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CONVERGENCE OF GENERALIZED MUSCL SCHEMES

STANLEY OSHER

Abstract. Semi-discrete ganeralizations of the sedond order exten-
PSS
sion of Godunov's scheme, known as the MUSCL scheme, are constructed,
starting with any three point "E" scheme. They are used to approxi-
mate scalar conservation laws in one space dimension. For convex con=-
servation laws, each member of 3 wide class is proven to be a convergent
approximation to the correct physical solution. Comparison with another

class of high resclution convergent schemes is made,

5& Introduction and Preliminaries. Recently, there has been an
enormous amount of activity related to the construction and analysis of
"high resolution" schemes approximating hyperbolic systems of conserva-
tion laws. Some examples of the successful cansequences of this
activity can be found in the procesdings of the latest (sixth) AIAA Com-
putational Fluid Dynamics Conference, [1], [10], [18]. Extensive

bibliographies can also be found in these papers.

Our aim here is merely to construct and prove the conve}gence of a
subclgss of these schemes approximating scalar convex conservation laws.
This subclass is based on an idea of van Leer [17]. He christened his
algorithms MUSCL (Monotonic Upstream Centered Schemes for Conservation

Laws) schemes, and with mixed emotions, we shall use his acronym here.
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In future work with S. Chakravarthy, we shall extend this construc-
tion to systems in multi-dimensions, using triangle-based algorithms.
This work in progress will stress the computational aspects of the algo-
rithms, especially as they relate to the Euler equations of compressible
gas dynamics. In earlier work with the same author, [12], we con-
structed, and proved convergence of, a class of high resolution schemes
approximating scalar convex conservation laws. We also showed for cer=-
tain high resolution approximations to systems, that limit solutions

satisfy an entropy inequality.

We shall consider numerical aproximations to the initial value
problem for a single conservation law in one space dimension
(1.1)(a) we + f(W), =0, t>0, =1< -1,

with a periodic boundary condition:

(b) wix + 1,t) = w(x,t)

and initia) condition:

(e) w(x,0) = wofx).

It is well-known that solutions of (1.1) may develop discontinui-
ties in finite time, even when the initial data are suiooth. Because of

this. we seek a weak solution of (1.1), i.e. a bounded measurable func-
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tion w, such that, for all & € Co(R x rY),

(1.2)(a) 35 , (WB + £(W)d.) dx dt = 0
RxR
(b) lim |} jw(x,t) = wo(x)li 1 = 0.
t =0 L

Solutions of (1.2) are not necessarily unique., For physical rea-
sons, the limit solution of the viscous equation, as viscosity tends to
zero, is sought. In the scalar case, this solution must satisfy, for

8 £ cg°(g x R*), 4 > 0, and all real constants c:

(1.3)(a) ~If (iw - cldy + sgn(w = c)(f(w) ~ f(e))d,) dx dt < 0

This is equivalent to the statement:

D .
(1L3®) & I =l + & ((£) = £(0)) sgntu = ©)) < O,
in the sense of distributions.

Such solutions are called entropy solutions. Kruzkov has shown in

[9], that two entropy solutions satisfy

1

(1.4) Piwlx,t,) = u(x.t1>HL1 < Hwlx,ty) - u(x,to)iiL

for all t1 > to. Hence, (1.3) guarantees the uniqueness of solutions

to the scalar version of (1.2). Existence was also obtained there.
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Equations (1.3) may bhe viewed as the statement

(1.5) S vy + & F) L0

for each of the convex "entropy" functions of solutions w to (1.1):

V(w) = Iw = ¢}

and their associated flux functions

F(Ww) = (f(w) = f(e)) sgnlw = ¢).

For scalar convex conservation laws whose solutions lie in the space
BV, a single entropy inequality (1.5) for any strictly convex V(w)
and its associated entropy flux F(w), satisfying

(1.6) Friw) = V' (W)f" (W)

is encugh to imply existence and uniqueness of solutions to (1.1). This

follows from the results of DiPerna [3].
Next we consider a semi-discrete, method of lines, approximation to
(1.1). We break the interval (-1,1) into subintervals:
Ij= G =100 <x <G+ Al

J=0, 21, ...y tN, with (20 + 1) A= 2.
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Let xJ = J/\, be the center of each interva) Ij' with end

points xj-b@'xj+bb'

Defive the step function for each t > 0, as

gcéx,t) = uJ(t),

for x41.,
o) 4+ j

The initial data is discretized via the averaging operator 3&{

T

1
\wQ(x) = A J'Ij Wo(s) ds = uJ(O) for x IJ.

