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CONVERGENCE OF GENERALIZED MUSCL SCHEMES

STANLEY OSHER

Abstract. Semi-discrete generalizations of the second order exten-

lion of Godunov's scheme, known as the 11USCL scheme, are constructed,

starting with any three point "E" scheme. They are used to approxi-

mate scalar conservation laws in one space dimension. For convex con-

servation laws, each member of a wide class in proven to be a convergent

approximation to the correct physical solution. Comparison with another

class of high resolution convergent schemes is made.

I. Introduction and Preliminaries. Recently, there has been an

enormous amount of activity related to the construction and analysis of
	

k '^

"high resolution" schemes approximating hyperbolic systems of conserva-

tion laws. Some examples of the successful consequences of this

activity can be found in the proceedings of the latest (sixth) AIAA Com-

putational Fluid Dynamics Conferences [11, [101, [181. Extensive

bibliographies can also be found in these papers.

Our aim here is merely to construct and prove the convergence of a

subclass of these schemes approximating scalar convex conservation laws..

This subclass is based on an idea of van Leer [171. He christened his

algorithms MUSCL (Monotonic Upstream Centered Schemes for Conservation

Laws) schemes, and with mixed emotions, we shall use his acronym here.
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In future work with S. Chakravarthy, we shal l extend this construc-

tion to systems in multi-dimensions, using triangle-based algorithms.

This work in progress will stress the computational aspects of the algo-

rithms, especially as they relate to the Euler equations of compressible

gas dynamics. In earlier work with the same author, [ 123, we con-

structed, and proved convergence of, a class of high resolution schemes

approximating scalar convex conservation laws. We also showed for cer-

tain high resolution approkimations to systems, that limit solutions
	

I.

satisfy an entropy inequality.

^s

We shall consider numerical aproximations to the initial value

problem for a single conservation "law in one space dimension

j

(1.1)(a)	 wt + f(w) x = 0,	 t > 0 9 —1 <	 1,

with a periodR.c boundary condition:
	 •I

(b) w(x + 1,t) - w(x,t)

and initial. condition:

(c) w(x, 0) = w0 ,1 x) .

It is well-known that solutions of (1.1) may develop discontinui-

ties in finite time, even when the initial data are smooth. Because of

this, we seek a weak solution of (1.1), i.e. a bounded measurable func-

-3

>..	 __..ter ,...s • _^^. ^ ,^ 1 ,..-. °	 ^	 4. ^:^	 .



a
ORIGINAL PAGE El
OF POOR QUALITY

tion w, such that, for all 95 f C 0 (R x R+),

(1.2)(a)	
&RxR+ (wd

t + f M dx ) dx dt = 0

(b)	 lim Ilw(x,t) - w0 (x)1; 1 = 0.
t-;0	 L

Solutions of (1.2) are not necessarily unique. For physical rea-

sons, the limit solution of the viscous equation, as viscosity tends to

zero, is sought. In the scalar case, this solution ;oust satisfy, for

0 k CDo (R x R +), 0 > 0, and all real constants c:

•
(1.3)(a) -0 (;w - old t + sgn(w - c)(f(w) - f(c))d x ) dx dt < 0

i
This is equivalent to the statements

r

(1.3)(b)	 Ft— tw -c; +	 ((f(w) - f(e)) sgn(w - c)) < 0,

in the sense of distributions.

Such solutions are called entropy solutions. Kruzkov has shown in

j	 [91, that two entropy solutions satisfy

(1.4)	 iiw(xrtl) - u( x , t 1 )11 1 < ilw(x,t 0 ) - U(x,t O )ii 1
L	 L

for all t 1 > t o . Hence, (1.3) guarantees the uniqueness of solutions

to the scalar version of (1.2). Existence was also obtained there.

- 4 -
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F(w) = (f(w) — f(c)) sgn(w — c).

For scalar convex conservation laws whose solutions lie in the space

BV, a single entropy inequality (1.5) for any strictly convex V(w)

and its associated entropy flux F(w), satisfying

ORIGINAL PACE 19
OF POOR QUALITY

Equations (1.3) may he viewed as the statement

(1.5)	 V(w`, + Fx F(w) < 0

for each of the convex "entropy" functions of solutions w to (1.1):

V(w) = {w - c(

and their associated flux functions

(1.6)	 FI(w) = V'(-w)fl(w)

is enough to imply existence and uniqueness of solutions to (1.1). This

follows from the results of DiPerna 131.

