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CHAPTER I
GENERAL DESCRIPTION

This report contains the results of a continued study on the
analysis and modeling for the Gravity Probe B (GP-B) experiment. The
study was supported by the National Aeronautics and Space Administration,
Marchall Space Flight Center, under contract NA58-34426. This report
covers the study effort over a fifteen-month period from 1 September
1982 to 30 November 1983.

The results of two tasks are reported here. The first task is
a refinement of a crude result, done in the last year, on the finite-
wordlength induced errors in Kalman filtering computation. Errors
in the crude result have been corrected, improved derivation steps
are taken, and better justifications are given. The second task is
to analyze the errors associated with the suppression of the %-noise
by rolling the spacecraft and then performing a derolling operation
by computation. This second task could use a good deal more time for
a more thorough study. The result reported here is what has been obtained

to date.
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CHAPTER II

FINITE-WORDLENGTH INDUCED ERRORS IN
KALMAN FILTERING COMPUTATION
1. Iutroduction

The problem of finite-wordlength effect on digital computations
has been investigated extensively during the past twenty years. Finite-
wordlength property of a computer requires either rounding or chopping
to be used to 1imit the wordlength of a number. Since most computers
use rounding technique, only rounding errors will be considered in
the sequel.

There are two approaches to analyze the rounding error, the
first approach considers the statistical nature of rounding errors,
and treats them as noise generated in the system. This approach has
been widely used by those in the field of digital signal processing.
In the statistical error analysis one is usually after the ensemble
average and standard deviation of the final error based on the estima-
ted characteristics of source errors and their propagation through
computation steps. This approach does not seem to be sufficiently
reliable for the analysis of GP-B data reduction errors for two
reasons. First, GP-B's four experiment gyros represent only a small
sample, .their combined statistical characteristics may deviate a good
deal from those of the population statistics. Thus the use of
statistical analysis here may not give a reliable result. Secondly,

the GP-B data reduction involves Kalman filtering and other rather



complex computations. The exact statistical nature of rounding error
generation by and propagation through these computations is not easy
to establish. Therefore a more conservative approach is needed.

The second approach is to establish bounds for the rounding
errors involved in computation. This approach provides a very
conservative, though rather pessimistic, result for rounding error
analysis. This approach has often been used by those doing numerical
analysis. Because of the unusual precision required of the GP-B and
the expensiveness of the experiment the use of error bound approach
provide a much more reliable results for the error analvsis. Therefore
this approach will be used for ensuing rounding error analysis. Since
Kalman filtering is the main activity in GP-B data reduction, the
present chapter is devoted to the analysis of rounding error in Kalman

filtering computation.

2. Rounding Procedure in Floating Point Representation

Let x be a number
x = (t.djdy ---) x b® (1)

where b is the base of the number system used and e, an integer, is
the exponent. In general the mantissa part of the number may have
infinite number of digits for an exact representation, such as for

/2. The number (1) may also be represented in the form

X = usb® + vepe-t (2)
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where %-g lul <1, 0 < |v] <1, and u contains only t digits.
Examples: Base 10 numbers.

(a) 12.3456 = .1234 x 102 + .56 x 10~

Here b = .7, t =4, and e = 2

(b) -.0123456 = -.1234 x 1071 +(-56) x 10-5
Here b =10, t =4, and e = -1
The rounding procedure drops off the second term on the right
side of (2) by appropriately adjusting the value of the first term.
Thus, after rcunding, x becomes 9 which has a t-digit mantissa
.djdp --- d¢ and an exponent b®. The conventional round-off procedure

for any number is as follows:

( uebe if |v| < %
Q= q ub® 4+ bt fy > % (3)
usb® - b&-t  if v < - %

Note that u and v always have the same sign.

Examples: b =10and t = 4
(a) x = 765.4567 = .7654 x 103 + .567 x 10-!
Here v 3_%—and e =3, 50

X = ueb® + be-t = 7654 x 103 + 1034 = .7655 x 103
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(b) x = 123.426 = .1234 x 103 + .26 x 10°]
1
Here v < 7 SO
R = usb® = .1234 x 103
(c) x = - 765.4567 = -.765 x 103 -.567 x 10-1
Here v < - 1 so0
'2"
A

% = ueb® - be-t = -.7654 x 103 - 103-4 = -.7655 x 103

These results are intuitively obvious. The reason for going through
the formulations of Equations (1), (2) and (3) is to pave a way for

the subsequent analysis of rounding errors.

3. Rounding Errors in Floating Pointing Representation

The "absolute rounding error" in Q is defined as

] = [%-x| 20 (4)
From (2) and (3), it is clear that

|5 7 be-t (5)

Examining (1) shows that |u-b®| > b€~ because u 2> b-1; and

|x| > |ub®| because the second term, having similar sign, is dropped.

Hence

x| > |u-b®] > be-1 (6)
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Define the "absolute relative rounding error" e as

¢ - ol R (7)

Ix] ||
By (5) and (6), (7) gives
€< %-bl't = B (8)

The quantity B is called the "unit rounding error” which represents
the absolute bound of rounding error in the floating point represen-
tation of a number of base b and having a t-digit mantissa. It is
an important parameter in the analysis of rounding errors.

Example: Consider b =10 and t = 4
Then 8 = 5 bl-t = 7 1073

Let x = 767.4567 = .7654 x 103 + .567 x 10!
then % = .7655 x 103

|X] = |&-x| = .0433

= .56568 x 10"4 < B

.0433
€ =

For the sake of comparison, the chopping error in floating

point representation of a number will be analyzed next.

4. Chopping Error in Floating Point Representation
For a floating point number in the form of (2), a t-digit

chopped number is given by
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Xc = usb® (9)

Define the "absolute chapping error" ic as

%] = Ixe=x| = |v| bt (10)
Since |v| < 1

%e| < be-t (11)

Define the "absolute relative chopping error" as

e = Xl (12)
| x|
Clearly,
e-t
€¢ i':ﬁ._ = pl-t - Bc (13)

where 8. is called the "unit chopping error." Comparing (13) and

(8) shows
Be = 28 (14)

Example: b = 10 and 6 = 4

Then 8. = 101-4 - 10-3
Let x = 765.4567 = .7654 x 103 + .567 x 10-1
then xc = .7654 x 103

%] = Ixc-x| = .567 x 10-1
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€ = virqzgy = 74073 x 1074 < B

5. Rounding Error in Basic Computer Arithmetic Operations

For the convenience of the subsequent analysis, notation for

rounded flcating point number is defined here in two equivalent forms.