For any step function, we define the difference operators

/\ .u,

=%

Diuj =

>i-

A method of 1lines, consarvation form, discretization of (1.1), is a sys-

tem of differential equations

. 3
.(«|08) Sguj + D+h.j“1/2 = 0’ J = 0, t1l ceey N

qﬁfx,o) z Hcgo(x), for x 4 Ij'

Here, the numerical flux defined by:

oA AR
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(1'9) hj"'1/2 - h(uj”'k-l'...’ud-k).

for k > 1, 1is a Lipschitz continuous function of its arguments, satis-

fies the consistency nondition:

h(w'w'o . ,") = f(W)o

It is well known that bounded a.e. limits, as /\ -» 0, of approxi-
mate solutions converge to weak solutions of (1.1), i.e. (1.2)(a) is
satisfied., However, this does not also imply that the limit solutions
will satisfy any of the entropy conditions (1.5), let alone the general

condition (1,3). Some restrictions on h are required,

A simple class of flux functions h, for which (1.8) converges,
for all f, to the unique entropy solution in L°°(L1(R);[0,T]), as
A= 0, forany T > 0, 1is the class of "E" schemes introduced in

[11). Such schemes satisfy the following:

A consistent scheme whose numerical flux satisfies

(1.10) sgn(u‘j - uj_1)[hj_1/2 - f(wl <o

for all u between uj_1 and uj is said to be an E scheme. This is

at present, the most general class of schemes known to converge in the

nonconvex case.,

It is clear that this class includes the widely Known class of
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three point monotone schemes, i.e. those for which

hj_‘l/z = h(uJ,uj_1)D

with h nonincreasing in its first argument, nondecreasing in its

3=
second,

We denote partial derivatives of & iwumerical flux via

A e v e

)]
buj+7

h(uj"'k' Xy 'uj_k+1) = hyo

Thus a three point scheme with a differentiable flux function is mono~

tone iff

Any numerical flux can be written

(1.11) hyty = Valfug) + £Quy ) = VaQy,9, CA Luy)

where Qj+b@ can be viewed as the viscosity of the scheme [15].

One particular three point scheme is due to Godunov, [5], and has a
special significance in this theory. The flux for Godunov's scalar

scheme can be defined by

. G . \ =
e 12) hJ"'1/2 = hG(Uj,Jj_1) = " mig<u f(U)' if UJ_1 _S uj
J=1="=73
)
-8 -
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= max f(u), if Uy > uJ
uJ_12png

One can thus, [11,, characterize E schemes as precisely those for

which:
G .
(1.13)(e) hj-1/2 < hj-J/g' if UJ < UJ_.'
(b) h > h if u, >u
J=Vo 2 V5=V R

or, as Tadmor [15] pointed out, those which have at least as much

viscosity as Godunov's scheme

G
(1.14) Ay, £ Yy

It follows from [11], Lemma (2.1), that these approximations are,

at most, first order accurate,

Together with an entropy inequality, a key estimate involved in
many convergence proofs, is a bound on the variation. For any fixed

t > 0, the x variation of %Qfx.t) is

B(UL\> z : {A+uj(t)3.

If we can write

(1.15)(a) VAN ,,hj_1/2 = "CJ+1/2 AL I DJ"-1/.2 Ay
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(e)

31/2>0

then it is easy to show, [12], using an argument of {191, that, for
by 26,20

(1.16)

B(U_5 ty)) < B(A( 1ts)),

Harten in [7], pointed out for explicit methods, that this decompo-

sition could be obtained for schemes which are higher order accurate. In

our present method of lines context, it involves a five point, con-
sistent, approximation:

du
1
(1.17) (a) '551 *TA AR j=1n © J+1/2--+ 3 - 1/2A u
with
(b) J+1/ = C(Uj*a,uj*",uj,uj_.]) >0
(e) Dj-1/2 = D(u

Wgpirtgotyagrigp) 2 0,
both Lipschitz continuous funectionz of their arguments.
Leer [16].)

