Final Contract Report
Prepared for

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Intelligent Editor/Printer Enhancements

Contract No. NAS8-34969

Submi tted by

Arizona State University
College of Engineering and Applied Sciences
Computer Science Dept

Tempe, Arizona 85287

Principal Investigators: Marvim C. Woodfill
Professor
David C. Pheanis

Assoc Professor

September 15, 1983

?D/ 49 @r‘/
N84-18909

CR R 83005

Final Report
Contract NAS8-34969
ENHANCEMENT OF INTELLIGENT EDITOR/PRINTER

This report was prepaired by Arizona State University under
contract NAS8-34969 Enhancement of Intelligent Editor/Printer for Marshall
Space Fligh Center of the National Aernautics and Space Administration.

The purpose of this contract was to develop for and furnish to the
government for it”s unrestricted use all microprocessor support hardware,
sof tware and cross assemblers relating to the Motorola 6800 and 6809
processor systems. Furthermore, a printer controller and intelligent CRT
(similar to the 6800 versions developed under NAS 8-32230) were to be
developed using the 6809, third generation microprocessor.

The following software was delivered and installed on a VAX 11-750
system at MSFC 13 May 1983:

1) The source program for the Motorola 6800/6909 assembler.
2) The source program for the Motorola 68000 assembler.
3) The source program of the Motorola Utility Debug
(MUDBUG) package for the Motorola 6800.
4) The source program of the Motorola Utility Debug
(MUDBUG) package for the Motorola 6809.
5) A documentation file for the MUDBUG system.
6) The executable image for the Motorola 6800 assembler.
7) The executable image for the Motorola 6809 assembler.
8) The executable image for the Motorola 68000 assembler.
9) The executable image for the ASU Compose (word proc)
package.
10)The command procedures developed at ASU to support the
VMS VAX system.

Appendix A of this report is a copy of the current User”s manual
for MUDBUG-2, the latest version of the M6800 Debug Package. Appendix B of
this report is a copy of the design specifications for the MC6809 version
of the intelligent printer controller card. MSFC is currently constructing
a printed circuit card to implement this design. The software necessary to
use this card as a controller for a Diablo Hy-Type 2 printer is currently
under development and will be supplied to the govermment after it is
checked out on the finished version of this card which is to be supplied to
ASU by MSFC. Appendix C of this report is the design specification for a
132 Character by 64 Line intelligent CRT display system using a Motorola
6809 MPU. This version also has four pages of refresh memory. (A 68000
version of this design is under development.) Appendix D of this report is)
- a report-concerning-a- feature that-is-curréntly being added-to-MUDBEG-whichi—m wrm ——=z —on
will greatly increase it ease of use, especially for the in-frequent or i
casual user. This feature consists of a one-line. assembler and- dis——=- """ ..
assembler. - This feature will be added to: the Memory .change;- memory-dump; -~ """ =+» .o °
and register display commands. Its use is documented .in this appendix..
This capability has proved to be a significant aid -because ,it.allows an-. -
engineer to debug in assembly language .rather. than machine language.

Final Report NAS8-34969

Conclusions:

The hardware developed for this contract seems to work well in
proto—type form. When the finished wversion of the printer card is
supplied, the software will be verified and that software will be supplied
to the government at no additional’cost. Furthermore, the addition of the
one—line assembler and dis—assembler to the debug package represents a
significant improvement 1in the usefulness of the system to any user, but
especially to those not intimately familiar with the machine language of
the MPU.

Recanmendations:

The impact of the one-~line assembler/dis-assembler has been
absolutely phenomenal. The amowunt of improvement that the one=line
assembler/dis-assembler makes for a person who is developing and debugging
agsembly-language programs 1s so great- that it far exceeds our initial
expectations. Presently, the ome~line assembler/dis-assembler for the 6800
microprocessor is available only in preliminary form and is not fully
integrated into MUDBUG, but the package is already tremendously useful.

A one-~line assembler/dis—-assembler package for the 68000
microprocessor is available commercially, but it is rather crude and
inconvenient to use. We are confident that we could develop a much better
package for the 68000, and we are also confident that we could develop a
good one-line assembler/dis-assembler for the 6809 microprocessor.

It is strongly recommended that the govermment fund a follow-on
project to work on the development of one-line assembler/dis-assembler
packages for the 6809 and 68000 microprocessors. The integration of such
packages into the debuggers for the 6809 and the 68000 would represent a
significant advance of the state of the art, and the result would be
immediately useful to anyone who wants to develop and debug programs for
those two modern microprocessors.

F inal Report

Contract NAS8-34969
ENHANCEMENT OF INTELLIGENT EDITOR/PRINTER
This report was prepaired by Arizoma State University under
contract NAS8-34969 Enhancement of Intelligent Editor/Printer for Marshall
Space Fligh Center of the National Aernautics and Space Administration.
APPENDIX
A

The User”s Manual for the Latest version of MUDBUG-2 the MC6800 Debug
Package.

MUDBUG-2/D2

User's Manual

by

David C. Pheanis

Fourth Edition

August, 1983

2

I bhave gone to a great deal of effort toc make MUDBUG and this manual
as accurate and as usable as possible, but I have no-doubt overlooked a few
shortcomings. In the interest of quality, therefore, I am offering a
reward of $1.00 in U.S. funds to the first finder of each error, whether it
is technical, typographical, grammatical, or otherwise. I hope that this
offer will convince people that I really do want to hear about my mistakes
so I can correct them. Students in my class who use MUDBUG and this manual
may elect to receive 20 poiﬁts of class credit in lieu of a cash reward.

I shall appreciate receiving positive suggestions for improving this
manual or the MIDBUG system in any way. Some of the features that are
already implemented in MUDBUG evolved from discussions with M6800 users,
and future suggestions for improvements will be more than welcome.

DCP

(e) Copyright 1978, 1979, 1982, 1983 by David C. Pheanis

. All rights reserved.

First Printing: August, 1983 ST ER

Table of Contents

Chapter Page
- Table of.Contents e e o 4 e e 4 s s s 4 s e s s s s e e e e e s e s 3
1. IntroductioB . . ¢ ¢ o, ¢ ¢ ¢ o o ¢ ¢ e o e o 4 o e o 4 s s e e o 4
2. Interrupt Vectors . . ¢ ¢« ¢ o ¢ e o o s o o o s s s o o o o o o @ 6

3. MUDBUG Utildities . v ¢ ¢« ¢ ¢ ¢ o ¢ « o o o o o o o o o« o e « o = » 7
3.1. MUDBUG Command SUMMAIY . « « « o o« o « o o «
3.2. MIDBUG Command Deseriptions

4, Internal Routines and Subroutines

4.1. Summary of Internal Routines
4.2. Subroutine Descriptions« ¢« ¢ . .

Chapter 1

Introduction

MIDBUG is a general-purpose Monitor-Utility-DeBUG software package for
a Motorola M6800 microprocessor. The first version of MUDBUG, which was
known as MUDBUG-1, was designed and developed at Arizona State University
in 1975 by Dr. Marvin C. Woodfill and Ms. Mary L. Dryden to replace the
Motorola-supplied MAID and MIKBUG systems, both of which were deficient in
sSeveral respects. In the summer of 1976 Mr. Don E. Smoker converted MIDBUG
from its origipal bhand-written machine-language form into a machine-
readable assembly-language flle, and then in 1977 the MUDBUG system was
almost completely redesigned and rewritten by Dr. David C. Pheanis with the
help of some background information from Dr. Woodfill.

Until 1982 MUDBUG existed as a 1-K program capable of running in a 1-K
EPRCM such as a 2708. Falling memory prices and rising chip capacities
eventually modified the marketplace to the extent that 2-K EPROMs such as
the 2716 were actually cheaper than 1-K 2708 EPROMs. In 1982, therefore,
Dr. Pheanis started using a 2-K 2716 EPROM and modified MUDBUG by adding
several enhancements that had not been possible when the program had been
restricted to a 1-K EPROM.

Anyone who has any suggestions, comments, or questions regarding
MUDBUG should contact:

Dr. David C. Pheanis

6822 S. Butte Avenue

Tempe, Arizona 85283
(602) 839-5229

Also, in the unfortunate event that anyone ever detects any error in
MUDBUG, the author would appreciate receiving a detailed report of the
suspected error and its symptoms. Finally, the author will appreciate
receiving any well-conceived ideas for useful features that could be
included in the next release of MUDBUG.

In its present form MUDBUG requires 2-K (i.e., 2,048) words of ROM
program space in locations $F800 through $FFFF. (Note: A leading "$" is a
standard M6800 notation that indicates a hexadecimal number. 4 decimal
number is normally indicated by the absence of a leading "$", and an octal
number is indicated by a leading zero. A binary number is indicated by a
leading "3$" character.) In the rest of this document we'll use the label
ROM to refer symbolically to the first location of the MUDBUG ROM.

. . Besides requiring a-2-K -block of ROM; MUDBUG also-requirss i 128-word iiii’ =i

"“block of RAM for its stack and intermal variables. This block of RAM can— - - .-

5

start at any convenient location, and its starting location is indicated by
the label RAM, which is defined by an equate near the beginning of MIDBUG.

Locations RAM+$40 through RAM+$7F of the MUDBUG RAM area are currently
reserved for use by the usert's programs, and, in particular, the user's
default stack grows downward from location RAM+$TF toward location RAM+$40.

Besides using ROM and RAM, MODBUG also needs an ACIA for RS-232
communications with the user's terminal. The memory location of the ACIA's
control register is indicated by the label ACONT, and the location of the
ACIA's data register is indicated by the label ADATA. Both of these labels
are defined by equates near the beginning of MUDBUG, so they can be
modified easily to fit various hardware configurations.

Chapter 2

Interrupt Vectors

MODBUG is designed such that the last eight locations of its ROM space
function as the interrupt yvectors for the microprocessor system, and the
interrupt vectors are set up in the MUDBUG ROM to make the M6800 interrupts
function as follows:

Hardware Interrupt (IRQ): Branch indirectly through locations RAM and
RAM+1. (Note: The label RAM is used
throughout this document to designate the
first location of the MUDBUG RAM area.)

Software Interrupt (SWI): Branch indirectly through 1locations RAM+2
: and RAM+3.

Nommaskable Interrupt (NMI): Branch indirectly through locations RAM+l4
and RAM+5.

Restart Interrupt (RSI): Initialize or restart the MIDBUG system as

if a power-up condition had occurred.

Locations RAM and BRAM+1, RAM+2 and RAM+3, and RAM+l4 and RAM+5 are
automatically set up at MUDBUG-~initialization time so that a hardware
interrupt (IRQ), a software interrupt (SWI), or a nommaskable interrupt
(NMI) invokes a routine that prints the contents of all of the registers
and returns control to the top of the MIDBUG command-decoding routine.

For purposes of flexibility, the indirect ihterrupt-vector pointer
values in the first six locations of the MUDBUG RAM can be modified quite
easily via the MUDBUG memory-change (i.e., "C") command to allow the user
to capture the various interrupts and to service them via his or her own
specialized interrupt-handling routines if necessary. MJDBUG's memory-
change command is explained in detail later.

Users who capture the interrupts for their own interrupt-handling
routines should carefully note the fact that the values of the XR and the
CC register are not preserved in the registers upon entry to a user-defined
interrupt handler because MUDBUG loads the XR with the appropriate indirect
interrupt vector to route control to the user-defined interrupt-handling
routine. Loading the XR, of course, modifies some of the bits in the CC
register. The original values of all of the registers (including the IR
and the CC register) are always preserved on the stack, so they are readily
recoverable by any interrupt-handling routine.that ever_needs_them.

Chapter 3

MUDBUG Utilities

Whenever control “comes to the top of MUDBUG (i.e., following system
initialization, upon the completion of a MUDBUG command, at the termination
of a user's program, etc.), the system outputs a prompt (usually a ">" but
sometimes a "?") on a new line and waits for an input character. The user
can then activate a MUDBUG utility routine by typing a command mnemonic
followed by the appropriate parameter(s) (if any) for the selected command.
MUDBUG command mnemonics currently consist of only ome or two characters
each, so the user can type them quickly and easily.

When MUDBUG receives a valid command mpemonic in response to a prompt,
it outputs a single blank space to the terminal to show that it recognizes
the command. Then it reads the parameter(s) (if any) that are required for
the given command. If MUODBUG receives an invalid command mnemonic in
response to a prompt, it outputs a backslash ("™\") and a bell to reject the
bad input, and then the system prompts the user again for a good MIDBUG
command mnemonic.

Individual MUDBUG commands require from as few as zera to as many as
four parameters, and the parameters are known as START, STOP, KEY, and
MASK, respectively. The values of the parameters are input following a
command mnemonic as hex-number inputs, which are described below.

A hex-number input may be signed or unsigned, and it is terminated by
a comma, a blank space, a tab, an asterisk, a period, a solidus ("/%"), or a
carriage return. We'll frequently use the notation "<CR>" in this document
when we wish to emphasize the presence of a carriage return. At other
times, we'll simply assume the presence of a carriage return at the end of
an input line.

A solidus termination character has a rather special global meaning in
that it immediately aborts the MIDBUG command that is currently being
typed. A solidus is therefore useful as an abort character, and a user can
easily abort any MUDBUG command line by simply typing a solidus before the
input line has hbeen completed.

A carriage-return terminator also has a rather special global meaning
in that it always terminates the command that is being typed. If the user
types a carriage return before all of the command's parameter(s) have been
typed, MUDBUG simply uses default values for the remaining parameter(s).

The period, comma, space, tab, and asterisk terminators don't have any
special meanings except as noted for certain individual MIDBUG--commands...- .

- - ~7""Most™- users ~"use -—the-comma or-space—terminator to-términate—each-parameter-==-—-- s

except the last parameter for a command, and they typically use.a.carriage . .- -
return to terminate a command's last parameter. -~For examplé, a fypidal——~— — '~

T

" "SADDD\ - S5ADD" is equivalent to "-5ADD" as a—hex-number . input.. Notiece "I -

8

command might be typed as ™F 100, 200, 23, FFKCR>" where the <CR>
terminator is used to terminate the command's last parameter. Similarly, a
user might type "F 100 200 23 FF<CR>"™ to perform the same operation.

A hex-pumber input to MUDBUG is always typed without a leading "$"
because a leading "$" would be redundant in view of the fact that MIDBUG
automatically assumes that.all input numbers are hexadecimal by default.

MUDBUG allows the user to type leading blank space(s) and/or leading
tab(s) with a hex-number input because many users like to insert white
space at the beginning of an input number for improved readability. No
leading white space is required, of course, but blanks and tabs are allowed
until the first hextet of the input number has been typed. Since MUDBUG
allows the user to type leading blanks and/or leading tabs, a user can't
use a blank or a tab to terminate an empty (i.e., missing) input number. A
user who wants to omit an input number entirely must type one of the other
termination characters to indicate the missing number. For example, a user
could type "I 100, , O<CR>"™ to obtain a default value for the second input
parameter, but a user c¢ould not wuse a blank or a tab to terminate the
missing second parameter.

Since a blank space or a tab can't be used to terminate a missing
input npumber, we refer to the blamk space and the tab as soft termination
characters. The other termination characters (asterisk, comma, period,
solidus (™"\"), and <CR>) are all known as hard termination characters

because they can be used to terminate any input number including a missing
input number.

A leading minus sign negates a hex-number input value, and a leading
plus sign has no effect on the value of a hex-number input. Two minus
signs (or any even number of minus signs for that matter) cancel each
other, sSo a user can conveniently change his or her mind after typing a
minus sign by mistake. Any odd number of minus signs, of course, results
in the negation of the hex-number input value. Leading sign characters are
permitted until the first hextet of the input number has been typed, and
after that time sign characters are rejected (see belaw).

A user who makes a mistake when typing an input number can quickly
correct the error by simply typing encugh hextets to shift the mistake out
of the left end of the number. For example, "1241234" is equivalent ¢to
n1234" a3 a four-hextet input number, and "-1202" is equivalent to "-02" or
Just "-2% as a two-hextet input number. Similarly, "-1000F" is equivalent
to "-F" as an input aoumber.

A user can also correct a typing error in a hex-number input by typing
a backslash (7"\") before the number's termination character has been typed.
A backslash deletes all previous input characters for a number, so 2 user

" "can.easily restart an input ::-number--from. its first-character:::-For:-example;—----- -

" __127\-3D75\-\3C51™ is equivalent to "3C51" as a hex-number input, and

‘that the backslash correction feature can be used as-many -times.as.desired. .-----..

9

in a single input number, and also notice that a backslash deletes all
previous input characters for the number, including sign characters.

If MUDBUG receives an invalid input character when it thinks it should
be reading a hexadecimal number, the system outputs a bell and a question
mark to the terminal to alert the operator to the fact that the bad input
character is being rejected. The invalid input character is effectively
ignored, and MUDBUG reads the next input character as the next character of
the hexadecimal input number. Only the following ASCII characters are
valid for hex-number inputs:

blank tab+ - 0123 456T7T89ABCDEFabecdecsfr\ ., * /<R

The first two characters in this list (blank and tab) are valid as
leading characters before the first hextet of the input number has been
typed, and they are also valid as termination characters after the first
hextet of the input number has been typed. The next two characters in the
l1ist (+ and -) are valid only before the first hextet of the input number
has been typed, and they are rejected as invalid inputs if they are ever
typed anywhere other than at the beginming of a number. A backslash (T\")
can always be used to restart an input number, so a user can go back and
type a forgotten sign character by first typing a backslash. Notice that
lower-case alphabetic hextets (a-f) are accepted as being equivalent to the
corresponding upper-case alphabetic hextets (A-F), so users don't need to
worry about pressing or not pressing the shift key when talking to MIUDBUG.

MUDBUG always remembers the values of the START, STOP, KEY, and MASK
Parameters from one command to the next, s¢ a user can conveniently specify
the previously-existing value of a parameter by typing omly a hard
termination character (in this case, a comma, period, asterisk, or <CR>)
for that parameter. For example, if the last value that was used for the
START parameter was $8GAB, then simply typing "C." is equivalent to typing
"C 89AB."™ This feature reduces the number of characters that the user must
type, so it helps prevent mistakes that are caused by simple typing errors.
Additionally, it alleviates frustration because the user doesa't need to
retype the same input number over and over.

Recall that a wuser can specify default values for the remaining
parameter(s) on a command line by typing a carriage retwrn to terminate the
command. For example, a user might want to type new values for the first
two parameters and then use a carriage return to specify the default values
for the command's remaining parameters.

MUDBUG maintains a complete set of pseudo-register values, and the
user can easily inspect and/or change these pseudo~register values via the
MJDBOG register-change commands, which are explained in detail later. The
user can also inspect and/or change individual memory locations, and one
can initialize memory in blocks, 1load object modules into memory,. compare . _
object modules to memory, write object modules- -from-memory-to:a-tape;-dump.---—- -
memory to the terminal in a readable format, search -memory to: find any .
‘Specifled values, and/or execute any program. nUDBUG“gggggnient;g"pegfgrm§..1_
self-relative addressing calculations for the-user,-and MUDBUG.also. does

10

hexadecimal addition and subtraction for the wuser. Interactive debugging
1s quick and easy because the user can tell MUDBUG to trap control at any
specified point in his or her program. Finally, if the hardware of the
user's system supports step-mode operations, the user can tell MUDBUG to
execute a single instruction or a specified number of instructions.

The table on the following page, which is intended to be used as a
bandy reference sheet, briefly summarizes all of the MIUDBUG commands, and
the pages that follow the command-summary table describe the individual
MUDBUG commands in sufficient detail to serve as a programmer's manual.
The table provides a brief functional description of each command, and the
table alsoc includes a number with each command to tell bhow many parameters
the command requires.

Upper-case command mnemonics (e.g., 4, B, and C) are used throughout
this document in all descriptions and examples, but MUDBUG also accepts
lower-case command mnemonics (e.g., a, b, or c¢) as being equivalent to the
corresponding upper-case command mnemonics. Therefore, users can always
type MUDBUG commands with either upper-case or lower-case alphabetic
characters, whichever happens to be more convenient.

11
3.1. MODBUG Command Summary.

Parameters: START, STOP, KEY, and MASK.

Pseudo Registers: AR, BR, IR, PR, SP, and CC (E I N Z V C).

Command Mnemonic

Number of Parameters

| -

Description of Command's Function

An asterisk introduces a comment line.
Print the AR value in hex, and accept a new hex AR value.
Print the BR value in hex, and accept a new hex BR value.
Change (after printing) the contents of memory location START.
Establish a new CC value after printing the existing CC value.
Find KEY under the bits of MASK in locations START through STOP.
Go to location START to execute the user's progranm.
Halt return. Go to the location that is addressed by the PR.
Initialize locations START through STOP to the value KEY.
Kalculator. 3Set START <{-- START + STOP, and print START.
Load (.) or compare (,) an object module to memory; Disp = START.
Memory dump of locations START through STOP to the terminal.
& N step. Execute START instructions beginning at location PR.
& One step. Execute one instruction at START. Default START = PR.
Peek at memory. Like C except that it never writes to memory.
Poke into memory. Like C except that it never reads from memory.
Print the PR value in hex, and accept a new hex PR value.
Query the registers. Print AR, BR, XR, PR, SP, HINZVC.
Relative address: Print and/or set the destination of a branch.
Print the SP value in hex, and accept a new hex SP value.
Trap. Go to START; trap control when it reaches STOP KEY times.
& Verify ROM Program. Like "T" except that. it can be used in ROM.
Write locations START through STOP to tape in object format.
Print the XR value in hex, and accept a new hex IR value.
Zero the AR, BR, IR, PR, and CC, and initialize the SP.

NME<HU)ND§8§OZZI"NHWQ"JWOWP L
CONEFOAO0O0 a4 aWANWOsFO2000 <-——i
|

& Commands that are marked with an ™&" are available only if the system on

which MUDBUG is running has the necessary hardware to support step-mode
operations.

Only the first two parameters of the "T? command are available if the

system on which MUDBUG is running doesn't have the necessary hardware to
"support: step-mode operations. - L EERTRULLLDCED- DT I DITTET

12
3.2. MUDBUG Command Descriptions.

This section contains user-oriented descriptions of all of the MUDBUG

commands. The descriptions are alphabetized by the command mnemonics for
the convenience of the reader.

n"#n Command; No Parameters; Comment.

The "#Y command, which has no parameters, 1s used to introduce a
comment line into the transcript of the user's session at the terminal. If
the user inputs an asterisk in response to the prompt (®*>7 or f?") for a
MGDBUG command mnemonic, MUDBUG reads and echoes (but otherwise ignores)
all subsequent input characters (including solidus characters) until a
carriage return is input. Users can therefore annotate and document the
listings of their MUDBUG transactions by typing any desired comments on
lines that begin with asterisks. Alsoc, the comment <faclility effectively
turns the wuser's MUDBUG transcript into a handy scratchpad for recording
ideas and problems as they occur (before they are forgotten).

The use of an asterisk to introduce a comment line in MUDBUG is
compatible with the definition of a comment line in the M6800 assembly
language, so MUDBUG comment lines should seem quite natural to most users.

"A" Command; No Parameters; Change AR.

The "A"™ command, which has no parameters, displays the current hex
value of the pseudo AR, and then it accepts a new hex value for the AR. If
a user types a hard termination character (/ # , . or <CR>) alone without a
number for a new AR value, the pseudo AR retains its present value.

"B® Command; No Parameters; Change BR.

The "B" command, which has no parameters, displays the current hex
value of the pseudo BR, and then it accepts a new hex value for the BR. If
a user types a hard termination character (/ ® , . or <CR>) alone without a
number for a new BR value, the pseudo BR retains its present value.

n"C" Command; 1 Parameter; Change Memory.

- = --The:-"C"._command, which has one_parameter, displays the.:-address-and—-the- -
- -current hex value of the contents of memory ‘location START, and then it

accepts a- new hex-value to be put-into that loeation. ——--———

13

If the new hexadecimal value for location START 4is terminated by a
carriage return, MUDBUG autamatically coatinues the "C" command by setting
START <~— START + 1 and performing the "C" command's function for the next
location in memory. If an asterisk, blank, or tab termination character is
used to terminate the new hexadecimal value for location START, MUDBUG sets
START <~-- START - 1 and automatically performs the "C® command with the
preceding memory location. If a comma terminator is used to terminate the
new hex value for location START, MUDBUG performs the "C"™ command's
function again with the same location. If the new hex value is terminated
by a period, the "C" command returns control to the top of MUDBUG after it
installs the new value into memory. Finally, if a solidus ("/") terminator
is used, the "C" command is aborted and control returns at once to the top
of MUDBUG with no change to the contents of location START.

If a user types a hard termination character (/ # , ., or <CR>) alone
without a number for a new memory value, the contents of the memory
location remain unchanged, but the function of the termination character
regarding the continuation or termination of the "C" command is still
ef fective. Users can therefore examine several consecutive memory
locations rather conveniently by using -carriage-return or asterisk

terminators, and they need to type new values only when new values are
actually desired.

The "C" command reads back and verfies the value that it stores into
memory, So any attempt to use the "C" command to alter a value in ROM or in
nonexistent memory is automatically aborted with a backslash and a bell.
This feature is included so the user won't think a value is changed when it
is, in fact, not changed.

The "C"™ command 1S not intended for use with read-only or write-only
registers such as the status and control registers of an ACIA. A user who
wishes to examine a read-only register should use the "PE" (peek) command,
and a user who wishes to put a value into a write-only register should use
the "PO" (poke) command.

"E" Command; No Parameters; Establish a CC Value.

The "E"™ command, which has no parameters, is used to establish a value
for the pseudo CC (condition-code) register. The "E" command displays the
current eight-bit hexadecimal value of the conditiom-code register, and
then it accepts a new hexadecimal value for the pseudo CC register.

Notice carefully that the pseudo CC register contains eight bits. The
top (i.e., leftmost) two bits are essentially meaningless and will always
be set following the execution of any portion of any user's program because

--~thefM6800 -hardware always. sets —these-two condition-code_bits.. We refer | to ...
" the -other- six- condition-code~ bits“_(f?om ‘left - to rtght)ras H, ,~N,-Z,~Ir—-

~—pnograms._ The condition codes are 1nterpreted as_follcws*-” e e e ——m e S T

14

half carry I
zero v

interrupt mask N
overflow c

negative
carry/borrow

o]
" on

If 'a user types a hard termination character (/ ® , . or <CR>) alone

without a pew value for the CC register, the pseudo CC register retains its
present value.

"F® Command; 4 Parameters; Find Memory Values.

The "F" command requires all fowr parameters, and it is used for
finding specified kinds of values in a specified area of memory.