Let x be a floating point number. The rounded value of x is denoted
by x or fL(x).

Let "*" denote any of the four basic arithmetic operations
+, -, X, and /. The computer value of xxy is f2(xvy), which is re-

lated to the exact value x*y by
fe(xay) = (xey)(l+e) (15)
where ¢ is the actual relative rounding error. The absolute relative

error in (x»y) is bounded by

_ o faxwy) - (x%
el = (Rl ev) | (16)

where B is the unit rounding error.

6. Rounding Error in Composite Computer Arithmatic Operations

Repeated Additions and subtractions consider the sum

S = Xl + X2 + X3 + X4

= ((x1+x2) + x3) + X

The rounded value is
§ = {[(xp+x9) (14€y) +x3] (1+€p) + xq} (1+e3)

- (x1+x2)(1+e1)(1+ez)(1+c3) + x3(1+ep)(14e3) + xg(l+es)
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x (x1+x2)(l+e1+ez+:3) + x3(l+epreg) + xq(l+e3)
The rounding error is
S = i) epregreg) + xg (epreg) + %y (e3)
= (x)+Xo+x3+Xg) (€1+€p+€n) - x3€] - xg (€1+€p)

The absolute relative rounding error is bounded by

X X X
€ =|[3|< 38+ Blgll + ZBl-sil < 3B+ 38[—;11,““

where 'lemax is the largest of all lle. In general, for a sum of

n terms
n
§ = X 17
Y (17)
the absolute relative error is bounded by

-~ n
. ,Iz

-1;i{n=-2) 1 X;
S| (n-1)8 +j§§5-2)st-s’ii| < (n-1)g ¢ LBRR2D 1Y) g

Repeated Multiplication and Division. Consider the following

combination of product and quotient
xlx

2 ,
Q-= 7o (x1x2)/7y1

the rounded value is

- XIXZ(1+€1)
0. L

X1%2
4!

(14ay)= (l+ey+np)

where €; and n; are relative rounding errors due to multiplication
and division, respectively. The rounding error and the absolute

relative rounding error are, respectively,

9
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~ XIXZ
Q T (ey+m)

and

1

For the general case

€ =

=lep + mjs 28
X1Xp === Xp
" Y2 - Ym

The absolute relative sounding error is bounded by

-

3

7. Norms of Vectors and Matrices

€ =

< (n+m=1)B

(19)

(20)

Norms of vectors and matrices are useful in the analysis of

rounding errors in matrix operations. The following definitions

of norm will be adopted in this study.

For an n-vector x with elements X§ define the vector norm

as
Hx|| = nglle

Clearly, the norm has the following properties:
(1) llxll 20
(11) |lx|] =0 only if x = 0
1) lxeyll < Hxll + Tlyll

(iv) |la x|] = |a]+||x|| for any real a.

(21)

For a mxn matrix A with elements 34§ define the matrix norm as

10
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m
HAI = Max T [ay] (22)
j =l

This norm has the following properties:
(i) |lAll 20
(ii) ||All =0 only ifA=0
(iii) |{aBl] < |IAll + |I8]]
(iv) |la Al]
(v) |la8ll < [IAll-]!8]]

A

lal<||A]| for any real a

8. Rounding Error in Matrix Addition

Let A and B be two mxn matrices, the rounded sum of them is
fe[A+B] = A+B+R (23)

where R is the rounding error matrix. By the definition of matrix
norm (22) and in view of (15), the norm of the rounding error matrix

is bounded by
|IRI] < 8 ||A+B]| (24)

where g = L1 bl-t as given by (8). The relative norm of ||R|] is

bounded by

e=RIL g (25)

which is the same as the relative r¢ 1ding error of the sum of two

numbers as shown in (16).

11
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9. Rounding Error in Matrix Multiplication

Since elements of a matrix product are inner products of vector

pairs, the rounding error associated with an inner product will be

analyzed first. The result will then be used to anaiyze the rounding

errdr in a matrix product.

9.1. Rounding Error in Inner Product
Consider the inner product of itwo 3-vectors a and b
I = ETE = élbl + azbz + a3b3

The rounded value of ETE is

I = fefa’b]

{[a1b1(1+el) + apbo(l+ep) I(1+e3) + a3b3(1+e4)}(1+55)

n

a1b; (l+eq+egreg) + apby (l+ep+egteg) + agby (l+egqteg)

where €;'s are relative rounding errors associated with basic

arithmatic operations. The rounding error in I is

I = ajby (ey+ezteg) + apby (l+ep+ez+es) + azbz (eqtes)
The absolute value of this rounding error is bounded by

IT] < 3la;b, | + 3e]a2b2| + 28lagb,|

In general, the absolute rounding error of the inner product of two

n-vectors is bounded by

n
1T) < 8 {nlajpy] + _22 (n+2-3) lajbsl} (26)
J:

The expression for the absolute relative rounding error for an inner

product appears cumbersome and is not given here.

12
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9.2 Rounding Error in Matrix Products

Consider the matrix product C = AB where A is mxn and B is nxp.
The number r will be called "interface dimension" for matrices A and
B. Using the result of (26) the absolute error of the elements of

C is bounded by
IEijl=§ 8 {n!aill'lb1j| + nlaizl'lszl + (n-l)lai3|-|b3j[
b oo ==+ 2laggllbggl) (27)
Let [C] be a matrix whose elements are |Eij|, [A] be a matrix whose

elements are |a;;j|, and [B] be a matrix whose elements are [b;;l.