(See also van

In addition to (1.16) we have a maximum principle for (1 17,
{121,:

- 10 =
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(1.18) min u (0 < uj(t) < mzx U, (0)

for each J and all t 2 0,

Morover, in [12] we also showed a Limit on the possible accuracy of
approximations of the type (1.17). Any scheme of the type (1.17; is at
most first order accurate at nonsonic critical points of u. (A soniu
point U 4is one such that f£'(u) = 0). Thus, although schemes of this
type can be made to be as high as third order accurate, Lipschitz con-
tinuity implies a local degeneracy to first order accuracy at smooth
maxima and minima. This loral degeneracy, together with some results on
initizl boundary value problems in [6), indicate strongly that overall

second order accuracy is the best possible,

Following Harten [7], we call algorithms of the type (1.17), total

variation diminishing, or TVD schemes,

It is known, that although (1.17) generates a compact family of
solutions, UA('x,b), in L°°wl(ry, 0,11y, (if Mo € L' 0o n sy )y,
limit solutions may not satisfy any of the entropy conditions (1.15),
and hence may not even be unique (1.12) See e.g. [4], [11], and [15].
One way of avoiding this difficulty is to use an inequality ;btained in

[111.,

Let V(w) be any convex function. We showed in [11], Section III,

that, for any solution of any scheme (1.8):

- 11 -
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u
(1299 A Ve + D) = £ aw viintng, - e,

L

where the approximate entropy flux is defined through

) + Vi(u)(lh - f(u

J 370 3=Ye J

Thus, a sufficient condition that any limit solution satisfy (1.5)

for a fixed convex V, {is that

u
(1.21) Iuj“dw V(W) Ch

J sl = T L0

In order that the above inequality be valid for all convex V, it
is necessary and sufficient that hj+b§ correspond to an E scheme,
which implies again that the approximation be at most first order accu=-
rate. Thus, for the schemes to be constructed in the following section
we shall only obtain our entropy inequality (1.21) for a single V(w),
say V(w) = b@wz. The following Theorem summarizes the technical

hypotheses needed for convergence.

THEOREM 1.1. The sequence of approximate solutions converges a.e.

as /A = 0, to the unique solution of the scalar, convex conservation law

(1.1) provided that the initial data is in BV and that inequalities

(1.17) and (1.21) are valid for a single convex V(w).

—

The proof is analogous to that of Theorem (4.1) in (12].

- 12 -
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II. Construction of TVD MUSCL Schemes., The MUSCL scheme as dis-
IS NN IAPSAAIS SNSRI NP SIS IS NG IS IS NSNS
cussed 2.8., in [2) and [8) i{s a second order acourate extension of
Godunov's method [5) that is based on ideas expressed by van Leer in

(161.

We assume that uj(t) is known. The first step in MUSCL is the
reconstruction of a piecewise linear description of the solution, In
the interval IJ the result of this operation is

(2.1) z(x,t) = ud<b) 4+ (x = xd)sj(t). for (x - xj) < AVe.

Here sj(t) are slopes that satisfy

[ -
f_\’vl:ﬂ.) SJ - wx(xj’t) + O( A)
subject to some monotonicibty constraints discussed below.,

Godunov's scheme, in our semi-discrete context, is the following.
The numerical flux hG(uj+1,uj) is computed by solving the Riemann

problem, i.e. the initial value problem (1.1) with initial data

W o uj(t), for x < xj+bb

Wo=ug (), for x 2 X 44l

The resulting unique entropy condition satisfying solution is a

function of the type

- 13 -
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A closed form for W wus recently obtained in [11].

Then Godunov's flux is defined through

(2.3) = £(w(0))

G
hj+vb

which is the same as (1.12).

A fully discrete, explicit in time, Godunov scheme has the same
numerical flux, after we impose a CFL restricticn which prevents the
interaction of solutions of adjacent Riemann problems The literal
second order accurate extension to this fully discrete approach would be

to compute the solution to the initial value problem (1.1), with initial

data

o
bl |

uJ(t) + (x = xj)sj(t). for x < X441

Uj(E) + (x = x)sy o(t), for x> X jalsp”

Find f<w<xj+3@'5)) for ¢t +)NA>s>t, with ) > 0 satisfying a CFL

restriction, then compute

(2.4) XJZ& ‘rtw_\_ t‘(w(xj+1/2,s)) ds.

This is the MUSCL numerical flux.

