General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

] eH-17) 748

National Aeronautics and
Space Administration
Lyndon B. Johnson Space Center
Houston. Texas 77058
JSC-14710
JUL 30 1960
SOFTWARE DEVELOPMENT GUIDELINES
CPD 902
Job Order 53-449
Prepared By
¥ Lockheed Electronics Company, Inc.
Systems and Services Division
Houston, Texas
Contract NAS 9-15800
For
i Ve .
ENGINEERING ANALYSIS DIVISION
ENGINEERING AND DEVELOPMENT DIRECTORATE
January 79?9,
LEC- 13182
(NASA-CR-171748) SOFTWARE LDEVELOPMENT N84=-18919
GUIDELINES (Lockheed Electronics Co.éscgeoga

G3/61 12354

ORIGINAL PAGE IS JSC-14710
OF POOR QUALITY
SOFTWARE DEVELOPMENT GUIDELINES

Job Order 53-449 -

PREPARED BY

J. M. Undérwood

Technical/Monitor, ADAP-I

e, y } , .
’ %cho;as kova%sky

Job Order Manager
Dynamic Systems Depariment

APPROVED BY

LEC - 'NASA

P. H. HorsTey, Superv¥sor
Data Management Section

e A
2 H2a

W. J. Reiicks, Manager

Applied Mechanics Department

Prepared By
Lockheed Electronics Company, Inc.
For
Engineering Analysis Division
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

January 1979

LEC-13182

ORIGINAL PAGE W
OF POOR QUALITY.

Seétioa

1.

2.

CONTENTS

INTRODUCI*ON. [[- L] - [- [- L] e e o

DESIsN CONSIDERATIONS . . . ¢ o o o« o «

2.1

£.5

2.7

[
.
@

4.3.1 SYB”OLIC. - - L) - . . e - -

2.3.2 PROGRAM DESI

o o ——

GN_LANGUAGE . .
N

EXISTING PRCGRAMS AND SUBEGUT1MES.

COMPATIBILITY. « o o o o o « o o «

2.5.1 LO¢ICAL UNIT ASSiGMMENIS. .
Z. 5'2 USE-Q_F--FLAgé. - L] L] L] - - -

2.5.3 COBSISTENCY AMUNG VAKIABLES

e e s s S . e e P i i T SRS A i e s SR P

2.5.4 MACHINE DEPENDEN] SOFTWARE.

2.5.5 USE_OF_SPECIAL COMPiILER FEALURES.

INPUT_AND OUTPUI DATA. . . . « . &

2’6.1 GE“ERAL - L] - - L4 L] L - L] -

2.6.2 GRGUPING BY CASES . « « . .

2.6.3 IMSEDIATE QUTPUT. « « . . .

2.7. 1 EgggKQUT !ﬂ!!o Ll L] - * . L]
7

GENERAL-PURPOSE SUBRQUiILNES. . . .

10
10
10
10
10
10
11
11
11
1

CODING. .

COMMENTS .

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6

3.1.7

e . St S S S e e e e

——— e T S it s S . S S Sy

e . i S e . G

e o e a2t sy i T e e e S S

il

Paye

12
12
12
12
16
16
16
16
16
16
17
17
17
17
19
15
19
19
20
20

20

1

Section

3.6

3.1

3‘8

3.9

ORIGINAL PAGE IS
OF POOR QUALITY

3.6.1 CUMBINING
3.6.2 SUBSCKiIPTS. . . .

o S e S et e e e S

A A e o —— 2744

s s e i S e i e s Y S s S A S

3.8.1 CALCULATIONS 1N A
3.8.2 COMPUTED GO_TO'S.
3.8.3 ASSIGN STATEHENTS

RECOKD_FORMAT . .

3.9.2 PLACEMENT COF 1/0 OPEKATLONS

3.9.4 QUTPUL FORH . . .

3.9.6 LNIERYEDIAIE OUIPUL
3.9.7 CARD READING. . . .

Paye

Section

3 L] 1 o §gmul NE L - - - L L L] L] L - -

3.10.1
3.10.2
3.10.3
3.10.4 RELU
3.10.5
3.16.6

ORIGINAL PAGE IS
OF POOR QUALITY

CHECROUT AIDS « ¢ ¢ ¢ o « o o s = o @

4.1

4.3

e . S S e s S et St S < D S s

s S e e

PEOGRAM FLOK.

DATA STRUCTURES

e . s e . S e W S e S e

G NE_R__A_L - - - - . L] . - [}

BRUGRAY LOGIC CHECK LISI.

DECK_STRUCTURE_CHECK_LIST

GENERAL L] Ld . - * L] L] - L]

o 2 e

— —— > e

4

Page

ORIGINAL PAGE I®
OF POOR QUALITY

Sectioa . Page

“. 5 _S_TORAGE_HAié L] . L) - L) L] L] . L] e o . . L] L] . [“0

u. 501 GEEERAL [] L] . L] - - - L] - L] L] L] L] L] L] L] “0
4.6 DIAGNOSTICS. « o o o o o = s o o o o o s o o = 40

4.7 PEOGRAM TINANG o o « o « « o o o o o o o o o @ 40

Fiqure
Figqure
Figure
Figure

Figure

ORIGINAL PAGE 19
OF POOR QUALITY

FIGURES

Structured flowchart sywbols

A PDL example., . . « & .« &
Routine general structure.
Header comaents.

Specification statements .

v

Page

13
14

18

ORIGINAL PAGE 18
OF POOR QUALITY

1. INTRODUCTION
PROGRAMMING - The art of creating logical ccmputer proyraus.

PROGRAMMER =~ A person who prepares problem solving proceaures
through functionaliy designed and logically codea
routines for the computer to execute and wuo
typically also debugs those routines.

The purpose of this document is to provide eagineers,
proyrammers and managers with software development procedures
vhich may be applied in the development of computer software
systems. The intent of the procedures presented is to
promote quality and uniformity of FORThAN programs ana
therepy lessen the time and cost of proygram develiopment,
maintenaunce, and wodification, and to increase proyram
efficiency and reliability.

The key to program reliability is to design, develop, and
manage software with a formalized methodology whicn can Lbe
used by computer scientists and applications engineers to
describe concepts, perform data analysis, and evaluate
systems with visual, conversational, and descriptive aata
prints or data displays.

The first step in defining and developing a system (pbe 1t a
large software program or just a few small routines) wuith a
formal methodology is to apply a formalized set of rules and
enforce those rules, especially on a large project wuich is
subject to change of personmel or task definition. This
document presents a set of ruies whichk may be appiiea oy a
FORTRAN programmer/engineer to aid him iu wraiting etficient,
reliable, easy to change, and system compatible programs.

ORIGINAL Page 19 2
IS

| OF POOR QuaL(Ty

DESIGN CONSIDERATIONS

2.1 1.NALYS1S

lhe first step ian solving a scientitic problem is to analyze

the problem. Then a functional desigh to solve the probolen
can ve made. Of primary importance are tane logica.i rlow oi
the program, data tables, equations and aefinitioun or
variapbies to be programued, waere and Low the grogram is to
be executed, the program's input/output, and other special
considerations and/or coastraints.

Ttie iogical flow snould be a simple sequence or descriptive
block steps, including equations, with side coamments
conceraing future program expausions and possilble
constraints. These descriptive blocks sinould verbaldiy
describe the fuactions to be perrormed and should uevel
include programming lianjuage.