Then, based on (27), one has

(€] < B{AJO[B]
where the comparison is done on element by element basis for the

left and right hand matrices, and

- ;
» O
n-1
D= is nxn
L 2 |
Clearly |[D|] = n. The norm of the rounding error matrix C is

therefore bounded by

13
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HTII < nllALl-]18]1 = Z b1-t[{Al|-]]8]| (28)

Generalize the above result to a product of N matrices

P=MM - - - My (29)
with interface dimensions dj, dp, - - - dy.;. Let
Pi = MMy - - - My

Then the result of (28) implies the following rounded matrices, with

€ being the worst error.

-~

Py = fa[MMy] = MMy (1+dye)
and
‘F\’3 = fz[§2M3] = T’2M3(1+d2€)
= MMoM3(1+dje) (1+dpe) = M{MoM3[1+(dy+dp)e]
and
Py = MMy - - - My[1+(dy+ - - - +dy_1)e] (30)

Rounding errors in Py is
Py = MMy = - = My(dp+dy + = = = +dy_1)e (31)
The norm of this error matrix is therefore

. N=1 N |
Henll < B(izl d) T [1m;1]! (32)

The results of (24) and (31) can be used jointly to handle
the matfix equation containing both products and sums. This will
be demonstrated by the following two examples, assuming the worst

error ¢ at every computation.

14



Example 1 Compute
R = ABC+D

where all matrices are nxn. The rounded R is
R = ABC(1+2ne)(1+¢) + D(l+€)

The rounding error of R is
R ~ [(2n+1)ABC + DJe

and its norm is bounded by

[IRI] < 8[(2n+1)]]ABC|| + |]D]]]

Example 2 Compute
R=ABC +D

where A is nxm, B is mxr, ¢ is rxs, and D is nxs. Then

R

ABC[1+(m+r)e](l+e) + D(1l+e)

-}
R

ABC(1l+m+r)e +De
IRIT < B[ (1+msr)||ABC]| + |]D]]]

These two examples shows that the rounding error norm of matrix
addition does not involve the imension of the matrices, but that

of matrix product involves all the interface dimensions.

10. Rounding Error in Matrix Inversion, First Approach

Let A be a nonsingular n:n matrix, its inverse A"l satisfies

the relationship

A Al = 1, the identify matrix

Let u; be the jth colum: vector of I and h; be the column of Al

Yj

Then h;

hj is the solution of

15




Ax = uj J=1ton (33)

Thus Al can be obtained by solving (33) n times using different

Uy each time. The solution is usually done by a method based on

the Gaussian elimination with partial pivoting. The present concern
is the rounding error associated with the computation of A"l The
analysis will be done in two steps: First, find error in A-l com-
puted from the exact A. Second, find error in A=l computed from

A' = A + AA where AA is the error in A.

Rounding Error in A"l when A is exact. Let éj be computer

solution of (33). Define the "residue" associated with DJ as

ry < ARy -y (34)
The error in EJ is

he = Rs = hs = A-Lp.

hj = hy - by = ATry (35)
The rounding error matrix for the computer inverse of A is

E=[hy hp - - - hyl (36)
Define the "residue matirix" for the computer inverse

R=[rprp---rql (37)
Then

E=AIR (38)
The norm of E is bounded by

[HEl < A= 1R} (39)

16



and the relative norm of E is bounded by

e < |IR]] (40)

Rounding Error in A"l when A+AA is inverted. Let A be erred

~

to A+AA, then the computer solution QJ for

[A+8A]x = uj j=1ton (41)
must satisfy

[A+tAJns =us+r; J=1ton

where rj is the residue. Then

he “laabh. = a-1,. -le. - h. -1..
hj + A"*8Ahg = A™uj + A"'rg = hy + A7°r;
The error in QJ is
B = hs = he = A=LlFps - t
QJ = QJ QJ = A [rd AA QJ] (42)

Using the notation defined in (36) and (37), (42) gives the error

matrix
E=A"1R - A-1pA fa[a-1] = A-1R - A-laa A-l

The norm of the error matrix is bounded by

HEID < A IR + [JAL][2¢] oAl (43)
the relative error norm is
S 113 -1
€ = = [[R[| + [[A=Y ||| aAl| (44)

a1

Comparing (44) to (40) shows that the latter is a special case

of the former where AA = 0. Eq. (44) appears elegant, but its practical

17



usefulness is in doubt. The problem is that the residue matrix R
cannot easily be obtained. In addition, both (43) and (44) do not
explicity depend on any wordlength related parameter, such as, the

unit rounding error B.

11. Rounding Error in Matrix Inversion, Second Approach

The usual method of matrix inversion by a computer is based
on a repeated use of Gussian elimination procedure. The procedure
consists of two parts, namely, triangularization of a matrix and !

back substitution. The rounding error for each part will be

analyzed first, followed by the analyze of the resultant error.
In the following analysis € will denote the worst value of any

rounding error e;. Thus |e| < 8.

11.1. Rounding Errur in Matrix Triangularization

Consider a 3x3 Matrix Equation

a1 312 a3 X1 by
a1 3 a3 X2 = | b2 (45)
Lap a3z a3 1o Lxg b3 ;

A matrix ;

Let aij(O) = ajj and b;j(0) = by for i, j =1 to n. The first step

is to condition the first column. Let

az21 ap1(0)
m S ® e— T e
2l 611 511“” (46)

18



then let

0
622(1) = 622(0) + ledlz(O) = 022(0) - ;%%%6} 312(0)

fafap(0) - 221{00 o
22 = allzﬁs a12( )]

822(1)

0
322(0)(1+€) - ;%%%6% a32(0) (1+3¢)

221(0) 321(0)
[a2(0) - 311707 a12(0)] + ap2(0)e - 3, 110) a12(0)(3¢)

622(1) + 322(1)(35) - 622(0)(26)

Similarly
323(1) = 623(1) + 323(1) (3¢) - 623(0) (2¢)
532(1) = 632(1) + 332(1) (36) - 632(0) (ZE)

533(1) = 833(1) + 633(1) (3¢) - 633(0) (2¢)

After the first step, the error in the new A, designated 5(1), is

given by A(1) whose elements are

0 i=1; j=1,2,3
a;5(1) = { 0 J=1;i=2,3 (47)
aij(l) (3¢) - aij(O) (2¢) 1,3=2,3

19



Define

0 0 0
Aj(0)= |0 222(0)  ap4(0)
0 632(0) 833(0)
and
0 0 0
Al(l) = 0 ay2(1) ap3(1)
0 632(1) 633(1)
Then
A1) = [233(1)] = 3¢Ay (1) -2¢Ay(0)

B[3A; (1) - 2A;(0)] - (48)

n

Expressing A in terms of A rather than A is important since A is
available from the computer but not A.