-1l -

o e S (v

~




2 J

ORIGINAL PACE i3
OF POOR QUALITY

Unfortunately, obtaining the exact solution to this sonlinear ini-
tial value problem with piecewise linear initial data is a non-trivial

business, even in the scalar case, However, at 3 = t*, X =% the

3z’
solution i3 the same as for the Riemann problem with initial data:

- TAY
Wz uyt) +Fsy(t), for x < xyq,

WUy, -%sj”(t), for t > X454

which is easily calcuiated, e.g., from the formula in [11]. Thus, the

semi-discrete MUSCL extension of Godunov's algorithm comes through

du

2l A uS A
(2.5) 'B—tl"_/_-; AN (JJ+1”2sj+1’uj*'2'

5.).

J

We generalize this still further as follows. Let

h("j+1'“j

function. Then our generalized MUSCL algorithm is merely:

) = hj+3@ he an arbitrary first order accurate numerical flux

d3u
z - VAN TAY
(2.6) - TR AP =T sy t T8y

We have:

LEMMA 2.1. At points w(xj,t) = uj(t) in a neighborhood of which

2

h(uj*1.uj) is C™ with Lipschitz continuous partial derivatives, and

S

As‘+1
zsr%qr =1+ 04 = Z:Tj%w the alporithm (2.6) is at least second order

- 15 =
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accurate for smooth functions w.

Proof. Let

(2.7 Ui, Db(uj+1 + uj).

We shall show:

2
(2.8) A _ (hluy, -%SJH’UJ +%sj) - f‘(uj+1/2)) = o(A)

at these points,

Using consistency of h(uj+1,uj), the left side of (2,8) can he

written as

AV AL ALY
1 1
AN [J‘O h1[uj+1/2 + ) __._*2_ VI PRl LAL BT +4}sj] 4y — N}

;; uj. J 2

1 A AT AN L Yy
+ JO hO[uj *T Sy, Y hﬁk u - 1JJ dy [

The result is immediate.,

Next we make an observation about the viscosity of this scheme,

Q as defined in (1.11).

3+

LEMMA 2,2, If h is monotone, then the viszosity of algorithm (2.6)

sj+1

s
is-a decreasing function of‘EQ_E— and ;¥ i .

-16 =
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The proof comes directly from (1.11),

s L]
Thus, as expected, if 7-%;— and 7<1ﬁ;— are both restricted to be
SY 0 S

positive, the most viscous, hence the least accurate, case ocours when
these values ar? both zero. The scheme then degenerates to first order
accuracy. We c¢an compress or smear out the solution locally by increas-

ing or decreasing these ratios.

We wish this scheme to be TVD, which will give a natural restric-

£ions on these above ratios.

LEMMA 2,3, If h is a flux corresponding ¢

L—— — ———

an 5 schem¢, then the

scheme is TVD if

/A s /\s
= j J+1
(2.9) 0« <1
"'C¥ uj ’ £¥ uj s
for each j.
Proof. We have
1 VAN
(2.10) /AAh(uj. -5 Sj’uj-1 + %sj-‘l)
. 1 Dsy4 A A
-(—S[h(ujﬂ -———é-—.uj +-2'SJ.) - f’(hlj +.-2's;j)
s
+ f‘(u‘j +%sj) - h(uj - —-§-‘1,uj %sj)]

- 17 -
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FANE |
1 S
+ Jintay - By o B - rluy - —h

s JAY:

N
+ f(uj - —'é";j‘) - h(u:j - "‘?llud__“ +-é_sj—1)]

Thus, in (1.15) we can write:

s
(2.11¢a) ¢ A

1
P NN R 2

Q - A VAN
+ f(uJ +5 sJ) h(uj > sj,uJ +3 sj>]
I B85 Dy ora -0

. AN - AR AN

+ t‘(uj > SJ) h(uj > Lj,uj_1 +53 53_1)]
Both Cj+b§’ DJ-L@ are nonnegative because of (1.10) and (2.9).
The restrictions (2.9) can be relaxed somewhat if h 1is monotone;

we have?

LEMMA 2.4, If h is a flux corresponding.to a monotone scheme, then

e——

+1
~L vy + Q) - fluy + 5 s))

the scheme is TVD if

(2.12)(a) 1> —d u; near points where h, # 0

- 18 =
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('33+1 + sj) AN

(b) 1

v

near pcints where h0 #0

2 ﬁ\_uj
for each J.
Proof. We have
1 /\ /\

As As A s As
_5 [h(uj - ———Ettl.uj + ——541) - h(u, - — u, + ———41)]

AR JANL: P JANE:} As
1 -1
¢ & g = =y + L T TR —=h1.