2.2 H4ODULARIZALION

After the problem has been analyzed and a functionad desiyn
developed, the next important step before coding tue program
is to derine all the possiple routines or mcdules. Each
module should be .a function of tne levei of executioa
required. Tahis will reduce program cowplexity, improve
prograa clarity, and permit easier moditicatiosus aua progyram
checkout, easier production program mainteLalice and easier
buildiug of a new advanced product.

The foilowing are guidelines that the couer should iLoslow:

1. Eacn module should be well documeuted interCnasiy oy
the use of header and in-line comuents.

2. Use as many levels of modularity as Leedea to
siuwpiify program control flow.

3. Organize modules logically to make the froyraa
easier to understaand and modiry.

4. Allow room tor expausion without destroyiug
simplicity of sequential flow.

5. Each wodule's variapl«s and arrays suculd uve veid
defined and the source of eacan given, -

6. Use separate nodule fcr data input/output.
7. Use separate module for each spéciaiized zunction;

I.E. it manipulation function or freguentiy cailed
matheaatical function.

2.3

ORIGINAL PAGE 18
OF POOR QUALITY

8. HModules should not be larger tamar 100 lines of
executable code.

ELONWCHARIING

The functional logic flow of the prograr may be in the
form of a structured tiow using structured logac
symbols, or a functional level program design ianguaye,

PDL.

2.3.1

2.3.2

SYMBOLIC

1n general, a rlowchart gives a pictorial
representation of logic within the prograuw ana
its routines. The tiowchart sanoulda be reaaily
understandable to the exteuts that other
programmers/engineers could code tke routines
without lengthy deciphering.

The ftollowing are the suggested couventiouns:

e Use flowchart symbols waich nave beeu aerined
as standard for the project(s) problem. For
structured flowchart symbols refer to
figure 1

e Use paye number references to indicdte logical
connections

e Include all subroutine and executive
references

e Use programming language tor equations ara

logic :

e Use structured program rlow; that is, tae main
program or module flow is always topsdowan on
the left side of the paper and the
intermediate flow i1s trom leit to riygat dua
top/down

The program design language PDL is a too. ror
desig 1ng programs in detail prior to codang.

Its f .rpose is to enable one to express the logic
of a program in an English-like language.

Figure 2 illustrates the PDL usage.

SYRbol

ORIGINAL PAGE 19
OF POOR QUALITY

Usage

PROCESSING
A group of instructions whica pertora
a processing function ot the Zout ue.

EXTERNAL PKOCESSING

Identifies the exit to and return
from an external function or
subroutine with its calling argumeuts
which perforas a processing ruactiowu
of the routine.

DECISION/DO

a branch to alternate patas is
possible based upom variabie
conditions »r the DO loo}
specification statement.

TERMINAL UNTERRUPI
The beginning, end, or point or
interruption in a routiae.

The decision function used to
¥:> document points in the routine where

OFF PAGE rLCOW TRANSFEEK

A connector usea to show that riow
transfers to another part or tac L.ow
chart. The symbois i ana 4L inrdicate
a transfer to entry onumber i1 oL fpaye
number n of the flow caart.

ENTRY INDiICATIGR

An indicator that shows au entry into
the logic flow from another part oz
the flow. The entries ou edach pagje
are sequeuntially numbered 1, 2, ...

Pigure 1. - Structured flowchart symbols

L el ==

R TN

l
DO cASE\

\GINAL PAGE 18
8? POOR QUALITY

THEN

ﬁﬁiﬂ!

The basic uait of a structured flow
chart is the segment. A seguent 1s a
module that has a single eutraice aud
a single exit. This seyament
accomplished the processing
identified within.

.I_E.J. : ’mw)

(FALSE)

1éfr The 1F THEN ELSE

syebol with the
elsec clause.

1
o

The CASE syabol.

(ICcASE, N}/
|

EXTE
—
|
(ENTRY)
EXIT

{)

SN

A segment that is an external
reterence to another routiage.

The terminal interrupt - the
beginning, end, or poiut of
interruption in a proyrasm.

Figure 1. - Continued

v

Syabol
|
IF THEN
(P) _fome
1
|
DO WHILE\

7
C

" The IF ThLkN ELSE
sysbol with a null
else clause,

P The DO UNTIL symbol

f The DO WHlLE symbo.i.

’ » The DO FOR symbol.

Figure 1. - Concluded

¢ .s L WY T ORI - - b

ORIGINAL PAGE 18§
OF POOR QUALITY

The PDL has the following advantages:
s It states logic in an easy-to-read tashion

e It permits concentration on logic; it frees
the designer/prograamer with the low-level
details of coding

e 1t can be converted easily to executablie code;
this is accomplished by step-wise rerininy the
English-like statements until they pecoae
statements of a higher level language

¢ It contributes to the readapility asject of a
structured walkthrough tor the nonprogrammers

e It can be used to teach structured
programaing; in fact it is a method of
expressing structured progyramaing loyic

e It cau be retained as coameuts at tune
beginning of a progras tor documentation
purpores

e It can be kept on the file in the text mode,
updated using the editor, and listed

The main disadvantage to the PDL uasage is:

e It does not present.the loyical flow o1 thé
problea in a pictorial form

EXISTING PROGRAMS AND SUBROUILNES

Before wrating a program, search for available plroyrams
and subroutines related to your problem. These may do

i i et .

all or part of the job, or may be useful in anaiysis.

When designing a system, a file should be startea which
contains all prograer, subroutine and function names, as
vell as any entry points within routines. This wiii
avoid future use of a routine name which is aireaay ikL
existence. :

INITIATE PROGRAM
'GET PIRST TEXT RECORD
DO WHILE MORE TEXT RECOEDS
DO WHILE MORE WORDS
GET NEXT TEXT WORD
SEARCH TABLE FOR WORD
IF WORD FOUND
TAEN INCREMENT WORD'S COUNT
ELSE WORD NOT IN TABLE
INSERT WORD INTO ThE TABLE
END IF
INCREMENT WORD PROCESSED COUNT
END DO END OF TEXT RECORD
GET NEXT TEXT RECORD
END DO ALL RECORDS WAVE BEEN PROCESSED
PRINT TABLE

TERMINATE PROGRAM

Figure 2. - A PDL example

ORIGINAL PAGE 18
OF POOR QUALITY 9

2.5 'COMPATIBILITY
2.5.1 LOGICAL UNIT ASSIGNMENTS

When aesigning a systea, logical unit assagnments
within prograsms snould bpe pianned and be
designated before any progtaanxng starts., Tuis
wvay aany incomsistencies in tuture tile usaye cau
be eliminated beforehand, and cumbersoae and
time-consuainy releases betveen executions can be
avoided.

2.5.2 USE GF FLAGS

Be consistent in the use ot flags on input caraus
to avoid confusing production personnel setting
up the program decks. For example, a zero or
plank value could always iaply "do not ao", and a
nonzero values can describe more than one %do"
condition (e.g., 0 = do mot piot, 1 = plot on
linear grid, 2 = plot om loy grid; or v = ao not
calibrate data, 1 = calibrate using polynoaminal
expansion, 2 = calibrate using linpear
interpolatioa).