For the b; coefficients we have

i i 241 (0)
b; (1) = b;(0) - milbi(o) = b;(0) - EIITET b; (0)
Then
:1(0
bj (1) = fe[bi(1)] = bi (0)(1+e) - ;%%%6% by (0)(1+3¢)

:1(0
bi(l) + € bi(O) - 3¢ ;%%%6; bl(o)

bi(1) + 3e by(1) - 2¢ b;(0)

20



Define

0 0
b1(0) = | by(0) and by (1) = | by(1)
b3(0) b3 (1)
then
B(1) = 3¢ by(1) - 2¢ By(0) = B[3by(1) - 2 by(0)] (49)

Again, expressing b in terms of é rather than b is impcrtant since
§.1s available from the computer but b is not.

After the first reduction step, one has

311(0) 612(0) 313(0) X1 bl(O)
0 522(]) 323(1) X2 = 62(1)
0 532(]) 533(1) X3 63(1)

where 5ij and Bj are rounded quantities. Their errors will be com-
pounded.to the new rounded quantities in the next step of the
reduction process.

The second step of the reduction concerns the second column

of the matrix. Let
a3y (1)
m = e - 50
32 EPPYEn) (50)
and let
R n - 332(1) -
233(2) = a33(1) + m3; ap3(1) = a33(1) - 1,117 223(1)

21
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The rounded value is

. A azp(l) .
633(2) = ft[a33(2)] = 633(1)(1+€) - ;g%%T% 623(1)(1+3€)

= 633(2) + 3e a33(2) - 2¢ 333(1)

Let
0 0 0
A1) =0 0o o
0 0 a33(1)
and
0 0 0
A2) =0 0 0
0 0 az3(2)
Then

A(2) = 3ehy(2) - 2ehyp(1) = B[3Ry(2) - 2Ry(1)]

for the bi coefficients in the second reduction step,
-~ a -~ a (1) a

b3(2) = b3(1) + m3p by(1) = ba(1) - x32rrt o(1

3 3 32 92 3(1) 5,117 2(1)

The rouhded value is

. . a:,(1) .
b3(2) = f2[b3(2)] = b3(1)(1+e) - ;g%%r; by (1) (143¢)

b3(2) + 3¢ by(2) - 2¢ by(1)

22
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Let

Then
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0 0
bp(1) = 0 and  by(2) = | o
63(1) b3(2)

B(2) = [3 bp(2) - 2 bp(2)] € = B3 b2(2) - 2 Bp(1)]

The resultant errors,

K= A1) + R(2) = B[3 Aj(1) - 2 A(0)] + B[3 Ap(2) - 2 Ap(1)]

2

{121 (3A;(1) - 2A;(i-1)1}8

ot
n

2 . .
B{i-% [3b (i) - 2by(i-1)]}

Generalization to an nxn matrix A

L

(311 - - =
I |
I I

L8] - - - 3 )

A = A(0) = A(0)=

‘a,-j(O) = a,-j(O) = 3y

23

(52)

(53)

b(1) + b(2) = 8[3by(1) - 2by(0)] + 8[3B2(2) - 2B,(1)]

(54)

(55)

(56)
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The matrix obtained after the kth reduction step is

211 (k) - = = agn(k) ]

l l
A(k) = | | (57)

[any (k) - - < apa(k) ]

®,

O
Ag(k) = O >< (58)

o
N—————

The {n-i)x(n-i) lower right
diagonal block matrix from A(k)

p

The resultant reduction or triangularization errors in A and b are,

respectively,
. n-1 .
A = e»{i Zl [3A;(1) - 2A4(i-1)] (59)
~ n-1 . .
b= B{1 L [3b;(1) - 2b(i-1)]} (60)

Finally, the norms of errors due to triangularization are given

by
. n-1
|1all = es{hz1 C3IA (K31 + 2] 1A, (k-1)] |1} (61)
n-1 . .
HEl = B{kL (311 (k)] + 21 by (k-1) 111} (62)
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Note that after the (n-1)th reduction step, the original matrix
A has been reduced to an upper triangular form. Denote it by

Ay = A(n-1). Thus,

[ 4)7(0) 4,,(0) - - - 41 (0) - - = 4, (0)
522(]) - aZk(o) - -- azn(o)
-~ -~ ] !
Ar = ayy (k1) - - %kn(O) (63)
e !
Snn(n-l)

Similarly, the original b vector has been reduced to %T given by

Br = b(n-1) = [by(0) By(1) - - - Bp(n-1)7T (64)

11.2 Rounding Error in Back Substitution

This problem is approached as follows: Consider the equation

Ax=b (65)

where A is an nxn upper triangular matrix. Let X be the solution
of this equation which contains rounding errors, then find A and‘ﬁ

<uch that

o>

>

A (66)

has error-free solution g, Thus the rounding error problem has been
transformed to an error problem caused by perturbations in A and b.

Define

A = A-A, Ax = X-x, Ab = b-b (67)
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Then (65) gives

(R-AA)ling) = § - ab

Ax = A"1[Ab-2A x] (68)

~ -

In (68), Ax is the rounding error in x, A-l and i are computed by
the computer while solving (65), and Ab and AA are computed from

formulas to be developed. Since A is an upper triangular matrix,

the solution of (65) involves only the back substitution operations.

Rounding error due to back substitution will now be analyzed.