Thus, in (1.15), we can uribes

As
(2.14)() Cy, = - ey (g + —dytpu, -5Xs

asy /
(b) Dj_1/2 A(A.u hy (Uy = 3 WU vy +-v~25 (sy - 33_1)]

Both C,

D,
3_1/2 and j

-b@ are nonnegative because of monotonicity

and (2.12).

Remark 2.5, These last two Lemmas can be made "local," i.e. in
regions of monotonicity we may relax the restrictions from (2.9) to

(2.12).

- 19 -
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III. Convergence of MUSCL Schemes, In order to prove convergence
for convex f, we need oniy verify the discrete entropy inequality
(1.21) for the schemes sonstructed in the previous section (Theorem

(1.1)). We shall do this for the entropy

Viw) = ¥ w?

and for schemes satisfying the TVD hypothesis of Lemma (2.3), in addi=-

tion to some other restrictions near sonic shock points,

Suppose uj 4 uj+1, i.e. we are at a rarefaction. We then have,

-1
letting uJ+L@ = /g(uj + uj+1) as above

u. As VAN
(3.1) Ju;*‘ dwih(u,, | - g*‘,uj + —?;i) - £(w)]

u
j+1
L dwlflug, g, = £(0)]

[T} + [II].

Now, using the hypotheses of Lemma (2.3), we have:

(3.2) [(I1<0

-20 -
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u u [
(3.3) [II] = th*‘ dw :@1*"2 [g%(s - w)J £1(s) ds

u
= th+1 dw (u -w) f'(u

3+ 341

u u
~ 83 qu g % (o 2wy s as
3

u Us,1
-.I'u'j""1 dw Iw'j+ 7 (s = w) f"(s) ds

J
g1 2
z = !Lj ds £(s) (minis = uy 41,18 - ug ) <o,
Suppose uj b uj+1. i.e. we are at a shock. Let ﬂj+b@ be chosen
S0 that
u
J+1
;53 £r(w)(w = GJ+L@) dw =z 0
i.e.
u
j+1
wf? d

(3.4) a :“5 -

. #V ¥ Ta W NEICH)

th+1 £'(w) r J

J .

-2t -
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where F(u) 1is the entropy flux corresponding to our entropy,
V(u) = ygua. Of course we need the denominator in (3.4) to be nonvan-
ishing. In fact we restrict ourselves to the situation where

E

(3.5) Uger £ 04,0, LUy
We note
Ul
J+1
Ju, =gy} £ dw

u
1
th+ (w - uj+bé) (£'(w) = f'(u3+L@)) dw

AN |
0, f(uj)
Thus, we have
sup  £"(u)
{udu,
\ 1 2 a1ty
3.7 ‘a.i+‘/2 T Ul <5 Gy =5‘:j+1/2i

flu,)
where s 1. = éét————l—.
J+'h AN uy

We further restrict the sJ so that

(3.8) 0 < -Lﬁsj < 2 max(min((u

j - aj+1/2)l(uj_1/2 L UJ))’O)O

In view of (3.7), this restriction does not affect the second order

- 22 -
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accuracy of the scheme, except at sonic points.
We now write
u As s
(3.98,7*" autn [uJ y -3 s —;i] - £)]
j + J 2
As +1

As '
=0, ”j[“["m - = uy "'.EJ} = £04,1,0]

u
3 -
+ 153*1 dw [£(0) = £(8y q,))

= [LII] + [IV].

Now, the assumptions (3.5), (3.8) imply

(3.10) f1IIj < o,

An argument analagous to that of (3.3) suffices to show that

(1v] < o.

Finally, suppose u‘j+1 < uJ and (3.5) is violated, The inequali=-
" ties of Lemma (2.1), and (3.8) imply that S5 and sj+1 vanish. Then

inequality (1.21) is immediate, since h 1is an E flux.

