile was 1.47 gm/cmB. This compare favorably with the average

bulk density of 1.5l gm/cm3 found in 1976 by Paetzold on the same soil
but at a different location. The data in Fig. 4 shows the variation in
bulk density.

Particle Density

The data in Fig. 5, Appendix B shows the variation of particle
density as a function of soil depth. Generally the values of particle

density are nearly constant in a soil profile which is morphologically

uniform. As the data in Fig. 5 represents the minimum value for particle
density in Captina soil was 2.49 gm/cm3 at the soil surface. This value
is generally considered to be low which is probably due to the presence
of organic matter since the particle density of organic matter is low.
The values of particle density increased to the 30cm depth and remained
fairly constant in a range from 2.61 to 2.64 gm/cm3.
rorosity

Porosity ranged from 0.49 cm3/cm3 in the Ap to 0.374 in B23t ¢ Bx1
norixon, Data in Table 2 in Appendix A indicates that if particle density is
fairly constant, the variation of porosity in the soil profile is
inversely related to the magnitude of the bulk density.

Particle Size Distribution

Particle size distribution was determined using mechanical analyses.
The data in Fig. 6 Appendix B shows the accumulative distribution of

particle size throughout the soil profile. The Captina soil is dominated

12
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by a large quantity of silt. The second largest textural component
was clay, the lowest amount of clay of 10% was found at the surface

in Ap horizon, and the highest quantity of clay of 30% in the B23t
norizon. The sand fraction was the lowest percentage size fraction in
the profile and varied from 25% in Ap to 13% in BX2. The maximum of
40% of sand was found in the B24t, which is probably due to the fact
that this soil is formed from the weathering of sandstone. The data
in Tables 2 and 3 in Appendix A show selective physical properties and
particle size distributions of the Captina soil.

Mositure Retention Characteristics

The data in Fig. 7 and 8 in Appendix B represent the functional
relationships between moisture content and matric potentials less
, . " 3
than one bar. The maximum moisture content of 0.432 cm3/cm was found

at saturation in the Ap horizon, and the minimum value of 0.271 cm3/cm3

at 1 bar pressure in the B2lt horizon. The BX2 horizon retained relatively

lower amounts of moisture than the horizons above and below. This is
possibly due to the presence of the fragipan in this horizon. In order
to find out if the data fit the equation [2], the moisture retention
data were transfered into semi log plots, The data in Fig. 9 and 10
describe this functional relation for Ap and Bl horizon. The correlation
values range from 0.993 at the surface to 0.976 at B24t horizon.

Higher values for slope of thé regression lines were obtained in deeper
horizons which 1s possibly due to the accumulation of the clay particles
along the soil profile. The higher the slope of the regression line, the
nizher the dependence of water content on matric potential. The data in
Table 4 in Appendix A represents the correlation coefficient values,
intercepts, and slope of the regression lines along with the mathematical

model for each soil horizon.

13




Soil Water Status

Evaluation of the soil water relations is the most important step in
interpretation of the functional relationships between soil moisture and
reflectivity of the soil, especially near the soil surface. The data
in Appendix B, Fig. ll through 13 represent the daily mean volumetric
water contents, daily total hydraulic heads, and diurnal variation in

matric potentials as a function of soil depth. A comparison between

the broken line (Theoretical saturation line), and the solid line (line
representing the variation in water content at the beginning of the
drainage cycle) on Fig. 1l indicates that the plot was nearly saturated.
The data in Fig. 12, illustrate the variation of,daily total hydraulic

nead as a function of depth. A positive slope indicates water moving

upward, while a negative slope indicates the downward movement of water.

The dotted line in Fig. 12 represents the separation of upward movement
of water from downward. Data in Fig. 13 demonstrate diurnal changes
in soil matric potential at the selected depths, the maximum variation
was observed in the first few days at the beginning of the drainage
cycle, especially for 1, 3, and 5cm depths.

The data in Fig. 14 Appendix B demonstrate the rate of drainage
in comparison with the rate of evaporation during the drainage cycle.
The average drainage rate decreases from 2.56cm/day to 0.712cm/day within
24 hours, where as a slow change in drainage rate was observed after
the first day of the drainage cycle. From the second day during the
drying process, the rate of evaporation and the rate of drainage were
decreasing uniformely. Data in Table 5 in Appendix A represent the

evaporation rate across the lecm depth and the drainage rate across 12Z2cm

14




depth of the soil profile during the second drainage cycle (longest
drainage cycle).