3x3 Trianqular Matrix Equation. Consider the equation

aj1 a2 3 x1 1 by
0 agy a3 X2 = bs (69)
0 0 833 X3 b3

The equivalent perturbed equation for evaluating rounding errors is

a1 Az A3 x| by
0 apy a3 xo | = | by (70)
0 0 agp X3 b3
White (69) as
ajrxp + appxp + a3x3 = by (a)
azoXa + a73X3 = b2 (b) (71)
az3x3 = b3 (c)

26
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From (71c)

S

The rounded value is

'S b3
X3 = 33; (1+€) = X3(1+€) (72)
giving
X3
X3 = T:E (73)

Substituting into (71c) and rearranging terms, give

833 ;3 = b3 (1+€) (74)
—_—— S—
233 b3

where 333 and 53 are also defined. Next, from (71b)

L

br-a X
35, LP2223%3]

X2 =

Its rounded value is

1 ’S
Xy = —— [bp-a99x2(l+e 142¢
2~ 35, [by-ap3x3(1+e)] (1+2¢)

1
. = —— [bo=asqxa(1+2e)] (1+2¢)
i [bz-az3x3(

2ebs - 4e anax
X2 + 2 2373 (75)

a22
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giving

- 2€b2 - 4¢ a23x3
2" 322

X2

. 2eby - 4¢ a23§3/(1+e)
2 - 322

(76)

Substituting (76) and (73) into (71b) and rearranging terms, give

322;2 + 323(1+36)X3 = bo(1+2¢) (77)
%—45___,5___,
322 323 b2

where 522, 523, and 52 are also defined. Next, from (71a)
X] = 811 [b1-a12%p-a13%3]

Its rounded valye is

B iioh s S

X] = 311 [b1\1+3€) - 312X2(1+4€) - a13x3(1+3¢)]

A < e

With the help of (72) and (75),

- ajo a12323
X X1 + — {3¢b deajox, - 2¢ —£ Tass X3 - dg apax
1= X+ g7 (3eby - deappx, 3, 02 * iy X3 13%3}

Using the approximations Xy = ;2 and x3 = 23, X] s expressed in terms |
of il’ §2, and §3 as
.1 212 3o + S8 A2%3 .
X] = Xq - EII {3€b1 - 2eby 307 deajpxy + Tve ( 257 313)x3}

(78)
28
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Substituting (78), (76), and (73) into (71a) and rearranging terms,

give
811 X1 + ajp(1+8e)ky + ap3(1+3e) &3 = by (1+3¢) (79)
(—_— e et —_—— R Smmnand
ay 212 a3 by

where 311, 312, 313, and 51 are also defined. Finally, put (74),

(77) and (79) into a single matrix equation.

a11731] 31p=a1p(1+8e)  Ap3=a13(143¢)][ x;] [by=by (1+3€)]

0 522=322 323-823(1+3e) Xo| = 52=b2(1+2€)
L 0 0 3337233 J1x3 by=b3(1+¢)
M b e rr—— et
A=A+ AA AL ‘2 = -b_ + AE
(80)

from which one easily gets

0 4eajp; 3eags 0 a5 a3 ] 0 0 0"
BA=10 0  3eapyf={0 0 ay||0 4 oJ (81)
0 0 0 0 0 0 J 0 0 3

3b 30 07(b;1]
Bb=| 20| e={0 2 O[by]e (82)
| b 0 0 1][bs
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Generalization to nxn Triangqular Matrix Equation. Consider

(a3 a2 ---2ap [ x) [ by ]
2% % | b2 (83)
s | | |
v | .
an ) L* 1l L by
: ~ I S———t
A X b

Its equivalent perturbation equation for evaluating rounding erraors

can be obtained by generalizing the result of (80), which is

N

a1 ap---an %] [b
a2 - = - A2 X2 ) bz (84)
\ | | |
\
A | |
L nn i."3 ) | bn ]
~ St Nm—t
A X b
where
3 k=j
skj ={ ay[1+(n-j+3)e]  lgkgizn (85)
0 otherwise
by = by[1+(n-k¢1)e] k=1 to n (86)
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Thus,
3y (n-j+3)e 1<k<jgn
Bay; = { (87)
0 otherwise
8by = by (n-k+l)e k=1t¢ton (88)
[ 0 (n+l)ay, naj3 -- 4ay(p.1) 3a),
0 nazs -- 4a2(n-1) 3ay,
~
N |
AA = ~ | €
N
N l
h 33(p-1)n
~N
i 0 |
[0 2 aj3--a, 1[0 ,
0. a23 == g n+l <:::::>
\ | \
<
- \ I \ B (89)
\ \
’ \3(n-1)n (:::::) 4
! 0 JL 3]
Ap Ma
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an 1 C N 1( bl 1

(n-l)b2 n-1 bs
ab = | € < \ ! B (90)
\

o

L bn o - 1. - bn J

— m——r
My b

where matrices Aps MA, and Mb are also defined.

11.3 Resultant Rounding Error in the Inverse Matrix

Two sets of equivalent perturbations for A and b have been ob-
tained to account for rounding errors. One set, A and E as given
by (59) and (60), account for errors from triangularization. The
second set, AA and Ab as given by (89) and (90), account for errors
from back substitution. The resultant equivalent perturbations for

A and b are given by the sums

SA =R+ 0A =A -A (91)

Sb

]
n

betb=b-b (92

The resultant rounding error in X in the solution of

A:5.= Yj j=1ton, (93)

where Uj is the jth column vector of the identify matrix I, is given
by

6xy = A-1[6b;-6A x4] (94
32



ORIGINAL PAGE IS
OF POOR QUALITY

This equation is obtained in a way similar to that of (68). Rounding

error in R‘lis then given by
§(Al) = [8x) - - - 8x,)

= A-1[(6by-6A%;) - - - (8bp-6Ax,)] (95)

The error norm of the computer's inverse matrix of A is therefore
I8 1) 1] < AL [ |1E]] (96)

where the matrix E has been defined in (95). The relative error

norm is
e:{—:ﬁiﬁﬂlwen (97)
. A'

It is obvious that the evaluation of (96) or (97) involves
a good deal of computation and should be done by a computer. Figure

III-1 is a computation block diagram for this purpose.
11.4. A Numerical Example
Consider inverting the following matrix