Next we consider a semi—discrete, method of lines, approximation to

(1.1). We break the interval (-1,1) into subintervals:

I i 	(x1 Q — 1/2) A < x < (i + 
112) A

j	 O, ±1, • • • , ;tN, with ( 2N + 1) A = 2.

- 5 -
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Let x^ _ j Q , be the center of each interval. I i , with end

points x J -1/2"J+1/2.

Defirie the step function for each t > 0 0 as

D,(x,t) z u ̂(00

for x + Ij.

The initial data is discretized via the averaging operator T4y

T/ ẁ0 (x) =	 fI w (s) ds = u^(0) for x f Id.

For any step function, we define the difference operators

+uj 
= +(u j+1 - ui)

1
D+ ud = ^/\ +u^

A method of lines, conservation form, discretization of (1.1), is a sys-

tem of differential equations

(i.8)	 u1 + 
D+hj-1/2 = 0

9 d = 0, ±1, .e., tN

U/(x,0) = T/`,^ 0 (x), for x f IJ.

Here, the numerical flux defined by:

— S —

-

.i;,.	 t r	 x°^,..^ ^..A „^i.•s^s	 J- ,ham ^ s..^ i	 ^._.._
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(1.9)	 hJ_1/2 = h(uJ+k^1 ► ...,uJ_k).

for , k > 7, is a Lipschitz continuous function of itz arguments, satis-

fies the consistency condition:

h(w,w,..,w) = f(w).

It is well known that bounded a.e. limits, as L -;> 0 0 of approxi-

mate solutions converge to weak solutions of (1.1), i.e. (1.2)(a) is

satisfied. However, this does not also imply that the limit solutions

will satisfy any of the entropy conditions (1.5), let alone the general

conditi..on (1.3). Some restrictions on h are required.

A simple class of flux functions h, for which (1.0) converges,

for all f, to the unique entropy solution in Loo (L 1 (fl);[0,T1), as

L -? 0, for any T > 0, is the class of IfEie schemes introduced in

[111. Such schemes satisfy the following:

A consistent scheme whose numerical. flux satisfies

(1.10)	 sgn(ui - uj_1)[hJ_1/2 - f(u)] < 0

for all u between uj_1 and u 	 is said to be an E scheme. This is

at present, the most general class of schemes known to converge in the

nonconvex cast.

It is clear that this class includes the widely known class of
o

^7-



I

U{-tJUIVIAL PAS' TO

OF POOR QUALITY

three point monotone sohemes, i.e, those for which

hJ-1/2 = h(UJOUJ-1) ►

with hj-,/ nonnereas.ing in its first argument, nondeereasing in its
2

4eeond.

We denote partial derivatives of a numerical flux via

a	
h(u J+k"*"Uj-k+l

 ) - h .

Thus a three point scheme with a differentiable flux function is mono-

tone iff

h1 < 0 < ho.

Any numerical flux can be written

	

(1.11)	 h3+1/2	
1/2(f(u j ) + f ( uj+1 )) — 1/2QJ+ 1/2 ( Q +UJ)

where Qj+1/2 can be viewed as the viscosity of the scheme [15).

One particular three point scheme is due to Godunov, [51, and has o

special significance in this theory. The flux for Godunov's scalar

scheme can be defined by

	

(1.12)	
hG-1/2 = h

G(u 3 , u 3_ 1 ) =	 min	 f(u), if uJ-1 < uj
uj-1<u<uj

i

- 8 -
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max	 f(u), if uJ-1 > uJ.
uJ- 1>u >ui	 f

One can thus, (11j, characterize E schemes as precisely those for

which:

0.13) (a)	 h	 < hG_1 , if u C u
x-1/2 -	 /2	 ,i	 J-1

1

(b)	 h J_1/2 > h3- 1/2 , if u J > u J-1,

or, as Tadmor [151 pointed out, those which have at least as much	 G

viscosity as Godunov's scheme

^3	 I

(1.14) G	 b
1-112 4 'J-1/2-

It follows from [111, Lemma (2.1), that these approximations are, 	
p

at most, first order accurate.