We may summarize all this in

-23 -
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THEOREM 3.1. The sequence of approximate solutions satisfying

(2.6) converges a.e. to the unique solution of the scalar convex conser=

<
&
cr
[ s
o

iaw (1.1) provided that the initial data is in B.V. and that for

|
oor— —

o
[+4]
[e]
=
Cate

A s
0 ¢ ik 4
8, Uy
As
Xt
a Yy
and, in addition if uj > uj+1,

-Qsy < 2 max (min (Cuy - uJ+1§)' uj-b@ - ugdy 0).

nax: Steady Discrete Shocks. We now check for the existence of
discrete, steady, shock solutions to the convergent MUSCL schemes con-
structed in the previous sectiun, based on the Engquist-Osher flux, [4].
Since the scheme satisfies a maximum principle (Lemma (2.1) of [12]),

any profile must be monotone,

Let f"(u) > 0, and for simplicity, we take f'(0) = 0 = £(0). 1In

]
o

this case, the monotone E-0 scheme becomes

EO
(4.1)¢a) h (uj+1,uj) = f_(uj+1) + f+(uj)

where

-2l -
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(b) £ (u) = f(u)
f_(u) = 0
(e) £,(u) = f(u)
f(u)= 0
Let ul

steady shock, i.e.

ruly = ey, Wby oo Wb,

A steady discrete shock {u,}

J

(4.2)¢a) 1im u, = u“

j=p=00 1

(b) lim uJ = uR
J=>+00

for all j.
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if u<o

it vw>o0

if u<o0

’ uR be the left and right states for a physically correct,

R

will satisfy

t
]
—~
>4
~

n
"‘)
4
s,
+
—
]
fﬁ
- -
-+
]
+M
<
.
+
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We shall scek steady, discrete, shocks of the same general form

obtained in [Y%] for the E-~0 scheme, o.f. also [12], section V.

These are
(4.3)(a) u = b, 3¢ -1
(b) uy=ut, 322
(o) ung Uy 2 0>u, 2 uf,

For the first order scheme, uy can be viewed as a smooth funct ion

of u, satisfying the above, and, in addition

f(uo) + f(u1) = f(uL)

For the present scheme, we shall get a different one parameter family of

intermediate states.

It follows for all J £ 0, that (4.3) implies (4.2)(c).

For j = 0, we have the following equation:
! st )
(4. 4) 0= + £, v, + - f(u”) = G(u,,uo)
One special solution is, again, u1 = u ’ u0 = 0,

For (uo.u1) ¢lose to (o,uR) and satisfying (4.3)(c), we have,

- 260 =
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from the hypotheses of Theorem (3.1):

R

(405) 51 = 81/2 A

80-".0

Here 0 < a1/2 is assumed, in addition, to be a ¢? function of
U, near u, zu’, with —3-13-13 = 0,

A straightforward calculation gives us

a
1 2

3G

(b) Su- (u
0

R

i
o

y0) =

2
@ ¥ w0
duf

1Y

"2

~~

=

N
H

—

+

; Q
N*“"

{d) (uR,O) =0

Llor
o
o

0%41

o’
ny
«Q

(e)

= f"0) >0

(= )V

A simple application of the implicit function theorem gives us:

- 27 -
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THEOREM 4.1, Given the hypotheses of Theorem (3,1) and the mild

technical assumption concerning 3@@' there exists a family of sharp,

discrete, shoock solutions to (2.6) of the type (4.3), with u, a smooth

function of Uy and 0 < Ugr small enough. By symmetry, the same is

true, with u, a smooth function of u, < 0, and -u, small enough,

V. Comparison With Obher Conwecrgent High Resolution Schemes. In
{12]) we constructed a class of convergent high resolution schemes, using
flux limiters and second order accurate upwinding. Our first step was
%0 use a first order E scheme flux, h(“j+1'“3)' to construct a second

order accurate TVD scheme. The resulting scheme is

du

= -1
(5.1) Tﬁ?” -'£§£\ﬁ(uj+2, Miaqr uj, uj_1),
with
(5.2)  H(uy oy Uz qe Uy Uy g) = hCug ge ug) = o 8 (RY D ChCuy 0y ug) = £u)))
+ W(RB)(f(uJ+1) - h(uj+1. uj)).
Here
’ f{u,) - h(u,, u, ,)
(5.3) RY = = 37 3=

J f(uj+1) -h(uj+1, uj)

h(u3+1|‘1j) "‘ f(uj)

J - h(ujl uj-1) - f(uj_.1)

- 28-
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The slope limiter 4 (R) satisfies ¢(1) = 1 and the following

inequalities 1

r - -
3 (R)
(5.4)(a) 1a af—L -0 g,
"3

v
o

[ (R*) '
(b) 1 Yol -0 )
L R .

v
o

Various slope limiters have been developed., See Sweby [13], for a
numerical and theoretical analysis of their properties. Perhaps the

simplest example is the so called min-mod, [14]:

(5.5) ¥(R) = max (O,min(R,1)).