2.5.3 CONSISTANCY AMONG VARIABLES
Extend this same consistency to all otner
varianles used in aifferent programs such as
start times, stop times and time biases. it is
nerve-racking to production persontel, to say the
least, to have one program read a start time in

_integer days, hours, ainutes and seconas; a

second program read it in iaterger milii-seconds;
and a third program read it in floating-point
seconds. The field size for these variables
should also be identical iL ail pregraas.

When using additive aiad multiplicative tiae
biases to correct or convert time in a prograam,
thelr usage should we specitied beforenaaa to
avoid future proulems. Sometiames one prograam
will add the additive bias and another one wiiui
subtract it; sometimes a proyras will aaa tairst
and then multiply, and a second programs wili
multipiy first and then ada. Obviously, these
operations will not give the same results.

2.6

2.5.4

2.5.5

2-.6.2

ORIGINAL PAGE 19
OF POOR QUALITY

10

MACHINE-DEPENDEN1 SOFTWARE

Keep the machine-dependent portions of a prograg
separate; for example, plan individual modules
for I/0 operations. This simplifies conversion
to othner computing systeas.

USE OF SPECIAL COMPJVER FEAIURES

Do not use special features provided by a
particular compiler unless it is absoluteliy
necessary. When special features are used, taey
should, of course, be identified and justiziied in
comments.

D QUTPUT DATA

(2]

ENERA

Design a program so that input data are easy to
create and output data easy to read.

GROUPING BY CASES

When data can be distinctly grouped for separate
current case and going on to the next. This way,
an irrecoveraole error in processing one case
does not necessarily preclude processing others.

%ake available to the user an oition for
obtaining selected intermediate output. AL iaput
code can easily be used to indicate which
intermediate results, if any, are desired.

2.7

2.8

A e = ST T i st e TR R Sl Mt T R N, g M T S A W Tk mmaans e T TS ERSm—e T T T

ORIGINAL PAGE 1S
OF POOR QUALITY
11

ADAPTABILITY IO CHECKOUT
2.7.1 CHECKQUT YETHOD

Plan your checkout method while designing a
program. Organize the prograr so checkout data
are easy to prep.ce. Make up a block diagram and
presiminary checkout data before codiny. Use tae
checkout data and block diagram i1n "desk
checking” the prograa.

2.7.2 USAGE QF WRITE STATEMENTS

Organize the program so that WRKITE statements,
causing meaningful printouts at severai poiats an
the program, can be inserted for checkout. Thaese
are explained in detail in section 4.1.

GENERAL-PURPOSE SUBROUTINES

The priwary influence on the desigi of a gemeral-purpose
subroutine (i.e.,. a subroutine reasonably expected to pe
used in two or more unrelated progyrams) shoula be
correct resuits within the required range of accuracy.

Minimization of storage and execution time shoula be
considered next.

3. CODING

ORIGINAL PAGE 18
OF POOR QUALITY 12

GENEEAL

Make your program self-explanatory by including
meaningful comments througihout. Since most
prograus outlive their autuaors' respousibiiity
for them, and because no computer is permanent,
your program will probably be modified accordiuy
to new machine software, or performance
requirements. Iif these coaments are properly
prepared, they will provide suificient
documentation for most routines anad alue in
conversion and modificatious.

The comments needed to document a subroutire rail
into tne following classes:

e Routine header commeunts at tane top or the
routine

e Coaaents at various places in the coae tou
describe the loyic flow in the routine.
Depending on the complexity oif the proyrau,
the nuaker of necessary comments varies, but
usualiv the ratio of comments to statemeants
should bde at least 1:5

e Special ccuments in larye routines to
segment the code into logica. biocks

The general structure of the program or
subprogram is given in figure 3.

HEADER COHMENIS

ldentify the program or subproyraw in a comaent
at the beginning of the listing. Coamments snould
follow this card tc provide a program apstract
answering such questions as: What does tke
program do? It is confined to any particuidr
application? 1Is it a special version? Wuy was
it written, by whom, and when? It is derivead
from or directly related to another program? Are
any relevant references puciisnec? See rigure 4
for tae structure of these commeats.

ORIGINAL PAGE 13
OF POOR QUALITY

ROUTLINE OhGANLZATILUN

Chekkk Rk hk kR R AR R KRR L RREEREREEXR LR RREREEE R R AR R R RRR KRR B R kxR Rk

header comments

C

CheExkkkrkk bk kRRkkE Rk kR ko r e kR kR kR KRR R R R AR AR KRR kR Rk kR R xRk K
C

C ..

non-executable statenents

C

C ..
o

executable statements
CALL BEXIT COR RETURN

C

C ——
C

format statements

C

C

END

Figure 3. - Routine geheral structure

S - owrt g e ZiR - LT WPy ttww o cmw

ORIGINAL PAGE 18
OF POOR QUALITY

14
EREERRRRBRRRRRRRRKEERERRERHEADER COMMENTSk& bk kb Rpiokhikkikikkkk
P20GRAM NAME (or SUBPROGRAM NAME)
The name of ihe program (or subprogram) should be here

LAST UPDATE: date of the iast major revisiou

AUTHOR A NASA MCNITOK
Anthor's naae ‘ Tecuhicai Monitor's nake
vo. Division NASA Division
Company aname NASA JOHESON SPACE CENIEK

Jate originated
PURPOSE

The purpose of the program should be detined nere in
Segverai sentences., ——---r-T-—smsrosssee——meeece—————-——

INPUT VARIABLES

This section defines tne variables 1NPUT to the sub-
program whose value the subprogram does Lot caange.

This incluaes alli variables passed by the calling
routine to the. subprogram through bota calliug aryuments
and COlMON blocks. A sanple format rollous:

VARIABLE COHUHON BLK DESCRIPIiLN
VAKBL1 bLOCK1 DETERMANES HOW MANY 1IBES ==-=~==---
XPOS NONL POSiTICN OF Thk & VECTOR

OULPUT VARIABLES

This section defiues the vacriakles GULPUT by tae Sub-
routine to whose va.ye the subroutine DGES NC1 USE wmut
DOES CHANGE. This iunciudes variavles returned to tae
caliing routine both in the calliny aryuments daua iL
COMAON blocks. The iormat skould be similar to that
of the INPUT VAKIABLES sectiou.

e ¥s N s Ko RskeReXehs oo ke ke e Re ReReRe e e ReRoRoRe e Re N Re R Re ke ReRokeRe e Ro ke ke R e Ra Re R e R R o NN

Figure 4. - Lheader coumeLts

ORIGINAL PAGE 19
OF POOR QUALITY

15
L§PUT/0UTPUT VARIABLES

This section defines those variables waich are usea 10r
BOTH INPUT AND OUTPUL, i.e., a variable whose va.ue is
LNPUT to the subprogram AND whose va.ue the suwproglLau
CHANGES. The format should be similar to thke .APU1
VARIABLES sectioa.

PROGRAM VARIABLES

Thas section defines the primary variables tuat are
neither input nor output variables. 1lhe format suouiu

be similar to that of the INPUT VAR1ABLES section, except
that a "COMdON BLK" column is not needed. ALl 1uterrnail
“tlay" should be defined here, aud what each ot tae
various codes mean.