If the MASK parameter is nonzero, the "F" command searches memory
locations START through STOP to find any words that contain the value KEY
when considering only the bit(s) that are set in MASK. MUDBUG displays
both the memory address and the contents of each word that 1is a match.
When the MASK parameter is nonzero, therefore, the MUDBUG "F" command finds
and 1lists all words from location START through location STOP such that
[(WORD) .and. MASK] = [KEY .and. MASK]. To find words that exactly equal
KEY, of course, a user should specify a MASK value of $FF (i.e., -1).

If the MASK parameter is zero, the "F" command searches memory
locations START through STOP for any words that do not contain exactly the
value KEY. MIDBUG displays both the memory address and the contents of
each such word that is found.

"G" Command; 1 Parameter; Go to START.

The "G" command, which has one parameter, is used to transfer control
to the user's program. The "G" command sets the pseudo PR equal to START.
Then it loads the M6800 hardware registers from the software-defined pseudo

registers and transfers control to location START to execute the user's
program.

MODBUG temporarily treats the "G" command as an illegal command when
the pseudo stack pointer has been set to address ROM or nonexistent memory.
This feature protects the user from inadvertently transferring control to
his or her program with an invalid value in the stack pointer. Please
refer to the discussion of the "S" command for details.

"H? Command; No Parameters; Halt Return.
- The- "H" command;> which- fs— known as the halt-returfi-command;—-has-po-—-- -——-
parameters. It loads the M6800 hardware---registers—from..-the -pseudo - - -

registers, and then it transfers control to the locatiog_thatﬁishdesignated—”~~——7;~
- by the pseudo PR. T T T] e

15

The pseudo PR normally points to the memory location immediately
following the location from which the last halt (i.e., SWI) was executed,
but the user can, of course, change the pseudo PR by using the "PR"
command, which is described elsewhere in this chapter.

The "H" command is convenient for executing a user's program in
segments where the end of each segment is marked by the occurrence of an
SWI instruction. The "H" command is alsc useful for returning control to a

program that has been interrupted by a nommaskable interrupt (NMI). A user
who suspects that his or her program is lost in an infinite 1loop can
generate a nommaskable interrupt (usually by pressing a button marked NMI),
and this action normally halts the program and dumps the registers to the
terminal just as if an SWI instruction had been executed. If the user then
decides to continue the execution of his or her program, an "H" command
conveniently and automatically returns control to the precise point of the
interruption just as if no interruption had occurred.

The NMI interrupt and MUDBUG's "H"™ command can be used together as

described above to monitor the progress of a program that has a very long
execution time.

MUDBUG temporarily treats the "H" command as an illegal command when
the pseudo stack pointer has been set to address ROM or nonexistent memory.
This feature protects the user from ipnadvertently transferring control to
his or her program with an invalid value in the stack pointer. Please
refer to the discussion of the "S" command for details.

nT" Command; 3 Parameters; Initialize Memory.

The "I" command requires three parameters, and it initializes memory
locations START through STOP (inclusive) to contain the value KEY. MUDBUG
automatically aborts any attempt to use the "I" command to alter any RCM or
nonexistent memory locations, and the system notifies the user of the error
by outputting a backslash and a bell to the terminal. All RAM locations
that were initialized before the ROM or nonexistent memory location was
encountered remain ipitialized just as requested, so part of the command's
function may be performed successfully even in the event of an error.

The "I" command is useful for backgrounding memory areas with desired
values, and it can also be used to initialize tables and data areas.

.

= ——"f—:-~——$3ooo.;~—51m11ar1y, if7a user sSpecifies START = +$2000; - -an-object module "
_with an origin of $5000 would be loaded into - (or—compared: to)-—memory —
_ starting at location $7000.. For normal.lab~work;;mdsﬁtu§§t§“emplby;thef!klszsxrf:r
" command- with. START =-0 to load-or: compare programs:-with'no displacement, . .-

16
"K" Command; 2 Parameters; "Kalculator® Utility.

The "K" command, which requires two parameters, 1s conovenient for
performing 16-bit two!s-complement hexadecimal additioms and subtractions.
The "™K" command sets START <-— START + STOP, and then it prints the-
updated 16-bit value of START in hexadecimal. Notice that MIDBUG puts the
sum into the START parameter to facilitate subtotaling operations via
several consecutive executions of the "K" command. For example, the
following "K" commands could be used to compute the sum of $2412, 321,
-$B4C, $5914, and -$1F2E:

K 2A12, 21.
K r -BaC.
K, 591A.
K, -1F2E.

The "K" command is also useful for finding the 16-bit two's complement
of a hexadecimal onumber. To find the two's complement of a value, one can
simply use the "K" command to subtract the value from zero. For example,
to find the two's complement of $BTC, a user could type either "K 0, ~B7C"
or "k -B7C, 0." Similarly, to find the two's-complement representation of
~$14A8, one could type "K -1A8, 0" or "K 0, -148."

In another application, the "K" command can be used to find the 16-bit
one's complement of a hexadecimal number. The one!'s complement of a number
is Jjust its two's complement minus one, so subtracting a number from minus
one yields the one!'s complement of the number. For example, a user could
find the one's complement of $DA9 by typing "K -1, -DA9"™ or "K -DAY9, -1.7
Similarly, one could type ™K -1, -BSC" or K -BSC, -1" to find the one's-
complement representation of -$BS5C.

"L" Command; 1 Parameter; Load/Compare.

The "L" command, which requires one parameter, loads or compares an
M6800 object tape to memory. MUDBUG takes the value of the START parameter
a3 a 16-bit positive or negative signed relocation displacement, and the
parameter!s termination character specifies the function that is to be
performed. A carriage return or a period termination character tells
MODBUG to load the values from the object tape intoc memory, and a comma,
space, tab, or asterisk termination character tells MIDBUG to compare the
object tape to memory.

The object tape that is loaded or compared to memory is offset from
its normal memory locations by a displacement that is equal to the START
parameter. For example, if START = -$1000, an object module with an origin
.of _$4000 would -be- loaded into (or—compared to) memory starting-at locatiom: .——<-

17

but nonzero displacement values are frequently necessary when MUDBUG is
used in special applications such as M6800-based PROM programmers.

Wher MUDBUG performs a compare function, the MIDBUG Load/Compare
routine prints three hex values for each object-tape word that fails to

match the corresponding word in memory. The three values that are printed
are as follows:

Memory Address Memory Value Tape Value

¥hen MUDBUG performs a locad function, the loader generates a compare
printout as above for any word that can't be loaded, sc¢ attempts to load
into ROM or nonexistent memory are flagged for the user.

If an invalid object tape is 1input to the loader or if a bad read
occurs or if a checksum error is detected, the Load/Compare routine aborts
execution with a backslash and a bell.

™" Command; 3 Parameters; Memory Dump.

The "™" command requires three parameters known as. START, MSTOP, and
SCREEN. If MSTOP >= START and MSTOP is not typed with a leading plus sign,
the ™" command ncminally dumps locations START through MSTOP in both
hexadecimal and ASCII format to the user's terminal. If MSTOP < START on
the other hand, (or if MSTOP is typed with a leading plus sign), the ™M"
command uses MSTOP as a count and nominally dumps MSTOP locations beginning
with location START. The third parameter for the ™" command, which is
known as the SCREEN parameter, specifies the maximum number of lines that
MUDBUG will dump before pausing. The SCREEN parameter allows the user to
control the dump interactively, so the user can prevent information from
scrolling off the top of a CRT screen too quickly.

MUDBUG prints the memory dump with 16 values per line, and the dump is
formatted for ease of readability. Each line of the dump begins with the
hexadecimal memory address of the first value on the line. Then the line
contains 16 hexadecimal values corresponding to the values of the 16 memory
locations that are being dumped. At the end of each line MIDBUG prints 16
ASCII characters corresponding to the ASCII character codes (if any) that
reside in the 16 memory locations that are being dumped. If a location

doesn't contain a printable ASCII character, MIDBUG prints an underscore
for that location.

The memory dump actually starts with the location whose address is
FLOOR[START/16]1%16, so the hexadecimal memory address of the first word of

the dump always ends with zero. The default value for START is the current -
=TS --value of: the MUDBUG: START: parameter. - A e e I ST T N

The "M" command uses 1its own private MSTOP parameter Instead of using
. MUDBUG's global STOP parameter, - and the MSTOP parameter- tells.MUDBUG:- where—=====":
to stop dumping. If MSTOP >= START and the MSTOP parameter- is not typed

18

with a leading plus sign, the memory dump ends with the location whose
.address 1is FLOOR[(STOP/16]%*16 + 15. Notice that the memory dump always
starts with the line that contains locationm START, and the memory dump ends
with the line that contains location MSTOP.

If MSTOP < START, MUDBUG conveniently interprets the MSTOP value as a
count of the number of locations to dump. For example, if START = $2000
and MSTOP = $100, MODBUG °‘dumps $100 locations starting at location $2000.
Since MUDBUG always prints values for 16 memory locations on each line of
the dump, MIDBUG scmetimes dumps a few more locations than the actual
number that were specified by the MSTOP parameter. For example, if

START = $2005 and MSTOP = $3, MUDBUG actually dumps locations $2000 through
$200F.

If the user types a plus sign as a leading sign character with the
MSTOP parameter, MUDBUG interprets the MSTOP value as a count of the number
of locations to dump even if MSTOP >= START. This feature allows a user to
use the count option even when the starting address for the memory dump is
a small ngumber. For example, a user could type ™™ 10, +20" to dump $20
locations beginning at locatiom $0010.

The MSTOP parameter doesn't have a default value. If the user omits
the MSTOP parameter, MUDBUG potentially dumps forever and never stops the
dump at any particular address. Instead, MUDBUG stops the dump only when
the user interactively chooses to stop it. The user can interactively tell
MUDBUG to stop the dump by typing a termination character during the pause
at the end of a screen. This feature is extremely convenient because it

allows the user to dump interactively and to terminate the dump only when
desired.

The SCREEN parameter tells MUDBUG how many lines it should dump to. the
terminal before pausing to let the user control the dump interactively. The
default. value for the SCREEN parameter is $10 = 16, so MIDBUG normally
dumps 16 lines containing 3100 locations per screen. MIDBUG accepts SCREEN
parameters in the range from $00 through 3$FF (255), and MUDBUG interprets
any value larger than $FF by taking its value modulo 256. Notice that the
SCREEN parameter, like all MUDBUG parameters, is typed as a hexadecimal
number, not as a decimal number.

Zero is a special value for- the SCREEN parameter, and it means that
MIDBUG should never pause. Zero is therefore equivalent to an infinite
value for the SCREEN parameter, and a zero SCREEN parameter is useful for a
person who is using a hardcopy terminal. Notice that a wser can put MUDBUG
into an infinite dump by specifying zero for a SCREEN parameter and also
omitting the MSTOP parameter. This scmewhat dubious feature allows a user
to make MUDBUG run continuously over a weekend to verify that a particular
microcomputer can run.that long without.any glitches-

: When.MUDBUG reaches.the-end of—a screen of‘the memory dump, the systenmﬂ—*tm:;
pauses with the cursor at the beginning of-the-pext lime on —the -terminal.— —-——-
-MODBUG waits at this-paint. (forever—ir necessary)*untﬁLgthe;use:rt;vea_;an__ s -
input. character to tell MUDBUG. what to do next, so the:user-can.control the == -

1

/ 19

dump interactively. The choices are similar to the choices that a user has
with the memory-change command.

If the user types a carriage return (<CR>), MIDBUG displays the next
Screen of data. The <CR> therefore allows a user to scroll through memory
until all relevant values have been displayed. MIDBUG considers memory to
be. circular, so location $0000 logically follows location $FFFF in memory.

If the user types a comma, MIDBUG re-displays the current screen of
data. A comma therefore allows a user to re-examine a particular area of
memory as often as desired. A user might want to use commas to keep
ezamining some locations that correspond to the registers of an input
device that is receiving inputs from an external source.

If the user types an asterisk, a blank space, or a tab, MJDBUG
displays the previous screen of data. The previous screen of data is the
Screen of data that corresponds to the memory locations that immediately
precede the locations of the current screen in memory. The asterisk,
blank, and tab allow a user to scroll back through memory until all
relevant values have been displayed. A user can use a <CR> after one
Screen and an asterisk after the next screen to bounce back ard forth
between two screens of data.

If the user types a period, a solidus, or any Jdther character that
hasn't been mentioned above, MIDBUG terminates the dump and returns control
to the top of MUDBUG to wait for the next command.

The interactive dumping Cfeature is much 1like the memory~change
command, and it is extremely convenient to use. For- example, a user can
interactively dump memory starting at location $2000 by simply typing
"M 2000<CR>" to tell MUDBUG to start the dump in the interactive mode. On
the other hand, a user who wants to dump $80 locations beginning at
location $2000 can perform the dump non-interactively by typing either
™ 2000, 207TF<CR>" or "™ 2000, 80<CR>" to tell MUDBUG to dump the desired.
area of memory.

"N® Command; 1 Parameter; N-Step Command.

The "N" command, which requires one parameter, is useful for debugging
an otherwise intractable section of a program. The "N" command is lmown as
the N-step command, and it tells MUDBUG to execute the next N instructions
of the user's program where the value of N is defined by the "N" command's
Parameter. For example, a user could type ™M 57 to tell MUDBUG to execute
the next five instructions of his or her program. MIDBUG provides a
register dump after executing the next N instructions of the user's
Program, and.then.control goes back toc the top of MIDBUG tao_ wa:u: for
‘another MODBUG: command from-the user. - - h e o ST e

Suppose that a user types "N 5" as suggested above td execute the next - — - T
" five instructions of his or her program. Suppose-further .- that - the.user st -

20

then wants to execute five more instructions. In this case, the user could
simply type "N<CR>" because MIDBUG remembers that the previously-specified.
parameter value was five. The default value for the *N7 command's
parameter 1s always taken from the previously-defined START parameter.

The N-step command tells MODBUG to execute the next N instruetions of
the user's program, and the next instruction to be executed in a program is.
always indicated by the PR: An N-step command therefore causes MUDBUG to
execute the next N instructions starting at the location that is indicated
by the pseudo PR. Clearly, the pseudo PR must point to the desired program
segment before the N-step command can be used. Therefore, the N-step
command should normally be used after the user has executed part of a
program and has trapped control at same point of interest in the program.
Control can be trapped at some desired point in the user's program by
including a software-interrupt instruction (SWI) at that point or by using -
MODBUG's "T" command. There are other ways to trap control at some
specified point, but MUDBUG's "T"™ command, which is explained elsewhere in
this chapter, provides the most convenient method.

A user can also use the "PR"™ command, which is explained elsewhere in
this chapter, to set the pseudo PR to a desired location before using the
"N® command. However, this approach is error prone because it allows the
user to start scmewhere in the middle of a program without executing the
first part of the program. The first part of the program may be necessary
to set up the conditions that allow the next part of the program to execute
properly. X

Most users employ the "N" command as follows. First they use the "I™
command to trap control at the beginning of a suspected problem area, and
then they use the "N" command to execute a few instructions at a time in
the problem area to. examine the problem in detail.

The user should always remember that the "™¥ command's parameter, like
all of MUDBUG's parameters, is interpreted as a hexadecimal number. TIyping
"y 10," therefore, tells MIDBUG to execute the next $10 (i.e., 16)
instructions of the“user's program. For purposes of debugging, most users
tend to execute only two to 3six instructions with each use of the "N"
command, and there is no difference between hex and decimal numbers in this
range of values.

Although most people use the "N" command with small parameter values,
the "N" command accepts any 16-bit unsigned number for its parameter. A
parameter value of zero is interpreted to mean 65,536, so a user can

execute a maximum of 65,536 instructions with a single use of the "N"
command.

Some users employ the "N" command with large parameter values to)
. .. determine--how: many: instructions are--executed.- im_ afparﬁ.cdwpmf—ii;ff{’
N subroutine. In-this application the "™§" command is useful " as “am ~atd for

- making timing measurements. (in terns - of‘"“thrmmber- -of-—instructions— T T
'executed)- - i} . . e e L

21

Using the "N" command puts MUDBUG into step mode. When MIDBUG is in
step mode, the system changes its prompt from the normal *>® to a ®?7T tg
let the user know that MIDBUG is in step mode. Step mode is just like
normal. mode with one important exception. When MUDBUG is in step mode, the
user- can simply type a carriage return as a MUDBUG command to tell MIDBUG
to execute the next instruction of the user’s program. Thus a user can
conveniently step through a program one instruction at a time by simply
typing a carriage return at each step. In this case MIDBUG provides a
register dump after each instruction 1s executed.

When MUDBUG is not in step mode, a carriage return alone is treated as
a do-nothing command. A user can therefore type a carriage return as a
MUDBUG command in normal mode to advance the cursor to a new line.

MUDBUOG autcmatically returns from step mode to normal mode whenever
the user types any non-debugging command (except a comment command) or when
the user types an invalid command. The debugging commands are the MN©"
command, the "OT command, the "T"™ command, and the "V" command. In other
words, any command that tells MODBUG to execute a portion (but not all) of
the user's program is a debugging command. Debugging commands normally put
MUDBUG into step mode, and other commands (except the comment command) take
MUDBUG out of step mode. Step mode 1is designed to provide a convenient
Single-step mechanism for the user who is debugging a program.

MIDBUG temporarily treats the "N command as an illegal command when:
the pseudo stack pointer has been set to address ROM or nonexistent memory.
This feature protects the user from inadvertently transferring control to
his or her program with an invalid value in the stack pointer. Please
refer to the discussion of the "ST command for details.

The "N" command is available only on systems that have the necessary
bhardware to support step-mode operations. If the system on which MUDBUG is
running doesn't have the necessary hardware to support step-mode
operations, MIDBUG treats the "™N' command as an invalid command.

-~

"Q" Command; 1 Parameter; One-Step Command.

The "Q" command, which requires one parameter, tells MODBUG to execute
One instruction in the user's program. The "0T command's parameter tells
MIDBUG the address of the instruction that is tao be executed. MIDBUG
executes the specified instruction and provides a register dump after the
instruction has been executed. Then MUDBUG autamatically goes into step

mode, and control returns to the top of MUDBUG to wait for the user's next
command.

I T - The...default . value for the: One-step. command's parameter.is not taken

- fran ‘the -previously-specified- START parameter. ~Instead; the- ‘default-value =~ -
R for the One~step command's parameter is taken from the pseudo PR, .and the —

START. parameter is neither used nor affected. .. by an "0 command.. -- By using - -

the. pseudo PR as a default value for the "Q¥ commandts paraneter*. - MODBUG---_- - —

22

conveniently allows the user to execute the next instruction of his or her
program by simply typing "O<CR>" with no parameter value.

The One-step command is a powerful debugging aid. If all else fails,
a desperate programmer can always use the "0® command to single step

through a small program segment that is causing problems that temporarily
ssem to be insoluble.

Most users employ the "O" command as follows. First they use the "T"
command to trap control at the beginning of an intractable problem area,
and then they use the "0" command with its default parameter value to
execute one Iinstruction at a time in the problem area until they've
discovered the exact cause of the problem.

A successful use of the "0" command always puts MUDBUG into step mode.
MUDBUG changes its prompt from the normal ">7 to a ™" to let the user know
that the system is in step mode, and a carriage return as a response to a
m?® prompt tells MUDBUG to execute the next instruction in the user's
program. Thus a user doesn't even need to type an "Q" to request another
0" command; a carriage return alone is sufficient when the system is in
step mode. MUDBUG provides a register dump after executing an instruction
in step mode, and the user can conveniently step through a program one
instruction at a2 time by simply typing a carriage return at each step.

When MUDBUG is not in step mode, a carriage return alone is treated as
a do-nothing command. A user can therefore type a. carriage return as a
MUDBUG command in normal mode to advance: the cursor to a new line.

MUDBUG automatically returns from step mode. to normal mode whenever

~ the user types any non-debugging command (except a comment command) or when
the user types an invalid command. The debugging commands are the ™"

command, the "0 command, the "TT command, and the "V" command, so any

command that tells MODBUG to execute a portion (but not all) of the user's

program is a debugging command. Any debugging command that is executed
successfully puts MIDBUG into step mode, and other commands (except the

comment command) take MUDBUG out of step mode. Step mode is designed to

provide a convenient single-step mechanism for the user who is debugging a
program.

MUDBUG temporarily treats the "O" command as an illegal command when
the pseudo stack pointer has been set to. address ROM or nonexistent memory.
This feature protects the user from inadvertently transferring control to
his or her program with an invalid value in the stack pointer. Please

refer to the discussion of the "S" command for details.

The "0" command is available only on systems that have the necessary

bardware to support step-mode operations. If the system on which MIDBUG is
___—;;_—__runnimdoesn't* have - the necessary hardware- to:ro mxppont:::_:step—mde e e
T Operat:ions, MUDBUG treats the "OT command as-an invalid command. —~ — ~ — 7 TEEETT

23

"PE" Command; 1 Parameter; Peek at Memory.

The "PE"™ command allows a user to peek at a memory location with the
assurance that MUDBUG will not write anything to the memory location. The
"PE" command, which has one parameter, displays the address and the
contents of memory location START, and then it waits for the user to type a
termination character. Actually, the "PE®™ command waits after displaying
the address and value of: location START for the user to type a hex input
number, but the command ignores the value of the input gumber and uses only
the number's termipnation character.

The termination character allows a user to continue the "PE™ command
the same way a user can continue the "C" command, and the termination
characters that are used with the "PE? command have the same meanings that
they have with the "C" command. The "PE" command is therefore exactly like
the "C" command except that MUDBUG never writes anything to the specified
memory location when the user uses the "PE™ command.

The "PE" command is extremely useful when a user wants to examine a
read-only register such as the status register of an ACIA. If a user tried
to use the "C" command to examine the status register of an ACIA, MIDBUG
might try to vwrite a new value back into the location of the status
register, but the write operation would fail because the status register of
an ACIA is a read-only register. Furthermore, the write operation in this
case would have bad side effects because the read-only status register of
an ACIA shares its memory address with the ACIA's write-only control
register, and the status register's value would actually be written into
the ACIA's write-only control register.

The "PE" command is generally intended for users who are dealing with
special hardware devices that have read-only registers, but other users can
also use the "PE" command to examine ordinary memory locations.

"PO" Command; 1 Parameter; Poke a Value into Memory.

The "PO" command allows a user to poke a value into a memory location
with the assurance that MIDBUG will not try to read from the specified
location. The "PO" command, which has one parameter, displays the address
(but not the contents) of memory location START, and then it waits for the
user to type a value that is to be put into location START.

The termination character of the new value allaws a user to continue
the "PO" command the same way a user can continue the "C"™ command, and the
termination characters that are used with the "PO"™ command have the same
meanings that they have with the "C" command. The "PQ"™ command is

~therefore- exactly:like- the- "C™ -command.except. that MIDBUG never-. x:eada fncuwm e
“the specified memory location when-the user uses the-" "PO™_command . — <. it

If a user types a hard termination character (/ %, . or—<CR>) "alone -
without a. number- for an input value, MIDBUG doesn't poke- anything into- the

24

specified location. The function of the termination character regarding
the continuation or termination of the ¥PO"™ command 1s still effective,

though, sSo a user can conveniently skip over a location with the Twpgn®
command. °

The "PO" command is extremely useful. when a user wants to put a value
into a write-only register such as the output data register of an ACIA. If
a.user tried to use the 7"C"™ command to put a value into the cutput data
register of an ACIA, MUDBUG would try to read back the value to verify that
it was stored correctly. The verification would fail, though, because the
output data register of an ACIA is a write-only register. Furthermore, the
attempted verification would bave bad side effects in this case because the
write-only output data register of an ACIA shares its memory address with
the ACIA's read-only input data register. The attempted verification would
cause MUDBUG to read from the ACIA's read-only input data register, and a
read operation that accesses an ACIA's input data register causes the ACIA
to change scme of its internmal status flags.

The "PO" command is generally intended for users who are dealing with
special hardware devices that have write-only registers or registers that
are sensitive to read accesses, but other users can also use the "PO"
command to poke values into ordinary memory locations.

"PR"™ Command; No Parameters; Change PR.

The "PR"™ command, which doesn't require any parameters, displays the
current hexadecimal value of the pseudo PR, and then it accepts a. new hex
value for the PR. If a user types a hard termination character (/ ¥ , . or
<CR>) alone without a number for a new PR value, the pseudo PR retains its
present value. The "PR" command really isn't necessary for ordinary
operations, but some users like to use it to comtrol the value of the FR.

"Q" Command; No Parameters; Query Registers.

The "Q" command doesn't require any parameters, and it prints the
values of the pseudo registers just. as the execution of a software—
interrupt instruction (SWI) normally does in the following format:

AR BR IR PR SP BINZVC
aa bb xxxx pPpPpPpP sSsss ceccecee

A1l values are printed in hexadecimal with the exception of the condition—
code values, which are printed in binary for ease of interpretationm. Since

immm o . there are only six actual bits in the: condition-code register, only six

— T Tpits-are printed. ~The-condition-code bits are interpreted:as=fol: T I T
H = half carry I = interrupt mask .~ __-—— - -N =-negative - - --
Z = zero \'2 = overflow Y . -Gz carry/borrow

25

The "Q" command provides a disctinctive output, so the "Q" command is
a good command to use if the user wants to see if control is actually in
MODBUG. The "Q™ command is also a good command to use if the user wants to
change MUDBUG from step mode to normal mode with no side effects.

"R® Command; 1 Parameter; Relative Addressing.

The "R" command, which requires one parameter, is used toc determine
and/or to set the destination address of a branch-class instruction. The
second word of a branch-class instruction in the M6800 always contains a
signed, self-relative displacement value, so the destinaticn address of a
branch-class instruction isn't immediately obvious to most people by
inspection. The "R" command, however, allows the user to determine and/or
to set the destination address of a branch-class instruction rather easily.

The START parameter is assumed to be the memory address of the second
word of a branch-class instruction, and the "R"™ command computes and prints
the instruction's destination address based on that assumption.

Then the "RY command waits for the user to type a new value for the
destination address. If the new destination address that is typed is out
of range for the branch-class instruction that is being processed, MUDBUG
outputs a backslash and a bell and aborts the "R" command. Otherwise, the
"RY command computes and prints the new self-relative displacemeant value
that will give the branch-class instruction the desired new destinaticn
address. Additionally, the T™R" command puts the npew self-relative
displacement value into the second word of the branch-class instruction in
memory, so the instruction is automatically changed in memory to address
the desired new destination. If the second word of the branch-class
instruction happens to be in ROM or nonexistent memory, of course, the "R"
command aborts with a backslash and a bell instead of changing the self-
relative displacement value in memory.