3.235  -1.234  3.256
A=01.023 -5.235 0.921
1.336 2.120 -8.235

using computer of different finite decimal wordlength. Then evaluate

the corresponding error norms using the procedure of Figure 1. The
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( Gtven matrix A )

'‘Triangularizaiion of A into Ag,

‘Use the same triangularization
Transformation to change u; to
Eﬂ’ j=1 to n. Thus we hav

c

ange A x=uj to Arx=bj 5
"Generate by, error in by bys J=l-n
‘Generate X. error in Ar.
Ay
QJ, j=l-n
1
*Back substitution to solve AA
Arx=bj, i=1 to n b A = A + AA
9 1 -—J - ~c 3
The solutions are Xj» j=1 to n. T GQJ = QJ + AQJ
*Generation of AA, do it once. j=1ton
Generation of Agj, j=1 to n.
X4 j=1-n 3A, §bi, j=l-n
4
Al = [x] === X9 floxgll = [1A1[1+]]6b"5-6A"ks] |
lj’ j=l'n
and A-1
H5£JH

Compute ||8(A"1)|]

A

|

|16(A=1)]]
The error bound
for A-1

Figure III-1. Flow chart for evaluating rounding error bound of
matrix inverse
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effectiveness of the procedure is examined by comparing these error
norms to the corresponding actual error norms. The actual norms

are approximately obtained by using a computer having a much longer
decimal wordlength. The result is given in Table 1, which shows

that e¢rror norms obtained by using the proposed procedure are indeed
very conservative. Notice that error norm decreases with increasing
worklength. It is interesting to note that when the proposed method

is used all error norms have the same mantissa.

Table 1

Matrix Inversion Error Norms

Wordlength: No. of places Error norm
after decimal point By proposed method Actual value
3 3.706 x 1072 7.782 x 1070
5 3.706 x 1074 4.530 x 10~7
8 3.706 x 1077 4.672 x 10-10

12. Rounding Error Bound for Kaiman Filtering

Consider a process modeled by the following set of equations.

n
3

X = 0.1 Xk-1 *+ @] dimoxy

"
3

Zy = He X+ ¥ dim 2y
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Ex(0) =xp E[%(0) X(0)T] = P,

we v #{0,Q) Vg ~ N(O,Rk)
E[gk!J] =0 all j,k

The Kalman Filter algorithm consists of the following equations.

K= Oy X1 + Kelzg - Mg 0pep Xcq), x™(0) = X9 (98)
T T . T -1
K¢ = Pkp”k[HkPkak + Ryl 1 or Kk = PiHkRk (99)
T
Pkp = ®k-1Pk-1%-1 + U (100)
P = Prp - KoHkPip (101)

where x* is the estimate of x. The present interest is to find the
bound of the rounding error norm for x*. For the sake of convenience,
the asterisk "*" will be dropped, and x will denote the rounded value

of the estimate.

Error in Rounded Py,. Recall (100), that is,

T
Pep = ®k-1 Pr-1 O%-1 * Q-1
Its rounded result is
ﬁkp = ¢k_1pk_1¢1_1(1+2n+1e) + Qk_1(1+€)

= Pkp<1+20*16)'2ﬂ50k_1 (102)
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The rounding error is

Prp = (2n41)ePyy - 2neQy_q <(2n+1)ePyy (103)

Error in Rounded P,. Fkecall (101), that is,

Pk . [I - Kka]Pkp
Its rounded value is
ﬁk = [I(l4¢) - Kka(1+E?Té))]Pkp(1+ne)

= [1(1+7¥Te) = Ky (1ememeTc) PPy,

[1(147%Te) - KH (LenemeTe) 0P o+ Pip)

n

Pk + [(n+1)cI - Kka(n+m+l)c]Pkp + [I»Kka]ﬁkp

= Pyl1+(nemsl)e] - me Py + [1-KeH IPyq (104)
ik = (n+m+1)ePy, - chkp + [I-Kka]Skp
< (nemtl)ePy - mePyp + [1-KePy1(2n+1) Py
(2n+I)ePk
< (3n+m+2)ePy (105)

Error in Rounded K. Recall (99), that is,

T -1
Kg = PicHiRy
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Its rounded form is

Ky = PHIRY (1+Tc) (106)
By (104) and (103)

ﬁk < (1+entmele)Py - mePyp + [I-Kka](Zml)ePkP
(27+1)ePy

= (1+43n+m+2€)Py -mePy
Assume R, diagonal
Re! = Rel(14e)
Then (106) becomes
- T -1 R
Kg ® [(1+3nemece) P, - chkp]HkRk (14€)(1+n+me)
T -1 T.-1
= (1+3n+?m+§e)PkaRk - mePkakRk (107)
The rounding error is

= T -1
K = (en+2me3)eKy - mePy pH Ry

< (4n+2me3)eKy (108)

Error in Rounded x,. Rzcall (98), which i3,

Xo= Op1xk-1 + Kelzy - Hedy-1xk-1]
= [1-KeHeJoyo1xg-1 + K (98)
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Let

Fr = [T-KeHelop (109)

([}

ug = Ke 2 (110)

Then (98) becomes

Xy = Fie Xeol * g (111)

Develop the following rounded quantities.