SUBPROGRAMS REQUIRED
This sectiou briefly defines ail sukprograms wuicuL tue
subject rcutine requires. A one or two senteuce swnouid
pe used to state the wasic fuuctiou (purpose) o1 each
subprograas. A sample format follows:
JATMUL - SUBROUTLNE THATI PERFORM> MAThLX MULILPLICAT .UM
ASSIGN - GEWERAL PURPOSE SUBROQUTINE Whaidlii ISSUES A
CCHMMAND TO T4E OPERATINs SYSIEM TO aaSG A
SPECIFIC FiLE
REMARKS'

Ay special considerations, requirements, restrictiorns,
etc., should be mentionea here

z2EzNeEsEeNeRe NN o NN oo NN o N o No N e N e N oo e e Ke e R R Ne e X2 N e X2 N e X e Ke K v

RERRRkRRA ARk Rk KKK KRR HEADER COMMENTS* k¥ kkkkk ¥ shkhkrhhankknk

Figure 4, - Concluued

3.1.3

3.1'“

3-1.6

3.1.8

ORIGINAL PAGE 18

OF POOR QUALITY 6

RROGRAM MODIFICATJIONS

Program modification should be noted by tne date
and number of modification (1, 2, 3, ..) ana the
name of the programmer making it.

SUBROUTINE COMMEN1S

For a subroutine, comments describing the cadling
sequence should follow the identificatioa
information. Ildentify eacu argument as input,
input/output, or output; aud explain its purpose,
type, dimension, etc. The ditferent values that
an indicator (such as an errer code) cau assume
should be defined, for boti input and output.
Also, all variables used in common blocks saould
be similariy identified.

DISTRIBUTION OF COMMENTS

Distribute comments descriviung and sumwariziny
the computation appropriately thrcughout the
listing. These should correspond in teramiunology
to the program block diagram. Clever, out
possibly obscure, coding should be exp.ained 1L
detail; for example, if the function J=2%i-./3-1
is used in a loop, where 1 takes on the values 1
through 6, the foliowing might be written:

O

AS I=1,2,3,4,5,6 J=1,3,4,6,8,9

RECOVERY

Explain error recovery procedures in commReLts.
This information is important to those wiao
maintain or modity the prograa.

ERROR

ARRAY DIMENSIONS

Explan in coanments any reasoLs for peculiar array
dimensions; e.g., storage limitations or use by
other routines.

PRINTING STIYLE

Use a conspicuous printing styie for commeuts so
that they stand out from tane rest of the iisting.
Separate comments from statements by cards that
are blank except for the C in column 1 (altaouga
the listing looks cleaner without the C, some
conpilers object to totally blauk cards).
Comments are futher accentea if they are

3.2

3.3

ORIGINAL PAGE 'S

OF POOR QUALITY
17

indented, starting in, say, coluan 15. Shoit but
important coamments can be empnasized by inserting
a pnlank between each letter of each word, aad
four blanks bhetween words; tor exasple,

C INPUT EDITL NG SECTLION

- Similarly, symbols that are separated troa words
by two blanks instead of one stand out better in
phrases. For example,

C W1TH RADIUS Kk AND WlTd H,K FUR CENTEK

when spacing comments and statements, cousider
inclusion of the program listing in the program's
formali document. ‘

3.1.9 PROGRAM MODULARIZATION CCMMENTS

For program modularization, couments suowing the
program structure and flow on a higher level are
used to divide the program iuto segments. Ihese
comments provide the mechanism to show tae
structure of the logic.

14TIALIZATION

Do not expect main storage to be 1initialized at tae
beginning of the execution.

Do not assume that a tape'is properiy positioued.
Rewind it before use and, unless i1t 1s a scratch tape,
unload i1t afterwvard.

Place specification statemeuts (e.g., VIMENSLIUN,
CGMYMON) at the beginning or tae program. 1ae
symbol lists within type, viIMENSION, ana COMEGi
are to be alphabetical. However variaclies whicCi
functionally go toyether may be ygroupea, ever
thougn they may not be alphabetical. i1ie symooi
lists are to be columnized ana left justitied.
This way they are easy to fina and do uot
interrupt following of the logic flow. Further,
some compilers object if tuese statemeuts are Lot
rlaced first. See figure S.

[

ORIGINAL PAGE"‘%

OF POOR

QUAL

18
NON-EXBCULABLE SIASEJENIS

Program declaration statements

REAL MACH, =====c=cecac

IJTEGER X g ¥ mmemmeeaa
dther type statemeats and IMPLICIT statements
OIMENSION AB (100) , ANAME (50), =======w=c=<--
. VNANET(30), X (25), =-—c==ecmccmmccanaa
’
cosmonscont /X (10), AKRAY (50), ==-====-==---
+» ARRAY1(300), ===~==-ecvcccc—coccccccnnax
COMMON /COM2 /) ===c-eccmcecr—cccccccceccnaccca
'
' ------------------------------

BEQUIVALENCE (AAA (1), bBE (10)), (XXXXXX(<0), YY

P) (CCCCCC(20) , DDDDDD(1)), =====~====ce=c—c=--

’ ‘ ’

Figure 5. - Specitication statements

- o as v

3.3.2

3.3.3

3.4

(]

4

1

ORIGINAL PAGE 1S
OF POOR QUALITY 19

The order of the specification statemests saoula
ve in the following order:

TYPE

DIMENSION

COMMCON

EQUIVALENCE

DATA

Statement functions

Mininize the use ot TYPE stateaents, especially
TYPL REAL and TIYPE INTEGER.

—— e e —— i e s —

Place FORMAT statements where they are easy to
find. Group them all at tne end ot tne prograu,
except those simple FORMAT statemeLnts usea oy
oniy one 1,0 statemert, which should be placed
with that I/0 statement. a4ll FORMAT statement
numnbers are to be five-~digit numbers (,rererawnly
2X£XX and larger) and increase seguentiaily.

STATEYENT NUMBERING

Statewent numbers are to iuncrease segqueltilaud
from physical peginning to physical end oi tke
executable statements. This peraits easy
following of transfers. UsiLg separate ana
distrinct blocks of statemeat numbers (statement
numbers increase by 50, 100, 500 or 1000
depeuding on amount of code in the block) in
different sections of the pudgram to emphasize
the structure, to have larye enough gaps ror
tuture modifications and expansions, aua preveunt
accidental duplication. Statekent nulpers are to
be placed on CONTINUE statements only and rigut
justified witk column 5.

SPECLIFYING VARLABLE TYRE

Use only one type specification for a variaonje
name. When you amust change the type
specifications of inteyer or real variav.ies,
rename taew in EQULVALENCE statements, using
nases beginning with 1 through N for inteyers and
with other letters for other variables.

3.4.2

oReiN’L PAGE 19
OF POOR QUALITY
20

cogag_g "BLOCKS

The structure of each block of coamon storaye, as
specified in COMMON and in any other relatea
specification statements (e.g., DIMENS.iUN,
INTEGER, EQUIVALENCE), should be the sake for the
main program and all subroutines using it. Ail
COMMON should be labeled and in alphabetical
order, unless blank COMMON is necessary for
communication between ChAIN segments. Use
several blocks, rather than putting unrelated
data into the same block; this incurs no peinalty
and prevents the confusion of variables specified
but not used in a subroutine.

Thus the specification statements for each block
of COMMON can be reproduced exactly ana a copy
inserted into each subroutine using it. For

- legibility, separate the biocks by blauk C cards

and use comments to explaiu the purpose ot the
blocks, where necessary. C(orresponding CUmduUN
and DIMENSION statements should be ordered and
spaced ‘the same way.