Saturated Hydraulic Conductivity

Values of saturated hydraulic conductivity (KS) depth intervals
were determined at selected using the constant head method. The KS
values ranged from l.l0cm/day in fragipan to 65.3cm/day in B24t horizon.
The second lowest value was obtained between 13-18cm depth, which is
probably due to the existance of the plow pan in this region. The
variation in Ks in the fragipan corresponded to those of bulk density,
the higher the bulk density, the lower KS. Due to the massive structure
dt Ap2 horizon, the KS was significantly low and'was 3.55m/day. The
magnitude of the KS increased in the Bl, B21lt, and B22t horizon which
is possibly due to the blocky structure of these horizons. A vast
variation in KS was found in the B23t i BX1l and BX2 horizons which are
in the range of fragipan.

Unsaturated Hydraulic Conductivity

Unsatruated hydraulic conductivity (K) was determined as a function
of soil depth, hydraulic gradient, and change in moisture content in-situ.
As Richard, et al. 1957 mentioned the field method is generally more
reliable than the laboratory method in determining K values. The "zero
flux method”" (equation 3 and 4) were used to determine K. The high values
were obtained for unsaturated hydraulic conductivity in all selected
depth at the beginning of the drainage cycle, the values become samller
ds the drying process continued. The data in Fig. 15 through 19 repre-~
sent the regressions between unsaturated hydraulic conductivity and soil

moisture content for the selected depth intervals. Due to the importance

15




of the moisture near the soil surface, the K values from 1 to l5cm

depth were determined separtely and were plotted as a function of soil
water content. The data in Fig. 19 indicate an average between K values
and volumetric water content, OV from 1 to l5cm depth. The maximum slope
of the regression curves were obtained in the fragipan and a relatively
nigh slope was found between 10 to 1l5cm depth, which is due to the pres-
sence of the plow pan. The slopes range from 53.98 at Ap2 to 131,35 at
B23t iBXl. Correlation coefficient, R, ranged from 0.969 to 0.855. The
data in Table 6 Appendix A shows the magnitude of the selected parameters
which describs the mathematical model for the functional relationships
between unsaturated hydraulic conductivity and volumetric soil water
content.

A comparison was made of the KS values obtained using the laboratory
method and the theoretical method. In this method the 1nk values were
plotted as a function of the deficit volumetric water content from the
saturation volumetric water content, (Qs - Gv). The data in Fig. 21 in
Appendix B represent the regression curves which describe the functional

relationships between unsaturated hydraulic conductivity and (gsat - gvol ).
Theoretical values for KS were obtained by assuming the volumetric water
contents be the same as the volumetric water content at saturation, that

is Qs = Qv. By this assumption, the K values are the same as the Ks
values and the magnitude of the KS is the value of the intercept of the
regression curve. Data in Table 7, Appendix A represents the values
for Ks determined in the laboratory by the constant head method, and
the theoretical nethdd obtained from the functional relationships bet-

ween K and (HS —QV). A significant correlation coefficient of 0.838 was

found between these parameters.

16




Soil Water Diffusivity

Soil water diffusivity for the evaporation stage II was calculated
form data shown in Fig. 23. Cummulative evaporation, E for the drying
period from July ! through July 7 are presented. The data were plotted
as a function of square root of time, in days. This method was applied

by Black, 1969, The coefficient, A in equation 9 was determined to be

o

O.4cm/(day) °. Weighted mean diffusivity was calculated using equation
3 with the assumptions that 90, which is the water content at the
boundary (x=o0) is equal to zero, and Gi to be the magnitude of the water
content at the beginning of the stage II. The value for Gi was 0.343
cm3/cm3. Consequently the’ values for (Qi - QO) was found to be 0.343
cm3/cm3. The data in Fig. 22 and 23 represent tﬁe processes in

order to calculate soil water diffusivity.