Together with an entropy inequality, a key estimate involved in

many convergence proofs, is a bound on the variation. Fo. r any fixed
i

t > 0, the x variation of U^(x,t) is

I

B(U^	 +u J (t) i •

If we can write

(1. 15)(a)	 A +hJ-1/2 = -C J+1/2 Q 
+uJ + DJ-1/2 A UJ

—9'o
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(b)	 Cj+112 > 0

(a)	 nJ-1/2 > 0

then it is easy to show, [121, usin g an argument of [191, that, for

t 1 >t2 > 0

(1.16)	 B(U^(' r t 1) ) < B(U^(' ► t 2 ) ).

Harten in 171, pointed out for explicit methods, that this decompo-

sition could be obtained for schemes which are higher order accurate. In

our present method of lines context, it involves a five point, con-

sistent, approximation:

au
(1.17) (a)	 -- _ 	 , +hj-1^2 = C^+1^2 n +aj - pj _1^

2
	u3

with

(b) CJ+1/2 " C(uJ
+20uj+1'uj'uj - 1) > 0

(c) D.1/2 = D(u^±1'u3ru^^1'u^_2) > 0,

both Lipschitz continuous functions of their arguments. (See also van

Leer [161.)

In addition to (1.16) we have a maximum principle for (1.17),

[1210:

10 -
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(1.18)	 min u k (0) < u (t) < max uk(0)

for each j and all t > 0.

Morover, in [127 we also showed a limit on tho possible accuracy of

approximations of the type (1.17). Any scheme of the type (1.17; is at

most first order accurate at nonsonic critical points of U. (A sonto

point u is one such that f l (U) = 0). Thus, although schemes of this

type can be made to be as high as third order accurate, Lipschitz con-

tinuity implies a local degeneracy to first order accuracy at smooth

maxima and minima. This local degeneracy, together with some results on

it,itial boundary value problems in [6), indicate strongly that overall

second order accuracy is the best possible.

Following Harten 177, we call algorithms of the type (1.17), total

variation diminishing, or TVD schemes.

It is known, that although (1.17) generates a compact family of

solutions, U
N
(x,t), in Loo(L1(R),[0,T)), (if w 0 + L 1 n Loo n 8V) ),

limit solutions may not satisfy any of the entropy conditions (1.15),

and hence may not even be unique (1.12) See e.g. [41, [111, and [151.

One way of avoiding this difficulty is to use an inequality obtained in

0117.,

Let V(w) be any convex function. We showed in [11] 0 Section III,

that, for any solution of any scheme (1.8)

- 11 -
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.,(	 V(u 3 `̂  + A+F'A (u^) >	 S', 
1
J+

1
	dw V 11 (w) [hJ+1/2

where the approximate entropy flux is defined through

(1.20)	 FA(ui) = F(u i ) + V'(ui )[hJ-1/2 - f(ui)].

Thus, a sufficient condition that any limit solution satisfy (1.5)

for a fixed convex V, is that

(1.21)	 :uj+1dw V"(w)[hJ+112 — f(w)] 	 0

In order that the above inequality be valid for all convex V, it

is necessary and sufficient that h j+1/2 correspond to an E scheme,

which implies again that the approximation be at most first order accu-

rate. Thus, for the schemes to be constructed in the following section

we shall only obtain our entropy inequality (1.21) for a single V(w),

say V(w) = 1/2w 2 . The following Theorem summarizes the technical

hypotheses needed for convergence.

THEOREM 1.1. The sequence of approximate solutions converges a.e.

as AA;- 0, to the unique solution of the scalar, convex conservation law

(1.1) provided that the initial data is in BV and that inequalities

(1.17) and (1.21) are valid for a single convex V(w).

The proof is analogous to that of Theorem (4.1) in [123.

— 12 —
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II. Construction of TVD MUSCL Schemes. The MUSCL scheme as dis-

cussed e.g., in [23 and [81 is a second order accurate extension of

Godunov'a method [5] that is based on ideas expressed by van Leer in

[1b].

We assume that ui (t) is known. The first step in MUSCL is the

reconstruction of a riecewise linear description of the solution. In

the interval I the result of this operation is

(2.1)	 z(x,t)	 u i (t) + (x - x i )s i (t), for (x - x) < A /2.