We have the following analogue of Lemma (2.2):

LEMMA 5.1. If h is an E flux, then the viscosity of (5.1) i

—— w———— m—

a

decreasing function of w.

Next we compare the schemes (2.6) and (5.1). If f'(w) #0 and w

is smooth at x then it is easy to see that

j’

£54,1 2 2
H(uj+2, uj+1, uj, uj_1) = h Ujp = —-%:—, U, + ~§l + 00, uj) + Qﬁk uj) )

if

- 29 -
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- 2 2
(5,6) é;sj ] ¢(RJ) AN uj + 00 (A uj) + QQ» uj) ), |{if h1(w,w) £0
and/or

Asy = 9B A ug+ 00 )+ (4 up?), 18 hgGww) £0

Dropping the quadratic terms, inequality (2.9) gives

4 (R)
(5.7)(a) 0 ¢~ 9D <1 AF hyGww) 40
"3
¥ (RY)
(b) 0 5-——;;—. w(n§> <1 if hy(w,w) £0
R
3

These inequalities are a bit more restrictive than those needed in

the monotore case, There we have
(5.8)(a) 1> W - — 4 WR, D] LE b W) £ 0

BRY) .
(b) 120 |- —>+ BRSO 4f hy(w,w) £ 0

L J !

which.are the same a3 inequalities (5.4)(a),(b).

For the entropy condition to be proven valid, the flux was modi-

fied. Ve replaced H by H?®® (where a.c. stands for artificial

- 30 -
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compression), as follows.

First we modify the flux differences in (5.2):

H
(5.9)(a) (h(u3+1, uj) - f(uj))

a5, 1,0, hiluy, u @, uj)]
h(uy gy ug) = £0uy) j

= (h(uj+1i ’Jj) - f(uj)) 1 +

M
(b) (FQug,q) = Blug,,, up)

+
aj+beQ#ho(“j' uj)kﬁv uj]

= (f(u»j"’1) -h(uj‘*“' uj)) 1 -

Here a§+L? are both positive, chosen first so that the quantities
in the brackets in (5,9) are between 0 and 2, (inequalities (5.13)

below).

We next let:

M
M

(f(uj+1) - h(uj+1, uj))

Mo (hu, ., u)) -t "
Rj- . j+1’' d -
(hluyy uy ) = Fluy_y))

-31 -
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Then we define our scheme:
3. _ ac
(5.10) bl £>£¥ H (uj+2, Ujyqr Yy “3-1)
with

ac
(5.11) H (uy, o0 Ujpqr Uy Uy q)

]
- M
jerr Yg) - 7 ¢(Rj+1> (hluy, g uy) = £uy))

M
, M |
+ Vo 9RST) (£, ) - htuy u))s i

The resulting scheme is convergent if the following inequalities

are valid:

u
j+1 2 2
(5.12) J‘uj £ (w)dw ((1/2@ ) - (W - 1/,;_»(113.*1 + uj)) )

- 2
- aj+bé A, uj) [h1(uj+1, uj+1) - h1(uj, uj)]

+ 2 v
- 35, A, uj) Lho(uj+1,uj+1) - ho(uj, uJ)] <0

- ' (h(uj+1, uj) - f(uj))
(5.13)(3) laj+1/2(h1(uj+19 uj+1) - h1(uj' uj))l __<_ - A‘ uj

flu, ) =h(u, ., u,)
+ . \ j+1 j+1” 3
(b) laj+1/2(h0(uj+1’ uj+1) - ho(Uj, uj))‘ _<_ /: uj ]

- 32 -
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and if $(R) 1is defined by (5.5).

Examples are given in [12].

It is interesting that this case allows compression to be added at

shocks, i.e. the restrictions on the allow negative viscosity to

x
23+ Y
be added to (5.2) if uy > Ujpqr while, again for the proof of conver-
gence, positive viscosity must be added for rarefactions, uj < uJ+1. In
the present MUSCL case the situation is (unnaturally) reversed. A com-
parison of the convergent MUSCL scheme with this one yields two main
points:

(1) Away from sonic points, the fluxes differ only in O(QQ& uJ)B)
terms

(2) At sonic points, the fluxes differ in O(QQ¥ uj)z) terms.
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