Soil Reflectivity

The relationships between soil moisture content and reflectivity
at 1.5 and 6.0 GHz are shown in Fig. 24 through 32 in Appendix B. In
three drying cycles, relationships between reflectivity and soil moisture
content were interpreted to have two distinct phases. Phase I, occurs
where the reflectivity values chang slightly along with corresponding
decreage in soil water content at the surface. In phase II the reflec-
tivity values decreased sharply. At 0-5cm depth, soil water conteant
aecreased from 0.400 to O.OéOcm3/cm3. The reflectivity at the same time
decreased from 0.60 to 0.12 at 1.5 GHZ and from 0.20 to 0.02 at 6.0
qu. Linear regression analyses were performed to relate the coefficient
of reflectivity, r, with the volumetric soil water content for both phases

at the soil surface. It is to be noted that the first drainage cycle

17




was not completed, therfore the data on Fig. 24 and 25 show the rela-
tionships between soil moisture content and soil reflectivity during
the phase I. The data in Table 8 in Appendix A, represent the slopes,
correlation coefficients, and intercepts for two frequencies 1.5 and
6.0 CHz' The data shown in Fig. 32 indicate that, the relationship
between reflectivity and soil moisture content is linear in one phase
if the volumetric water content is obtained by gravimetric sampling
rather than using the data from moisture retention curve.

The relationships between soil reflectivity and the other soil

moisture parameters will be discussed after the data are analyzed.

18
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Table 1. Morphological description of Captina silt loam.

horizon Depth Descriptions
(cm)
Ap 0-18 Dark grayish brown (10 Y/R 4/2) silt

loam; weak find granular structure;
friable; few fine roots; clear smooth
boundary.

Ap2 13-29 Brown (10 1/R 5/3) silt loam with few
fine faint yellowish brown (10 1/R 5/4)
mottles; massive structure; friable;
common fine roots; numerous dark grayish
brown (10 1/R 4/2) worm and root
channels; many discontinuous pores
(1-4 mm dia.); 1% coarse fragments;
clear wavy boundary.

Bl 29-45 Yellowish brown (10 I/R 5/4) silt loam;
weak subangular’ blocky structure; friable;
few fine roots; numerous dark brown
(10 1/R 4/3) worm and root channels; few
pores (l-6 mm dia.); clear smooth boundary.

B2lt 45-01 Yellowish brown (10 1l/R 5/6) silt loam;
medium subangular blocky structure;
friable; thin patchy yellowish brown
(10 1/R 4/5) clay films on vertical faces
of peds; few fine roots; few pores (l-1.5
mm dia.); clear wavy boundary.

b22t 6l-72 Yellowish brown (10 1/R 5/4) silty clay
loam; moderate medium subangular blocky
structure; film; thin patchy yellowish
brown (10 1l/R 5/4) clay films on vertical
faces of peds; few fine roots; a few dark
grayish brown (10 1l/R 4/2) coatings in root
channels; few fine pores; 5% coarse frag-
ments; clear irregular boundary.

b23t 71-102 The B23t component (60%) consists of red
& (2.5 1/R 5/6)silty clay loam; moderate
bkl med ium subangular blocky structure; firm;

thin patchy red (2.5 1l/R 5/6) clay films
on vertical and horizontal ped faces; no
roots; many fine black (N 2/) FelMn stains;
clear wavy boundary.
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Table L.

tlorphological description of Captina silt loam.

tlorizon

Depth
(cm)

Descriptions

Bx2

blat

102-117

117-140

The Bxl component (40%) consits of red

(2.5 1/R 4/6) heavy silt loam with many
common medium distinct fine permanent
pinkish gray (7.5 l/R 6.2) and yellowish
brown (10 1/R 5/6) mottles; weak medium
prismatic structure; very firm, slightly
brittle; common pores (0.5-2 mm dia.);

many coarse distinct black (N2/) FeMn stains
on prism faces; clear wavy boundary.

Red (2.5 1/R 5/6) silty clay loam with
common fine prominent dark yellowish
brown (10 1/R 4/6) and some yellowish
brown (10 1/R 5/4) mottles; prismatic
structure; firm and brittle; common pores
(0.5-2 mm dia.); many firm black (N 2/)
Fellm stains on prism faces, 10% coarse
fragments; clear wavy boundary.