Here si (t) are slopes that satisfy

f`YY 4i?)
	

s1 : wx (x i ,t) + A( p )

subject to some monotonicity constraints discussed below.

Godunov's scheme, in our semi-discrete context, is the following.

The numerical flux h G ( u J+1 , u i ) is computed by solving the Riemann

problem, i.e. the initial value problem (1.1) with initial data

W L. u i (t), for x < 
xJ+1/2

W - uj+1 (t) , for x > xJ +1/2.

The resulting unique entropy condition satisfying solution is a

function of the type

- 13 -
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A closed fora for w was recently obtained in [11].

Then Godunov's flux is defined through

(2.3)	 h + 112	 f(w(0))

which is the same as (1.12).

}

A fully discrete, explicit in time, Godunov scheme has the same 	
f

numerical flux, after we impose a CFL restriction which prevents the

interaction of solutions of adjacent Riemann problems The literal.

second order accurate extension to this fully discrete approach would be

to compute the solution to the initial value problem (1.1), with initial

data	 r

W - u i (t) + (x - x i ) s i (t), for x < xj+l/,

u j+1 (t) + (x - xi)sJ+1(t), for x > xj+1/2.

Find f(w(xJ+1/2,$)) for t + X n , > s > t, with A > 0 satisfying a CFL

restriction, then compute

(2.4)	 1	 +),--\ f(w(x j+ 1 2̂ ,$) ) ds.

This is the MUSCL numerical flux.

— 14 —
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Unfortunately, obtaining the exact solution to this 7onlinear ini-

tial value problem with piecewise linear initial, data is a non-trivial

business, even in the scalar case. However, at s = t + , x - x ;,, the

solution is the same as for the Riemann problem with initial data:

w e u^(t) + As ^(t), for x < xJ+1/2

w s uJ+1 - 2 s
J+1 (t), for t > xJ+1/2

which is easily ealcu'lated, e.g., from the formula in [111. Thu g , the

semi-discrete MUSCL extension of Godunov's algorithm comes through

	

t
(2.5) 
	 - M L h-	 J+1 - 2 s J+1 ,u ,j a s^).

We generalize this still further as follows. Let

h(uj+1,uj) = h j+1/2 he an arbitrary first order accurate numerical flux

function. Then our generalized MUSCL algorithm is merely:

	

ûl
(2.5) 
	
- - n /l h(uJ+1	 2 sJ+ 1, uj + 2 s^).

We have:

LEMMA 2.1. At points w(x if t) = u i (t) in a neighborhood of which

h(uj+1,uj) is C 2 with Lipschitz contitimous partial derivatives, and

^^ _̂, ŝ

	

u^	 1 + 0(/y = l4 u-' the algorithm (2.6) is at least second order_.	 ._

- 15 -
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accurate for smooth functions w.

Proof. Let

(2.7)	 uJ+1/2 = 1/2(u j+1 + Ui).

We shall show:

(2.8)	 _ (h(u J+1 —	
sJ

+1'u3 + a s 
- f(u J+ 1/2 )) = 0(1 2

at these points.

Using consistency of h(u J+1 "J ), the left side of (2.8) can be

written as

1	 ^+ u	 \ s '+1 
'r0 h1lu^+1/2 + y 2-^ 1 - / Ĵ ^	 ^,u^ +	 s i dY 2	 fi

:-.4+ u3

1	 /^
s.^

+'r0 h0 u^ + 2 si,u^
+1/2 + y 2	 - 1 dY	 2 	 u

The result is immediate.

Next we make an observation about the viscosity of this scheme,

Qj+1/2, as defined in (1.11).

LEMMA 2.2. If h is monotone, then the viscosity of algorithm (2.6)

is • a decreasing function of^ and s,

J

- 16 —
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The proof comes directly from (1.11).

Thus, as expected, if-- i and ^^a1 are both restricted to be
4 i	 —'^ i

positive, the most viscous, hence the least accurate, case occurs when

these values are both zero. The scheme then degenerates to first order

accuracy. We uan compress or smear oat the solution locally by increas-

ing or decreasing these ratios.

We wish this scheme to be TVD, which will give a natural restric-

tions on these above ratios.

LEMMA 2.3. If h is a flux corresponding to an E schema : , then the

scheme is TO if

t^

1

t

(2.9)	 0 < L 1 ,	
J+1 

< 1i	 -	 ,
for each J.