The termination character (blank tab / #* , . or <CR>) that is used to
terminate the new destination address iz interpreted Jjust as the
termipation character is interpreted by MUDBUG's 7C™ command: A carriage-
return terminator causes MIDBUG to proceed automatically intoc the T"C"
command after first setting START <= START + 1, so the location
immediately following the branch-class instruction in memory is opened for
changing via the "C" command. An asterisk, blapk, or tab terminmation
character causes MIDBUG to proceed into the "C" command after first setting
START <{-- START - 1, so the first word of the two-word branch-class
instruction i3 opened for changing via the "C" command. A comma terminator
causes MUDBUG to proceed into the "C" command with no change to the START
parameter, so the second word of the two-word branch-class instruction is

oLz -opened- for- changing. via the "C™ command... A periad. terminator returns

control ‘to the top of MUDBUG after’ the "R™ cammand‘haa put‘the~new self_;;;;;?
relative displacement value intc memory, and a solidus termipator aborts‘“"
the "R"™ command at once before 1t can change anything-in.memory;

S R -

26

If a user types a hard termipation character (/ # , . or <CR>) alone
without a number for a new destination address, MIDBUG retains the existing
destinpation address and treats it as the desired destination address. The
function of the termination character regarding the continuation or
termination of processing as discussed above 1is still effective, so the "R"
command is conveniently useful for- checking destination addresses without
necessarily changing them.

The "R"™ command alleviates some of the headaches of self-relative
addressing by allowing a user to follow the logical flow of his or her
program conveniently and easily. In fact, if the second word of a branch-
class instruction has just been examined via the "C"™ command, the user
needs only to type "R." or "R<KCR>® to invoke the "R"™ command since the
START parameter is already set properly from the previous 7C" command.

The "R"™ command is also extremely convenient for users who write amall
programs in machine language, and it is equally useful for making machine-
language patches to larger programs during debugging. When the user
employs the "R" command, MUDBUG takes care of all of the annoying details

of self-relative addressing, sc the user can conveniently think in terms of
direct memory addresses.

"S" Command; No Parameters; Change SP, the Stack Pointer.

The "S" command, which has no parameters, displays the current hex
value of the pseudo stack pointer (SP), and then it accepts a new hex value
for the pseudo stack pointer. If a user types a hard termination character
(/ ® , . or <CR>) alone without a new stack-pointer value, the pseudo stack
pointer retains its present value.

The user should exercise a certain amount of caution and good. judge-
ment when changing the pseudo stack pointer because the stack pointer must
always point into a. RAM area of memory with at least 7 locations of RAM at
and below the stack pointer. In other words, if SP represents the value of
the stack pointer, locations SP, SP-1, SP-2, ..., and SP-6 must all be
locations in a BRAM (read/write) area of memory. At least 7 locations of
RAM must be available for the user's stack at all times because T locations
are required for saving the M6800 registers in the event of an interrupt.
Most users would be wise to provide quite a few more than 7 locations for
the stack because multiple interrupts can always occur. In fact, users
should even be cautious about changing the stack pointer via instructions
in their programs because all M6800 programs should (indeed must) be ready
to accommodate an interrupt at any time.

If the stack pointer 1is ever set in such a way that fewer than 7

—-.:..locations of RAM are: available for the.stack, MIDBUG . .temporarily makes-the-- ._....
’ “"'"”‘“—“"G W wg,m- wy W mQm° angi” "T®- commands illegal, -so” the-errant- user— is - - —

protected from being able to transfer control. intc his or- »hexzmn—prosl’m-—-———-m—_ .
" with- the stack pointer initially point:l.ng into ROM or- nonexistent DEWOrYe -

1
1

27

Most beginning users will never need the "S®™ command, but the command
13 made available as a convenience for the relatively sophisticated users
who will want and need it. The "S" command can be used to reset the pseudo
stack pointer following a program error or a partial execution of a

program, so the user can always keep the pseudo stack pointer pointing into
a desired RAM area.

"T® Command; 4 Parameters; Trap.

The "T" command, which is used to trap control at any desired point in
the user's program, can accept as many as four parameters. Before we
consider the case of a four-parameter ®T®" command, though, let us first
discuss a two-parameter "T" command. If the user types a carriage return
to terminate the "I® command's second parameter, MUDBUG autcmatically
provides innocuous default values to make the remaining two parameters

" transparent to the user.

The first two parameters for the "T" command are known as TSTART and
STOP. The "T" command starts execution of the user's program at location
TSTART, and then it uses a software interrupt to trap control when or if
control reaches location STOP. When (i.e., if) control reaches location
STOP, the trap interrupt returns control to the top of MIDBUG after first
invoking a routine that prints the values of the registers Just as if a ™Q©
command had been input. The userfs instruction at location STOP is not
executed, so following a successful trap operation the pseudo PR points to
location STOP, which contains the first word of the next sequential
instruction to be executed in the user's program. This particular value of
the pseudo PR conveniently allows the user to continue the execution of his
or her program if desired. For example, the user might employ an "H"
command, an "N command, an "0® command, or another "I" command to continue
execution of his or her program.

Notice that the Cfirst parameter for the "T"™ command is called TSTART.
The "T" command uses its own private TSTART parameter instead of using the
system-defined START parameter- that is used by most other MUDBUG commands.
Therefore, the "T" command can have a unique default value for its TSTART
parameter instead of using the standard default value of the general-—
purpose START parameter. The "T" command uses the value of the pseudo PR
as the default value for the TSTART parameter, so the user can conveniently
continue trapping through his or her program from one segment to the next
without typing a new TSTART parameter at each step. For example, typing
T , 2100" continues execution from the present point in the program and
traps control at location $2100. Using the pseudo PR as the default value
for the TSTART parameter is particularly convenient because the pseudo PR
retains its useful significance even if several operations (e.g., memory

- dumps, "C"™ commands;: etc:) are performed between. successive "I commandS.-=:

) HUDéUG'S "TT command is probably the single _most powerful debugging.-.
tool that is available to the system's users.. By using :the "T" command,.a..

w3 wmamy

user- can execute any selected portion of a program, sSo’'a programmer canm .-

28

interactively trace the flow of a program at execution time and easily
isolate an error to a small routine or even to a single instruction. Users
who quickly master the efficient use of the *T* command inevitably find
that debugging their programs becomes an almost trivial task.

As with other commands that request execution of the user's program,
MUDBUG temporarily treats the "T"™ command as an illegal command when the
Pseudo stack pointer has' been set to address ROM or nonexistent memory.
This feature protects the user from inadvertently transferring control to
his or her program with an invalid value in the stack pointer. Please
refer to the discussion of the "S®" command for details.

The "T" command is also illegal if location STOP happens to be in ROM
or nonexistent memory. This restriction 1s necessary because the routine
that implements the "I" command’s function must temporarily store a
software-interrupt instruction (SWI) into location STOP. If the user tries
to specify a STOP address in ROM or nonexistent memory, MIDBUG aborts the
"T® command with a backslash and a bell.

The "T" command traps control at location STOP via a software
interrupt, so users who employ the "T" command should carefully insure that
their programs always keep the stack pointer pointing into enough RAM to
support an interrupt. If the user's program fails to maintain the stack
pointer in such a way that the stack can support an interrupt properly at
the trap point (i.e., when control reaches location STOP), the "I command
still traps control successfully at location STOP, but the invalid stack-
pointer value generally causes some or all of the software-defined pseudo
registers (other than the pseudo stack pointer) to be set erroneously
following the trap at location STOP.

Notice carefully that the trap point (i.e., STOP) must be the first
word of an instruction. Control cannot be trapped in the middle of an.
instruction, and any users who try to trap control in the middle of an
instruction will experience erroneous results.

A successful use of the "I" command autcmatically puts MUDBUG into
step mode if the hardware of the system supports step-mode operations. The
"T" command 1is considered to be successful if control is successfully
trapped at the specified STOP location. If control stops scmewhere else,
of course, the "T" command is not considered to be successful.

When MUDBUG is in step mode, the MIJDBUG prompt i3 changed from the
normal ">"™ to a "?" to let the user kxnow that the system is in step mode.
The user can simply type a carriage return as a response to a "?" prompt to
tell MUDBUG to execute the next instruction of the user's program. Thus a
user who has Jjust trapped control with the "T"™ command can conveniently
step through the next section of his or her program one instruction at a
2r.n, T o time by -simply. typing a carriage return at each step.- MIDBUG. provides a _ .

" - 7 " register dump-after-each- step when instructions. are-—executed -one-at” aTtime. . .- -
in step. mode. . -

29

When MUDBUG is not in step mode, a carriage return alone is treated as
a do-nothing command. A user can therefore type a carriage return as a
MUDBUG command in normal mode to advance the cursor to a new line.

MUDBUG automatically returns from step mode to normal mode whenever
the user types any non-debugging command (except a comment command) or when
the user types an invalid command. The debugging commands are the ™N©
command, the %07 command; the "I™ command, and the "V" command. In other
words, any command that tells MUDBOG to execute a portion (but not all) of
the user's program is a debugging command. Debugging commands that are
executed successfully put MUDBUG into step mode, and other commands (except
the comment command) take MUDBUG out of step mode. Step mode is designed
to provide a convenient single-step mechanism for the user who is debugging
a program.

Now let us consider the "T™ command's third and fourth parameters.
The "T" command's third and fourth parameters are available only if the
system on which MUDBUG is running has the necessary hardware to support
step-mode operations. If the system's hardware doesn’t support step-mode

operations, MUDBUG allows only the first two parameters for the "T"
command.

The "T" command's third parameter is generally known as the stop-count
parameter. The stop-count parameter, which is useful for debugging loops,
can be used when the user wants control to go through a loop some specified
number of times before control is trapped at a specified instruction in the
loop. If the value of the stop-count parameter is nine, for example,
MUDBUG traps control the ninth time that control reaches location STOP (if,
in fact, control reaches location STOP nine times). The instruction at
location STOP is executed normally the first eight times it is encountered,
but control is trapped and the instruction is not executed the ninth time.

Following a successful trap operation the pseudo PR points to location
STOP, which contains the first word of the next sequential instruction to
be executed in the user's program. The PR is therefore set properly to
allow the user to continue the execution of his or her program via any of
Several MUDBUG commands. For example, the user might want to use MUDBUG's
step-mode feature to execute the next few instructions one step at a time.

The user should always remember that the stop-count parameter, like
all of MUDBUG's parameters, is interpreted as a hexadecimal number. Typing
"100" for the stop-count parameter therefore tells MODBUG to trap control
the $100th (i.e., 256th) time that control reaches location STOP. MIDBUG
treats the stop-count parameter as a 16-bit unsigned value, and MODBUG
interprets the value zero to mean 65,536.

The default value for the stop-count parameter is always one, so a

~Tr.iTTernnt user who wants to trap control_the first time. control reaches location STOP

““‘cam~ simply omit the °stop-count-- parameter. - -- The-stop-count-feature-is-

therefore conveniently transparent when it is not being-used.

30

Notice that the stop-count parameter is a private parameter that is
used only by the "T" command. The stop-count parameter is not related to
the system-defined KEY parameter that appears as the third parameter of
some other MUDBUG commands.

The "T" command's fourth parameter, which is useful only if the stop—~
count parameter has been specified, is known as the print-count parameter.
The print-count parameter tells MUDBUG how frequently the system should
generate a register dump. For example, if the value of the print-count
parameter is three, MUDBUG generates a reglster dump every third time that
control reaches 1location STOP. MUODBUG generates the register dump
immediately before the instruction at location STOP is executed.

The print-count parameter provides a method for obtaining dynamic
register dumps as the user's program is executing. MIDBUG always generates
a register dump when control is actually trapped at location STOP, and the
print-count parameter can be used when the user wants to see some register
dumps at some intermediate steps as well.

The user can specify any desired value for the print-count parameter
if intermediate register dumps are desired. For exzample, if a user
specifies the value one for the print-count parameter, MIDBUG prints a
register dump every time control reaches location STOP., Similarly, if a
user specifies the value five for the print-count parameter, MIDBUG prints
a register dump every fifth time control reaches location STOP.

The default value for the print-count parameter is always taken from
the value (if any) that was specified for the stop-count parameter. By

default, therefore, MIUDBUG generates a register dump only when control 1is

actually trapped. The default value for the print-count parameter

conveniently makes the print-count feature transparent when it is not beilng
used.

Like all other MODBUG parameters, the print-count parameter is always
interpreted as a hexadecimal number. MUDBUG treats the print-count
parameter as a 16-bit unsigned number, and the value zero is interpreted to
mean 65,536. The print-count parameter is a private parameter that is used

only by the "TI'" command, and the print-count is not related to the system-
defined MASK parameter.’

"W" Command; 4 Parameters; Verify ROM Program.

The "V" command is functionally identical to the "T™ command, but the

"y" command can be used with a program that resides in ROM whereas the "IV
command cannot be used with a program that resides in RGM. The "V™ command
. .1s available only if the system on which MUDBUG is running has the hardware
““that T isos necessary~~to~—aupport“step—mode operations: _If -the-system.can't

_support step-mode operations, MIDBUG treats. .the "VT command.as an invalid
command.)

31

Although the "V® command can be used with programs that. reside in RAM
or pseudo RCM, the "T" command is better for those programs. The "Y"
command executes a program much more slowly than the "I®™ command does, so
the "V" command is clearly unsuitable for any programs that contain any
real-time segments.

The "V" command is provided as a special command that is occasionally
useful in a R(M envirorment, but most users seldom have any real need to
use the "V" command.

"W" Command; 2 Parameters; Write Object Tape.

The ™"W" command, which requires two parameters, writes the values of
memory locations START through STOP to the terminal in M680C object format.
If a tape-producing device is attached to the terminal, the "W" command
produces an object tape that is compatible with any standard M6800 loader.

If the STOP parameter is terminated by a comma, a blank space, a tab,
or an asterisk, the "S9" record and the trailer (i.e., nulls) that normally
mark the end of an M6800 object tape are not writtem, 30 users can
conveniently write several disjoint areas of memory onto a single object

tape by simply invoking the "™W" command several different times with comma
termipators.

A carriage-return or period terminator for- the STOP parameter, of
course, causes the "S3" end-of-tape record and six inches of trailer to be
written normally, and the carriage-return terminator is therefore the
terminator that most users type for ordinary lab work.

The ™" command is useful for obtaining a reloadable object tape of a
program that has been modified in memory during debugging. This object.
tape can then be relocaded later (via the "L" command) if the user's program
is ever accidentally destroyed in memory, so the user doesn't need to waste
any time recreating patches and modifications that have already been made
once. Since a power interruption or a minor programming error can easily
destroy a program that resides in RAM, users can potentially save a great

deal of time and effort by using the "W" command before their programs are
destroyed.

"X" Command; No Parameters; Change IR.

The "I" command, which doesn't require any parameters, displays the

current hexadecimal value of the pseudo IR, and then it accepts a new hex

.- value for the IR. If a user types a hard termination character (/ * , . or

"""<CR>) alone- without: a. mmber-for- a -new XR value, the. pseudo IR retains its
present value. ’ T

e £ v mwarrr

32
nZ" Command; No Parameters; Zero Reglisters.

The "Z" command, which doesn't require any parameters, initializes the
registers as follows: It clears the pseudo AR, BR, IR, PR, and CC
register, and it reinitializes the pseudo stack pointer to point to the
user's default stack area in the MUDBUG RAM.

The "2Z"™ command provides a quick way of reinitializing all of the
pseudo registers with a single command, so the user doesn't need to type
individual commands to initialize each register individually.

Users should carefully note the fact that a restart interrupt (RSI)
performs the function of a "Z" command besides restarting MUDBUG as if a
power-up condition had occurred.

Chapter 4

Internal Routines and Subroutines

MUDBUG quite naturally includes several internal subroutines, and many
of these internal subroutines are potentially useful for general-purpose
applications. Some of MUDBUG's internal subroutines have therefore been
made available ¢to the system's users, and programmers who wish to invoke
any of MODBUG's intermal subroutines can simply call the desired routine(s)
from their own programs. MUDBUG users can thus avoid the unnecessary
effort of re~inventing and re-coding any routines that have already been
implemented in MUDBUG.

There 1s one caution that wusers must observe before writing any
programs that call any of MUDBUG's internal routines: Future releases of
MODBUG will not necessarily be completely compatible with the current
version of MUDBUG with regard to internal subroutines. MUDBUG's internal
subroutines are offered to the system's users only as a convenience factor,
not as a fully-supported ~feature, and any users who lock themselves
inflexibly into MUDBUG's current set of internal routines may have scme
difficulty upgrading to subsequent new releases of the MUDBIG system.

The alphabetized 1list of routines on the next page summarizes the
internal MUDBUG routines that are available to the system’s users, and
interface characteristics such as calling-sequence requirements and return
conditions are given for each subroutine in the pages that follow. Notice
that the entry points for the avallable internal routines all occur as
consecutive entries in a vector table that starts at the first memory
location of the MUDBUG ROM. This vector table is provided as a convenience
for- the user so that the entry-point addresses for MUDBUG's internal
subroutines will not change from one sub-version of MUDBUG to another.

33

h.j. Summary of Internal Routines and Subroutines.

The- list below summarizes the internal MIDBUG routines that are

available for direct access by the system's users. The symbolic label
"ROM" is used here and throughout this document to represent the memory
address of the first word of the MUDBUG ROM.

Entry
Name Point Function

CRLF ROM+3$00 Output a CRLF to the terminal.

CRLF4HE ROM+$03 Output a CRLF and the four-hextet value of locs IR & XR+1.
ERROR ROM+$06 Output a backslash and a bell; then return to MIDBUG.
INCHR ROM+$09 Input a single character from the keyboard to the AR.
MUDBUG ROM+$0C Return control directly to the top of MUDBUG.

NEWVAL ROM+$0F Read a four-hextet number into locations XR and XR+1.
NUOMBI ROM+$12 Read a four-hextet number into the AR (MSB) and. BR (LSB).
OUT2H ROM+$15 Output the two-hextet hexadecimal value of location XR.
OUT2HB RCM+$18 Output the two-hextet hexadecimal value of the BR.

CUT2HS ROM+$1B Output the two-hextet value of location XR and a space.
CUTRHS ROM+$1E Output four-hextet value of locs IR & XR+! and a space.
CUTCHR ROM+$21 Output an ASCII character from the AR to the terminal.
ouTS ROM+$24 Output a single blank space to the terminal.

POWERUP ROM+$30 Restart the system as if from a cold start.

PRTXM ROM+$27 Print the four-hextet XR value and the value of loc XR.
READPT ROM+$2A Read one character from the tape reader into the AR.

STAAB ROM+$2D STAA 0, X; STAB 1, X; RIS.

. i

35

k.2. Subroutine Descriptions.

This sectiorn contains interface information for the internal MUDBUOG
routines that are available for direct access by the system's users. Each
routine is briefly described, and then {its calling sequence and return
conditions are documented as may be appropriate. The routines are listed
in alphabetical order for the convenience of the user.

Subroutine CRLF; Entry Point = ROM+$00.

Subroutine CRLF outputs a carriage return and a line feed (CRLF) to
the user's terminal.

Calling Sequence: JSR CRLF Output a carriage return and a line
feed to the terminal.

Return Corndition: Part of the CC value 1is destroyed, and the AR
contains a line-feed code ($0A), but the CC.I bit and
all of the other register values are preserved.

Subroutine CRLF4H; Entry Point = ROM+$03.

Subroutine CRLF4H outputs a CRLF followed by the four-hextet value of
the two words that are addressed by the XR and IR+1, and the subroutine
outputs a blank space following the four-hextet value.

Calling Sequence: LDX =VALUE This example calling sequence shows
JSR CRLFU4H how to output the four-hextet value
from locations VALUE and VALUE+1.

Return Condition: Part of the CC value i1s destroyed, and the AR
contains an ASCII blank ($20), but the CC.I bit and all
of the other register values are preserved.

36
ERROR Routine; Entry Point = ROM+$06.

The ERROR routine ocutputs a backslash ("*®) and a bell to alert the
user to some error condition, and then it transfers control to the top of
MUDBUG with no updating of the pseudo-register values. Notice that the
ERROR routine is not a subroutine. Instead of returning control to the
calling program, the ERROR routine transfers control directly to the top of

MUDBUG. .
Calling Sequence: JMP ERROR N.B.: JMP, not JSR.
Return Condition: There is no return. Control returns directly to the

top of MUDBUG.

Subroutine INCHR; Entry Point = ROM+$09.

Subroutine INCHR inputs a single ASCII character from the terminalts
keyboard through the ACIA (Asynchronous Communications Interface Adapter;
part number MC68%50). Subroutine INCHR returns the input character ta the
calling routine with zero parity in the AR. Besides returning the input
character to the calling routine, subroutine INCHR autamatically echoes the
character to the terminal. If the input character is a carriage return,
however, subroutine INCHR does not echo it to the terminal. This feature

allows the software to control the position of the cursor on the user's
terminal.

If subroutine INCHR receives an XOFF flow-control character, the
subroutine waits wuntil it receives a matching XON flow-control character.
Then subroutine INCER gets the next input character and returns that input
character to the calling routine. Subroutine INCHR also ignores any
extraneous 3ION characters that it receives, and the subroutine does not
echo ION or XOFF characters to the terminal.

Subroutine INCHR doesn't treat XON and IOFF characters as ordinary
input characters because those flow-control characters can be transmitted
automatically by many terminals. A terminal can transmit an XO0FF character
to tell MUDBUG to suspend I/O processing, and the terminal can transmit an
XON character to tell MUDBUG to resume I/0 operations.

Calling Sequence: JSR INCHR Input ome character to the AR.

Return Condition: The AR contains the T-bit, zero-parity value of the
input character, and the condition codes are set to
reflect a comparison of the input character against a
carriage return. The BR, XR, and SP are all preserved,
and the CC.I bit is also preserved.

_ Stack Usage: - - - Subroutine INCHER requires. 6. locations of stack - - --
memory. These 6 sStack locations include- the _two

locations that contain the subroutinets return address. ~7"»;T:<

37T
MUDBUG; Entry Point = ROM+$0C.

Users can return control directly to the top of MIDBUG without
changing ‘the old values of the pseudo registers by jumping to location
MUDBUG. This entry point to MUDBUG is used when the user wishes to
terminate execution without generating a register dump.

Calling Sequence: JMP MUDBUG N.B.: JMP, not JSR.

Return Condition: There is no : return. Control remains in MUDBUG,
and MUDBUG prompts the user for the next MUDBUG command.

Subroutine NEWVAL; Entry Point = ROM+$0OF.

Subroutine NEWVAL reads a 4-hextet hexadecimal number from the user's
terminal, and the subroutine stores the value of the input onumber into the
locations that are addressed by the IR and XR+1. If the input number is
terminated by a solidus or if the input consists of a termination character

with no hextets, subroutine NEWVAL doesn't change the value that is already
in memory.

Subroutine NEWVAL uses subroutine. NUMBI internally, so the reader
should refer to sSubroutine NUMBI for more details regarding NEWVAL's
operation and its return conditions. In particular, the documentation for
subroutine NUMBI explains how subroutine NUMBI sets certain variables to
provide scme detailed information about the nature of the input gnumber- and
its termination character.

If the input number is terminated by a solidus, subroutine NEWVAL
transfers control directly back to the top of MUDBUG. Otherwise, control
returns to the .calling routine.

Calling Sequence: LDX =VALOUE This example calling sequence shows
JSR NEWVAL how to read a new value for the double-
precision number that 13 in locations

VALUE and VALUE+1.

Return Condition: 1. Normal return. The AR and the BR contain the new
(or preserved) value that is in locations XR and XR+1,
and the other registers (except the CC register) are
preserved. Location TERMCH is set to reflect the
termination character that was used.

2. Solidus terminator. If the input number is
terminated by a solidus, control goes dirsctly to the
) top of MUDBUG..instead of returning to the calling
- - . routine. - - el

38
Subroutine NUMBI; Entry Point = ROM+$12.

Subroutine NUMBI reads an ASCII-coded hexadecimal number from the
terminal, and it returns the 16 least-significant bits of the number's

value in the AR (most-significant byte) and the BR (least-significant
byte).

The input number must be terminated by one of seven termination
characters: a period, a comma, an asterisk, a blank space, a tab, a
solidus (®*/"), or a carriage return. A solidus termination character both
terminates and cancels the input number, so subroutine NUMBI returns the AR
and the BR unchanged to the calling routine when the user types a solidus

terminator. The other six termination characters merely terminate the
input number.

If the user types a carriage return as the termination character,
subroutine NUMBI does not echo the carriage return to the usert's terminal.
This feature allows the calling routine's software to control the position
of the terminalfs carriage or cursor.

Subroutine NUMBI always leaves a special, easy-to-test termination
code in location TERMCH (i.e., RAM#$06) to represent the particular
termination character that terminated the input number. The termination
codes for the various termination characters are as follows:

blank = -7 = $F9 = $11111001
tab = =T = $F9 = $11111001
"#r - 5 = $FB = $11111011
mom = .3 = $FD = $11111101
m.m = o1 = $FF = $11111111
m/m = 0 = $00 = $00000000
<CR> = +13 = $0D = $00001101

Besides leaving the termination code in location TERMCH, subroutine
NUMBI always returns the condition codes reflecting the value that i= in
TERMCH, so the user can employ a conditional branch following a call to
subroutine NUMBI to determine scmething about the termination character.

Subroutine NUMBI allows the user to type leading blank space(s) and/or
tab(s) with a hex-number input because many users like to insert white
space at the beginning of an input number for improved readability. No
leading white space is required, of course, but blanks and tabs are allowed
until the first hextet of the input number has been typed. Since
subroutine NOUMBI allows the user to type leading blanks and/or 1leading
tabs, a user can't use a blank or a tab to terminate an empty (i.e.,
missing) input number. A user who wants to amit an input number entirely

must type one of the other termination characters to indicate the missing
number-_

Ihe input number for subroutine NUMBI can be signed. A leading minus == -
sign causes subroutine NUMBI to return the tao's_camplement'of~the input—"-yﬂ__.
mumber as .the input value,. and.leading plus signs " have . na. effEct.on-theﬂ

39

value of the input mumber. Two minus signs (or any even number of minus
signs) cancel each other, but any odd number of minus signs result in the
negation of the input value. Leading sign characters are permitted until
the first hextet of the input number- has been typed, and after that time
sign characters are rejected as invalid input characters.

If a user types a leading plus sign, subroutine NUMBI clears location
PLUSFLG (i.e., RAM+$2C). Otherwise, subroutine-NUMBI puts a nonzerc value
into location PLUSFLG, so the calling routine can check location PLUSFLG to
determine whether or not a leading plus sign was typed.

The terminal operator can correct any typing errors in amn input to
subroutine NUMBI by simply typing a backslash (®™\") before the number's
termination character has been typed. A backslash cancels everything that

has already been typed for the input number and restarts the number from
its first character.

The operator can alternatively correct simple typing errors by taking
advantage of the fact that subroutine NUMBI retains only the 16 least-
significant bits of the input number. By simply typing new hextets, the
operator effectively shifts old hextets out of the left end of the number.