Uniess awkwvard, use variabie names that are
meaningful in the context of the problew ta-
program is to solve and that correspond to —
notation or terminology imn the block diagram and
program document. This helps make the listiny
seif-explanatory and relates it to the biock
diagram and documeut. For exaaple, two arrays,
one of positive and the other of negative values,
that are denoted in the block diagram ana
documentation as

(+) (+) (=) B

Xl ,Xz 2) andx,_ ,Xz g oo

should be given names like XPOS aud XNbs, ratuer
than A and B.

3.6

3.5.2

3.5.3

ARRAYS

-— = —

ORIGINAL PAGE IS 21
OF POOR QUALITY

CONSTANTS

Use variable names for quantities that mighkt be
expressed as constants. Examples of suca
gquantities are the number of times a loop is to
be performed, the length of a vector, or au 1/0
device number. Set the values of these
quantities during initilization (in a DATA
statement if vpossible); thus they can be
redefined, if necessary, in one place at tae
beginning of the program. Accordingly, rezer to
I1/0 files or devices by integer variab.es ratner
than by constauts. For exampie, instead or using
the constant 3 in several output statements, use
a variable such as I0OUT that is initialized to 3.
Then, if the files or devices are reorganized,
the analyst can simply chauge the definition ot
I0OUT and need not look for all appearances of 3
in this context.

NAMING COBVENTION
In naming variables, use names beginning with I
tarough N for integer variables, and names
beginning with A tarough H and O througi Z for
other variables. This widely accepted coLvention
reduces confusion. Avoid using variabie names
simiiar to FORTRAN verbs. Soue compilers might
treat thea as coamands instead of variable anames.

COMBINING

Do not needlessly combipne into one array waat
could be separate arrays with fewer diaensions.
Similarly do not needlessly torm a singly-
dimensioned array irom what could be sumpie
variavles. The time and storage required ror
index manipulation increases as the numper or
digensions increases. When the only reasou rvr
suck combining is to make separate arrays or
simple variables adjacent, this can be
accomplished by an EQUIVALENCE statement tgat -
equates the arrays or simple variables to the
elements of an array into which they miynt nave
been combined.

3.7

3.6'2

3.6.3

ARITHMETIC EXPBESSIONS

iy a—

3.7.1

GRIGINAL PAGE iS
OF POOR QUALITY 22

SUBSCRIPTS

Whenever referring to an element of an array,
include a subscript tor each aimemnsion. Alithough

A(1,1)=0.
can sometimes be expressed
‘ A=0.

not all compilers will accept it, and 1t may
conifuse some programmers.

USAGE IN SUBPROGRAMS

An array included ia the calling sequeuce of a
suproutine must appear in a DIMENSION stateuent
in the subroutine. Possibliy tne subroutiue does
not use the array but passes it on to anotaer
subroutine. However, some coapilers require that
the DIMENSION statement be included in this type
of subroutine to ensure that the array is passed
by name and not by value. also, the dimeusioning
inforaation makes visually appareut in the
program listing what are arrays ana not simple
variables.

A useful convention for singly-dimensioned arrays
is that the DIMENSION statement specity a ieugtk
of 1 if the length of the array is var.apnie (to
the subroutine), and the actual length if it is
fixed. Tnis conventioL also applies to tue last
subscript of a muitiply-dimensioned array (the
other subscripts must agree exactly witn those in
the calling prograa).

STATEMENTS

AND
UNAABLGUOUS USAGE

Use parentheses tc make arithmetic expressiors
completely unampiguous. The expressionL a**p**C
is coaputed from rigat to lert by some coapilers;
from left to right by others. Similarly, tae
expression I*J/K could mean 1#%{J/K) or (4%u)/K,
and the expression A/B*C could mean C*A/B or

A/ (B*C).

3.7.2

3.7.3

ORIGINAL PAGE IS
OF POOR QUALITY

23

Do not rely on tne order of the evaluation wathain
a single arithmetic expression. For exaaple,

.instead of the statement Y=F1(X)+F2(X), wkere F1

and F2 are functions to be taken in that oider
because one depends on the otker, use two
stateaents; i.e., Y=F1(X) foilowed by Y=I+F2(X).

TEST FOR IMPROPER COMNDITIONS

When undefined operations are possible, such as
division by zero or taking the square root of a
negative argument, test in advance for iaprojer
conditions.

COMPOUND EXPRESSICNS

EKeplace compound expressions repeated in
arithmetic statementts by singie variavles
previously set to the values of the expressions.
This not only simpiifies tne appearance of
expressions and statements, but also saves time,
storage, and helps to debug the expressioi.
Although some compilers have an optimizatiou
feature, this is a gopd practice to get iuto.
For example, in the statemeut:

Y = (A%B)/C + COS(A*B)/C - SIN(.5%(A*5n)/C))

replace the expression (a*B)/C by the variaple T;
i.e.,

T
T

(A*B) /C
T + COS{I-SIN(.5%T))

Siailarly, simplify expressions algebraicalily
before coding tihem. This apjplies to constants as
well as variables. For exaaple, tor the
circumference of a circle in iuches, giveu the
radius in feet, write

C=24,0*%P1*R, not C=2.0%PI*R*12.0

3. 7.“

ORIGINAL PAGE 18
OF POOR QUALITY 24

USAGE OF SQRT

When practical, ase the square root function
instead of expouentiation or other more dizficult
operations. Generally, the SQRT subprogram is
executed faster, is more accurate, and uses less
storage., Also it is more likely to be aiready ir
core tanan any other elementary functiown
generator. For example, use .

- SQRT (X) not X*%0.5
X*SQRT (X) nrt X**1.5
SQRT(SQRT(X)) not X**0.25

Further, where S = SIN(X), T = C0S(2.0%X), and
U=SINH(X), use :

SQRT (1.-5%S) not Cos (9)

SQRT (.5%(1.+T)) not COS (.5%ALGS (%))
SQRT (1.+U*U) not COSH (ASINH(U))

Ir general, replace complicated operations by
simpler operations when possible. For exaaple,
to compare the distance between the points

(Xj, Yj) and (Xi, Yi) with a prescribea toierance
T, use

IF ((XI-XJ)*%2+ (YI-YJ)*¥2-T*7I) N1, N, N3
rather than -
IF (SQRT ((XI-XJ)**2+ (Y1-YJ) **2)-T) N1, N2, N3

Given a set cf N points whose coordinates are
stored consecutively in the singly-dimensionea
arrays X and Y, to find the aistance between tae
origin and the point farthest from it, use

D=0.

DO 100 I=I,N

D = ANAX (D, X (1) *%2+Y (1) *%2)
100 CONTINUE

D = SQRT (D)

ORIGINAL PAGE IS
OF POOR QUALITY 25

rather than

D = oO.

DO 100 I = 1,N

D = AMAX (D,SQRT (X(1)**2+(1)**2))
100 CONTINUE

The first method saves N-1 sguare root
calculations.

3.7.5 PREFERRED CONSTRUCTIONS

To speed execution or to couserve storage, use
the following preferred constructions (most of
these apply to integer as well as to reail
variables):

To express a power of 10, use E notatiomn, not
exponentiation. For example, the expression
20.5E6 causes the compiler to generate a
coustant, but the expression 20.5%10.**b requires
a calculation during execution.