Red (2.5 1/R 4/4) silty clay loam with

many coarse medium distinct pale brown

(10 1/R 6/3) and yellowish brown (10 1/R 5/4),
common coarse distinct pinksih gray (7.5 1l/R
6/2), and a few fine prominent strong brown
(7.5 1/R 5/6) mottles; moderate coarse
subangular blocky structure; firm reddish
brown (2.5, 1/R 4/4) and dark vellowish

brown (10 1/R 4/4) clay films; vertical

gray (N6/) seams; common fine black (N2/)
Felln stains and nodules; gradual wavy
boundary.
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Table 4 . Regression coefficients (Rz), intercepts (A), and
slopes(B) for the semilog transformation of the
soil moisture retention data

Soil 2

Horizon R A : B

Ap 0.980 8.09 + 0.46 -28.85 + 1.37
By 0.984 7.38 + 0.37 -30.28 + 1.24
B21lt 0.981 9.99 + 0.53 -35.85 + 1.62
B22t 0.981 10.02 + 0.53 -35.98 + 1.62
B23t 0.971 15.12 + 0,96 -48.32 + 2.77
Bxl 0.971 15.12 + 0.96 -48.32 + 2.77
B x 2 0.967 18.19 + 1.21 -59.58 + 3.61
B24t 0.873 23.14 + 3.51 =73.42 + 9.32
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Table 5. Values of the evaporation Rate (flux) at lcm depth and drainage
rate (flux) across 122cm depth during the second drainage cycle.

Date Evaporation Rate Drainage Rate
(day) cm/day cm/day
7-1-80 0.420 2.560
7-2-30 0.341 0.712
7-3-30 0.472 0.268
7-4-30 0.318 0.168
7-5-30 0.242 0.106
7-0-30 0.203 0.093
7-7-30 ' 0.158 0.051
7-8-80 v 0.031
7-9-30 -— 0.056
7-11-30 - 0.025
7-14-30 -— 0.019
7-17-80 - 0.006
1/

—'We were not able to calculate flux of water at the soil surface because
the microtensiometers did not operate at that degree of dryness.
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Table 6. Statistical parameters of the relationship
between K and QV.

Captina Silt Loam

Depth (b)

Interval Intercept Slope R
(cm) (cm/day)

15-31 2.56 x 1077 53.98 0.956
31-46 8.39 x 10701 66.34 0.931
46-61 5.18 x 10713 7929 0.910
61-76 1.93 x 1075%  96.00 0.936
76-91 8.50 x 1072%  131.35 0.911
91-107 7.17 x 16018 101,93 0.945

107-122 1.25 x 10728 107.62 0.855
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Table 7. Comparison between two methods of determining saturated
hydraulic conductivity.
Depth Saturated Hydraulic Conductivity, Ksat
Interval =000 meeemcemma—eee- em/day———=mmmem————loll
(cm) Calculated Experimental
15-31 24,490 17.89
31-46 61,00 38.05
4o-01 57.00 22.96
bl-76 12,70 23.71
76-91 8.60 13.74
91-107 3.60 8.56
1u7-122 2.78 9.91
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Table 3.

Correlation coefficients, slopes and intercepts of the

regression equations of two phases from the three drainage

cycles.
Frequency
Drainage 1.5 GH 6.0 GH
Cycle Phase K m z b R m b
1 1 0.597 0.69 0.282 0.432 0.44 0.170
1 1/ - - - - - -—
2 1 0.543 0.59 0.330 0.153 0.07 0.132
2 2 0.952 6.77 -1.856 0.911 5.69 -~1.730
3 L 0.644 0.73 0.282 0.211 0.103 0.130
3 2 0.933 9.18 -2.660 0.925 5.53 =-1.690
2&3 i 0.633 0.795 0.255 0.212 0.106 0.123
2&3 2 0.936 7.110 -1.970 0.932 5.31 -1.610
1/

~'Not a complete cycle.
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Table 9. Reflectivity measurements from first drainage cycle, June 18 through
June 22, 1980.