Proof. We have

(2.10)h( u^ — C S ^,u J _ 1 + a sj_1)

Us.
_	 [h(u^ +1 —	 2

+
1'uJ + 2 s^) — f(u^ + ^^ s3)

as
+ f(u^ + 2 s^) — h04	 2 ,u^ + ^ s1)]

— 17
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L^ s
+ !Ch(u^ ^ru^ + 21 s^) - f( u^ _ °2 )

	

Q s	 Lls
+ f(u^ - --2 ) - h(u^ 2 j-^u^ -1 + 2 sJ-1)a

Thus, in (1.15) we can write:

(2.11)(a) C^+1/2 = - a	
u )
 

Vu ^+1 - s--^+1 A u j + V s i ) - f(u j+	 2 s^)
J

+ f(u^ + 2 s^) — h(u^ — a s ^,u^ + 
2 

sj)]

s

(b) D^-1/2 V (Q u ) Ch (u - 2 i t u^ + 2 s^) - f(,a^ - a s^)

F f(u^ - Q s ) - h(u^ - a °^,u^-1 + A sJ_1) ]

Both Cj+1/2, Dj-1,2 are nonnegati,ve because of (1.10) and (2.9).

The restrictions (2.9) can be relaxed somewhat if h is monotone;

we have:

LEMMA 2.4. If h is a flux corres op nding,to a monotone scheme, then

the scheme is TVD if

(2.12)(a)	 1 >	 J+1	 uJ	 near points where h 1 9 0

- 18 -
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(b)	 1 >	 2 A uj	
near points where h p 9 4

for each J.

Proof. We haver

(2.13) A
	

h(u j — 2 s j r u j_ 1 + 2 sj_1)

	

Ch 	 — -̂- 2-+̂ ,u + 2 ^-) — h(u^ _ L^

. ^ uj + ^.s^)]

j+1	 9

sss	 s	
_̂_.__

+ [h (u - a2 
^ 
uj + ^2')-) - h(u^ - ^2^ru^_1 + 2 1)].

Thus, in (1.15) 9 we can smite:

s

	

(2.14)(a) C j+142 = - 	 (^1 u.) h 1 (a j ,u^ + 2 )V\ u j _ Q\ sx3+1 - sj)]

11 s(b )	 p	 1	 h (u ,	 -,u j w/ - u j + 2 (s j - s j_1)]
J-1/2 U (.0 j

) 
0 3

Both C j_1
/2 

and D j_1/2 are nannegative because of monotonicity

and (2.12).

Remark 2.5. These last two Lemmas can be made "local," i.e. in

regions of monotonicit y we may relax the restrictions from (2.9) to

(2.12).

3

t

k

— 19 —
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(3.2)	 [I] < 0
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III. Convergence of MUSCL Schemes. In order to prove: convergence

for convex f, we need only verify the discrete entropy inequality

(1.21) for the schemes constructed in the previous section (Theorem

(1.1)). We shall do this for the entropy

V 	 = 1/2 w2

and for schemes satisfying the TVD hypothesis of Lemma (2.3), in addi-

tion to some other restrictions near sonic shock points.

T

Suppose u  < uj+1, i.e.

letting u j+1/2 = 1/2 (u j + u j+1)

(3.1) ^u J+1 dw[h(uj+1 -	 2j

we are at a rarefaction. We then have,

as above

/^ s
+1, u

1
 + 2) - f(w)]

rh a )(h(u	 - Lsj+1^ u 
+ Lsj ) - f(u 1 ))2	 j	 2	 j+ /2

u
+ 90 j+u1

j	
dw[f(u j+1/2 ) - f(w))

= [I] + [II].



Next we have
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6	 '

(3.3) [II] - fuj+
1 	 dw ^„wi+1/2 (FIS-(S — w)f'(a) ds

= fug+1 dw ( u3+ 1/2 - w) f' (uJ+1/2)

3

fi

fug+1 dw fwJ+1^2 (s — w) f"(s) ds

e

u J+ 1 d w fw J +1/2 (s _ w ) fu (s) ds	 3

'Nt
r`	 P

Y

- — 1/2 tu
j+1 

ds f" (s) (minis — u
j+1 i, = s — u 1 i ) 2 < 0.