Mixed mode expressioLs and replacements are
wasteful, even wiaen allowed by the compiier; use

A+2.0 not A+2
and A=2.0 not A=2

Addition is always taster than multiplication; use
A+A not 2.0%4

In a loop, multiplication ny the reciprocau is
faster than division; use

Do 100 I=1,N not DO 100 1-1,N
A = 0.5%A A = A/2.0
100 CONTINUE 100 CONI1IMNUE

For exponents that are whole numbers, use Iixea-
point notation. A real exponent reguires tae
general approximation algorithr of expomertiation
whereas an integer exponent requires oudy
repeated multiplication or a siampler
exponentiation algorithm. For examjple, the

A*%2 (or A*A) Dot A**2.0

ORIGINAL PAGE 18

OF POOR QUALITY 26

OL STATEMENTS

3.8.3

CALCULATION N A LOOP

Minimize the caicuiations performed iun a loop,
and avoid unnecessary subscripting. For exaaple,

DO 100 I = 1,N
2(I) = U*VEX (I)+Y(J)
100 CONTINUE
is not as efficient as

U*v

T =

YJ = Y (J)

Do 100 I = 1,N
2(I) = T*X(1I) = YdJd

100 CONTINUE
COMPUTED GO To'S

The control variable of a computed GO 10
statement should be checked in advance ir it is
read from input data, receaved througn a ca.ling
sequence, or calculated from other than perrectiy
coatrolled variables. Ali labels withiL couputed
GO TG statement should be sequential in asceundiny
order if possible. ' '

ASSIGN STATEMENTS

The ASSIGN statement and tne assigyned 6U 1¢
statement will not be used. This will prohibit
jumps both forward and backward in the coae.
Transferring alil over the routine makes it
dirfficult to follow the loyic of the routiue and
routine complexity grows with additions ana
changes during the checkout.

3.8.5

ORIGINAL PAGE 19

OF POOR QUALITY 27

DQ LGORS

Usually, the indexing parameter of a DO-100p has
a range of permissible positive values, ana zero
is an uanlikely but possible value. Therefore,
check the indexing parameters of DO-loops, and of
implicit DO-loops in KEAD uud WRITE statements,
if there is any cnange of a zero value. For
exaaple,

Jd =20
DG 100 i1=1,N
Jd = Jd+i
100 CONTINUE
N
gives the wrong value for J = Zi
whken N = 0, whereas i=1

J =0
IF(N.LE.0) GO TO 200
DO 100 I = 1, N
J=Jd+1

100 CONTINUE

200 ...

work for all values of N.
CALL STAIEMENIS

Avoid literal arguments in CALL statements. 1f a
suoroutine changes the value of an arqumeut
passed as a literal constant, subsequernt use of
that constant by the calling program is invalid.
For examnple, if the followiny occurred,

CALLING PROGRAM SUBROUTLNE SUb (J)
® [)
[] L]
® . [
CALLING SUB(3) J =2
[] []
[] ®
. [[]
1=3 ' RETUEN

every subsequent use of the .iteral counstaut 3 iu
the calling program will actually use a value of
2. 1n tue example 2, not 3, will be storea iL i.

|GINAL PAGE 18 “
g? POOR QUALITY 28

3.9 1NPUT/QUTPUT

3.9.1

RECQRD FORMAI.

When a widely used record tormat is approjraiate
or nearly so, 40 not invent a new one.

Minimize the number of formats tfor imput data.
Geuerally, the fewer forms in which data wust be
prepared, the less susceptibie it is to error aud
the less storage the program requires,

For example, many programs could use a siLguie
input format, such as 7E10.0. Data couid pe
converted to fixed-point, it necessary, arter it
is read. This would amake keypunching easier awa
errors less likely because all numeric input
could be punched with decimal points aua, more
importantly, could be left justified in the
fields. Even when standardaizing the ingut
increases the number of cards, the benetits or
convenience and fewer errors outweigh the cost of
additional cards and of processiny thea.

Avoid writing short records on tape. For a givern
amount of data, the fewer the nuaber or records,
the less likely are read/write errors, thae
greater i1s the read/write speed, aund tne suwalier
is tne amount of tape used. Also, short records
can cause tape positioning problems. Avoid tafe
records of fewer than about 80 characters; they
are likely to cause read errors.

If only a few characters are to pe writtex,
repeat them enough times (or iasert duumy
characters) to form a record of at least 80
characters. Rhen the recora 1s subsequent.y
read, the READ statement would, of course, be tane
same as 1f the redundant or aummy characters were
not there.

3.9.2

3.9.3

ORIGINAL PAGE 19
OF POOR QUALITY

29

For example, instead of

WRITE (J,1) A,B,C,D
°

® ®
[[] []
L] [} []
READ (J,1) A,B,C,D
L] ® []
[] ® . []
) . ¢
use
WRITE (J,1) A,B,C, (D,I=1, 11)
[[J [J
[] [] ®
L [[]

READ (J,1) a,B,C,D

When vwriting multiple-file tapes, it is a good
practice to have an End-ot-File (E@F) uark atter
each file, and two after tpne last file on tae
tape. 4Yhus, a prograamer does not need to Know
bow many files there are ou the tape in order to
process the whole tape. Also, using tais
convention, it is quite siuwple to position tae
tape to the desired file by skipping files.

BLACEMENT OF 1/0 OPERATIONS

Isolate input and output operations, except
perhaps for the permanent input and output files,
in subroutines. This allows easier resocatious ot
scratch files from tape to disk, or moditication
orf a plotting tape for new plotting hardware,
software, or performance requirements.

DEFAULT VALUES

On card or terminal input, 1t 1s a gooa plractice
to have default values withiL the program ror
some input variables. Thus, by leaviny the rield
blank, the program automatically presets tae
variable to some commonly-used value.

3.9.“

3.9.5

INAL PAGE 18
8'.3'%@ | QUALITY

This is a good converience for the user. For

. example, blank start-stop times on an input card

could mean to process all data by haviay tue
prograa set the times to the smallest and largest
possible values; a blank multiplicative tiue bpias
would cause the program to set the bias to 1.
Care aust be exercised, however, when reaaiuy
blank fields which will read in as negative zero
on numeric variables. Since 2ero is a possible
data value, a further check tor negative zero may
have to be made.

All iuput data read imn on control cards swoula be
printed out, just as it was read irn but ciearly
lapeled. This allows for gquick identirication ot
keypunch errors should the progran erroir otf or
give the wrong results.

QUIRUT FORH .

Output froam production programs snoula pe
oriented to the user. Clearly identify output as
to tne name of the calculatioun, the name aud
nuaber of the program produciang it, ana the date.
Lapel printed output and, it the printout is
expected to end up on document paper, iimit its
length aud width to the dimensions of the
document. This eliminates the need for photo-
reduction. For example, a printout contined to a
rectangle about 7-1/2 inches wide by 10 irnches
long could be trimmed and bound as 8-1/2 by 11
incn material. Number and date the payes of a
printout when the application calls ror at. For
the date, use an existing general- purpose
suuroutine.