If npo valid hextets (0-9, A~F, or a-f) are input to subroutine NUMBI
(i.e., if a termipation character other than a blank or a tab is typed
without any valid hextets preceding it), the subroutine returas the AR and
the BR to the calling routine with their original values unchanged. This
feature allows the calling routine to provide a default value for the input
number. Additionally, subroutine NUMBI puts a nonnegative value into
location HEIXTETS (i.e., RAM+$2B) if the subroutine receives an empty

number. Otherwise, subroutine NUMBI puts a negative value into location
HEXTETS.

If subroutine NUMBI receives an invalid character for an input, it
outputs a bell (ASCII code = $07) and a question mark ("?%; ASCII code =
$3F). Aside from making these outputs, 3ubroutine NUMBI ignores the

invalid input character. Only the following characters are accepted as
valid inputs by subroutine NUMBI:

blank tab + - , * , <CR> /0123356789 ABCDEFabecdecr)\

The first two characters in this 1list (blank and tab) are valid as
leading characters before the first hextet of the input number has been
typed, and they are alsc valid as terminaction characters after the Cfirst
hextet of the input number has been typed. The next two characters in the
list (+ and =) are valid only before the first hextet of the input number
has been typed, and they are rejected as invalid inputs if they are ever
typed anywhere other than at the beginning of a number. A backslash (™\")
can always be used to_restart an input number, so a user can go back and)
type a- forgotten sign character by -first typing a-backslashow —- 7= TL7_. oortio o

The calling sequence and return conditions for subroutine- NUMBI- are-as——- - - —
follows:- R : e h

R

30
Calling Sequence: Typically, JSR NUMBIL or BSR NUMBI

Return Condition: 1. Normal return. The AR-BR contains the double-
: precision input value, and locations TERMCH, PLUSFLG,
and HEXTETS have all been set as specified above. The
CC.I bit is preserved, and the other CC bits reflect the
value of the TERMCH code. All other register values are
preserved.

2. Solidus terminator. The AR and the BR are both
returned containing their original values, and location
TERMCH contains the termination code for a solidus
(i.e., 0). The CC.I bit is preserved, and the other CC
bits reflect the =zero value in TERMCH. All other
register values are preserved. Location HEXTETS 1is
nonnegative to indicate that no hextets were retained,
and PLUSFLG is set to indicate whether or not the user
typed a leading plus sign.

3. No number input. If no valid hextets are input
ahead of the termination character, the AR and the BR
are both returned unchanged, and the special code for
the termination character is returned in 1location
TERMCH. The CC.I bit 1is preserved, and the other CC
bits reflect the value of the TERMCH code.. All other
register values are preserved. Location HEXTEIS is
nonnegative to indicate that no hextets were typed, and
PLUSFLG is set to indicate whether or not the user tyed
a leading plus sign.

Subroutine OUT2H; Entry Point = ROM+$15.

Subroutine COUT2H outputs the two-hextet hexadecimal value of the
memory word that is addressed by the IR.

Calling Sequence: LDX =VALUE This example calling sequence shows
JSR QOT2H how to output the two-hextet value from
location VALUE.

Return Condition: The AR and part of the CC value are destroyed, but
all other register values and the CC.I bit are
preserved.

41
Subroutine OUT2HB; Entry Point = ROM+$18.

Subroutine QUT2HB outputs the two~hextet hexadecimal value of the BR
to the user's terminal.

Calling Sequence: LDAB VALUE This example calling sequence shows
JSR CUT2HB how to output the two-hextet value that
. is in location VALUE.

Return Condition: The AR and part of the CC value are destroyed, but
the other registers and the CC.I bit are preserved.

Subroutine OQUT2HS; Entry Point = ROM+$1B.

Subroutine CUT2HS prints the two-hextet hexadecimal value of the

memory word that is addressed by the XB, and it prints a blank space
following the two-hextet value.

Calling Sequence: LDX =VALOE This example calling sequence shows
JSR OUT2HS how to print the two-hextet value from
location VALUE.

Return Condition: Part of the CC value 1s destroyed, and the AR
contains an ASCII blank ($20), but the CC.I bit and all
of the other register values are preserved.

Subroutine CUTRHS; Entry point = ROM+$1E.

Subroutine CUTAHS prints the four-hextet hexadecimal value of the two

memory words that are addressed by the XR and XR+1, and it prints a blank
space following the four-hextet value.

Calling Sequence: LDX =VALUE This example calling sequence shows
JSR OUT4HS how to output the two-byte value from
locations VALUE and VALUE+1.

Return Condition: Part of the CC value 1s destroyed, and the AR
contains an ASCII blank ($20), but the CC.I bit and all
of the other register values are preserved.

Subroutine OUTCER; Entry Point = ROM+$21.

Subroutine OUTCHR outputs a single ASCII character from the AR to the
ACIA, which is interfaced to the terminal.

Calling Sequence: JSR CUTCHER Output an ASCII character from the
AR to the user's terminal.

Entry Conditions: The AR contains the ASCII character that i3 to be
ocutput.

Return Condition: Part of the CC value is destroyed, but the CC.I bit
and all other register values are preserved.

Subroutine OUTS; Entry Point = ROM+$24.

Subroutine OUTS merely prints a blank space at the user's terminal.
Calling Sequence: JSR OUTS Output one blank space.
Return Condition: Part of the CC value is destroyed, and the AR

contains an ASCII blank ($20), but the CC.I bit amd all
of the other register values are preserved.

POWERUP Routine; Entry Point = ROM+$30.

Users can transfer control to location POWERUP to restart the MUDBUG
System as if it were coming up from a cold start. The POWERUP routine
initializes the system's hardware and MUDBUG's pseudo-register values, and
this same routine is invoked by a restart interrupt (RSI) at power-up time.

Calling Sequence: JMP POWERUP Restart the system.

Return Condition: There is no return. Control remains in MUDBUG.

43
Subroutine PRTIM; Entry Point = ROM+4$27.

Subroutine PRTIM prints a CRLF and the four-hextet hexadecimal value
of the XR followed by two blank spaces. Then it prints the two-hextet
value of the contents of the memory leocation that 1s addressed by the XR,
and fipally it prints another blank space. The output Cformat for subrou-
tine PRTIM is therefore as follows:

XXX MM O,

Calling Sequence: JSR PRTIM Print the IR and the value of the
location that is addressed by the IR.

Return Condition: Part of the CC value 1is destroyed, and the AR

contains an ASCII blank ($20), but the CC.I bit and all
of the other register values are preserved.

Subroutine READPT; Entry Point = ROM+$2A.

Subroutine READPT reads a single character from the terminal's tape

reader. The input character is returned in the AR, and it is not echoed to
the terminal.

Calling Sequence: JSR READPT Read one frame of tape.
Return Condition: The AR contains the input character, and part of the

CC value is destroyed. All of the other register values
and the CC.I bit are preserved.

Subroutine STAAB; Entry Point = ROM+$2D.

Subroutine STAAB uses indexed addressing to store the values from the
AR and the BR into the locations that are addressed by the IR and XR+1.

Calling Sequence: JSR STAAB Store the AR and the BR.

Return Condition: The AR and the BR have been stored, and all registers
(except the CC register) are preserved. The CC.I bit is
preserved.

Final Report
Contract NAS8-34969
ENHANCEMENT OF INTELLIGENT EDITOR/PRINTER

This report was prepaired by Arizona State University under
contract NAS8-34969 Enhancement of Intelligent Editor/Printer for Marshall
Space Fligh Center of the National Aernautics and Space Administration.

APPENDIXKX
B

The design specifications for the MC6809 version of the intelligent printer
controller card. MSFC is currently constructing a printed circuit card to
implemenﬁ this design. The software necessary to use this card as a
controller for a Diablo Hy~Type 2 printer is currently under development
and will be supplied to the govermment after it is checked out on the
finished version of this card which is to be supplied to ASU by MSFC.

Printer Controller PWB
(6809)

NOTES:

(1) The distance from the 3.686 MHz crystal to the MC6809 is
critical and must be less than 20 mm. Also the two 24 pf caps on
each 1leg of the crystal must be within 20 mm of each other. (refer
. to the Motorola Data book for clarification).

(2) All discrete resistors are 1/4 watt carbon composition.

3 Decoupling caps should be added between +5 VDC and.

Ground liberally (1 for every 4 I.C."s).° :

NEY) IC numbers (Ux) should be reassigned per the layout of
the PWB. Suggest Ul be the upper left hand cormer, U2 to 1its
right, and so forth.

(5) It would be nice to have four mounting holes (min_3/16@

dia.) located as symmetrical as possible and close to the corners.

(6) The connections to hex inverters, AND gates, and other
generic-IC7s can be changed during layout as long as the change is
electrically equivalent. Gates required to be Schmidt-Triggered
are marked accordingly and should NOT be replaced by a regular
totem pole.gate.. "Also eusure that open collector gates are not
used in place of totem pole outputs and vice versa.

. ':TL\‘S disternce

cawn
(sho\d e An vange ‘, oF .

v :

Ye - adysTed T O

W
ll+ 3) v

~

5
] "o .
R tor. Y
- Y oA
L9 4
- o
¥ -

5'9———;1

. h’y;} B

HWHHWUUW

40-pin

'“.} s
':3 R

o

-4 &
° 2
-

Cowne ctpe

Ribvlgn 40 '/II?/_ag” Sudn L

OO

Suten ¢

oL X
¢ 2 eL..

o)
R—

X
. Com;:,"wa

) '50 P

La1’

qI/

hole ‘size svi¥icied
—f’o qc(;o"\oAtib s

.

6;”

o
R ot
LR PR AN RERRNE 1
o5 T FRE S
R n] I '
) i‘ "‘ -t ;, ET:'
) "’,.‘- “:’.‘\ '":.1 N o N . .-
] R oy MPU (LEoa)
: N » {
e of Y
B ESE R SR - ,) .
e R B ; Xion — Al ofhers. s\\own T
. . e "—',‘.“ * ‘ . Rei’\)\"“ POS:S‘\\O'\ Ter\mse“T rm f“é\ qu‘*‘o‘f\d ‘ k ’/“‘ Th‘ckv\e$s
. | :" . : ,.e‘.,.\, : . i
S '\”" %

parts List

Printer Controller — 6809

A. Integrated Circuits (IC's)

- Des.

Part 3 pins Page +5 VDC Ground
ul MPU — MC6809 40 1 7 1
17 PIAG — MC6821 49 4 20 1
u3 PIAL — MC6821 40 4 20 1
u4 ACIAl — MC68549 24 5 19,12 1,23
us PROM3 — 2764 28 6 1,26,27,28 14
U6 PROM1 — 2764 28 6 1,26,27,28 14
u7 74LS138 16 2 16 4,5,8
U8 825129 16 2 16 1,8,13,14
. U9 PT™M — MC6849 28 2 14 1,2,4,5,7,28
Ulg RAMZ@ — 2016 28 3 26,28 . 14
Ull RAM1 — 2016 28 3 26,28 14
Ul2 RAM2 — 2016 28 3 26,28 14
Ul3 RAM3 — 2016 28 3 26,28 14
. Ul4 PIA2 — MC6821 40 7 20 1
UlS SWl — Dip MtCh 16 2'7 _— 1'2'314'5’6'718
U16 SWZ -— Dip SﬂitCh 16 7 - 1'2,3’4’5'6'7’8‘
Ul7" 7415244 20 7 20 19 - .
Ul9 74LS244 20 1 20 1,14,19
U280 7415244 20 1 20 1,19,19
U2l 74LS14 14 1,4 14 7 .
U22 741514 14 . 4,7 14 .7
U23. 7404 14 1,2 14 7
U24 7419 14. 2,4 14 e
U25 7400 14 1 14 7
U226 7432 14 2,7 14 7
U27 Res. Pack 899-1-1k 16 2,4 16 —
U28 Res. Pack 899-1-1k 16 4,7 16 S
U29 Res. Pack 899-1-1k 16 7 16 -—
U3l MC1488 14 5 -— 7
U32 MC1489A 14 5 14 T
U3z 7416 14 4 14 7
U34 7416 14 4 14 7
U3s 7416 14 4 14 7
u3le 7416 14 4 14 7
U37 ACIAd — MC6850 24 5 1a,12 1,23

B. Discrete Components

part . Page

16K Resistor 1
3.3K Resistor 1l
3.3K Resistor 1l
3.3K Resistor l
3.3K Resistor 1
3.3K Resistor 1
16K Resistor 5
19K Resistor 5
24pf Cap — Ceramic 1
24pf Cap — Ceramic 1
1.0uf Cap — Ceramic 5
1.0uf Cap — Ceramic 5
33uf Cap — Tantalum 5
Diode

7812 — +12VDC regulator

PEQQQQCRARERERA

l\
5

Cé
cT
(o4

C. Conngctors

'J1 — 5S@-pin right angle ribbon connector
J2 — 40-pin right angle ribbon connector

J3 —- 6-pin right angle power connector' .

D. Miscellaneous

.-

®.1 /AF C4P - Cew—a.-\?r.; -
¢.LuF Gap = Coramic. —% -
l.@}hF QP - Coramic '_'"1 i

(1) Connector J1 should have the following Ground conﬁections:
J1-2,8,11,14,16,18,206,22,25,36,31,32,35,38,41,44,47

E. Spare Gates

Des Part Spares -
u22 741LS14 2

u23 7404 1l

u24 7419 1

u25 7400 2

u26 7432 2

u29 Resistor Pack 3

u3e 7416 1 -

v [IhsRink €4 o B] oo,
I : R & - Y
"—‘[ﬁz L A pae - r o
R , ' " .) : . '
> - DAl
1 i A :

A2
DS uz3

: [& m. — - gl)}_______ j’>o—§ >A4/
- ? ' o e He4
= g —n

\Z)

—

P A% ‘ uD:)oD
_TM@S‘ - D A9 AS-/“

. _MW : Do Chowz
2 . ¢ _ DAl
1 R T S o > S Az
L i ——@3——{) _
e P TR R
o b ———DAIS
"EREEEENERNEERNERE

N . e
W AL AN AL AT A A R Aq*ma_gummmm:,v |
] Prr S : o B

' ’ 4 Yss Tdoagf
TRA/ ' o~ ; s
3 Wz / mﬁ? B 2B .Te——r 1 3.C86MHe
2

Xea |3 ' CRLL Cmystal
Fira/ v e | ,,

SN N W pi p2 DI D4 nrp‘c'p7$f 3
I EEFEEEEERE

N

SIS p

REIT NS B
XEUERTR L
! ”l i t"

. ;

.
ks ,
g
'\J\\“' I ! 0 L
JOTRSEN . |)
I - b) 5 pe DT
RS ‘ k Dp P1L g2 P3 P4 D5 P ‘
B R P)
L ' L R
A e S
. : :
: . ‘ , Ir -
Lot ' "(\) !
. IR A
K ’_ l'!. . ‘
-
R "“ ,.il ;!'L',, L N L. .
Y R TR U “ .
o B R ' : . 1 - . ; B
PR) : :‘.'j‘.-_ N
.‘-k y o o T o f..-. [
v Foe T by

,__EE.QQL_D go,u/ T T U
O 1. I D/

ISR ’ \ - V “ T
R S R fevora [>—I2] he4 ' %&G Diay (#r01d) PoE=——t oo
IR RN R O P V (P 5) 6___2_%&1 T |3 -
! < , vy F—Q wa
Fl ’ L (0§ PR e o
. n e R M‘D——L' 1 - RpE——CQAz
A:’_ 'O 1z " Mﬂa/“\ q Cs0 m—u——-—q A1
g2s |2 ‘ HEo—q
Aa“‘jq B D Ranl/ , o g‘“ ol ho
o . 933 ' , RESIT '

- /
| < | ,
a UE 10 QL &
- Og - RAN2/ e e 3 - -

- y feopg . ;.) . . 4l a0 .
S T MM—D Pa 3b4T =&] L
N A o Yub’*ﬁm—aswsﬂm) RV s—HT ws f8 O ps
S RIS - s 92 " SN uq 2l | '
e > 1o i S8eve oy Acaf R R S 1 pt Pl Py
NN L ’ 3 22 »
: (. ipon @3 £) P <r @2 P O 03
Y 13 ’ F—HE (oo mE—Owr 8

o dermargri

AS
Ao
AT

- ogp D> fausy ,
FA gf_i : feser [

13

houer Addrass
Decode
. L—awuo\ B

'R : .
TR R |

L ORAM

; ! A NS . A= Y '-‘:v
- VY e Ne———]) , 2 Ve
- ' 127 wgh q w'} mz—-——-———-—-‘.'- ’ 22 -—-—————Hw wE-——(] ‘7\
0 Y e %] A1~ HiN (A)zc Ve
#y - (an2s) g - = “Ré f - s h¥
SO eoyp———— M RS " M 9
— L) (202 ——— AN (RE) A4 & Zﬂ-————-Au(’t)
— sy ()2 gﬁ——oﬁn/ ;,3———-——;1 ™ 2 S”—QRW
2oy, . W02 e Ap—8 12
— a () 4% Giyao e <41 Rhnﬂ)/ A————9 20| ce -—<3 lea/
— oY) (14 -p7. (M2 Ag—————{io T N (m 2
it (a) (N ve : P ————n L e — o
: 2@ ls)ny 0s 13- 2 - f——p5
- Bl gt r—'———'—'p* Pe- 13 . 1 p——— P4
epensa (L0 RNTOVEY panl 4 &l M) (15 03
.: .,\ i 53 :
o ""L"""“ Tormomm ot warer ek —
R X .o« Pins: o :
A ——DE2 .
v Y g Ve M | Yo f——Ve e
2 2] WE__qm‘a Alz —————2 2 - g —CO W
Y Ve f——— Vee g p— YY) B 7 PY] B
oy @tk g AL ————4 22— P%
5(3) (R4t A9 AS————]= Q4p————— A7
o4y (foe3 Al (5E) —— Agp————© .23 Au)
7(s) Ul (eoxzz.——-——-—-,o‘g,——cjsw A3 7 22— & ~—<J RO/
$(6 (10— Alp" AZ ~ ¥ o3 UfF———Az
U @z e~ RAML/ Al 9 2 ¢F —< RANY/
o (D p—907 - (f’g 2); A———— o 14]] (pq 2J
ey Ue) :& il 1® r V. ,
h2g0) U0 ps Pl — 12 17 p_;'
1BU) e p4 o J— 3 SE—)
1 402 (IS 253 GND () (915 _'p3
Rani RAM3 -
co b . havna B
5 GWes ' Set B2

O SR L P — e
LS NN i x,!:l'l n.l i . ‘ § I——IRQB . ' A1 . l—\Mh——*S ‘
s 'i‘. LRI : R . ,.: “ . 'g gb v o Pbl L—Z@C 3 G l DA“‘
w ay D Rsp 4 .
"‘ !’n";“ - 'l m: ’ t 19K ! 4 PA; I-_'{W_tg
RETRRGS b Al ; e :DO— ﬁ 3q] Dm
j 2| cee) T

- : : - . bcs I'n-v [)m.
. — ||t j 33,
; ; ..||%ID . 27-F I ﬁ_olpm'

— co ts
pg2 |12 ‘ 13 ||>012 21-9 . 42 'paﬂ“

) \ ! - N . 75 \'(/ . m3 = - '
AN A , =W $Bo0s P4ttt i I{%CZ . Jerzie 1431 pa{

B
Rl 7
SEaReEYE ol YA S

-y e
X
S
%

3V,

£ 8

<

T™

233

N A - S
N bl 1.] ’ : : RS i<
ST R 4 ES T r lo u24 B 40l 1’ P -
! " : . ',' |i: ; . T} ' A PBL L
Al3 - ' r

. s 'x"3x
R 28

e s B
Readyi™ 3 0k
‘;‘-"*“.-'.‘\‘Y 3

ity 41 eSS 1 g1 <9 lzo L N (s 7o '

Brvallel Ot

Le B gl

o e et

- | Aclre mel——> TR/
C . . ! L
HBT' (Seﬁ«l -Oo*Pg'\') M_C. l,85¢) . WFE'—_O 7,)

|
(Sevm\ ‘.‘L\?v‘\') i : :
i

L e S

. npl—<> 73
(£Bpoo) ™ EFe—<> P4

- SR Y] [P S S 1
<D
: Rxh_“w_li_;_o_}ﬂ

e TR T ~ i
“‘..,HA.L‘ -.‘1 _a..... ,...... T,...,,."'._-., - .. . C e e e it - . R - e .. (2)
NSRS T St) | = A - ; fs

C - - - .. e - e [Aee e e an e [P .. e . - e - - . .

......,,.l. I '--—'~«---~, .- - - .a

— o - - - - RS

. - - C
R e es ‘rgﬁxﬁ'“z‘ R Se»m T-emf— "‘/
| P L o Lo | A .
- - - ﬁ. ___J__ v+ 1 At e e e :G""' Tt and I ":“: ?O&JEV“ SIREEtS

e e R

oo
F

] JER A

- -
\ .
S I

G

- '!,‘, .

.

e f . -
. Cad B)
Teiee A ,_:.....I-‘.‘:,.'. e i N
N - !
N MY v 3

[N
R
“r2

. e e

A3
. ,.x;» T * - Ve :
] " N N . N
Troad '
: . [IR M " .
Wt e s e me e

s
soevemibme e e mmgee le e .

1 - 2_%& &__1,
AIZD——ﬁL-a SEEIRERR 1] et
VT 4) 2] '

NG .
AG D——A‘L 4@ @EvastiE— < A®
5(3): (22) 24
¢(4) (z7s2) (2123
1) - - (M2
8 (@ Uw*(n)zl |
D -~ - (B) @.gL__G Romi/ -

o@® -~ - - (1) |°|
Q) () 1812
120 . - BN
13311 (1916

r-u(l?) T ()15 Q;——-D'D3

27064 .

.
(24)26
Ml) (23)28
5(3) -+ (@24
¢ (4) (2732) (2) 23
US) - (w22
g(e) | (19)2
(0 H'g;"(l&)lo_
lo(8)-- - (M
W (9 (le) 18
G - - (U8 VT
IO RN
HR O - - (35

PROM @ PRoM 3 ,
- - e e [-
" P .
- . - . - e i e b - - - R e s
[' [
]
,,,,, M - - - - e - . e ——— - s e 1 et o o
.
- - - - - - mrmamrme e e d wid
. . — o JER
1 Ll
- - - - - e e e
!
. PO, . - PR [[T T el me g e e mm e s 4 ey g en e ey fdmae — g e —
H
=3 P ... -~
O\ - R
PR PR D y—
: o N
| ¢ [
: ! A N
O B ke R
; i .
i
- - - R

E o
',.',..:;pNQ.\NC‘. :
Iy

faeet oo W2 e 1T
R SOt
..-‘I ’j"

*(Fif#r I"

Al S e !\.
\

" RO/ —
.(P:.i) E>

sws/ (O , o
(rgz) : ; g
T ‘
l L
D eem S U
1 ' \‘ R
- - - ; T:-» -
S S {h}‘au'\& B SV

,\
e e por ey oo

ff]’m\\g\ :L‘».P“-t-

. 3 '
ernn e g e vy s e g e ey s

Final Report
Contract NAS8-34969
ENHANCEMENT OF INTELLIGENT EDITOR/PRINTER

This report was prepalired by Arizona State University under
contract NAS8-34969 Enhancement of Intelligent Editor/Printer for Marshall
Space Fligh Center of the National Aernautics and Space Administration.

APPENDIX
c

The design gpecification for a 132 Character by 64 Line intelligent CRT
display system using a Motorola 6809 MPU. This version also has four pages
of refresh memory.

DeBUG 1ERMINAL
AND
DowN LoAD LINK

/3-232

MoToRoLA 680204
« 6309

KEY BOAR. D
vibto Moo RL
TERMINAL AMD
KEYBOARD TaFCLE CARD
* 32K REFRESU MEMORY LED ‘
~24-880 1/o REG. DISPLAVYS

v
’ /
-
/
/

: 3
]
1
’ |
- ad ‘
’ \
— ‘
- - - \ \)
- s -
. CONTROL e
@ REGISTERS 3 t\“:ﬁe‘
[DoT
ReG. F——IN\JFHARACIER
b —-\/ GENE RATOR LHFTER
32K |
DYNAMIC CACHE c“-.‘
Ram RAM #2

BULFERS

J<::

MICROSYSTEM
BUS

[]¥ 3

[_‘—’Vﬂbho Dots

ARIZONA STATE UMIVERNITY
DiwiTAt D YSTEMS L AB

[B2 cHAR X 64uire ViDeo

Dispay: O YSEM MZA;)CZL
oTOROLA 6809
Lo 4PAGE Rerresy Memory

YERY SYNC

RASTER SYNC
J JCh s
aYNE
RASTER e
COUNTER. Loy Btk o
HIGH SPEED
¢HE RAM
LINE (‘ﬁ‘ R
COUNTER.
CHARACTER ADDR. MUX
COUNTER. !
CHAR.CLK
MPu CL DMA ﬁ
ADDR., |——
SYNCHRONIZER COUNTE ADDR. MMUX
1 MIGH

‘:"} BPEED
CACHE RAM
X3

RECRESH PATA r

PIPELINE
REGISTER

‘::'> CHARACTERS To
VIDER
CKTY

e e CONTROL

CHAR CLK
——ege

BLACK DIAGRANM
CACHE MEMORY SYSTEM

CRY CONTRO WLLER.

SPeCAL v
FeATURES —————f f
FRoM TTL
’ CHARACTER To
gECL
SEAN PIPELINE GENERATOR oL
Couny . R 3 SHIFT SPECIAL
EGIST FEATURE
INTEL “ DeT
A0 — Jnn BN m— E— e e Lk
\kX 8 PROMS TRANS LATOR]
BLANKOﬁ_i__(] ch LD
cx [- " SYNC
1B 1
—_— - '
!
TIMING [
EcL AHIFTER,
To 4
OSCILLAT,
RALT | TTL < TeR 5::&4'4:’(
———SHARACTER _cLock RANSLATOR CLoRK.
JGENERATOR
1 ox DT _CLk
|
|
I
|
|
. |
A g TTL | scL
L 1
SN - ! SIMPLLIF IED

TTL ' Ec
]

Ta VIDEQ CXTY

BLOCK. DIAGRAM

CHARACTER., GENERATION CIRCUITRY

—_— [| | \ | 1 | | ! | [] |
brPACE DB f:,tf.: | Noe TR i Lo el et ek [e NoP el R sl
EF3CE I ' DLNDEFINED] l NoP l‘;‘:’ﬁ'}&/ 9'::;;(,
8F2cp | ‘ UNDEFINED | [[Lisery]";‘g‘,‘)‘z‘“
S T werne] | Nor s [P Lie_] NENEEY
$FICB [BNDEFINED | I NoP oy [PARA SCAPH lmmﬁ | ~me | R | CHAR 5%‘«;—&5
&F?)(‘,A EWRD“‘A\:% UNDerineD :ﬁl:‘:;m I NOP IK‘Q‘V §:A5:;§

: t
$F2C 2 [READ KEYBOARD j [Nof J
gr2c8 | UNDEF INED | s St et e | S50 ST BT
$F3c 7 [UNDEF INED l B&:\?u;;\l‘; E-;;:E'SMY | o e Y J
ﬁF*t‘_ (=) f UNDEFINED] [NoP lmsr“iim‘ék*&ﬁ \:cla?:L” _]
sr—aas [LNDEFINED] L RIGHT MARGIN RELATIVE]
sracq | LNDEFINED | l LIZT WARGIN RELATIVE]
$F3¢3 [- UNDEFINE D] L ToP o SCREEN AUDRELS (LQ:.E,\J‘LQJ
SFB&-?_M L) . UNDEFINED] [ToP oF ScREEN ADDRESS (MSBL =)]
%FSCQ]' L . DN DEFINER J | 2552 Corumn Bg CURSOR - CoLLMY ADPR=SS]
3.‘.:3-'?;9 l - - LNDEFINED I | de Tor of Screed CULRSOR. — LINE ADDRZ S J

F;[r 7-|-e.ne+a& sterafmrsfemeterifrug terrdmrcdersturs fur 2deve furifare

il) _ . I/o RECISTE RS
T CRT, COoNTRoLLER.
T EAD = CLEAR.