-

Fe = [I(1+e) - Rka(1+ﬁITE)]¢k_1(1+ne)

= [I(1+n+le) - Ky (1+8n+Zm+3e)Hy (14nemele) 10y g

[I (l'ﬁ'lTl_E) - Kka(1+5n+3m+4e)]¢k_1

= Fi (1+45n+3mede) - (4n+3n+3)edy_y (112)
Uy = Ky zy(1+me)

= Ky (1+4n+2m+3¢ ) 2y (1+me)

= Ky zy (1+8n+3m+3e)

= Uy (1+4n+3m+3¢) (113)
.;Sk = %k l(_k_l(].+;l+_le) + gk(l+e)

< (1+45n+3mede )Fxy_q (14n+1e) + uy (1+48n+3me3e) (1+€)

= (Bne3mebe+l JFpxy_q + (Ane3mede+l)uy (114)
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Define
Fi = (1+6ne3mebe Fy (115)
Uy = (1+8n+3mde)uy (116)

Then (114) can be written as
;‘k = i':k X1 ¢t Uy (117)

Case of k = 3 Eq. (111) gives the exact x3 as

XJ = F3F2F1 50 + F3F2_l£1 + F322 + B (118)

The rounded X3 is

A A A
~

X3 = 53?2§150(1+3n+3e) + %3?2g1(1+2n+3€)
+f3§2(1+ﬁ:§E) + Q3(1+e)
Using (115) and (116), and combining terms,

= F3FoF1xp[1+3(7n+3m+6)e] + F3Fou[1+418n+9m+l7e]

L>,<>

Faup[1+11n+6m+1le] + u3[1+4n+3m+5¢]

<

Xx3[1+3(7n+3m+6)e] - (3m+1)eF3Fou;

-(10n+3m+7)eF3up - (17n+6m+13)eus (119)

The rounding error s
23 = 3(7n+3m+6)ex3 - (3n+1)eF3Fou;
- (10n+3m+7)eF3up - (17n+6m+13)eusy (120)
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[ts norm is bounded by

H_}3| 1< 3(7n+3me6)e] Ix311 - (3n+1)e| IF3Fouy 1|

- (10n+3m+7)e| [Faup|| - (17n+6m+13)e]|u3l] (121)

Assume ||F ! < F, ||lull < u, and Flu < B for i = 0 to 2, then

~

Hx3l] <2 (7n+3me6)e]|x3l] + (30n+9m+21)eB
< 8{3(7n+3m8) [x31 [+[3(3n+1) + 23 (7n13me6)18)
(122)
Case of k=4. Again, by (111),
Xy = FqF3FaFy X + FaF3Fp uy + FgF3 up + Fg uz + uy (123)

Following similar derivation, gives the norm of rounding error as

13411 < 8{4(7ne3me6) | [x4]] + [4(3n+1 + 231

(7n+3m+6)]B}
(124)

The general case k. From the equation pattern of (122) and

(124) for k=3 and 4, the general case is found to be

511 < 8lk(7neame) | 1xy ]| + Ck(ans1) + KL (7neames)]8)

(125)

Eq. (125) s the main result of this chapter, which gives the

bound of error norm for the rounded state estimate. The bound

41

A b s i i



depends on B, the unit rounding error; k. the number of iteractions;
n and m, the dimension parameters of the process; ||xy!|, the norm
of the estimated state; and B, a quantity depends on Kg» Hks ¢ and
ug. The usefulness of this equation is at providing a general idea
on the desired number of digits for the mantissa of the computer's
floating number system. The following ccample will illustrate this

point.

Example. Consider a one year GP-3 operation where relativistic
data are taken every 10 seconds. Assume that the Kalman filtering
involved in data red.ction is al ¢ operated at 10 second interaction
period. Then, at the end of one year period, the value of k would
be k=365 x 24 x 3600/10 - 3.1536 x 108. Assume Xgbe a 10-vector

and z, be a 2-vector, so n=10 and m=2. then,

k(7n+3m+b) = 2.6490 x 108
K(3n+1) + 0.5k(k-1)(7n+3m+6) = 1.2949 x 1016

Just for the sake of discussion, assume only one term at the right-
hand side of (125) dominates the result. If the first term dominates,

one may estimate the desired B from
K(7n+3m+6)8 = 1
SO

8 = 0.3775 x 108
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¢ mparing to (8), the formula B= 0.5 x 101't, gives t * 9, therefore
9 digits are desired for the mantissa of the floating point number
system. On the other hand, if the second term of (125) dominates,

one may estimate the desired B from
[k(3n+1) + 0.5k(k-1)(7n+3m+6)]8 = 1
so
B = .7723 x 10716

comparing to (8), gives t = 17. Hence 17 digits are desired for

the mantissa.

13. Remarks

1. The main result of this chapter, given by (125), can
probably be further refined to tighten the predicted bound while
maintaining its reliability. This result was obtained after several
different approaches to the problem had been attempted.

2. It is desirable to find out the effectiveness of (125)
by a computer emulation of the GP-B data reduction. This has not

been done.
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CHAPTER III

COMBATING THE EFFECT OF %-NOISE

This chapter contains a discussion of the effectiveness of
spacecraft rolling and the use of filtering for eliminating the %--

noise from the measured relativistic drift data.

1. Rolling and Derolling

The effect of rolling the spacecraft on the relativistic signal
is equivalent to the modulation operation in communication engineering,
while the derolling the signal by software coordinate transformation
is equivalent to the demodulation operation. Figure III-1 helps
to show the effect. The %-noise may be considered as an additive
noise whose power spectral density ¢,, is inversely proportional
to the frequency f. Therefore its power density is the heaviest
near the zero frequency where the power spectrum, ¢.., of the
relativistic signal is lying. This is shown in Figure III-1(a).
Under this condition, it is very difficult to extract the true signal
from the noise-contaminated signal by filtering.

By rolling the spacecraft, a carrier signal is generated on
each GP-B gyro and is being modulated by the relativistic signal.
The modulation process takes place before the true relativistic signal
has been contaminated by the %-noise. Thus the true siynal's power
spectrum ¢.. is transformed to a power spectrum ¢g,, situated in

a higher frequency region centered at the roll frequency w, where
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the power density of the %-noise is much less. This is shown in
Figure III-i(b). After receiving the signal by measurement, the
signal is derolled and filtered by digital computation. An analytical
descriptiqn of the entire process is given below.

Referring to Figure III-1(b), let s(t) be the true signal.
The rolling motion of the spacecraft produces a carrier signal
c(t) = cos wet, where w, is the radiar frequency of the rolling.