ERROR MESSAGES
Provide for lapeled printout wihen errors oscur to
explain the reasons for the errors. Ilake tae
explanation meaniuyful to tpe user as weil as to
the programmer. This frees the user or tte
necessity of looking up the meanings oI elros
codes in separate documents. Tuese priutouts
also should explaia what counters, «tc., are
crucial for locating the source of tane errors.
General-purpose subroutines shLould nct, ot
course, write such aessages. All erlor messayes
produced by the program should be cleairly
identified as suca (e.g. "“&** PKOG XYZ EEKRUE")

ORIGINAL PAGE 1§
OF. POOR QUALITY

31

3.9.6 LNTEBMEDIATE QUIRUT

Make available to the user” an option for
opbtaining selected interw .aiate output. Au iuput
¢de can easily be used to indicate whicah
intermed .te resvlts, if any, are desired.

3.9.7 CARD READING

Explicitly control the reading of large uumbpers
of cards. -A control integer specifyiny the
nuaber of cards in a set caun easily be wrony aue
to miscounting. I1If the inteyer is too wviy, the
program may read to the ena of the data ana be
terminated; if it is too swail, the mext iuput
statement will read tne wrong cards. Une
alternative is to punch a flag in the last cara
So the program can recognize it. For exauple

N=0
100 CONTINUE
N=N+1 :
READ(5,110) (X (N,1), I=1,7) ,K
110 FORMAT (7E10.0,I2) '
IF (K.EQ.0) GO TO 100

ic preferable to

READ(5,110)N, ((X(J,I) ,I=1,7) ,d=1,N)
150 FORMAT (I10/(7E10.0))

and obviates manual card counting and the
associated error possibility.

Anotner alternative, when a particular tield is
non-zero orn all cards in tue set, is to iLsert a
blank card behind the last card of the set and
reaud it as follows:

N=0
100 CONTINUE
N=N+1
READ (5,110) (Xx(¥,1), 1=1%,7)
710 FORMAT (7E10.0)
1IF(X(N,1) .NE.O0) GC TO 100
N=N-1 '

This way, a card aeed not be punched witn a rlag
that might later have to be removed when tae set
is enlarged.

ORIGINAL PAGE 13
OF POOR QUALITY 32

3.10 SUBROUTINES

The term "subproutine" as used here means either
SUBROUTINE or FUNCTION SUBPROGRAM.

3.10.1

3.10.2

GENERAL

Code a group of iogically related :imstructions as
a subroutine, rather than as in-lige codaiuy af
it:

- Is entered from several different places in the
program.

- 4s potentially of general-purpose value.

- Is less stable than other parts of tue jprograa;
or

- Is simply of appropriate size to be a separate
module.

Suproutines concretely express the concept of
modular programming.

CALLING ARGUMENTS

Fot ease of interpretation, group the arguuents
of a calling seguernce in this order: anput,
input/output, output, error code.

- An input argument is one whose value tae
subroutine uses out does not chauge.

= An input-output argument is one whose vaiue the
subroutine uses and subsequeatly chauges.

- An output argumeunt is one whose value tue
supbroutine does not use obut does chanye.

- The error code argument 1s the means oI
transmitting diagnostic informatioL to tLe
caliling proygram, such as whether the subroutice
executed normally or abnormally; it i1s & special
case of ar. output argumeut.

3.10.3

3. 10-‘5

3.10.5

ORIGINAL PAGE 18
OF POOR QUALITY 33

ERROK CODES

An error code returned by a subroutine should be
zero for normal execution and a non-zero value
otnervise. The more specifically it can descriuve
to the calling program the natu.e of a
malfunction or improper coudition in the auput
data.

A geueral-purpose subroutine should not write
diagnostic messages or cause other Japut/output
operations unless that is its principal fuanctiou.

Error codes should be returned through tae

calling sequence. The user of the subroutaine
then is not restricted as to the vords ia,
position of, and storage for diagnostic messages.
Furiaer, he has a change to recover gracetully.

RETURN STATEMENTS

Use only one simple RETURN statemeunt in a
general-purpose subrovtine, and place it
physically as the last executable statement.
Conaect other places where the logic fiow
terainates to the RETURN statement by w0 10
statements. This eases later insertion of
sta:ements that must be executed betore any
return is made. Note that this metihod stiidi
leaves the various paths to terminatiou aistiknct
so that they can be treatea separately waern
necessarvy.

ARRALS

If a subroutine uses a variaktie-lenygth or .arge
fixed-length array for working storage, transait
it to the subroutine through the calling
sequence. This way, the array 1s in tue data
region of the calling program and can . satr.sry
otner needs for temporary storage. Also, ir the
array varies in leungth from case to case iu a
single program, or froa program to proyrak, aud
is not specified iu the caliling sequence, tue
array as defined in the subroutine couia be
either short and sometimes iunsutficient or .iony
anc sometimes wasteful.

L.ait the output of a subroutine to prevent array
overflow in the cailing program. When an output
array from a subroutine is of variable lenyth,
the maximum allowaple length must be coumuLicatea
to the subronutine by aun argument in the calliug
sequence.

ORIGINAL PAGE 1

OF POGR QUALITY
34

3.10.6 COMMON BLOCKS

Use labeled COMMON for passiug arguments to or
from special-purpose subroutines whenever
»9ssible.

a Subroutine must not change the value or an
input arqument.

ceneral-ourpose subroutines should not use bialk
COdMuUN storage. Oue that does limits the cailiag
program in its use of COKNMUN. Two or more that
do are likely to nave incompatible requireaments
f~v the sizes or names of blocks in COMMON, which
ne n»ssitate awkward modifications when the
subroutines are used together.

ORIGINAL PAGE IS
OF POOR QUALITY

35

4. Cas8CKOUT AIDS

4.1 LMTERMEDIATE RESULTS

4.1.1

PEGGRAM FLOW

Place WRITE statements in all major blocks ot tke
progrdam and its subroutines wken first coded, so
that the proyress of a proyram can be traced rroa
its printed output during debuyying. Do uot rely
oun tke ordinary (productionm) output. a4t least
have each special-jpurpose suproutine print its
Lame as soon as it is entered. It is also useiul
to “rint the input variables to a subroutine just
beture and the output variables Just after the
CALL statement. These statements shouid print a
clear indication of their position in tue
program, and any variables priuted should oe
labeied.

In tracing the flow of a proyraa, ilLteger couLtroi
variables are ygeneraily moie helprul that are
floating-point data, although the tloatiag-poinut
values may be needed to check the numericai
algoritha., So it is better initially to coade
many simple WRITE's of integer vairatles, suca as
indices and counters, matrix dimeasioans, flags
and swvitches, error codes and computed GO I¢
variables, than a few massive WRITE's ot
floating-point arrays.

The WRITE statements used iu aebugginy, ana taeir
associated FOKMAT statements, may re identified
by a word such as TRACE or DEBUs in coluaLs
73-80, so that they are easily removed after
checkout. Alternatively, a C can simply be aaaed
in coiumn 1 so that the statements calL be used
again if the prograk is modified.

4.2

4.1.2

ORIGINAL PAGE 1

OF POOR QU
36

DA%A STRUCTURES

Design data structures sensibly so they can be
displayed either in dumps or in labelea anc well
arranged printout. Such priuting requires extra
coding initially, but this extra code can wve
included in an error handling subroutiue that
provides easily read diagnostic iutormation waneu
and only vaen needed. It also provides a
couvenient checkout device in prograa
modificatiorn, for a CALL to this subrcutine cai
be inserted both before ana atter tne wod2iied
prograa section. This lesseus the reea to invent
intermediate output statements cr dump
procedures, which usually tais to include all the
portions of storage requirea to diagmose tne
error.