SNEINANENININR NN INA NN

sinininininininininizinininin

UNDEFINED [NoP [lotn e

UNDEFINED [No P 17:7: :zn/oi:MseL
L ' D NDEFINED [Seund BELL FTTe
AT 7+Bne -|—:B\T 5 +EIT a4 v 3-|- ewa-{-aw \ -'- B\Tgs—l Feive]l BIT G +Bw s{ama bam 3+ BT 2 Jra.w | +B\T¢-l

. 1/o REQISTERS
CRYT CONTROLLER

1{ PART 2

i
12%0

t+0 2% s 300 €25 150 875 jocco s
+1FC ;
' . 243 65 28 300 529 543 5 7t @3 800 1625 104} locS ierz 1283
2xe T SE, %7 Z%! %) %% 728
= 4“ 6 567 Goi 650 1058 170 3¢
mPug2 707 B2/ vz
56 s 53¢ ¢ot £ 1058 r "1s '
@2-T7. (€) NS 27775 7/, w4 a4 !
208 30 - 43¢ flos 1169 ' |
VMA A0 AN)| za22722777
208 E) 436 1108 168
R/ YA a7
uu\:‘;“ 258 « 1923 122 4+ 4 4 FRom P2s lont worsy
DATA RGD BY MPu (READ)
€42 770 301 1063 TETS A"‘:“‘“QZ;QL
DATA V*“",f":“:"“ (WRITE) A A T // /) YA/ A R
k.2
142 190 165 384 338 400 G42 CS0 ¢¢5 3¢ 888 o0 142 1150 Wes
2XFd -BELAY 1Z B 17| ﬂ_
@ T 1o 1194 226 285 S4a 571 GO Cs4 726 788 losg O 4o Hoy 22¢ 1286
RAS -¢ 7777 R 7.7/, 294) a2 2945, vz
e 47 151 180 292 32 345 C47 ¢s1¢c8d 792 812 84S 1147 W57 uge eaz |
CAS -F 579) A 47 A 1277
' 882 985 0AF 1006 0B 101§
RGFRESH - WRT-F
REFRESH ADPDR FROM MUX HS 68 228 270 285303 319 410 428 CAd 660 T8 TP 785 B3 852 2 228
' wss D] 58 lronns PP A D P Do e
o Ko 188 225 4o 426 4Co cep b T2 e 228 Vg e 1igs 122s
IKFC-DELAY 4 A 474 A A 4779, 7%
L 181 208 255 423 445 #io 18z 1to8 1255
DMA -CLK A7) vy A Y7
' SK 5 3o €32 a4s 655 :
S HOACHER-WRTE - 22 7
9 cor T 78t
* CACHE WRT ADR aLo JUAL A NREW
L . 65 42 35 8¢5 o2 1035
”""%f:}ﬁ%“ READ DATA Vo7 o ooz mes
; REFRESH MEMORY
s : TIMING DIAGRAM'
. Assuurhonsz Where Min Net Supplied it 18 calculated as
D Where MAX Not Suﬂ-u.ad W s Caleula¥ed as 15 1.g(noM

128 25¢ 31y Spp 625 1s8 81% \asp Hzs 1250

wee T Ll L. 1

L2543 65 2z 283 38 529 543 565 172 163 8ap 1915 1p43 19¢S 1272 Res 1386
2XFe A 47| 475 47] A
‘ 58 oS¢ 136 5C¢T Gel o5¢ 1938 \goo \\3¢
MPU - @2 VX7 A | /)
£93 ur (75 53¢ 11 353 036 (T Hrs
pe-TTL A7 15 777475 A7) /A 1!
: - N 245 3ig 436 nes 1Hes
VMA ; R/W , ADRS /A G iz
. 258 99¢ 1Y A FROM g2-0aPy ¥ iﬁ-:?
DATA RQD BY i
MPY READ
> L] 267 166D nag
DATA VALID FROM A G SIS L 220222227, & FRom T

MPU WRITE

MIN 3V
133 3si 428 12 184 THPe2

READ STROBES(F)

Vzzzzzzizzrzzzzzz Vazrzz7Z,

896 9#¢ 922 p1S 1922 1935

WRITE-PLS F

o -

VR

47 7

I/0 READ/WRITE
TIMING DIAGRAM

a——

BLANKING

-— sp AR Loty —e-
CHAR . CLOCKS ———ow

HOR\ZONMTAL Fb“ |

s~mq

. &
o

65 66 CT ¢s

HICH SPEED
BUFFER. S\,

(noRiE. ¢ #16)]

VERTICAL SNC/
BLANKING

N3t -

EouT

I“\ 1‘0 - -
g
[T W
PrYINN

A L .y

Lyoaecaldl o

TIMING
CRT CoNTROLLER

RO-5TBF

MPY-03
REFRESH-DB

MPY-D2
ReFRESH-DA

MPU-DY
REFRESH-D9

MPY -DP
REFRESH-DB

UEDCL-NRTPF

RO-REFRESH-F

3F3CE - ROPF

2XFC
B 2z-TTLL

MPU-D7

MPU-DG

TSI e
t
LS, A 7408157 —q™ m
& T AL e
\§ a8 Muy
L1 2 b el
214 410 WS
P TS VY _1_1 113D Qe
814p 4Qla
3{2a av il 135D sqp2 . 08-8
Glas ‘Hep oals DR-A
wlza lyp vefle DB-9
M-Q.A T
X SPeCiAl.
13| +n d FuNnCTIONS 251
ReGISTER
{k R T L
_%{__..bs 6L
_k—*‘“ 3w
T4, Sd4 TALSP2 k w 2L
| .
k B ,, .
Tars82 J\\b& PB B L
4318
- EN-AUTO-RD
vdd
! 74374 A
T
D e
SR
ENABLE Qle—
AUVTO [T
READ
/e
yco
(d
Y T4LST4A
56T EN-AUTO-WRT
Dex
EMABLE q
Auyo
WRITE F/F Qe
vece

SPECIAL. FUNCTION
REGISTER.

CRT CoNTROLLER,

151 cas MororoLA
21A7 McM 66334
13ja¢ 200Ns Accsss,

lafasg
1 ae RAM

12| a3 2. XX}

Da-3 2 Ib,

Deuy - REFRESH-DZ

3 {wriTe
A4 RS
18)cers

MoToroLA
% :67 WICM L633A

-] N
I lae
121A3

2KX

bB-2 2D Dyuri4

— e REFRESH- D2

3dwrite

4 4RAS
is MoToROLA
e UCM 60338

13 A
18{A

5 RAM
2] a, 32%X

ouy - REFRESH -D|

REFRESH-WRTF : 3dwrite
RAS‘ < & RAS
CAS ~F 15]eas

REFRESH - AT 51 A7 MCM (o334
REFRESH -AG Bac
REFRESH-AS 19} a5
REFRESH-A% 1 ae ;z:&l ‘ L)
ﬂEFRESN'A3~ — 121A3] S _““ o _*‘—""vj"‘-‘—-'-ww'— - UV S
T TReRRESH Nz T oo - 4 b claz e e Tl ‘
REFRESH= Al 71a e e e

REFRESH -AQ Siag- - T } "

b 2D, Dot REFRESH -BD@

REFRESH MEMORY
RT CONTROLLER. .- =a
PN 16 2 YSS - GND e e e

PIN_8 * VDO~ _+SVDE - R

wWRITE
4 RAS
5] cag MoroRolA
A1A7 McM 66334
13lAae 200Ns Axuss,
lalag

12]a3 BZK“
Sla2
Tiay
5| axs

DQ-'X - BN

Seur e REFRESW-DT

3 {write
RAS

rs MororoLA
:Z mcM bL633A

A3 ZKX | 3

[
Al

maaa:a;lﬁ

be- 6

N
v
H

Tour P REFRESH- D&

wWRiTE

134

4 4 RAS

~ LA
'54 CAS Mamko
12

13

16

A pCM G334
AS '
1] As
121 A
SlAz
Tlan
S5|A®

RAM
?ZKX {

-5 20w Dy | —— REFRESH-DS

REFRESH-WRTF . 3 {rite
RAS- F RAS
CAS —F 5eas
REFRESH - AT 31 a7
REFRESH -AG 3] A

REFRESH-AD [CAFSY
REFRESH-AY THYVS

T REFRESH=-AZ - - 12]A3

T "REFRESH -A2 - Glaz
REFRESH - Al AL - e
REFRESH -AP AP N,

RAM
B2K% 1

W~

DB-4 2o, Do [t CLREFRESHDE T

REFRESH MEMORXY
CRY CoNTROLLER . .
PIN |G s ¥YSS = GND - .
PIN_8 * VDD *_+3VOZ S

T

wRATE
+4 rAS
5] cas

Blag

1a]a
i S RAM

A4
12la3 2.XX !

Slaz

TlAl

5| ag

2 by Deur 14

MororoLA
MM 66334
200NS ﬂ«q;

ERLNLTE 1
24 rRa%
154 CAs

13{AS
T :+ RAM
2 ZKX)

A3

Pr-A

=-9

— REERESH-DF

OTOROLA
WCM b633h

2 D bou‘\‘ 4

L 13 Jwrite
+ RrRAS
S1ens

3] 4

181 A

5 ‘EAM

2} Az iZKX |

REFRESH-D R

TOROLA
%ZM o338

- REFRESH-DO .

-8

EFRESH-WRTF . 3 [omare

RAS- F tlRAS

CAS ¢ i 'g’c s

ReEFRESH ~ AT 3 :Z

REFRESH -AG i

REFRESW-AS s :4' =

REFRESH-A4 el|B
- _REFRESH=-AZ - - 12lA3 -

T REFRESH -A2 a1 —
REFRESH~ AL ; N - T
REFRESH ~AP A)

2 blﬂ bﬂuf L4

et e e amita—en

REFRESH-DS

PIN IC 2588 = GRD
PIN 8 *VDD'*_+SVYDC

REFRESHR MEMORN L
CRY CoONTRALLERS -

(At

NN

$F3C2 WRTPE

MPU-D7

MPU-DG

MPU-bS

MPU-D4

MPU-D3

MPU-DZ

MPUY -DY

MPU -D @

EF 3¢ 3-WRIPE

DMA-EN,

@2-TTL

2AAFC ~DELAY 4

D-ToP§

Tenrp T93163A
10 ENT 3T
9o CTR
T4 Vee '2 LR carmr'S
F'q TRSTATE S Gk
1
h, LW [oeTAL
o F/x elo avo Il
5l ac |12
3 \D 1Q 2 4 13
4 5 B em L _DMA-AI3
20 2Q
3ia oA |14 DMA-AIZ
T]lwo a6
8 4D 4Q 9
13 sD sa 2
¥ lco Ga|!s WP eT] | TeseA
17 16 101Nt
7 T | sl |CTR
8180 8all9_. L ! lag
15
2] ux avRY
veée Clo an ! o DMA=AL|
Sle ac e __DmA-AR
tle as |13 DMA-AD
31a aA Mt DMA-AB
Top oF SC¢REEN
REGISTER,
Zlenp TASIGIA
[olent 8
ajwo LR
\
TALS3TA Yee 3 ar LarRy {15
! | rrisTare 2SN
1
>CLK OCTAL ¢ " -
o FiE D Qo DMA-AT
2 5]e Qe (2 DMA-AG
3 1o '] tis as |3 DMA-AR
4 s
b 2 31A aA & DMA-AS-
I13p 13qle
38| 4D 44 |9
[) 50 sQ 12 vee
141 ¢ 15 Tlsnp THGIEA
) D 6] . " [NS
Il 1o 1Q > Lo R
Bl gp | L1 dew 15
2lox CARRY
Clo qo ! DMA-AS
. St e Qe L2 DUA-AZ
ALk Tele et DMa-AY -
T4LS02 T4Ls00 \ 31 A QA1+ ~~un:-~A'o~ ————
’ ’: I S o . - —— - Ve
' T1~10-18 t‘l‘;‘..-g)) .
ox<oror “OMA-ADDRESS COUNTER -~
. CRT CAONTROULER.
[Bat XL 2

¢+ 12-8-2T

Nec

DmA-Re
Ne

Ag-7-H
DMA-AL4
DMA-AG
AB-14 -H
AB-G-H

DMA- AlS
DMA-AS
AB-1Z-H
AB=S -1
TMA-AIL
DMA ~A 4
AB-12-H
AB ~4- H

DMA - All
DMA - AD
AB-I11-H
AB-3-4
DMA-AID
DMA -A2
AB=10-H
AB-2-H

4XFC—F
@2-TTL

DMA-AQ
DMA - A
AB-9-H
AR 1=

DMA-AS
DMA - Ad
AB- -1
AB-B— H

7418153

MuX
2

Ica

1y 7

—+»REFRESH -A7

[
S
411c2
3

13

‘6] 2ca

iz

—= REFRESH-AG

2lac2

13]2¢a

{
p—q ':G MUY ,7“'5]53
4-1

—a—3

\ca

fep }»'A

e

Ve2 17 upy -m$E8
Veald *v Inéa

-- 8¢ |®

\[4] T

—= REFRESH-AS

¢
3
4 lier
3 ies

18 1acg

I |2¢ 9

12 |2¢2

13 f2ca

le MUX 7415153

4 A 4-1

{{J]

= REFRESH - A4~

2
6
S Hey
4 ic2

3 |ies

URFLE 9

= REFRESH-AI

12 | 2¢2

13 |2ea

|
+—— IG MUX T4LS193

342G
1A 4-1
B

([

il 7

»—REFRESH -A2

5
5
42 Iy
3]icy

8) 2cH

1112et Y

= REFRESH - A|

12l2cz

1312¢3 ST

e

[

(mav REQUIKE S 1S3 o c..e.,;.x.;g
Duwve

DA -2
DAA P 7 -10-1§
St b ya.ia-z9
seL b (q.25-38

REFRESH MEMORY
ADDRESS MUX
CRT CowTROLLER

e-REERESH-AG_

13

P-TTL-F— —— ~— -
e
TALA1G9A
’ .
p—oqJ 9 DA -6
SYnCHR oML
pex b7 eane
vee i
L Tt gA _GKC!..I.Q DMA -ENF
RISTER-SYNC -2 T
@2-TTL N o
E1%
MLSEA L dx Qb ”?Nm;“tgmu vée Iy iw
cLR, / o
>d& w‘f?n‘f;.s
K ab- Y1
vee 1mswen Lan
THSIGIA
ENP
WIgNT [4-miT
TLses 24D [ewmr
. TALS B4 vee Jex m_':_
2 \S
2YFC-DEWAY-5SE | v CARRY [>-
Yee 1) qo ! WRITE-RAM=-AT
_1c ae |12 WRITE- RAM-AG
B as |3 WRITE - RAM-AS
A qr {14 WRITE —RAM-A4-
_:'I‘
THRICIA
ved Ilene
L9l ent 4wy
34D [ueR
—Lqd LR
2K e carmy 'S
¢ip ao (N WRITE-RAM=AZ
3¢ ac |2 WRITE -RAM-AZ
—TIT ud Y q {13 WRATE - RAM= Al
3ia oA {ls WRITE -RAM-AG
REFRESW MEMORY To CACHE
-MEMORY LINE COUNTER.

(esc-132) |- =123 _ . S e PO

&

. CETS CLoeh8D BEFORE DMA~EN ,

14

T4LSO4
{>o 4rre-F
o
IXFE-
yee 2x#C- DELAY DELVAY-4
diean | f MLsEe s T aase-
2x5C I ‘T9 E ' DELAY-SE
+xFC ASSURE TiMING MARGIN
L
T
yee
741500
TALE 04
N T4 sie
RAS -F
Tavsps
B2-TTL SN
MPU-ADRSF]
T4LS B
@2-TTL-F —
DMA ~ENE P ==
74 LS\
T4 LS00 CAS-F
TR
T-um?
THLES
{> |
REFRESH -
N\ J WRTF
CBR/W H J TaLS i
/ TaLSg2
%a‘s SIGNAL)
-Bu il
ﬁum-w&wi r}
TaL 14D Sig‘'s MAY B RQD FOR
CAPACITIVE DRIVE.
wr CACHE-URT
- : J @ J s
e - = J -
BrA ~CLK I>Ch TaLS6R - -
X. 3b -
d}f
vee REFRESH MEMORY

TIMING LoGIC

2t

: 15
FARCHILD
D342
Blesi
PuLLUP Iies2 (oo
B40¢ | 2sexa
28 we
T AT
P
S |as
2 Ias
U TN
2la2
ER TN
+lag
REFRESH-DOR Sloe o4 LI e CACHE DR
REFRESH-DA 13in3 o3 4 - C ALHE-DA
REFRESH-DS 18}.73 o7 He — CACHE -DD
REE RESH -DY 2 oy & —e— CALHE-DB
FAIRCHILD
DIL422
19] est .
\T ¢
leq os!z R:h4 '
20 WE 256X 4
T a7
S iac
S |AS
2 [ae
1 A3
2 {a2
3 Im
4+ N?‘
REcredH-D7 1S [ne o4 i - CACHE D7
REERESH-DG 13 o3 o3 {4 CACHE DG
REFRESH-DS o2 o p2 CACHE-DS
REFRESH-D4 2Dy o\ i3 CACHE -DA
FARCHILD
- 23422
et
s g Jes2 o
CAcHE -1 - OEF lajoe 2sex4
CACHE ~i= W 2@ {WE
CACHE-|~AT 2 AT
CACHE-\-AG < Ine
CACHE-I-AS 21AS
CACHE~I-A4- 21 la4
CACHE-1-AD Lir3
CACHE-I-A2 g a2
CACHE=1=Al 3 |ay
CACHE -1- Ag tine
2eFRESH-D3 1S iDe o416 o CACHE-D3
REERESH-DR 13 loy oall4 CACHE-D2Z
REFRESH- D) o2 ofi2 CACHE-DI
REFRES H-DB D oy Q\ Ug CACHE -DZ

CACHE HI STEED RAM
- CRT CONTROLLER,
#4

RIS o

- lo

FARCHILD
231422
Blest
PuLLu P 1Tlcs2 TN
Bd0€ | asaxe
224 we
T lAT
OO PR~
S 1as
2 |as
1|3
2 la2
ERTNY
+lag
EFRESH -DB 15lnd o4 8 > CALME-DB
REFRESH-DA 3lo3 o3 H4 - CACRE-DA
wreestH-D9 1.7 oz I2 —e- CACHE-DS
REFRESH-DS 2o o Ha —— CACHE-DS
N FAIRCHILD
23422
19) e
7 [es2
IB_d o R:M
28| e [236%4
T iat
Clas
S_IAS
21 [A4
a3
2 |a2
3 Ian
sl X 4
‘EFRESH-D7 19 lne 04 116 cALnE DT
erRESH-DE 3 o3 o34 CACHE DS
/eeRESH DS o2 oz 12 CACHE-DS
epRESH-D4 2 1o\ o\ e CACHE-D4
FARLHILD
BILAL2
2dcs
- 1 lese o
AAcHE-2-0EF 18 lae
~— 256X4
AGHE - 2-WRTE 22{WE
CALHE-2-AT 7 AT
ZACHE~2-AG6 X
ACHE-2-AS 31As
TACHE-2- Ad 2! a4
ACHE-2-A3 LIn3
IACHE-2-A2 2 a2
AdHE-2.-Al 3 ia
AdHE-2Z-AZ 4 |ap
EFRESH -D3 S [ne o4li6 CACHE-D3
e FRESH-D2 13 loa oa |4 ~—— CACHE-DZ
EPRESH -y ‘; D2 oz 12 CACHE~-DI
LERESH DB o o g CACHE-D®

CACHE Hi STEED RAM
CRY CONIROULER

wZz

CLoQx.

256-182= 320123

T
15& ‘?}—
>m|
X 9 HORIZ~SYNC—)
CAR,
el
vee 14 LSIGIA
e [0 MooULe (92 RL.AB-RAM-AT
i Sty ' READ-RAM-AG
e READ-RAM-AS
-b——cz LR oyl 18 READ*RAM-Ad-
- cx
Gip qp M
4B o3
4 YN @
3la aa 7137 5
) .
THLSIC3A vee
\J A [
o READ-RAM-AS
Tlenp
lotenT ‘E‘S’? e o-READ-RAM-AZ
READ-RAM -Al
i g ’ 2 READ-RAM-AZS
PSR ey 15]
2 haw |
tmauwga‘
S1D Qo (1 33,
114 qe |12
4le a8 113 reL508
3iA QA |14
NEe, .
g HORIZ-BLANK.
> X TALSI10O9A
K glo—
C‘i-&
vée

CHAR. CounNTER,
crx. CONTROLLER.

. .7 - READ-RAM-AZ

T4LSIST

-—CACRE-2-AT

CACHE-2-AQ

CACHE-2-AS

— CACHE-2-A4-

MUX
2~

(23 KV I (113 P
x

14 i4A

1348

2y

3y

4y

T4L3ST

» CACRE-2-A3

o CACHE- 2-A2

o CACHE-2-A\

SeL_,
N

J:——q sTRe

My
2~

1A

WRITE-RAM- A7
READ-RAM=A7

WRITE-RAM- AG

2z
3he
5
[

READ-RAI~AG

28

WRITE - RAMSAS.

U ETN

READ-RAM-AS

K- B E-T%

WRITE-RAM-A4~

READ -RAM-Ad-

BUFFER-SEWL

2y

v

4y

CACHE-2-AH

TALSIST

#~CACHE-\~A7

- CACHE- I-AG

o CACHE -| ~AS

WRITE-RAM-AZ

MUX

WRITE-RAM-AZ2
READ-RAM-A2,

W TE-RAM-A|

READ-RAM-AL

WA TE~ RAM-

READ-RAM-AL

- CACHE-|~A4

TAL3157

T CACWE--AS!

— A CACHES=AZ -~ - - -

cacHe-I-Al

" M * - - L.

e CACHE-V-AZ

[AoDRESS MU X
. CRACHE _RAMS

CHRAR-CLoCK

L~ MARGIN
R-MARGIN
VERT - gwNd-|
HoR1Z2~BLANK-|
CACHE-DB
CACHE=DA

CGAD-BLNK- =

CACHE-DES

CACHE-D?

\ 9

LMARGIN-TTA

R -MARGIN-TTL
VERT-SHNC

HoR12~ BLANK

HALF -INTEN-TTL

CMD -BLINK-F

CACHE-DG

CACHE-DS

CACHE. ~D4

CACHE~ D3

4ACHE -D2

CACHE -O\

CACHE-DS

HORIZ -SYNC-2

- REV=-VIDEO- TTL

o UNDERLINE. -TTL

CHAR-G

= CHAR-5

CHAR~ ¢

CHAR-D

a CHAR-Z

. CHAR =Y

o CHAR -¢

SCAN-3

SCAN-2Z

SCAN-\

LEAN-2
- -QURSOR~IF -

HoRIZ~SYNC

}7

- SCAN~-3A

SCAN-2A

SCAN='A

—SCAN-BA

CUuRSoOR -~ -

14L5374
! ,,msmv
n OLTAL
DX | e
ET.Y 1Q |2
4i2v 20(5
T 3 3q S
8 l4p 42
13}50 sQia-
“icd cq \S
Tlap L)
18 |go aq |12
T4L4IT4
' JTrsre
~ OCTAL
>L\.K ° FF
3 a2
41 als
Il3p By
Bl4D aq |2
3isp sa (12
“lep Qs
17] 1 70 |18
1Blgp ge |
T S374
[}
TRISTATE
.r-\-: QCTAL
Ok ! ore
3ip Q{2
mdba) 2Ql|s
713D 3Q1s
34D 4Qi3
3150 sQ{i2
hd £~ SQfls
- lypT 1gls
we 188D /D _

PireLUNE REGISTER
CRT CONTROWLLER.

"Page missing from available version”

RALF-TNTEN-TI
REV=VIDEO=TTY_

UNDERUNE-TTL,

BLANKINGF

DoT~-TTLF
DOT2-TTL"
DoTa-TTLE

DOT4- TTLF

CURSOR-F

DOTS -TTLF

DeTA-TTLE

L-MARGIN ~TTW

R-MARGN-TTWL

21

o HALF-INTEN-&

REY-YIOEO-B L\

UNDERLWNE ~ELLL

10124
[TTO~=geL)
! g
d — !
)

I _,LP_
st l2
+ !

l < l I
IOE — M)

' 2 e
ol — s

: L 3
C t

-—D0TI-ECL

o DoT2-8CL

o DOoT3I-ECL

o DOTA-ECL

- PoTS-ECL

DoTe-EBCL

lo\zae
MYTu>ecL }
i '
]
71 —— i
! Ll 3
5 E 2
. L
T
\o : 115
T]
! 42 1x4
1
W 114
: { 2 "3
[L
" \
[l |
L o e o e J
10124~
; TTL-=gcn 1:
] t
7! — !
1)
| ,L 13
' ,
S e 12
[]
: L
))
10! =\ 1S
; [l e
1
w ——— ‘4
1 2 h3
c! y
: '
R |
10124
res - -—-~--—-- A

TTLeECL !
o T]
1

!
|
'

J
-

IL-MARGIN -F

r
' l !3
|
S 1 | — !2
: Ll
Io! — e
L ! i
1 e
1
w —— jie
' 1l
6! ' .
T
'
1

i

r
|
|
|
|
]
i
[}

R-MARGIN=F. .

TTL To ECL.
TRANSLATOR.

CRT CoNTROLLER.