The modulated signal is

sp(t) = s(t) c(t) = s(t) cos w,t (1)
The available measured signal is

m(t) =s;(t) + n(t) = s(t) cos w,t + n(t) (2)

where n(t) is the-%-noise. The derolling by software is to multiply
m(t) by d(t) = cos(w.t + ) where © accounts for the phase difference

between c(t) and d(t). The resulting signal is

sp(t) = m(t) d(t)

s(t) cos(wpt + ©) + n(t) cos(wpt + @)

1 1
2-s(t) €cos 0 + 3 s(t) cos(Zwrt +0) +

n(t) cos(u .t + o) (3)

After a filtering process the low frequency component of sz(t) is

retained, giving,
- _1
$=5s(t) cose (4)
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For maximum strength of the recovered signal, o = 0, meaning a
synchronous demodulation is desired.
For the GP-B experiment the relativistic signal consists of
a pair of signals s,(t) and sy(t). The srocess of rolling, derolling
and filtering is shown in Figure I1I-2. The spacecraft roliing

transform s,(t) and sy(t) to sy (t) and sp(t) modeled by

sp(t) €05 wpet  sin w,t sy(t)
(5)

sp(t) -sin wet  cos w,t sy(t)

where w,is the radian frequency of rolling. The measured signals

are my(t) and my(t) which contain the'l-noise ny(t) and n,(t)
1 2 f 1 2

m (t) s1(t) + ny(t)
= (6)
ma(t) sp(t) + np(t)

The ideal software deroll is a recursively computed coordinate

transformation given by

s3(t) [ cos w t -sin w t 1 m(t) ]
sq(t) L sin o t cos w t 1 mo(t) ]
- a 1
s, [ cos w,t -sin o t ny(t)
= + (7
sy | sinw t cos w t J L np(t) |
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!

After a filtering process to retain the low frequency component of
the signal, one gets
[ gx Sx
R = (8)
L sy Sy

2. Potential Error Sources
The potential error sources for the roll-deroll process consist
of the following:
1. Phase difference between the roll signal and deroll signal.
2. O0ff-tuned deroll frequency.
3. Rectification error due to thet%-noise component at
roll frequency.
4, Imperfect filtering of noise.
5. Variation in roll rate.
The first three of these error sources will be further dis-

cussed below. Study of the last two error sources is not yet complete.

3. Effect of Nonzero Phase Between Roll and Deroll Signals

A nonzero phase angle o between the roll and deroll signals
does not diractly introduce any error. However, it does reduce the
strength of the measured true signal by a factor of cos © as shown
in Eq. (3). The effect is a reduction of the signal-to-noise ratio,
making the extraction of the true signal by filtering harder. If

the absolute value of @ can be kept below one degrees, then
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1- cos?5° = 1 - .99982 = .0004,

the reduction of signal-to-noise ratio will be less than .04%.
Synchronizing the two signals to within one degree is not hard to
do, since the roll motfion is tracked by the signal from a star

blipper sensor.

4, Off-Tuned Deroll Frequency

Consider a ore-dimensional true signal s(t). Let w, be the
roll frequency and wy+dw be the deroll frequency. Assuming zero
phase difference, that is ©=C, the error caused by Aw, the off-
tuned deroll frequency, can be analyzed as follows:

The rolled signal is s(t) cos w.t and the measurad signal is
m(t) = s(t) cos wpt + n(t) (9)
The derolled signal is

sp(t) = m(t) cos (wpt + Awt)
= {s(t) cos w.t + n(t)} cos(w.t + Awt)
= % s(t) cos Awt + % s(t) cos (2wpt + dut) +
n cos (wpt + Awt) (10)
The Tow frequency component of s>(t) will be extrac.ed by filtering,
giviny

s(t) = %s(t) cos Aut (11)
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Assuming s(t) is a constant signal, then the extracted signal s(t)
can be affected by Aw to various degrees depending on the size of
Ao,

Ideally, aw=0, that is, the deroll frequency equals the
roll frequency. The roll frequency is monitored repeaiediy by the
use of a star blipper sensor. Hc.over, the finite wordlength
limitation of the computer register will cause a finite wordlength

induced Aw. Two sample calculations will illustrate this point.

Sample Calculation 1. Consider a roll period of T = 600

seconds. The roll frequency is
2n -1
wp = = .1047 - - - x 107" rad/sec
For a register having six places for mantissa,
Aw = .0000005x10"1 = .5x10°7 rad/sec
Therefore £Eq. (11) has a period of
Zn

Tpy = 5 = 1.2566x108 sec = 4 years

During a one year period Awt begins with a .clue of 0 and ends with

a value of gu Correspondingly, cos Awt changes from 1 to 0, resulting

in an extracted signal value of
s(t) = s(t) to s(t) =0

which involves very severe errors.
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Sample Calculation 2. Same sample roll frequency as the

previous case is used, but use a register having ten places for

mantissa. Now
Aw = .00000000005x10"1 = .5x10°1! rad/sec

Then Eq. (11) has a period of

Taw = %g = 1,2566x10%12 sec = 40,000 years

Thus for a time averaging process over an one-year time, the effect
of round-off induced Aw is negligible. This is because that at the

end of one year

2n _ .
cos (ﬁﬁjﬁﬁﬁ) = .999999G37

giving aﬁ error in §(t) of only 1.234x1076%.

In conclusion, if good synchronization is maintained between
the roll and deroll signals and if the wordlength of the computer
registers are sufficiently long, the problem of off-turned deroll

frequency can be eliminated.

5. Rectification Error Due to the-%-noise Components Within the
Frequency Spread of the Signal
The relativistically drifted gyrc position may be considered

a ramp function of time, that is
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Hence it has a Fourier transform of

s(w) = 55

w

and a power spectral density function of

2
bgslw) = jz
w

The signal has a spectrum spread of §w which is nonzero. This
spectrum spread is shifted to a higher frequency centered at the

roll frequency w,, and is contaminated by the power spectrum of

the %-noise as shown in Figure III-3(a). After derolling not only
the power spectrum of the true signal be shifted back to low frequency
band but also the inphase components of the noise spectrum lying

in the same frequency spread, as shown in Figure III-3(b). These
components of noise cannot be suppressed completely, but an optimum
choice of the bandwidth of a low-pass filter can provide a meximum
signal-to-noise ratio. A quantitative treatment of this subject

requires further study.
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Figure III-3. Spectra of sianal and noise.
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