Suppose u
i 

> u J+1 , i.e. we are at a shock. Let Q j+ 1/? be chosen

so that

4tuj+1 
f l (w) (w — 0

j+ 1/2 ) dw - 
0	 E I

i.e.	
I'i

JFu
J+1 

wf' (w) dw Q F(u-)
_(3.4)	

0^+112	
3	 j
 

u	
f(ui

f)u	 '(w )
3

_ 21 —

I.aef:°'"r'L^i'
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where F(u) is the entropy flux corresponding to our entropy,

V(u) = 1/2u `. Of course we need the denominator in (3.4) to be nonvan-

ishing. In fact we restrict ourselves to the situation where

(3.5)
	

uJ+1 < aJ+1/2 < u J.

We note

juj+ 1 
(w - u j+ j/2 ) f + (w) dw

(3.6) El J+ ;/2 - u J+

1
/2 ..	

L\'+ f(
u^)

F

Thus, we have

i

r

J+^ 
(w - u j+ 1/2 ) (f' (w) - f' (uj+j/fu	 2)) dw

f(u)

sup	 f1l(u)
2 u^+^<u<uj

(3.7)	 , as +1/z — u j+1/2 , < 6 (p^
 ,J) 2

^gJ+1/2

f(u
^	

)
where s +1/2 = L+ u^--•

We further restrict the s  so that

(3.8)	 0	 < - /, s i < 2 max(min((u j - aj+,/2),(taj -1/2 - u	 ))10).

In view of	 (3.7), this restriction does not affect the second order

- 22 •-
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accuracy of the scheme, except at sonic points.

We now write

(3.94u j+1 dw[h u^+1 a 2 -' u	 \ S^ + 4\S - °(w>]

= j^ u J [h lu J +1 _
	

2 ' u  + 2	 f ( aJ+ 1
/2

) ]

u
+ fu J	dw Cf(w) - f(tJ

J+1	 J +1/2)]

_ [III] + [IV].

Now, the assumptions (3.5), (3.8) imply

(3.10)	 [III] < 0.

An argument analagous to that of (3.3) suffices to show that

[IV] < 0.

Finally, suppose uJ+1 < 
u 
	 and (3.5) is violated. The inequali-

ties of Lemma (2.1), and (3.8) imply that s 	 and sj+1 vanish. Then

inequality (1.21) is immediate, since h is an E flux.

We may summarize all this in

1

i
i

^	 I

- 23 -
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THEOREM 3.1. The sequence of a2eroximate solutions satisfying

(2.6) converges ate, to the unique solution of the scalar convex conser-

vation ;yaw (1.1) RL2.y idad that the initial data is in B.V. and that for

each j
p

V^
0 <	 u < 1

and, in addition if u  > uJ+1,

0 sj < 2 max (min ((u j - 0j+1/̂ ) . 0 J_1f2 - u
J)

) , 0)•

IV. Steady Discrete Shocks. We now check for the existence of0%0%-W

discrete, steady, shook solutions to the convergent MUSCL schemes con-

structed in the previous sectiun, based on the Engquist-Osher flux, [4).

Since the scheme satisfies a maximurn principle (Lemma (2.1) of [121),

any profile must be monotone.

Let f 11 (u) > 0, and for .simplicity, we take f'(0) = 0	 f(0). In

this case, the monotone E-0 scheme becomes

(4.1)(a)	 hE0 (uJ+1'ui) = f_(u j+1 ) + f+(ui)

where

—24-
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(b)	 f (u) .2 f(u) if u < 0

f-(u) : 0	 if u > 0

(a) f+(u) - f(u) if u > 0

f+ (u) L. 0	 if u < 0

Let uL , uR be the left and right states for a physically correct,

steady shook, i.e.
	

fi

	

f(u	 f(un f(u R )	 uL	 0	 uR.

A steady discrete shook (u j ) will satisfy

s^
(4.2)(a)	 lim u = u 

J-?-oo

(b) lim u	 uR
j--;^+oo

(°) hE0 u ^
+1 - —̂ 2 ' u j + ^2 - f (UL)

f— uJ+^ — 
2	

+ f+
lu i 

+ 2

	

s
	 t

for all J.