Reflectives
Time, Cumulative Frequency Frequency Ym Ov
Date hr. Time, hr. 1.5 GH, 6.0 GH» -cm em3/cm3
6-18-80 0745 000 0.556 0.398 6.5 0.435
" 1010 002 0.575 0.331 20 0.415
" 1200 004 0.549 0.331 30 0.410
" 1410 006 0.549 0.376 48 0.403
" 1615 008 0.537 0.347 53 0.397
" 1750 010 0.616 0.323 60 0.395
" 2005 012 0.556 0.367 61 0.394
6-19-80 0915 025 0.562 0.331 _ S5 Q.396
! 1100 027 0.562 0.323 69 0.390
" 1235 028 0.537 0.331 79 0.380
" 1405 030 0.530 0.323 103 0.367
" 1615 032 0.569 0.343 126 0.360
" 1800 034 0.525 0.343 136 0.355
6-20-80 1030 ¢sQ 3.569 0.305 108 0.367
" 1210 052 0.549 0.309 148 0.355
" 1415 054 0.519 0.309 177 0,350
" 1550 056 0.519 0.367 157 0.353
6-21-80 0775 073 0.501 0.389 119 0.363
" 1405 079 0.530 0.316 165 0.352
6-22-80 0835 097 0.507 0.323 146 0.35%6

" 1400 105 0.478 0.316 247 0.340




Table 1U. Reflectivity measurements from second drainage cycle, June 30 through
July 21, 1980.

Reflectivity

Time, Cumulative Frequency Frequency Ym 6v
Date hr. Time, hr. 1.5 GHy 6.0 GH» -cm cm3/cm?
6-30-80 08 000 0.575 0.160 9 0.425
" 12 004 0.575 0.157 24 0.415
" 14 006 0.601 0.168 35 0.407
" 16 008 0.575 0.135 60 0.390
" 18 0la 0.549 0.153 8Q G.380
7-1-80 08 024 0.531 0.178 86 0.375
" 10 026 0.562 . 0.170 105 0.370
" 12 028 0.562 0.191 135 0.357
" 14 030 0.513 0.162 195 0.350
" 16 032 0.462 0.151 242 0.340
" 18 034 0.434 0.145 275 0.330
7-2-80 08 048 0.442 0.148 180 0.350
" 11 051 0.422 0.148 289 0.325
" 14 054 0.359 0.098 372 0.320
" 17 057 0.282 0.074 462 0.351
7-3-80 08 072 0.310 0.079 437 0.320
" 14 078 0.232 0.039 531 0.315
" 17 081 0.240 0.029 563 0.312
7-4-80Q 09 097 0 0 621 0.309
" 14 102 0.221 0.026 611 0.310
7~-5-80 14 126 0.226 0.022 662 0.307
7-6-30 14 150 0.197 0.027 675 0.305
7-7-80 14 174 0.195 0.027 673 0.306
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Table 11. Kkeflectivity measurements from third drainage cycle, July 28 through
August 7, 1980.
Reflectivity
Time Cumulative  Freguency Frequency Ym O,
Date hr. Time, bhr. 1.5 GHy 6.0 GHp -cm em3/cem3
7-28-80 08 000 0.569 0.164 12 0.420
" 11 003 0.575 0.182 25 0.417
" 14 006 0.631 0.197 53 0.400
" 17 gaQ9 0.556 0.158 34 0.380
7-29-80 08 024 0.362 Q0.144 83 0.38¢
" 11 027 0.519 0.178 114 0.368
" 14 030 0.525 .0.214* 389 0.325
" 17 033 0.431 0.172 272 0.330
7-30-80 08 048 0.422 0.1l64 245 0.340
b 14 054 0.272 0.090 464 0.320
7-31-80 08 072 0.;63 0.096 433 0.320
" 14 078 0.190 0.028 487 0.315
8-1-80 14 102 0.197 0.01¢ 619 0.310
32
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Figure 1. The Schematic diagram for the bare soil experiment of
the summer 1980 at the University of Arkansas.
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Figure 11.

Daily mean volumetric water content as a function of
depth at selected days in the second drainage cycle.
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Figure 15 Hydraulic conductivity as a function of soil water

content, er, at 1-3 cm depth interval.
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Figure 16 . Hydraulic conductivity as a function of soil water

content at 3-5 cm depth interval.
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Figure 20. Hydraulic conductivity as a function of soil water
content in 7 soil depth intervals.
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