DOTS- ECL.
DoT4~ECL

VAT -G

DT~ ECL

Dovi-eCl

PULLUP

p-1 YT R NN
sa Bl ¢ MGHT

18 oulgT

«*
+ als

SER 14 sHOLD

" ®

R-SER

c o

10141 ECL
SHIFT REG

R-MARMN-E

- CHAR - CLK

S

_Q-A QA-‘”

28 QB—a-.. D
")

3

L~MARGIN -Er

B o8B

014\ ECL
SHIET REG

B3 a.!.v T

v

L-SER

ﬁ G‘}°° -1
oy s RIGHT
SB)10e erT

p— _._4_1)(‘_&

x2_|R-SER
') S la QA

*i.5 98

11 e MoLD

yoiret ECL
SHIFT REG

H e Qc

2 D Qo

DoT2-gcL

3
2
s _
14
s '3li-cer _l

81 oo - LD

o\
SgJ Vo siefr
'

[YT SN T A
SWIFT REG

R~SER,

5
CA_‘: Qa3
alg - - o8 2

Wile - Q’CE’V

OPENS om ELL 10,000 »L0GIL B » Acceptable
Ae.tl\n ?fﬂhte.

#12ln . qo|l*
s Bli-ser

N

+
‘

‘W———LMD'F

¥ \ CUARANTETS
oD Twall

L DoT SHIFTER,

RAW-DOTS

DOT SHIFTER &
TWMING GENERATOR.

CRT" CONTROLLER: =7 7= =

23

&
= oe: Wb
\OAD-F W sa‘k Festvill 1014\ ECL
BoT-CLK * bew TR SUPT ReG
* SiIR-SER
REV-VIDEOD -ECL Sla QA
HALE - TNTENF Sia (1.3 :
UNDERLINEG -ECL itle Q¢ 'S
1 Blo Qb |\
r3lL-we
Low * REDUCED
mﬁusﬂ"((/,
oo
INSERTS
Y2 oot 1=
{HAU- omLyY
et
L-MARGIN=-EN® _af~ o }
L -MARGIN-F 10102,
1NSERTS
% Dot 2
WAL
i onLY
RGIN-ENF D—f}
-MA - p
- -F Dot |
RMARG N loloz \/atx HALE |
oLy |
| VMO RLIE
o107 P
o102 } A
X e) SR TR
RAW - DoT g ky 4 e 8.5 7 G A\t \é“g_e\?
4! * DoV Q *DoT Ir

3

* NOTE: OFEM MPUTS om ECL 1000G = LaGiC @
SACCEPTABLE DESIGM MT‘C&

SPECIAL FEATURE INSERTION
CRT CONTROLLER,

2.4

TaLSp

},. CMD-BLINK-IF

TALS\D

P_.cu&So&- \F

ot 1T $ 1y

T4L31C3A
_Tlenp [4B7T
1Slent TR,
vée LSO LD
‘d LR
2l ORRY 1S
wee &lo op L
Slc qeliz
8 Qal'3
31 oalle BTS¢ e
CACHE -D2
TALSSIA
En-CNT N rocyg
T IQIENT CTR
VEC —-24 LD
g
HORIE - B8LANK 2h ek
vee__8in qo U 37sxgec
Sic Qe b2 7.5 x s&c
N —
8 Qa3 15z
21a QA+ 3axsee
{URSOR-RAW - - .]
TeLESYP
SCAN -3 . 140882 - ;, -
SCAN-2 . 7
B i - A
SEAN-

T BUNKING CouNTERS
CRYT" CONTROLLER

— (‘e._, muddie 2 haed of Jﬁéaﬂ‘e—f-ﬁj o

29

—n L MARGIN

R- MARGIN

741889
Ve 3Sjass I
41A>8 [cmer
B
L‘MKRG‘M‘A‘7) A¢
L-MARGIN-AG V2 A
I -MARG IN~AS (YN A A |G
Lo~ MARGIN -A4- 31A3 PeY- 1]
READ -RAM-AT olag ARH
READ-RAM~AG t] e
READ - RAA-AS nd)22
READ -RAM-AE 183
A=B -Bi T4LS 8%
2Ia08 | ewr
2! AR
L“MA&G \M—A3 19 A
L-MARGIN-AZ AN
L= MARGIN-A\ 3laz A-& |6
—-MARG N -AG 1S1A3 A>B LS
READ -RAM-AS 3lag ABUT
READ -RAM-AZ- UM R-Y]
READ-RAM-AL 4+|a2
ReAD -RAM-AR a3
3] A
vee 3 :): LTl veses
Ems _
R~ MARGIN-AT 18] Ap
R-MARGIN-AG 121A1
R-MARGN -AD 131 A2 AsB S
R-MARGIN ~mde ISina Aels
READ -RAM-AZ 3l ag AT
READ-RAM-AG LRE-V] '
READ -RAM-AS 4la2
READ- RAM-A%: \la3
31A-s [Far sas
=l ave | ourr|] 7"
L&
= aul
R-MARGIN A3 g AD
R-MARGIN-AZ 12 1At
R-MARGIN- AL 131az A |6
R~MARGIN-AZ \5![A3 A>a |5
REARD RAM-A3) '
READ RAM-AZ e
READ-RAM-A| #laz
- READ-RAM-AR " ERE S : P
]

MARGIN DETECT LotiC

2b

CURSOR - RAW

74L58%
Yee 3As® [T
4|A>8 jcmer
2]ALB
e 8/ Ap
CURSOR-LINEG V2 1AL
CURSOR-UNES B3iAz AsB|6
CURSOR-UNES 191A3 ARID
<
vee slee A sl
YERT ~S\Y¢nC-! ILINE ~AQ 1Wen
LINE-AS 1182
LINE ~A4 1{a3
A8 +-81 T4LS 85
4IA>B | ewr
2] A<8
CuRSoR-LMES 19 | Ap
CURSOR-LINE2 12 |Ay
CURSOR-LINE) B3laz A-a |S
CUuRSOR-LINE & staz a>a |5
LINE-AY 2ina A<5r1
LINE = A2 UNR-Y
LNE - AL 4laz
BUFFER -SGL 3Lms As ' B3
a8 TR 741585
4iAsa CMPR
2{Ac¢B
CURSOR.~COLY 18] Ao
cuRScR=-<oL e 1AL
CURSOR~-COLD 131A2 A3B 1S
CURSOR-COL+ LIPS MBS
<8
READ = RAM-AT 3lgg ABP
READ-RAM-AS et
READ-RAM-AS 4l a2
READ=RAM=A4 \n3
Siae (BN L, <as
X1 A>8 CMPR
E ALB
CURSOR.- coL3 1?3 ap
CURSOR- CoL? 2t
CLRLOR-Call 13fa2 As |6
CURSOR~-Cov@ 19{A3 A>a |5
ALB
READ-RAM-A3 Slas -
READ-RAM-AZ URLY]
READ~RAM=A\ (<d[:%X
READ-RAM-AZ a3

CURSOR. DEeTECTION
COMPARATTOR.

vy -

ABZ-H
ABI-H
ABRG-H

CBR/W-H

+xrd
2xe ¢
PL-TTL

ABRID-H
ARI4-H

ABRI3-H
ARi2-H
ABA-H
ABRB-H
ART-H
ABG-H

CEVMA-H
ABS-H

ABY-H
AB3 -1

ABIN-H
ABIP-H

T41310g

4
628
Gl ©
3t
<
2ln
‘A
yrbl } ®3¢F- RDPF
Yep? 4F3CE-RDPF
Lewt Ysple 8F3CD-RDPE
we va il 8F3C<-ROPE
> Y312 BF3CB-ROPE
1% N NE $F3ICA-RDPE
Yt 1¥3(¢a-RDPE
Plo $F3C8 -ROPE
T4
T4LS138
)-‘r ;quA 39
p—29G2| |pacone| °
(3
E2r
lle
A
T bl e AF 3R -WRTPR
Y6 2 —>3F3CE -WRTPF
¥ s — . §FICD-WRTPF
=Tl 7aus3g Y4 1 AF3CL-WRIPE
] v3pe $F3CB-WRTPF
Y2 i3 e VF3CA-WRTPE
(R e BEICD-WRTPE
—] 7418138 Y2 o 3 F3CH ~WRTPR
TAS e B (3-8
2 q628! DECODE
S lo
3
2 < Tas138
B
\ A : I 3+
628
T4LED2 Y1hlo o o DECODE
Ye 2 3ra
- Yshie 2le
¥4 |yt 1
w3l
Y213 Y1 $1F3CT-WRTPF
“ibae Yo 1 F3CG- WRIPE
Yolis 5o — §F3CS-WRTPF
Yal, 4F3C4-WRTPFE
/ Nt € F 3L 3-wKTPE
RO -STRF Y2 lo—o 8732 WRTPE
Yo AF3CI-WRIPF
ht] $F3CH-WRTPH

BASE ADDRESY = 3 F3Cp

REGISTER. ADDRESS.
DECoDE AND WRITE.
STROBE LOG'\C

dRT CONTROLLER.

"Page missing from available version”

29

1405374
ﬁ‘ | TRI [ocTAL
EF3CE-WRTPF e B 27°
MPLI-DT7 Zlw qi2
MPL-DG $l2e 2qls — CURSOR~ LINEG
MPL-DS 1iso 33|C CURSOR~- LINES
MPL-D4 8lev 4q2 CURSOR~ LIKES
MPU-DDY 13/sp =q[i2 e CURSOR -~ LINED
MEU -T2 leo calis CURSOR-ER
MeL -~ OL Tl Tqle e CURSOR—LING |
MPU- D 18180 8q{)2 o~ CURSOR~LINES
141.$3714
‘dTxx [ocrAC
£ F3C) -WRTP™ =~ HhawlREE
={m® Q{2 CURSOR-COLT
4 2qis CURSOR~COLG
2|30 g€ o CURSOR~COLS
Blap 4ql2 CURIOR~COLA
3Isp0 sqi2 — - CURSOR~COL3
%icd eqlls CURSOR~COLZ
7110 1qpe - CURSOR~ CoOL|
18iew sqt curdor—Cowp
T4LEIT
' TRX [oeTAL
BF3C4 -wRTPF T Seax ZFE
3l 1912 L-MARGIN-AT
+{2v QL3 L MARGIN-AS
Il 316 L-MARGIN-AS
8l4p aqlo L- MARGIN-AA-
‘350 sql2 o~ MARGIN-AD
ialep gQ|'s L-MARGIN-AZ-
Il 1le L-MARGIN-AL
i8lgp eq|'2 L-MARGIN-AB
TSIT4
'
TRI [ocTAV
EF3C5-WRTPR il ml” ‘"’l
3 o 1ql2 Ro- MARGIN - AT
£i2p 29[S ~R-MARGIN-AS
1130 @ie R-MARGIN-AS
814 wqid o REMARGIN-AS
3isp =mqp2 R -MARGIN-AD
+1ep GQlls R-MARGIN-AZ.
21y rqps S~ RMARGIN-AL
_IRi8D sql® R-MARG IN-AD

8 F3CG~WRTPE

e EN-AUTO-RD

m—ENTAUTO-WRT

7413374
1o TRL
Tl 5o

3w _1ql2
nd E1. T]
1w 3qle
8l4v 4qla
13150 sqle

4ied. <qls i BEOOLED TwYRWAITY o GPECIAL-Z : T

7170 1q‘l= —pimen

BPRCIAL-L.

‘Rl8D 89 - REY _vibeo

SPELIAL-D - -

MARGIN, CURSOR.y &-
SPECIAL. FUNCTIONS
REG\STERS

.
'

CACHE -|-OER

CACHE-WRT

CACHE-2-0EF

CHAR -CLk-ECL

30.

T4\408
—\
CACLRE-\- WRT
L/ F
TALERD
Yo- LALHE-2. WRTE
\@\2s
| QuAd -

i
! |
1% \ |
1
] 113 CHAR -ALOCK
14! |
¥ }
) \
) ‘VBE:‘ .) _
] i T 1-- - P -
! H
I '

CHAR .CLOCK BUFEER ¢
CACHE WRITE SIROBE
Logie ~ CRT CoNTROLLER.

VIDEOQ
INPUT

SHELD

i
Al

[T EN

o (=
4
F
ca
.Ol\'F RG1 L4.
cr 26 220a $
- NA153 .474,"
u;g
INAL L I}
3%on $ 2004
RS7
Son N » ViOEo
ORWNE
N2 LN N) . ¢R2D
AINYLVS
3 2 RGY
|, S—
> C., L & 824 crRzé
‘ MClone INALSY
—_) ; McCloWe -5v
N ECL. LINE ReVR €L, LME ROVR o
L\ 4 e
)
. K
: 10 T =
] CALSES QTHER
. > /> “% xisTor To TURN OFF
. 1 < HARD
s RG2
if RSD § »eo MCIOUE V801
o 2304 $ 3Bon ECL LANE RCVR
8 (Re4s 334 |l RC3 27:1)
1; \Sa
v -av B Y

Zdooa

REB: RED=2RI0* R #RI2

RCAURGAURIOWRT g R72

VIDEC TDRINE LoGIC

REDRAWN FRoOM
CPTY CORPORATION ¥ 10107

MPU-D7 ot

MPU-D6

MPY-DS

MPU -D4

XXX

MPU-D3

MPU-D2

MPU-DI

MPY-D¢

Ve T

DB C

B 5 L

vy 4 L

B 3 L

VB 2 o

DB v L

DB P L
x:\tguswsuw\
DATA BLS

REFRESH-DO7

)
)

aT28's

REFRESH-DG

(

REFRESH -D5S

KEFRESH - D4

REFRESH ~DI

REFRESH- D2

KEFRESH - DI

REFRESW ~Dg

C BR/W H

SNNNININ)

hEASY X"

L3N
mPs READ

T4LS04

AB-14 - ___4[>—‘__‘

AB - 1S-H
VMA

T4\

T4LSS4

o RD-REFRESHF

-MPU-ADRS F

B

$

BASE ADRESS $8anx

DATA BusS BUFFERS
4 REFRESH MEMORY
ADDRESS DECADE

8738

L\&L
TaLS04

%———DB 7 L.-
1= 3CA-RDPF

-

Nce
T4L81 l
1A TeLS\D
MPU - D@ b‘“q
ek 3
MASK ap-
REGISTER cL]
RESET- L
T4Lsig
#F2-TTL-F
vee }
741804 i TR gTon
SET SET aEeT
)) © IRQ-
$2-TTL %> N THSTHA M ‘:mb ° ?F
>ax bex DK | 7418144
Qlo— L] Qp—
CAR. CLR. CLR
k-]
ch INTERRUPT
REGISTER.
Sgcnr 2 RE 181
P oM E
TNSES geveoarD STRoER
F3CA-RDPE I }
- V
7413374
1
LF3CD -RDPE TRT {acTAw
TaLSik s
KEYBD D7 {>_, 3o a2 R 7T L
KEYBD-DG b,, 4ledp 2]s DB 6 L
KEYBD-DS [T 1{so 39S ~ D8 5 L
KEYBD-D4 th. e aj4o 40f2 D 4+ L
KEYBD-D3 7 isp sqPx DB 3 L
KEVED-D2 s “loo eqis DB 2 L
XEYBD- D [v RICT I T DB | L
XEYBD- DY | el @: 8lep e |12 DB & L

KEXBAARD
DATA REGISTER.

KEYBOARD INTERFACE
CRT CONTROLLER.

% TIL-3¢8
13JLeo-TsT \:‘WY
r—lcl BLAIK Mfosic
% F3¢G-WRTPF D el W
Ilp QD |3
8fc Qe l2
128 QB [1L
ISia QA 4
2| ve oP |t
=
TIiv 3¢s
‘ Buotst 5
U sk josew
Sq 318 wAsGK
) QD |3
Sle acle LINE #
ols QB |1 DISPLAY
151 A QA |~ r
12{ce oP | M
L
TI-23¢8
\3 {0 TST oG
U JBUNK |oiapay
sF3CT- WRTPE SQ o i J
o qp 2
ele Qe {2
18ie 9 |V .
IS| A QA | £
_L__‘Z oe e M
TIL-3ggn
\ 130T [T
UGBk [oiseing
S4s1e W Aste
-5 ¢ 1io D |2
MPU-D G ale iy
MPU-D & e S \
MPU-D 4 N STy
i2lor oe li% ‘
=
vee
ClosE
FoR \ED
“‘%T TiL-3@8
,L—_OA B Juonr g
= My Bk fpspiay L cormn
Frt —Sgsre ot DISFLAY
MPU-D3 Tz -2
ey _Gle oe 2)
MPU-DA %8 QB |
MPU-D@ ~=lan on £
12 Jop oe |14
Vel PIN 16
GND~ PIN B

CuRSOR. POSITION DISPLAY
CRY ConNTROLLER.

LS$14
e T4 TiL-2p9
Te86
L7 o siea STRING
RTPE ¢ "°"ML‘“——‘¢ A Do——KF—rn— vee MODE
LFILCE-W L cx
QpP—
cLR
vee
vee T4LEM TIu-209
L 146 ,,r(
SET SigsL
S S S
AF3¢D-WRTPE Lex
@ lo—
CLR,
vce
| T4L5374
TRL
17 3¢ L-WRTRE Sl 25
¥ TL-209 ‘o .
a6
veep 310 1942 ! 7 Swea
Hep 2913, ——[Do———Kp—mw—vee
i MEMORY
4D 4912 7406
13 12 N s MODES
5D Sqtlc vee
14ied &plls Full l> K WA—
1o 1Qlle . earA 1426
IBiaD QQ(lD___ Line D>' 7 Ste.a Ve
7/
Tage H]
PULL vee
T4LS3 74
T4g0
| \
4% [oerar A7 sien vee
1F3¢B-WRTPE T Wby [0 FF
vée 3110
‘:4 2D
MPU-DS 7i3p eDIT
MPU-D4 814D vee [MoDeS
MPL-D3 3|sp [—-B>o—k)——w¢v*—
MPU-D2 4leDd c15 uwne 1406
MPU-DI 7i10 T9p€ wosn & swen .
MPU-D@ 8! ap 19 vee
1405
Siga
SHAR, { Do_'q__m_rf . vee
/
KEYBoARD DISCRETE
TISPLANG
CRY CONTROLLER
TEXAS-INGTR.~ TIL-2@% = MORSANTO MVS5674B - - P e, =,

1L1-3D2 - WRTPE

BF3CE~WRTPE

- e 14LS74
T4p0
3eT MEM . LoeK
X
Qlo—
LR
vee
T4L8T4
vee
Tegie

STRING MOBES

vee T4LST

1406

dn.
ML-LED-C

sSig.n

o———NﬂRﬂ/&M&_Dv—MM—C:) we-LeD-¢

S\gn

INSERT { D AAA : IN-LED-C

S\e.n

___D>,,__N\M_.(:DFM- Led-¢

-8

__D>¢_—MM__-: PM-1ED-¢
FULL

Sign

LINE %Do —AA (T)LM-LED-C.

SET
D 9
BEICD-WRTPF Sex
KEY®mOARD MoODES
@ o -
CLR,
vee
| T4LH374
TRL {per
1r3¢C- WRTPE —F.'fx‘ : F/‘;; MEMORY__MODES
T406
vee 3o Q12
4{2p 2q 15
3b 366
4D 492 T4e6
B|sp sefi?
edp &S
] i} 79 [is PARA 1436
11:1£-3 N . ~Y)
1446
T4L8374
i 1436
TRE [perar
LE3CR-WRTPE T Whex |DFF
1436
vée 3tip lo@_
|+ 2D -1 -
MPU-DG 2130 306 7436
_MPY-D4 4D 4912
_Lipy-D3 131sb Sq
_ARY=D2 4led eq1s _vine 1486
MPeyu-Di 711D 79p€ —ond
Meu-Do 8lap 8q[l

EDIT- MODES

Sign

FuLL % D ANAA C::) Fe-LED-C

Sig.a

’-———-—MCDPE—LEB-C

Siga

SE-LED-C
siga

LE-LED-C
slean

WE-LED-C

74¢S ciga

cHAR, D>°__MM_CD ce-tED-¢

KeYBoARD DISCRETE
TASPLANS

CRT CONTROLLER

. MPYZDE

vwe EGS

1
7] S&T 9

9

T4L5' 74
]

T4LSpd
: 3
« PusEER-Ser 2 EI7
THNHE
Tario9
+
6
c. . LINE-AL EI7

o

BelL
FREQUENCY
£/F

THLSIGIA
vee Tlene
-8
GENT éfak.r
24w
DE-WRTEE T - '2" 2:: ey |18
E2% €17
T4LS B4
2
7 . _3axsec vee Glp Qb | ™8
|
pwe 5iC Qe iz
DIGITAL
4 13
& ee p3 ONE-SHOT
21A 1A 1 T V4 see

DuaL BELL CIRCUITRY
CRT COMTROLLER
Vibeo. CARD

Final Report
Contract NAS8-34969
ENHANCEMENT OF INTELLIGENT EDITOR/PRINTER
This report was prepaired by Arizona State University under
countract NAS8-34969 Enhancement of Intelligent Editor/Printer for Marshall
Space Fligh Center of the National Aernautics and Space Administratioa.
APPENDIX
D
A One-Line Assembler/Dis-Assembler for the MC6800 MPU. This is a feature
that is currently being added to MUDBUG which will greatly increase it ease
of use, especially to the in-frequent or casual user. This capability will

allow an engineer to debug in assembly language rather than machine
language.

STTRERALIS RN smiann © e e

"Page missing from available version"

TU THRu TC

AR=TRAD]
A user s manual describinzg The aperacion of A Motarala
M&Z0O0O—Lkased One—line Assemblers/Ihisazsembiier 158 Preszanted,

This Cne—line Assembler/Disassemoler 1s a4 three—subroutine

i

saftware rackage that is desi1aned to increase the
Functiomnal il ad sume Misigi commandss Aand 1 mAan hiAavye saine

other arplicationse ip the Sutin s, The Urz=tine Aszemblzr/
hsassembler 158 capable of trapsiabtins assemulv—lansuase
instractions to mAachine Cades. Aot 3t 37 Wtz Zarahie afF
translacins machins—lanaysse s bructian:s inka assenals—
Tanzyases 1nsbtructinne, fre Aacsazmnl zm portiahn ot The e
line Assembler/Uisassambler i3 similar n FPunchion Bnoa tuwae-
FASS assembler . Th= Bl mas ditdarenas Lrvwean the
sssemblar Portion af+ bthae Upe—lins Assamhler 'Disassenbiar and
A hormad aseInh =T 15 That bhe n=-tinz Aszaombler/
NDisassembler vannot accept labels 19 2ifhler the faocsil fFireld
of the apsrand field, Numeri- ano seli—relaetive valuess must
be trred 1nstead of usins lahels. The manual documsnb s The
One—11ne RezombhlersDisassemb) 57 ERNRT o Eyirm e
inStruyctions. @ Press1ofii. Amidl Ss2udn 1IN ATC L PN . amd L T
Provides anterfacz information for the snternal Moe-line
Assampler/Disassambler seftrwarz facbaze rogbines,

1V) .

Charter Faas
1.7 Introduction s e v v s a s w s s A s aa i

. Interrnal Routines and Subroutines « = & 5 s . =

=. 1. Summary oF Internal Reoubines e e s e &
Y subraoutcine Descriertions e s x e e e a s 7

= One—tine Assemaier Souroe SYynTal..s
Erprzazions, and FPesando iInstructiaons : e = & e i3
4. %, One-tines Az sambh el SouUr e Lanra e 2 o+ 1
P Gpe—iine Assembler B "pressians e = o= s 20
2.3, Yine—line Assembler Fsaudao Instructions . i
4, Une—-lime Misassembler Sryntacs « s = = & = 2 & = 20
F. The Seplicaticn of tThe Lne—line

mbler/Uisassembler 10 MUDBLG e s m x e =4

>
n

n
s

W Thea Arelication of The Snz—-1ine Assemia)er /
Misassewmbler an the “CY Command e : s s a5

Sa . The appiscatian of the CQhRe—line Assembler/
Misacezmbler 1y The "M Command s
Lo Conclustan s 2z s e 4 o« 2 a s 2 a2 = 2 = a2 2 s L

I
S

RIBLIGGRAFHY s e a4 n s+ a2 e & s e = = = = s ® & a =

Uhapter 1

Introductian

MUADBING is a Manibtor=Ubilitr—De8U0N safbwares pachase trhab

heles the erosrammer word with his ar her mac it e e aode
PIHoaram R} e aTarala RTRETM S MLCT ST oL TS SO . T

FOSCAMMEST Can o se The uryliticors afbferzd B M

Aatter. and dahow H1s oar NS NG PGS 8. R L N L T BTG i)
wa s written py OUr, Dawvid O, Pheapnpls wn 1977, Thiz Cne—lins
Bzzemblaer/isassemiriar 12 degramaed dor MUIDEING, Tha w1 1na
fesembler/Uieszramb] =r was writren be M. Yih-l.ianos lien in
1922 wirh the haelp of sompe Frea Tk ST 11 inroarmacian From D,
Fheanis.

‘ Thz Opz—tine Gesemblar /Disassamblar 18 a thira=—
SULT AT I SaFrware Packaas Fhat accypilas 44— wwarids af R,
and 1%t regutres g5 1a47—ward Liloacy oo+ FBAM, it 35 dezisned)
I 23 5a SR Funcrttanal vty Vit cErtann MILTHALG CCImIma] 3,
Espzoraails i hee IR T T BRI il N R — P {1, 2, "My crapusnon A
MEmay s —ume {1.%. - ey T T 1t 1Mo @Aas2s Fie
readabiltity af thia FJebuseinga tranpszcriet Aand heles ih=

Proagrammer debnug mis ar her sagn PT oS Aam,

. .. " The fne-line Assembler/l1sas

- lates: the —

n

sembler tran

machine—ansuase 1nstruction starting in fhe memory Tocatran - -

that is addressed by the XK Yo an assemblv—lansuace

instruction. and the Disassembler ayiFuts Ehee Assaminle—-

language instructiaon ta the terminal. Then the tirie-linse
Assembler allows the user to chansae the assemblvr—-lansuaze

instructiaon kv twvering a new aszssembliv—lan struction,

'ﬂ
,1|
P
1
-
)

The saer can alterrativels beer the asseamni,-lan-uasas

instructian unchansed by theimz anly a terminatar., [rie e

Tine Assemhler/Disassemhler acgozpits the five charactesras MM,

URa. e "o mnd MY oas G xsald LhETr T o Taripmiinetaor, i
user whr attemets T WUse Aany athar Characver @ 0 ewET Foos
abave five charactzrs as Al instructian terminator wiii
FECelve An Srror mesSsSase.

An o assemb! r~lanauase IS T T O T that 1% 1nfeut to ths
One—line Assempler/Uisassemblar thriaal LORYALRS Flhirew
fialds: ar oproge fields o an operand fretds and a terminsbor
Fi1addd. The Usar Carn oy blank characiter (s B Tan
character{s) ar any combipatian of Flanves arg tabs Lozcwesn
two Fields, t least one column aof whlis 2R3 2 15 MsCS38a0
berween the MR ads trala and Tha aRETANT i da Joigee
neczssity for whits sPace pelftwewn the sESsCrAand Frield and Lo
terminscor field desends o the terminator.