- 25 -
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We shall seek steady, discrete, shocks of the some general form

obtained in VQ for the g-0 scheme, c.f. also [127, section V.

These are

(4.3)(a)	 Ui a u L
,	 j i -1

( b )	 ui T uR ,	j > 2

(a)	 uL > u 0 > 0 > u 1 > uR.

For the first order scheme, u 0 can be viewed as a smooth function

of u 	 satisfying the above, and, in addition

f(u 0 ) + f(u 1 ) = f(ub)

For the present scheme, we shall get a different one parameter family )f

intermediate states.

It follows for all ,j A 0, that (4.3) implies (4.2)(c).

For ,j = 0, we have the following equation:

( 11.4)	 0 = f-(U1 - ^2 
1 

+ f+ u 0	 + 
U2 

0 _	 f(u L) = G(u1,uo)

One special solution is, again, u 1 = u R , u0 = 0.

For (u0 ,u 1 ) close to (O,u R ) and satisfying (4.3)(c), we have,

- 26 -
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f

from the hypotheses of Theorem (3.1):

9

(u	 u
1)(4.5)	 s1 	

a1/2	 Q	 r

30 0

Here 0 < a 1/2 is assumed, in addition, to be a C2 runetfrn of	 }

U 1 near u 1 = u , with	 = 0.
1	 ^^

A straightforward calculation gives us 	 4

»a	 (4,6) (a) 	- (u R 0 0) = f'(u R) 1 + 
a

?' < 0

(b)	
aG 

(u R ,o) = 0	
'.

W5--

2	 a1 2
(a)	

2 
(u Rt 	 o) = fl ► - (U R ) 1 + ._..	 > 0

au 1	 2

al

a2G	 R(d) „ u cu o) _ 0
q 1

z
(e) a G = f„

(0) 
> 0

au 2
0

t

A simple application of the implicit function theorem gives us:

— 27 —
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THEOREM 11.1. Given the hypotheses of Theorem (3,1) an q the mild

technical assumption concerning 31 /2 , there exists a family of sharp,

discrete, shock solutions to (2.6) of the type (u.3), with u 1 a smooth

function of u O , and 0 < u 0 , small enough. By Ummetr , the same is

true, with u O a :smooth function of u 1 < 0, and -u 1 small enough.

V. Comparison With Other Co nv̂ -rgent High Resolution 'Schemes. In
nru	 3 Ma-v..+

[12] we constructed a class of convergent high resolution schemes, using

flux limiters and second order accurate upwinding. Our first step was

to use a first order E scheme flux, h(u j+l ,u j ), to construct a second

order accurate TVD scheme. The resulting scheme is

au	 1
(5.1) it,=- ^/H (u j+20 ^a j+1' u j' u j -1

with

(5.2)	 H(u j+2' uj+1' uj' uj-1)	 h(u J+1' u j ) - 112 4 (R j+1 )(Fi(u j+1' uj) - f(uj))

+ 1/2 4(R)(f(uj+1) - h(uj+1r uj))•

Here

x

(5.3) R+
	 f(u j ) - h(u J, uj-1)

j	 f(uj+1) - h(u j+1, uj)

h(u j+1 ^u j ) - f(u j)
R j - h(u	 -

j
, u j-1 )	 f(uj_1)

- P-8-
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The slope limiter 4 (R) satisfies 4(1)	 1 and the following

inequalities

4 (R )
(5.4)(a)	 1 + 1/2	 (R-	 > 0

R^

(R+)
(b)	 1 + 112	 +	 - 0 (RJ_ 1 ) > 0

Various slope limiters have been developed. See Sweby [13], for a

numerical and theoretical analysis of their properties. Perhaps the

simplest example is the so called min-mod, [14):

(5.5)	 40) = max (0,min(R,1)).

We have the following analogue of Lemma (2.2):
i

LEMMA 5.1. If h is an E flux, then the viscosity of (5.1) is a

decreasing function of 4.