VALIDITY OF RESULIS

For programs expected to rur a loung time, provide
for frequent caecks oif the validity of resuits.
When the resalts seex invaiid, and the error is
irrecoverable, execution sanouid be teramiaatea.

CHECKING
GENERAL

Desk checking means manually scrutinizing prograa
logic and deck structure. HMistakes in elitaer calh
cause an unsuccessful run, so a tew aluutes of
checking is wvorthwhile.

ORIGINAL PAGE IS
OF POOR QUALITY

37

4.2.2 PROGRAN LOGIC CHECK LIST

- Is there a statemeant numver ou the statesent
isizediately foiiowing each arithmetic iF
statement ana each of al. kinas of GO IC
statements?

- Are there statement numbers for the exist irom
1F, GO TO, and LO statements?

- Do parentheses balauce? Start from tae ieft
with 0 and adu 1 for each left parenthesas
encountered aud subtract 1 tror each ragat
parentaecis. Tke count shouia Lever pecoae
negative. 1f pareantheses balance, tne court
wiil end up at 0; hkowever, this does Lot
necessarily indicate correct groupiny.

- Does every subscriptea variable appear it a
specification statement?

- Does any DO-loop end with an 1P statemeLt, ¢
GO TO statement?

- Are all referenced FCERMAT statements) resernt?

- is the field length correct for all Hollieritk
fields?

- Are the number, order, and type or arjumeants
in CALL statements correct?

4.2.3 DECK_STRUCTURE CHECK_L1ST
- For Control cards: is tume card Lecessary, 1s
its positior in the deck cousistent witin 1its
purpose, and is its format correct? Are aLy
control cards missing?
- Are all necessaiy subroutine decks present?

- Are all necessary data cards presernt, and Gcoes
their order agree with what thLe prograud expects?

- is the deck properly ideatiried witn your Lauke
phone number, location, etc.?

38

4.3 CHECKOUT DATA

40301

4.3.2

GENERAL

When creating checkout data, remember tihat
anything that can be punched on a card, ¥ritten
in a tape record, etc., will possilbly bpe input to
your program sooner or later. A progras is never
100 percent checked out, but you are respoansibie
for making checkout as compiete as possibpie.
Therefore, prepare checkout data that represent
production conditioas, inciuding both vaiid and
invalid data, to test diagnostics and recovery
features.

Keep test decks ana records of test results up-
to-date. When new features are added to a
program insert representative checkout aata.
Whenever a program fails and is corrected,
include in the test deck tne type of data that
caused the failure.

When a program is revised or recompiled, cueck it
with the old test deck as well as the Lew
checkout data, if the old deck is stil.i
applicable. -

VERLFICATION QOF INPUT

Know your imput. When practical, have checkout
data printed out completely in a readavie roramat
pefore using it, so you can check it. (To 1list
out input cards, use an existing gyenerai-purpose
suproutine.) Whea the input to a progras,
particularly a general-fpuryose routine, consists
of a large amount of data, another routine to
check the data for consistency, rather tanaw
printing it all out, could be helpful. Another
technique for handling a large amount or aata 1s
to write it in a scratch file and use aL existiug
general-urpose subroutine to transfer it to tne
output file after executiou.

ORIGINAL PAGE 19
OF POOR QUALITY 39

GENERAL

I1f trace printcuts are systematically used, tnere
should be only infrequent need for core dumps.
Since the latter are more expensive in computer
time and less useful as a debugging aia than
selective labeled printout, the only dump that
should always be provided for is a conditional
post~mortem of crucial regions of storage, suci
as the data region of the main program, in case
of abnormal job termination. But, do not rely on
a post-mortem dump as a substitute for trace
printouts; they will teli only what the prograa
looked like after the crash, not necessarilj way
it crashed.

CORE DUMPS

Generally core dumps are userxul only to more
experienced prograamers, most of whom wiil
maintain that they cannot work efficiently
without them. However, nevw programkers wiii not
have a good understanding of the computer's
workings until they are at least capable of
understanding dumps.

Tne technigue of using duaps is best lert to tue
judgment of the individual programmer, buat tuere
are a few general principles:

- Wwhen a dump is positioned iL a loop, be sure to
include the relevaunt control variables, suca
as the indexing parameter of tae loop.

- Whea preparing a production run, alwvays
provide for a full core dump in the event
of failure detected by tae operating systea;
this aids immensely in investicating operatiLny
system and/or hardware maifunctions. A Iuuii
core dump in the event of failure detected o)
the program may or Ray not be appropriate,

- Carefully select the regions to be included 1in
a duap; but, when in doubt, include too mucha
rather than too little.

4.6

ORIGINAL PAGE 19
OF POOR QUALITY 40

4.4.4 1INSTRUCTION DUMRS

Another occasional need for a dump is to examiie
instruction regions suspected of haviny peen
improperly generated by the compiler or of anaviuy
been mutilated during execution. Since the
instruction region cannot be written out by WR1iE
statements, a dump with mnemonics can be a great
help, to those who can interpret it, iu isolatiag
these errors.

Get a storage map, which shows how the program
uses main storage, and use it in checkout. Be
sure to watch for:

- Variable names that do not belong tuere, bput
appear because of misspelliing or other
mistakes.

- Arrays treated as functions bpbecause they are
not specified in DIMENSION statements.

- Proper size of COMMON storage for ali routines
using it.

Get a loading map, which suows how all of core is
allocated to make for easier interpretatiou of
duaps.

DIAGNOSTICS

When you discover an error in checking out a program, o
not resubmit the prograam until you have checked tue
diagnostic information of other errors. Often several
program errors can be detected from tke diagnostics or
one checkout run. Examine partial resuits aud i1Lcorrect
results; even these can be helpful. For exampie, try to
ascertain why deviations froa expected or pre-calculatea
results occurred.

PROGRAM TIMING
To time a section of a program, use an existing general-

purpose timing subroutine vhen the section is entered
and vhen it exics.

	GeneralDisclaimer.pdf
	0147A02.pdf
	0147A03.pdf
	0147A04.pdf
	0147A05.pdf
	0147A06.pdf
	0147A07.pdf
	0147A08.pdf
	0147A09.pdf
	0147A10.pdf
	0147A11.pdf
	0147A12.pdf
	0147A13.pdf
	0147A14.pdf
	0147B01.pdf
	0147B02.pdf
	0147B03.pdf
	0147B04.pdf
	0147B05.pdf
	0147B06.pdf
	0147B07.pdf
	0147B08.pdf
	0147B09.pdf
	0147B10.pdf
	0147B11.pdf
	0147B12.pdf
	0147B13.pdf
	0147B14.pdf
	0147C01.pdf
	0147C02.pdf
	0147C03.pdf
	0147C04.pdf
	0147C05.pdf
	0147C06.pdf
	0147C07.pdf
	0147C08.pdf
	0147C09.pdf
	0147C10.pdf
	0147C11.pdf
	0147C12.pdf
	0147C13.pdf
	0147C14.pdf
	0147D01.pdf
	0147D02.pdf
	0147D03.pdf
	0147D04.pdf
	0147D05.pdf
	0147D06.pdf
	0147D07.pdf