A comma terminator tells the ne-line Azzemolar/

Disassembler that it should rext pProcess the anstruction at

the sam2 lacation asain. & carriage return as a terminmavor

taells the UOne—-line Ass emb]er/01= mbler te pPracess. the

next sequeantial tnstructian in memory after 1b Fiotshas
pracessin® the current 1nstruction. An aster;st terminator
tells the One—-line Assembler/Diszassemibler bto Proca2ss the
Pre&iaus seanantial 1nstruction in memory after it finishes

Processins thw current tnstruactiot. & Per 1ad Fear i eor

tells the Tne-line Arsesmblers/Uisaszemblar to retuvrn coantrad

ta the ToE oF MUNBIMS afhaey processips The Turrenat

tnstryctian, Fimaits: a sotadus (Y yerwipacnr 12tz th=

Dne—tine Assambler/Disassemo |l o] abuf¥ Fro.ias831n3 by

returning contral immediatels to the top of MUDGES withoot
even fFinishins the Froczssing Fer FPhe current anstruction,

There are three entr, pPoints far callinsg the Cne-line

Aszsemblear/Disassemhler SOFTIIRT & Fach 9. g~ enbtey Pprnrnb,

) labzled OI=AsM, 1¢ uged s the antr, PoInt ot subrourTins

[EREYARA Y N Siihraunbine TL=A=SM tramslatses a qachinz-lansuass

instructiaon to an assemb! -lansuyazse 1nhziructian and Franos

tha asszemiblir—langsuase TSt Hovion on the user 5 berminal.,

: fhe cother fTwa zedy, sointe. lalb.sled S-MIEEM a500a Aok, A E

usad as the anrey FoLnrs S suybroutine AUMTERM &anu

sutbrautineg ATZEM. resrectiveiv. Theze Twoe subraurines

agsemble asszembl r—lansuyage 1ostructians o madiins cades Aandg

stare those cCoades inta memory. Subroutine ASHMTERM tabes

care ~of the fterminator of- the input assembiv—lansuasae

instruction and adisusts the AR to poipt_to.the locatiaon. of

the next instruction Yo he Processed where the nek

Y

- - S a e B L SV T

4

instruction 1s determined accoardinzs to the itnPrur Lterminatar,

Subroutine arnn the other hand, returns tne ATSCILD cads

af the terminator in the BR tao the callinmz prosram instead

rt

af taking care aof 1

Pu

AafF the Une—line Ascsembler Disassembier

—
r
e
-+
-
-1
0
o
i)
-1
)

s 15 refarred to s,mhaoliralls as ltacavion AZMRLUIM, and thae
fircst ward af the Dne—-lins Savemblzr /i zAazszmol er RYATY 13
similart!, desizanared as lacabion ALMRSM. The enbire Lne-—
Time Azsambler/Misaszembhler Fraad am 15 r bt in 5

ashian, ot canrses 3o o201 oF T3 omemory

Aaddresses can <¢asil., bz onansed To gyl T and cpas1al

g

arplication.

Joraytinegs

The s ' tware

1ncareoaratas

subyt cutinzs

arprlications

rogtine{s) From their own ProRrams, .
The 13zt an the ne-ft FPagse summariz-es the interval Ona—
110 Ppesembler, Disacsembler roubines that are avatlaible]
tha syvatem - WSETE S intirface characteristics such as
calling—-segyanacs taequyiremants Aand Featuyrn canditions are
: fiven ftor <each subroutins in the Famez that o1 1o, MNotics
that the @nftry Faints For thae gaverland sz internal rogtinas
all ST i1 ConsSEcutive joaravions of & vecotar tahle thav
staris at the Fiy st } av thz: Uns-line Azsembdaer S
Basazambler FOHY, This BT tohlx 15 pEravides &2z o
Cconvanlencs o0 thz dusesr -a rhat Ll arnte o -poalntT Address s
Feor the One~linz Azzamoier /Dizassembl2r 8 intzrral

suoraybipnes will noer Thanse Ffron one subi=vaersion of fThe idn

zemhler ta anatheer.

4
a
()
I
m
n
i
A
jul
-
fi
]
~
K3
o
[
i}
mn

.. -

2.1, Summar s ofF Internal

bel ow

lime Sssembler/Dizazszml) =

ASMFUMH$ 00

ASMTERM ASTHRLM+ 0.2

AR+ S08L

Roautins

summmar 1 zes

ragtines

]

-

oy

the internal hie—1ine=

available <Ffuor

Uzersa, {hiz somixotic late!
Throg3hoag Frtis sdaomuyment v
the first wordg o thae tLine-—-

v
Function

Tramslates the machine—
langsiaze nstruction
svarting 14t the MMt v
foration rhat i3 addressaag
by tha N to oan assembia—
lanpsuass INSTrS 1000, EXa
ctEnt the assemblv—lansuass
ety tian o o the taeminal.

lranslate EN ASsamin]r—
lanmauaas ipstructian to
machin< (andyaga. arnd sTare
th= machinvy—lansuage
tnstructiorn into MG .
Tre FH printz o the oy
WMaEfar o faodatbtion acoosrding o

i
the imFraT termanator

FaTUrT.

fransltats: an assemb -
Tanayags instructian T
machiney lansiage. Aand sboarz
the machine—lanauasa

memar-e.,
the ASCII
terminator

instruction inta
The- BR cantains

af the input

BRON FeTuUri.

cade

1

Zubraoutine Descrietilans

This section cantains interfacs intarmation t+ar the

internal tine—line Assembler/Lisassembla ; Pachage
reutines that are availaole +an direct =, W er
cach (xR R R Wy R v odescrahed. and than

squencs and retinn condiTinns srE daocumeniad

ARPraEriabe.

Subroutine DISASM: t q ASRRUM+ 300

Lubrant o T i : mAaInine—landyase
wnetruction whoese firszt bivthe 1E at the memory lacatian
Addrescad by the TR te oassenkl v lansuase arnd austpubs 1t tao

m
rad
i
=
i

e 3 Ll-hyt hufrzr in ATHMRAM, Each bovte of

LEMBIN cantalns A number that represents the lengih af a
mechin—lanaysss inetructian. The tansths nf twenty
ceapsacytive rrevious!y—Fraczssed 1nstrucrians can e kept in
this buffers sa subroctine ASMTERM cap use LENBUF ia
Jetermine th= Aaddress orFr A& pravians) y—sracessed inatpyction.

LENFTR iz a polnter that points tao the tacation where tne

latest value was stered into the LEMNBUF area. .° "LENPTR. must.

paint to the first word o+ the LENBUWF arsesa-—beforeg subroutioe

+)

DIZAZM is zalled +for the first timé, and subroutines DIZSASM

and ASMTERM automatically update LLENFTR as thav erocess
instructions. The XR must alwaws contain the address of the

instructiaon t

2

b disassemoled baetare comntiral enters

subroutine DIZASM.

Subrautine DIsgasy CONTRINS 1nternal 1autiness bhown as
ONERYTE, TWoBYTE. TRIBYTE. and FCOCDRBRITE, Thaza srntoernal

-1

coytinss updats LEMNFTH +h pPalnt fo & et o Sorre oan the LENELE

area- and then thevw stare vhe wvalus of an wnstructian’s
Tenzath inte the LEMNBLF enti v that 1s desisnatsd by thz
updated LENPTR valne. fhese routines srtuall. stare a lot
af common instructionss and the, are essrFentiatl, different
entrv Prrants into ons: rousting.

LENFTR must peint to the fFfivrsetr ward ot the LEMBUF ares
haefore subroutine DSAEN 18 Cailed for the first Cimes Dot
the wser dagesn T nead to urpdats the damitte oF LENPTR atter
that bevause subroubtinass DI%45M ang ASMYCcEM automabioal s
ugdrtc LENFTH, Triz user <an reinitiatlize L OMNFETRE whznewve:
sha s E) wishas to start Pl oses31m3 a [Sratp atb
instructians. Subroutines ATIMTERM and AZ:EM stars a sPecial

sentine]l value wnte locabian LEMNRBUE ro mard the haginning of

the LENBUF table. and the first word in the LENBUF ftante is

therefore not used to containtthe- Fength of an wnstruction.

Subroutine DICASM autputs

11 >
B

terminal if the code that is

cperatins

is an invalid caode. The €ih value

operating code.

SeqUenoa s

Calluins

LDX =LENBLE ar

-
TR

Lo =Iapcade addresss: 10
g

SR DisAIM "R

Return Condition? The XR cantain

Preosaryad, The wvalnue
incrementads and

instructicon s lenath

the LENBUF &sntry that
VEMP TR, A1sa. Erhe va

Subroutine ASMTERMS Entrw

subrautine ASMTERM transltate

n

instruction to machine code and stores

£hh "

o0

= _mpaadis

adgdre=s

mn

Lsa=m

3 the adarzes oF the
> ol vhe LD pagizstor
i other jresisyars are

fAas owaen stared 1nta

35 now desisnated b
risnie INLYD has bzen
metruction that was

ar assamblvy—-lansuasa

the machine code - 1ntao

memory starting at the laocation to which INLOSD pPoinrs,
Subroutine ASMTERM adigsts the XR to point to the Jocation
af the next instruction to be pProcessed where tne ne:t
instruction 1s determined according to the terminater of the

input assembiv-lanaane tnstyructian. INLYE. 13 a3 rtwo—h,

-

W

3

memary lacatian i ATMRAM. Tt contains the vaiue of <the

addre2ss wyhere the 1Pt Assembhly—-lanzsnase natrgaotion s
machine codes shauld =a. The wvaiue of MLOC o2z bhes:n szt b
subrogtine LRISAE 1f cwatrol comes o suorouytiIoe AGMTERF
fFallowinme a ca1l to subrnutins DI2atM. .

Subroutine ASMTERM FIRoqoSses Fhe wnril o azsemig g -
languade instructian and urdacess the LENBLFE entry That .=
addraessad big LEMHTH. PENPYTR paints ©o the iacabian that
Ccantains th lenzth value o btz Azsempis—~lanznass
instructian that was gust Jiszplaved oy sutrautins DUOATH.
Subroutine AZMTERM calls subrogtine PT=REDU ta decrement the
value of LENPTR be ones 4nd rhaen subragtine AEEIEZREM —ali s
subt autine UNYERYTE r TWiHyY T8 o TRIBRYTY o DRV Y

derpaending on the memar s Z1Ta w e machine cols For tee
inFPut Aassembl r~lanmauass 1nstructian o updaze the LENMBUF
antry. The reason o callins subronripe FIRALD Firss

before calling subrautine ONERYTE or TWOBYTE or TRIBYTE or
FCOBYTE is. that subroutines OMERYTE. TWORYTE. TRIBYTE. and

FCOBYTE increment the wvalue of. LENFTRn“bF_Mn&.zn ord

.-L

lt'
I rf

o0

Paint to next available locarien .in the LENBUF area and then

the

store

inte that
lansuasea
is
lanziass

ATMTERNM.

accurdins

tzrminator.

wikh

subrogtine

DIzAzEM,

Whiern

instruction

LENFTR

1z

Ui

1 il

-

s 1R

13

-
i

subroubin

-

nstructbian

~ When

instructian

Tacation.

sverwritten

Tincs

ALMTERM

the

13

unchana

oy
g

d

"0

t

B

the

15

value

instruction

b

instruct:

broutins

suybroytine

3

a

af the

The lenst

ad but the value

e LENMFTR has o)
dicsasvrembles

rn assambltr—-lansuas

machine—lansuss=

terminator of th

commA terminator,

machine—langsussa

b

e

instructLa

valugs of

Fhiat was processed bv suibrout
w the lensth value aof the new
Y] that was ust assoembliena by
AaMTERM ypdaces tha va jne

bz ThPUT assewbly~lansuaze 1ns
subroutine ASMIERM 31z desizaned
nDizazM. fthe wvatne of LERTR thar
must matoh Thz tun-oion of
terminacor of the inrut ascsamid
carriagse—raturn terminmatac, thae

P
=

instructian

n°s lenath

DIZAEM

assemblv—
SybT AT LN

tructran’ s
o e used
1 set o in

=
netruct.on s leansth into
BiF area,

inpPut

the wvalue..af

assemblv—ltanauage~ .

LENPIR-i5- -

decremented by ane atter the va]ug"mF the LENBUF . entrv that

was orizinaliv desigsnated bv LENPTR has bean updated. Later
an, subroutine DIZSASM disassembhles the machine—lansuase
instruction that 1s 1n the same memory lTocatian addressed by
the XR to an assemblv—lansuase instructian and starze the

value of the machine—lansuaze 1nstruction s lan=zth o into

T
same entiy 10 che LENBINF arza az the eniry that was
adidrecsad by LehisTIR beforas thae valies o LENFTIR was
decremented v ane.

When the terminator o Fhe 3y aszzmbl r—lansyase
instructiaon 15 an asterist rterminator, the wvalue ofF LENFTR
15 decrementesd Lo Twas after the valune ot the LENBUS entr
that was originall, dzsizrared o LENRTR has besn uypdatad,
We Can aszt tha va liyge o the rPreviausiy—Processsd
instryction’ s lapgth when LENFTR is decremsnbed v one.
Then we decroment the valuye ~f LENPETR by ove asaif. later
3T subroutines Oi=asM disgssaembias= tTha ma~hine—lansuasc
isTructian tiat 15 in thzx P EVISUS Mmooty location
addressaed b, the 4R ta an assconlr=-1aniuass TnstrycTion ana
stares the wvaluse of th: m3chine—lansyagss thstruoTian s

lenath into the pPravious eotry 1n the LENBIY sroa.

When the terminatar o f thie inPut ascsemblv—languaze
instruction is a period terminatar, the value of LENPTR 1s
unchangsed but the wvalue ot the LENgUFE-—antey. -that 1z~

desianated bv LENPTR has been updated.

[
ol

When the terminatar at the tnPut assemblvy—langsuaze

instruction is a solidus termimators, the value of LENFTR is

it

unchanaerd, and the wvalue x4+ the LENBW entry that is

designated by LENFTR is nmnat chanzed, either.

The terminabar 13 rs an meaninatuyl when subragtine

ATMTERM 15 called alane. We still set the correct returned

wvalue of the XN whea the terminatoy 13 a carriase rebuacn oar
A COmiE - but the returned valuse oaf the &R will be
unFrredictabtle when thsz tarmipatar 132 an asterish. This
Frollem occurs bhecaucs we have no idza atout the value af
the previous 1nstructian s lapath,

I+ LENFPTR reaches the =2zrd of the LENBUF arza, the
lengsth value stored in the secand lacatian of the Zl-hb,ta
buffzr 18 swert cut and the =2zt of the vaines stoared in thea
LENBUF rables are moved up one jacAatinon. sooa new valus an
e ctared at the end of thz buf+zr arza.

[ty a@rrar Me S5 58T BINAL LD the whaole 1npPut
instruction string”. will te pranted on the user s tzrminal

whern the aszemblv-lan’uage tnstrugstion 13 incarrech,

14
Calling Sequance!
1. General Calline:
LoX =Caddresss ar LIDX =Taddress>
ZTX INLOC STX INLOC

JER ASMTERM E=R AZMIERM

2. Call with subrootins DISASM:
LOY =LENEUF nr Loy =LENMBUF
2TX LENFTR ST X LENPTR
LIOX =Tapcode address Loy ="opcode address
JER nisAsSM BiER DISAZM
JER AEMTERM B=R AEMTERM

Return Conditinn:
1. Narmai return. The XR containe the address of the

ne-t instrucktion to bhe praovessed whare bhe

newt instructiaon 18 determined accordins
ta tha berminater av the ineut
instructian. The oo resister is
destrovrad. hut alil abhaer registzrs ars
preserved. The value of the instructian

lensth hasz been stored inta the LEMBUF
entry that was desianated bv the ocrizinad
LENPTR valuye, arnd LENFTR has bean uprdabed

according to the-terminatar,

pradgr)

4,

Salidus terminator. I[f the input assemhlvy—lapsuage

instruction is terminated by a salidus,
the value of the memory location addressed
kv the XR is unchangsed and contra) angs

directly to the bop oof MIOEUS 1nstead of

returnins ta he callins routine. The
value af the LEMNELIF antr oy that i=s
decianatag oy LEMRTE 18 ULChHanaed . AN

Fer1aod terminatar, I+ thie 1nrput assembl r—languyase

Errar

inastruction is terminated by a periads the

]

value of the2 memary location addressed b

th= iR 13 urdated and control Qe

n

directly to the taor of MUDBUG 1nstead aof
revurning, ta the caliins roubine. T

ralue of the instruction s lenagth has been

storad into the LENBUYF antry that is

n
ot
:

1 «d by LEMPIHE- ERyE LEMFTR 1¢

Ui

de rs

unchanged.

return, The XF rontains the value of INLDHC

destraved, but alj

U1l
|'|"
i
-
-
1

and the 70 i

)]

e

cther registers are preserved. The value

e}
“h

is unchansed. The ,value of the LENBUF

'

the memory lacation addressed by the- XR--

1 -é-
entry that isg designated by LENFTR is .
unchanged, twa, The value of LENPTR is

decremented by oane Just as 1+ a coamma

terminator had besn used.

Subroygtine ASEEM: Entre Pounb = ASMEIMSSOA

Subiroutine ASIEM 18 simitar tao sunvautine ATMTERM. 1t

translat an assemblv-languyags mstruychbian ta machine code

I
n

0

and stares the zquivalent machine—-lanzuassz: inpstrucyion intao

memory starting at the locatian Fhab 1z

it
il
[
L
w
b1}
i

B
fisd

3
-+
-
i
pLY
A
»

Subroutine SSEM returns the A0 coade of the ineut

instryctinn®s tarminatar 1n the BR to the -allins ProgSram.

When subroutine AZIEM 15 calied, thes (R muszt contain the
valus af tha address at which the machine—lansuaze

instruction 1s to bhe stored,

An error mesEage- iRl IR the whrel 2 ThPuT

instruction strina™, will e antpagr Ba bh Cwrminal

i
“
s
T

«
I

when the i1npPut assemblv—langua=ze ipstructian 18 incarrect,

Talling Sequencel

Loy =<address. ar 1.0 =Taddress’

- ABR SZEM - - - BzR ASZEM -

1. Normal return. Th

of the 1o

the new 1

terminator

ot

1

an as -1

«;

the X 1is

a solidu

e AR cantains

cation that imnmediat

nstruction im memor e

ig a carriase return.

ar A pariod, The

sk

unehangesg when the

he BR carntains

of the 1nFut insteyctian & 1

the I registaer iz destroved.
ather registers arse Presearved.
af the memory location addressaed
Frevious XR 1z uedated when ths t
13 a CArriags Fatigrn, T
ASTSr1EF, or a period. The val
memary location addressed by the

X

x

value

solid

i
in

Z. Errar returno,

The value

[

e

the memoars

1w

wva iz

terminator 1

the ASTLIY

Teortmrnatar-

-
5
d

1
&

addraess

fotlaws

when thae

a Comma s

o F

18

Fantn | .J o=

=na

4

byt alil

Thie valus

SMMA >

1
B

=3

aof th

W

ez

ariainal

12 upchanasd when the terminatar

5.

& OO rzazster 1g dastrovceds Lot
registar values ars prasarvad,

of the wamar e lacation
18 unechanged,

adidressed

T

E
.1, Dne-1in
A saurce
languagse masy

aoPerand f

1=

A

Taa

Tha

L TR

blanb(s)Y and/s

1

~
Uy

T)

w

s

inpPut

source

white x)

SPAC

allowed until

line has baan

line is the

valid M&E00

Charter 2
he ne—line Assembler Zouyrce Srnitan,

pressianss, and FPseuda Instructians

"

@ Souroe Senfan

Tine in the The—-tineg Azseambiler g assembd v
COnTaln R ta o thires: Fireldes an aPCaaga Fialad.
1elds and 2 ftermanmatar tieid, Zince the Une-—
ro makza no cannection Froamoorne: oo line ta
mbal tabie 1is wstabiicshed. and Tatels are not
Fvrical saurce 1ims that 135 tored Ab & tarmicsal
e Ti1le this:

[ATATAY 0. X LR

;;;;de ;;;:and ;::;Jnarﬁr

fizld {ield Fizld
line Assembyar aliows the user o tyvee jeadins
e tab(s) with a gaurce laive 1nput bhizezmuse mans

insert whibvte s3pacs at troa heginninz e A

line foar impProved readabiltity. No Jeadins

18 regiirad, of caurse, FPACE 1

the saurce

non—whitte

irst field of a twvpical source

+ the

pu

apcade field, &Aand 1t must contain- -ane- -

(X}

npPcade -or mNemon1ics. (Sea the

ing

pseydo—apcodea

L3200 Praogsramming Refer

sectian 2 of this

descriptions.) Some

extension (e.s., BIT ar

"AY or "B" ertension (2.3, ROL o
opPpCcodes do pat permit any extension

he aecods Freld

blanks and/or tabs.

Aadvance T the orerand

tiswaver - S QM

field, and frr thesa

termimatad by

Qrie

D VAL with

[PR

terminated bv a

white space.
Tine.

The secoand field

Fireld, whiich

instructian, Mast

apar3rd Field (2.3,

reaulire or allaw two

LDAA 325X or
cperand—field

multirle

re

2

Mast

1:

instructians
tnstrgc

aof the

] ‘F

makurall s

suyb+tields

STAB- ..

nce Manual
chapter
+ the

CHMF) whil

A o
iy [

121d af

the

that

fFor

far

OPCAdEs reguire an

e ath

Iy
4

4 -

verms

Frosraimmers

ins

d [x}

) .

th [Nyl =~ e u] 3 =X

in

th‘E‘ a3y Ijn

apcades

"All |3P |IE‘II

er apcodes permit the

A sk1l171 ather

rnataed By ane ar Ml &

uze a sinsle tab tao

tructian. Thera

Al .

nat need an sprerand

tionse the wofrcoade Ffi1eld may be
four terminators (M2 e "M oo MuN
are leadins® lanh ar tal o mas be

rEturn

with

rebuyrn termina
A instructian

instructiaons

=AM .

in

entries

conptains

07X).’T

reay

whail

the o

- Som

(€9

i without leadine

tws The antire

Iaure

@ wearand £rr

1z T 1

mn
i
»

SRS

e

e other instructilions

perand field (e.3.-

e instructions permit

-nFCB.. and.

JEDED.

§ Lt e

20

Finalilw, there are some lnstructions (such as INX and DEX)

that do not resguire any operand field at all.

I¥ an spPerand field contains twa or more subfields, one

aor more blanmks and/ar tabs may accur after the coamma that

terminates one subfield and before the besinning of the ne:.t
subfield, This rule makes the Cne—=line Assembler saurce

svntax comrablible with A standard tvyPing ryle what r

SHLire

1)
i

a blank sepace atter a comma.

The opearand field can be terminated by GRe ar more

blank spaces and/or tah characters (encept atter a commad,

Mast uwsers twre a sinzle hlank space to skip to the

-

terminatar fi1eld when the tarminator is ane of the Four

nonblank terminators (M. ap MEY oap MUY oap MM, The user

CAan tvre A carriage return without any leading white sPaca

to terminate hoth the aoperand field and the entir

w
m
[
=
3
il
i

Tine with A carriase-relturn terminator,

S One—line Assembler Erprzssians

The Dne—line Assemblar avaliyates e pressions that are
founrnd i1n the wrerand field. A simpPle arerand field contains

only..one .expPressions but an operand field .with _subfields-.

contains an exPression in each .subfield.—-- At exPression. - .. .

a term or multipie terms connected bw aperators,

+

cansists o

e

e

and an expression can include anv oF the follawina tvees of
terms:

1. Decimal number. Any series of digits (Q=2)

tarting with a naoncera Jdisit 15 recosnized 4s a decimal

e

i

number. The wvalue must e unsisnea and in the ranse 1

throush AS.935% (i.2.. an unsi1aned l&~hbit valued,

2 Octal mumber. Anr series of actets (0O-7) startins

with a2 zero 13 interPrreted as an octal number., Octal
numbers are prermitted to ococcuepy as many &as 14 baits
{1nzludinge tThe 312n hit) berause users someltimes find 1t
canvenisnt to code 1la-bkit constants as octal values.

Rirnary number. A "A" pPrefir character followed bv
a series of btz (Qs and 1s) 152 raco@nlted as & binarw

numbar. Binary numbers can he

g
W
Ui
—
it
J
g
1]
i,
fas
o
o
[
+
w
u
in
O
fey
i
w
-
in

can spacitr full 14—b1t values 1 binary 1+ they are &0

4. He-adecimal number. & z=eries of hestets {(O-9, A-F,

arr a=-+) that 18 prefiized with a "3 15 int

& areretaed as 4
hexzadecimal (hies) number . Hex numbersz-. like numbers in
other bases, can. contain as manv as 14 bits, .so a.-hexw value - 2~

can contain as many as- four hextats. . T e s m e o e e

5. Present-laocation svmbal. When an asterisk ("#") is

used as a term, 1t represents the value of the assembler s

e

lacation counter, which is alwavs updated as the last order

of business when an instruction is assembled. The value of

the pPrasernt=-lacation svmbol therefare z29uais the address of

the current instructian: and for a2 two-word or three-ward
instruction the value of "#" is the address of fthz first

word of th instructian. Mrnet users of ardinar: two-rFass

LM

aszembiers tand to aveid using the present-location srmbol

@rcert 1n srecizal circumstances since the wuss of B o
o 1 . . PP - - o — - - -+ 1~ = .-
* 18 An ewrrame 1y ROCT Pros3rammind Fractice. For

@ amel

i

» anone whoe codes an 1nstruction such as M %+D as

makin® his aor hsr Prosram hard o read arg hard to maitntaino,

I+ anv intervenins code iz 1nserted (o dejztad) after

JME ++% and before the tapset addre af the Jumes

O
n
Ul

proaram will mae laonger aperate carrectiy. HMowever, 1
the Ohne—line Assaembier cannot acceprt labalss U™ ognd MaE-n

FINS SES5810MN5.

addressins 15 useful durins debu

)}

L. Sinsle ASCII character. A simgle ASC[I charac
enclased by ar preceded by apastrorhes ar suctation mar
(@.3.> A - "aAa", "A, or "A) mar ba 15371 a3 A term.

value that 15 @enerated for the suoted charactar is

ai

L]

ht—-bit ASCLI code ¥#or the character with;ihe;PapitY

reset.

The terms of an

sFrerations) accordin

in teft—tao-right o

precedenca, and

recogniced:

-+

3.
~

/

. &NL,
LR,

- XOR.
. MAX.
LMIN.
LHI.

- L0,
.LTR.
- AR,
. RLR,
PA R I
LROL.