Next we compare the schemes (2.6) and (5.1). if f l (w) 4 0 and w

is smooth at x i , then it is easy to see that

	

H(u j+2' u^+1' u^^ u^_1) 
= h u^+1 -2—' u^ + -

	 + ^J((4- u^) ? + (/ uj)2)

if

-29-
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(5.6) & s^ 40 Q` U  + 0((/1 u j ) 2 + (4 u j ) 2 )
0 if hl(wow) A 0

and/or

s j = 40+ 	u + 0((/ „̂ u^) 2 + (4 u
3 ) 2

) ► i f h0 (w,w) A 0

Dropping the quadratic terms, inequality (2.9) gives

^(R )

(5.7) (a)	 0 < --° -- VR-) < 1 if h 1 (w,W) A 0
R^

(b)	 0 <
R+
 , o(R+) < 1 if h 0(w,w) A 0	 i

These inequalities are a bit more restrictive than those needed in

the monotore case. There we have

(5.8) (a)	 1> 1/2	 --j— + O(Ri+1)	 if h 1 (w,w) A 0_	
R3	

i

t:

(b)	 1 > 1/2 — ._____ + 4(R+-1)	 if h0 (w,w) A 0

J

which.are the same as inequalities (5.4)(a),(b).

For the entropy condition to be proven valid, the flux was modi—

fled. We replaced H by Hae (where a.c. stands for artificial 	 r,

— 30 —
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compression), as follows.

First we modify the flux differences in (5.2):

y	 .i

(5.9) (a)	 Wu j+1' u j ) - f(u j ) )^^

aj+1/7(/°1 h 1 ( u j , u J )) Q^^ U
(h(uj +1, 1a j ) — f(uj )) 1 +	 h(u j 	u j) — f(u j)+1,

(b)	 (f(uj+1) - Mu J+1'  uj))M

+
J

aj+1/ (4ho(u j , u j ))4 u 

	

(f(u j* 1 ) —
 Mu 	 u j )) 1 — f( j+1) - h(uj+1' uj) 	 '>

rI

Here 
a^+1/2 

are both positive, chosen first so that the quantities 	 i
,i

in the brackets in (5,9) are between 0 and 2, (inequalities (5.13)

below).

We next let:

R + - Mu
	 — h(u j , 

u 1))M

j Mu
:1 +1) — h (u	 Mj

+1, u j))

M	 (h(uj+1' u j ) - f(u	 M

M
Rj

(h(uj, uj-1) - f(uj-1))M
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Then we define our scheme:

(5.10)	 ^t = ' 1
	 Hac 

(u j+2' 
u j+1 , Up uJ-1)

w,.th

( 5 .11)	 Hac(u j
+2 , uj+1' uj' " j-1)

N^

= h(uj+1, u j ) - 1/2 VRFi- 	(h(u j+1 , u j ) - f(u j ) ) 
M

+ 112 O(Rj+) (f(uj+1) - h(uj+1' uj))M.

The resulting scheme is convergent if the following inequalities

are valid:

(5.12)	 ru'	 f fl (w)dw (( 1124 u j )) 2 — (w — 1/2(u j+1 + u j) )2)
j

	

- a 	 (	 u.) 2 (h (u.	 ,	 )	 , u )]
J+1/2 ^ J	 1 J+1 u	 h (u

j+1 — 1 j 	j

a3+1/2 (4 uj)2 Ih0 (u j
+1 ,u j +1) — h 0 ( u j , uj )] < 0

12	
(h(u +1' u ) — f(u.

(5.13)(a)	 laj+

))
/ 

(h 1 (u
j+1 , uj+1) — h 1 (u j , u j ))' <	 ---- 3 u j	 J

(b)	 ia+ 1 (h (u	 , u	 )	 h (u., u )); 
< 

f(UJ +1) — h(uj+1 , uJ) ^

J+ /2 0 j+1+1 - 0 J	 j .	 —	
uj

_ 32 -
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and if V R) is defined by (5.5).

Examples are given in [121.

s

It is interesting that this case allows compression to be added at

shocks, i.e. the restrictions on the a++1/2 allow negative viscosity to

be added to (5.2) if u  > uj+1, while, again for the proof of convey-

Bence, rositive viscosity must be added for rarefactions, u
i
 < uJ+1• In

the present MUSCL case the situation is (unnaturally) reversed. A com-

parison of the convergent MUSCL scheme with this one yields two main

M points:

.w}
(1) Away from sonic points, the fluxes differ only in 0((-/4u^)3)

r.r

terms

(2) At sonic points, the fluxes differ in 0((L+ u j ) 2 ) terms.
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