ApPPear At the bhegl

Notae that th

i

Ewpressian 1f AR A&

multirlication or th

The One—-line

A

—reTy
—_ .t

@vpressivon are combined (usims 1&-bD1t

a2 ta the e pPression’s binary orPerators

rder with all oparators having egual

the followime binary operators are

Addition

Subtractian

Multimlication

Inteser Uivisian

lLomical AND

Logical Thnocluzive UR

lLemical Erclusive OR

Larger aof Two Si1gned Terms
Tmaller of Tws Zisned Terms
Larser of Tws Unsigred Terms
Smatfer of Two Unsigned jerms
Lagical Shirt Risht (Zera FillD)
Arithmetic Thivft Risht «Sian Fa111)
Ratate Kiant

Arithmetio Shivt ettt

Retate Left

- - - - i . i H e .
opcrator (M0 oo M"Y oman

Urndar

NOLnS af &0 e PFres3idan, and the uUnary

arpiied *to the firsc tarm o T he
ssembier can tell b the svntan of an
sterisk ("#2") 13 beins used rta denscae

& Present—-lacatian gvmbal.

Assembler computaes -the -valueof.__an

exPression from left to risht with egual pPrecedence for all

T

spPperatars, For ewamrle, the expPression BT ARCl: S oty
evaluates to "9/Z2-4%73", then tao “4-4x2", then o "0OFI". and
fimnally to zero. Notice that integer division 153 perfFormed,

and the remainder- if anvs 1s discarded, Timce an

ewprassion 15 evaluated from lefb fto risnt. parenvheses are
nat meaninatuy! and are not allowed 10 an @ 'Fr28€1 i,
R One—-line Assemibler Fseuds lnztrucbions

Libe moet aszsemblers. the Une—line Aszemtbler rech®snices
same Psada instryctions. saydn imstructions. which are
sometimies called assembpier directivesns doie T RN
carrespond to machine~lansuase wnstrychbiaons on & snoe—to—ons
bas1s as narma!l assembl v—lansuase 1nsttuctians Ga. fmetzads
a pseuds instruction ma, tail the asszemblear to raboe some
actians ¥ th= usar diraects e ASSEWMDY 2r £ aPsration

Fhroush the gyse oF pseuds tnstrucktions, fha remainder of

this sectian Coantains descrirTtians of th: various Foauda
tnstructians.,

FLE. The FLB (Farm Canstant Birted instructian telis
the assembliaer to evaluate bthis aperdand - Fression into an -

it value and to zenerates an absect worg tnat contains the
2-bit value oF the awupression. -The FCB instructioesn 13 thias . - =7 T

ysed far creatinse canstant values -that~Tan be accessed by e e -

z

the Prosram at executieon time. If the wvalue of an FCB

it praperly intao 2

“+

axpression field drnes not

assembler reports an errar mMmessase.

The FIB instruction Permifts multiple ewPression fi1elds

"
n

z1an firela generates ane

e

each €. P

(o

separated bv commas, anc

ward af nhdect cade. R

caounteEr 18 advanc2a atrter

'
(
¥
—
D
1
o
vt
[
-
m

@ach erpressian fisld of ar FIR statement 13 avaluated.
Therefare. the Jecatiep—counber svmood (92" in apn Flg

instruction alwavs refers o the memosrs addrsss of thz ward

that 1s aeing senerated by the g¢wecegszian that conkains the

Tocatian—counter zvmbal.

Foc. The v

Form Const

.
pH
3
et
o
-
1]
[
s.i
-
mn
-
s
in
a}
[
el
et
=)
I
2

talls the assembiser that the aperand Fieid coantains a
criaracter string. The srring must &3 enclosed betwes) Two
itdentical delimibters. ¢ach beins a sin®ie hanblank 2rintacle
character.

The +#oullaowins 2 ame!lzs 1Y instraTtes waces v ooode f2trainscs

11

with the FOU instruction:

cyoever~thing Jou Ccan,

Thoes Jahn o so owiiel g3 T

WIFf music be the fFood af lave. Plar onow

DY #HBARMY Y%+ Trvy trv trv g0 90 30 hope vou wipn VD

dJelimiters, of

agnerat character

s

ars absect word fFor @aoh

{riet inclugine the

normally used

Progsramnper s Foir subtpgbbting messazges or neAadinds a2t o ELecuviaon
Time.

Aithaoush an,y wonblan: Charactesr ma,y e Uzed as & sLtrins
delimiters most Prosrammers uyse S[uatabtian marks (") Az
strin® delimiters, FAY Prosramme™ who WISDes T 1noiuae a
suatarion mark as a characrer of the strinm aradinariiy uses
apestraphies (7)Y a2 strin® delimivters, £ uzzr owho wishes to
include path suckabion mary s and arasbtrashes i oa Strins
veyally chaoages sone other spzoial charaover sych as ‘s %,
Yer s =y Y. k. FL o=, .oy Y oas o3 3tring Jdelimiter,

i
>3
13
{
-
=
i
In

i
s
=
]
o
1
—r
i
5
D
!

R

hecagsse T
deltimiter &z a
One—line Assembler
the

closing strins

aerror 1if the tr

n

s

=

immediatel, fallows

bz

charactar 1in

at
del

1s

moler carzfully esaminss the siring
Ui ostatbtaemoent, and 1t reparts om0 error

T 2 amiis o owatn the zTrans. Var
& Assempler rerortis an Ul iF A

+
o
iy
"}
n
[N
o
]
"
“+
-1
o
)
0

user Praobably tried Yo ouse the strins

-
oY
1

Tl trins in thiis Ccase,

y

Sa

imiter, and it simixlarde naepocts

empP

+

reparts.an 2rror if-it. o pever_finds .

[yu-,

FOE. The FIEB (Farm Double Constant Byre) instryction

15 similar %o the FCOR 1pnstructians but the FOR instruction

U]
M

f

i

rates a 1&—h1t constant that farms twas consecuytlive

N

obiect wards., The mast—siznitficant half of the 1&4-hbit

SAWPELrISs1on value 15 Pt into the first oblect worids Al Thed

least—-significant hal+ of tne lé-bit @ -Freszion value 1¢ Fut
inte the secaond obiect waorid,

Tra UB i e tr et or u-}ﬁ— r; I s—1ine ﬁﬂcl,pz.ﬂ N

RS i INETr T dn T&i 1R T Une 1T RE&mt s & CTa

2valiakte the oeerand SpPrs23ion 1nfs a 15-bit wvaitus ami o

senzrate twe abirect words that contaln the 1403 vatue af

the e prassian, Thae OB instractyon 15 Crius used Foar
SEnSrarins doubl y—pPrectizian canztant valuss that can be

acoeiszed Oy the Fragsram at oo

[

]
&
hid
a
()
o
[a]
1o
3
1
a

The FLOE inztructicon Frermics mulitiple o -Fr

[¥13
i)
i1
-
oy
=1
~t.
[ad
1)
i
in

separated by commas. and ach eeression fField seregrates twa
wards o aptect coda, e Tacatioan countseEr 15 aavapced
atber Fach » pres3iaon %Fie?d aF an FU® stavIment H
svaluated. Thzreforse, the location—oounver symbal ("2MY in

instryg

hn
o
T
D}
o
-
o+
[

on atwars refers to the memorwy address af

the first waoard that 1= ng senerated by the e Preszzian

i
rr
"n
ot

that coantains Tthe locativrn—counter svmoal.

Tkl The =K1 (Skip 1 woard) 1pstructian tells the- Ope-

g

line Assembler tao =3¢

i

N<

rate a one-word instruction that will

skip the nmext one—~word instruction durina evecution ot the

assembled (usar"s) PragSram. Bv emplaoving this 1nstructian
(as opPraosed to a branch instruction) tha pProgsraminer will

save ane word af mEeEmary. Forr ewample, the followins

insktrycktion seguences $xecbe the same wars out the coae an
the riaht uvsez ape 1ess word of memors

-
Fl

BRG 1F =l ‘
LECX EX DECY LDEX
iH =TAA 0, X ={AR O, 4
The ganerated apCads VA e (S5 far- the SF1
instruction 13 the 3ame vaiipe that 18 sensraraed Far Ches
first wara af 3 two—wargd BITA ipstruction with immediate
addressing. Whan bhae SH1 1fsTriCiyan 18 e reds
theretfarsa, he Micropyracessar tatzs the Followinse word as

a
1]
D)

second gsed o F a BITA instryckhiaon with immedlatae

addresssins. The nhet effect i3 tao ztis one ward, A 3 si1de
af+ect, the =1 instruction ma, modif, toe o8 it the £ onit,

atrd the YV b1t of the condition coges,

(Zhir 2 woras) 1nstruaction =R The

m

assembler to gernerate a ane—word instructicn that cauyses The

riext two memary wards ta xFc) skirrped at awacution Lime.

Similar to the ZK1 instruction,. the SKZ instruction saves

the Prosrammer ane word af ImEmoree. For SLAIR T @,

followins instruction caguences execute the

the code on the right uses one less waord of memaor v

2RA 1F
LOOE ADDE =4 RS

ik STAR s X AR
The aorcodes value ($22) that 13 sensrabed for the TR
instruction 15 the sams value that is seueratea for the
First word of 3 threz-word TFX 1nstruction witn usmediate
addressing. Whern the SR instruction 13 ewecutbted.
Fheretore, the microrrocessor ftabes the forlowing two wards

as the second and third wards of a CFX instructian witT

or

immediate addressing., The et atfect 13 ta s3kie tTwo wordas,

o=

Thie

instruction mac therefare b ysed ta skir tTwo

gin@le—ward instructians or GOe I EREE R R Tt IR ol tnstrusrion
dJurins Progsram Swecytlian, Bz & =1ds effzct. the Sk
irnistryccion man modifd, the M bit. the £ ik, bhe Y oot and

the © bit ot the condition codges,

One~tine Disassemol zr Senta.

The Qne—line Assembler transiates @ach source line i1nta
the Proper MAZDO machines—lanskuage Ccoazr and ST e 1 N

mamary a2 oA line—br—-lire DAs13 a¥ The fimEr oot anbry in

arder to dizplay an instructinn. Tthe mavinins codz muUusT b
disassemblaed and Fhe IRITIUCTLIGN MASMIN 10 ANd B3 o35 A2

L ony - - - b -
als . gisassemoling mas

displared. Thasz

Jisrlarving lastrustian mo@mIinl.o3 And o FSrands. ar =

]

he Cnz2-line Dizsszemnler.

The One—line Diszsaszembler inoryasses Rro@ram readatiiios
when the User chech3 Ris oF her FroD0am 16 memor c. TR
dizaszemblaed scurcz linme man not- hBowsvers loolk 1denticzl o
the saourde lipse that was arisginails Fnbecaad tan the
instructinn. The disaszembler aijwAye aureyts numerical
values 1 hecadecimal ereceded by 8 73" 314, For @ ampPte.

LOX F+Sehol. X

The disasszmtler cannoc asubtruyt laosd

n

. 1t ocutpurs the

value of a label instead of the character string of the - : o

label. For zeampie, the fFollowins saource 1ime-15-asSemd beg- - -~ - 777 7 7~

kv the MASOO assembler on the VAXS

ETX

This instru

BTX
When a

made s

(1]

addraes

f
tn

disrlaceman

fh1s inmstru

BRA

MhO2mMan 1 CE

mAar chaase
Faor examprl =

L a

SAVEX The addreszs of SAVEX 1s B104.
ctian disassembles ta
£1052
N OANRSTICTLION Usas the seit—rziat.ive addrzsaing
dicassaemblar displas tre AacTual fr adeciman
thie destination tnstaad ok cispla,yins Thz
T Ui i3 this st oTLan anid Fhise TAT S
F o anameles the fFallowin=m saurce f1ne 15
v the MHEZ00 aszembier on the 2400
LoaF The address of LOUF iz Hlo00)
vtion disassembies ba
F1I0O0
far g aile INsTrUCtIans, Thers arsz two vaiid
far the same orsrating Tods. and tThe dJisassembiler
a +*orm diftferent from the cne arisinallsy enveErsdg.
?
BIiTA with immediars addresszins is returned {or
Shl. v
CRFX with inmediates adol ¢ss1ng 13 retur ned o

Sk,

BCC 1s .returned for

B s

returned +or

BHZ.,

B, ’ T

Anv invalid MAIOC oparating code will be dJiseriaced in

the tollowina wav: "FCR $imaching cogel "Uofar gmampele

= 2
Fi awooe
Jisassembles to
FCB €41
Fow $4
(O P
LTRA
FoR F45
Zince the One—line Wisaszembizr 135 oftenm used with the
Ope—line Assemblers we anonld e-mecially nabtes one Parcicular

instructa

Fri

The 1 i 1 ¥ ructiaon 13
Four byvte o i P r e R = % @ inta the

LENBUE ar Ty i] : . g Prorassd

e the F x 2 that Fhe usar Conpcindges
to ineut new as v ; 1 nEtr : check hi

-
RS

ar her Pro3ram sbs Yt A 1 farward

directicn. Latar afis th yser ¥ st . {tsty

terminators to back up to this pseudo instruction.. and- a- N2P

assembly-lansuagse instruction 15

terminal. This NOP instruction-

$01,
FCB instruction. 1s the

RDne—1ine Disassembler

the opecode of a NIF assamhlv—lanzuaze

cheo

can contipue ta
HIT=S 11 Rk

ipetryctian s

termivators.

The FCR 1.7,3,4
dJisassemblas o

N

The
tonl, but the user st

Hiz ar h=r owh Profrcam.

ConFUsS1an.

One-line Dlisa

in

fod

which 1is the raiue

sees

%01

Faoar a NuP

and

b the contents
oo axLlaons Ly T

10

ASSHME s

T

Fhe four—brtae

tructian.

instructian.

':'rl} o

hie

Th=

that 1t

i

)

user

Psaugda

e—re
oy
= I

Wi

Thae Aeplication of thae Ope-1ine

Aesembler/Disassemler in MUDRILG

in

Az menbioned in Lharter i, Thi3d Dhne—-lin: ApAssemnlers
Disascembler :sottware peacbass 13 designea por PMUDREWE . to
irorease the fupctionalility of Tercalin Mol commands. WD

il
9
o
[
(]
fis
1
)
-1
v
=
H
1
i
"
A
=
r1
M
gy
-1

3 douwnloadged Yo meEmor s, wnat

the user sees in memory LS the machine—languase vapyr

3 Sian GfF
A Y
the P a=r am. 1t is sometimes Jifvicutt + o Thiz usar T

i
e
[oey
i

understand and 4. Mis ar fer erogram 1o machine lansuasae.

B HE1INS tris Une—-line Aszznblazrsolisazszeompler SatrTwars
Ppackase, the sar AR inswec% B1S or fesr Prod3ram in memory
and changz the pragsram &v zamely tvrin® aszzmbii—lansuase
instructions directl s instead of Lvpindg machins cades, e
faollowing twa zections describe the arrlication of the Qnse-—

Tine Assembler/

Command wnd

h
N
[
.
—
o
1
I:x
hil
n
s
(I
i
ot
4
Do
2
P
-+
o+
x
T
-
3
[
-
e
1
r
[
[
)
3
w
—
i
-
~

inal R COTHTIA TS » which haz one paramaet.

The wora

Ul
[Yg

s
“displaws the current hex .value of the contents.. of wmemory
location START. and then 1t accepts a new hesowvaluse Yo be-

inpPut into that laocation. The user can read his or her

Praaram in machine lanzuass

valuyes., Aftter the Cne—lain

hes

sattware Packace iz arplied, tThe

has the

ane pParameters

itnstruction that starts st memary
"L command accerts a new

1y
i
o
"]
[
a
[
fat
R
[a}
("]
)
X

the

ne~li1ne Basembler/tisassambler

e 'O command by settime START (-
tensth? and Ferfarming bhe SO0
ne.t 1nstruction in MeEmSr . Th=
lenathi¥ as 1t 15 used Mere means
instructyians ncot the tength of tne
Usar duesn ¢ btrFe 4 new inskErgc
instrucrion 1z uzaed s Thr new 1IMEL

[F a3 comma Yterminator

assemblv—tansuass instruction +ar

Assembler/0isassembler will La

_START - Parameter without | chaneina

Assembler/Dizassembl ar wil]l

i3 us.

and madif,

=
=

current

assemt) r—lanzuass

focatian =TART. the

Par faprm-— -ty o

)
i

the program o

VRIS

fAssembler/Misassemol.

n

r

Y command, which stild

asremblv—lansyase

loacatiaon 2TART. fnen Yhe

INSYTULT L a1

1 Puts thz machime oode

‘L

il Dl RV ¥ 13 terminated
terminaticsn character,

aurTomaTtical iy Tantimuss
STRRT + {inEtructian

=
[}
-1

runction tha

patatian "{imnsrructian
he Tensth of the nzw
1d inztruction. if ttiez
IR NI VaEr . the atg
CT1OT.

T Cerminate the naw

the sams value i the

it. Then- the.One—11ne

Cozammand s —--

function asain for the same START lacation in memory.

I¥f an asterizk terminataor
assemblv—lancuase instruction
line Assembler/Disassern

(Previous instruction lensth)

R COommad s Functian

MM, Thaz AssemblersDizaszem

a5 many as the last

i
il
=
)
ot |
iy
=3
)
-t
-r
vt
or
1w

The usar can Theretars
as many az 2O 1nstruyct:

whichever accurs First.

limlt Causes the R

the Timit.

I¥ the new

b+ A Pering, the "CU" command

MUDBINS after 1t inztalls

it}
i1
i
I
=
T
——
1
il
o
i

Fimailiy. 3Ff & salac

command 18 aborted and
MUDBLIG with no chanse

at START.

I+ & termination

alone without a new

ccation

I
n
[y

remembers the e

TU]

Coanmang to

1

.
S

Aamsas Lhs3Ir

~+
3
4+

character

assemblvy—-lansuag

to terminate the pew

START - the Qrse--

RT <-—= ITART -

and avtomatically rerfarms the

edinz insvruyckbian o

“

3
d
i1
fw)
s
10"
=
T
el
-4
B
gL
]
[t
in
e

¥
i
—
[
-1

“
1
1
D
jou]
—
i
o
i}
o
i
|

Sy THE insTrdotison at
IMSErUSTian 15 Tofrminatad
cantral o fhe tap of

: code aof the new

at apce ta tne tap of

:
facations ETaTTlIns

(CR # >, . or /) 15 1input

) instructian, the

Zontents of the memorys lozations remain unchansed, but tihe
functian of the termination character regardine the
continuation or termination of the "CO" commansy is staill

effective. MUDBLS uses the instruction lensth atf the

existing instructiasn in wmemarsy when thve user ga92sn Y TyvFe a

Tiew instruction. ligars Tan therefars Z.AmINS zavzial
consecytive insftructions rather conyeniently b Hsins
carriase-return ar astzzriskt terminators. and thien feed T

-+
Ry
e
2
it
E
7l
"
in
M
3
o
|
i
i1l
2
!
py
i
i
[
=1
mn
“t
=3
'
1
-
=
o
o
3
)
pal
—

Wien Ny

aszsemblv—lancuazz 1nstructiane are actualls dzsirsed,.
The comma. Feriad. asterisk, and salidus TErMiInATEr s

are diftferent from the carriagse—return terminatar, The user
wid tyPasS a4 ComMd. Per1ad: asterist. of 30i1du5 Terminatar

must still tvre a carciage return atier the comma. Periad,
asterisk, or soiidus, Witen we refar o a4 Carviage-return

terminator. therefore, we arg actualls referrins to the lackhk

Th

HSEr Can Correcy 2-oftansive £2PL10L8 210 ors Lo tyPIng

s

a backslash CUN") to run out the enrtire 1nePur tine LDefor
the carriagse return is tvered to terminate the. inrPut Tine to
the One-line Assembier. Then the wuwser...can . trep2 ansthear

assemblv—-language instructien risht after the backslash

' “

However, the

character,

backslash folloawed by a

before restarting the

(1]

fi

The Una—=line

carrect trepins

recominended procadure 1s 0 to EwFz oA

inPut

@rrers Dy UE

as decsired. The user must
languaza ipstruction 1RizcteAad

languagse 1nstructian

terminatins

0

can be mads

The user Tar

bachsrace charmobaer (s,

i

the Assemtd

One-iine

i

3

ETAS 1t from the

I

soreen

Cursar 18 laft 1 the

srasad.,

inerut

been erased.

the Cne=-lina

backspace charachbzes

the uszr s terminal.

The user who wishes

Aadvised

11ne is

inPut

CAMM1ASe CEourn

COrrent

‘t [w}

to

T OMimia

followed by a

line.

Ascemhier/U:

Z 1

n
i

2

LI

m

CARMM1Aags

Cifee shiEnt character
2 user 3 termingd.
ooty The Character tnat
PACE Chiac sCTer 3 T 2y
The &Lvairae ins4g7v i

h
+
Nl
x]
-r
o
o
i
n
o

From

]
-or
i)
Y]
by
n
wpd
W
i
=
s
-
(Wi
‘tl
w—d
it
T
i

return

ta

HIZERS
T -
ih

vt tTreinyg Part ¢ bnee assemad oo
e backelasn 15 twrzd. Hnce thie
13 FvpEads o cUrEReEr o Coapvechions

Mifnor Lerlng Srrals Loy {vPing
Lar Eiive wesr Tiopes a bachkaegaos,

=
B

entire 1nput line 1ristead trvinyg to use A backspace to

delete the talb character. The One-line Assembler dJowsn 't

adjust the cursaor Pasition ta accountk for Fhe fFPassibis

multi—-column aspect of a tab character that is deleted, arnd

the ueser who eletes a tab characier wioch 3 bach3seac: amay
become canthused L v the mizsieadins information that zeeears
on the screan.

The Qne—tine Ansemiblar accerifs a walimum of 20 ineut
chAaracters on & 310812 inFut Tine. ~ETar 20 inent

OUne—line Aszasmoisr refusas tTa AR E ANy WGP s ineRuT
charactesirs and relects any additianal inrut Characvter by
rim2ina the pelil st trie yszer s baiminal, fhe anln
grCERTIONE ta thiz rule arz as follows. The Une—iine
Assembler acocepts A hacksEace or 3 hkack:slasn even when the
1inPut huftfer 15 Full becavze tnese input Characvzrs ramave
charackters From Ehe tnrut Dufrer. The Urne—iine Assambier

also accerts a carriase return when the 1nend burrer 1z full

becAayse a carriase refuern Terminates the inPuT lna.
S, Thz Arptiriation ud the One—tine Agzembiz 7

Oisazsemblaer in the "M" Cominand

The wriginal M command requlires twoe Parametars., and - o

it dumes locations START thrmugn‘STDP in hexadecimal format

{

‘

‘t_‘ Ix(]

lqcét1on

the terminal. Th

add

whase

haecadecimal MMy

alwavs ends
!
vaiuaes

10 SerG.

Pr finse

e shorter),

H'|-3|. hy

i

Als

réadabilityr.,

-

~+

-

HR R EES

o

1=

[
1
i
s
1]
g
It

ul
e

>3

+

e

nts

+

e iy

Frach

faegilr
|

throush STOR

tarminal. The=

\
i
t
)

T T

-t

an 1nstructian

[}

taga

0

;E.
-

L | T

(1]

trupcat
instryctinn would
ﬁocatlon of the "M
t

ﬁepend1n9 on the

Praocessed. Control

=N

3

TR i
ress 18
adaress

The

PR Y

&

v

-

and

[%]

<= i

DA]

ftermina

the

IIM

r, dumpe

PET

108

contuse

cammarnd

returns

MmaEmory

Pros3ibly

-

M ™

3
1

i

a

1

instruction

Jume
FLOORDETAR

ai the
JUmER

for x

fy

1
3t

aidr e

B4]

Are TR

fod}

R R

"w
[t
™

Cominaira. §

] iv dum

Uss & instr

D

t

s

13 ST o

lTength of

dirzctl,

3ctuarlly

Firsh

o |

Tachine o

40

wrthn the

startsa

Trr&a% the

/-,
i

weerd LT dumpP

[1;

18 Printed with 14

ast Ti1ne. winich

gt
)

i
Hh
e

“M“

fie

locatiuns

=
=3

[Ah format

.

] s assemolc—

s

iz

Wil

EruCT1IOon

Wi

frunca T

1ins)~

G

Tow raeal STOPP1ND

roosTOF+1 ap STOF+Z

the last instruction
to the tee af MUDBUG

1Y

STOF are printed

followina samrle

assemblv=lansuase

the

the

T
I
e
37
fw
377
B7
CE
1
ol
2
LY
[T

Lt

command 1s illustratea o

zamrl e

..,\.«
]
S

b

L
~J

LY

T

L
T4

n

tructions from START thrausahn

termimal.

&
.
[a
F
g

.

ume

[

CLR s007S
LOAA =301
TTAA D00
STAA Bz
LI =20050
T %13, X
BEME $Z017
LIAA BLL: X

has followlins

Labels and line

commonly used
ather lines and

Tine Assémbl

1]

r

lines and

association

be

definittiaon locat

t‘ .

Source line

fi

are

Pragram

ot

R

ikt

restrictiaon

ther

after it has been entered.

disassembrled.

‘mnemoenics-and-orerands.

Charter & ..

Conclusion T -

e

0
the inter

s

numters are not used.

in assembl-r languase

lacations inm a Progsram.

<

al routines

] Assembler/Disassemoler software packasgse, thne
svntax, expPressians, and rseuds instructions of the One-line
Assembler, the One—line Disassembler svntax, and '
aprlications af the Une-line Assembler/Disassembler to the
existins functions of MUDRLHG,
The Ore-line Assemblerslisassembler software rpackase

Lakels are
to refer to

The Une—

has no knowledse ofF other Praosram
efore cannot make the resuired
tweern a label and the label
ed an a separate line.
ot saved. Irn arder to read back
the

machine = C. o

4z

T Limited error indication. The Qne-line Assembler

shouws anly cne error messase, “"INVALID: the uwhale

inrPut strins", to the user. In contrast, the cross

assembler generates

.. LRI AR

specific error messages for

different tvpes of errars.

g

:

d. Only a few directives (pseudn instructions) are

accaptad,

No conditional assembliy 1s used,

1y

The Cne—-line Assembler 1s a true suoselb of the MAZRO0

crass assembler. The faormat and svnta. that are used with

thie One—line Assembxler are accertable ta the ocross
B assembrler. The Cne—-line Assembler/Disassembler is a

powerftiul tool for creatins. modifyins, and debugzins M&ESO0OU

code.

MC&2000 Educaticonal LomPuTer Loar o itze

Motarola Inc,,

David ©. Fheaniz- s, amzr oz oM
Uepartment oFf Coweuter Soizncz.
Aricoma Soatz Upiverzaoy - 17,
David T. Pheanis, MEEOO Assoena, 30 dzaer

]
(1]

2artment of LomPut

Aricana Srats: dnilvserse

It
~

I

.
i

HE

