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CHAPTER I

GENERAL DESCRIPTION

This report contains the results of a continued study on the

analysis and modeling for the Gravity Probe B (GP-B) experiment. The

study was supported by the National Aeronautics and Space Administration,

Marchall Space Flight Center, under contract NA58-34426. This report

covers the study effort over a fifteen-month period from 1 September

1982 to 30 November 1983.

The results of two tasks are reported here. The first task is

a refinement of a crude result, done in the last year, on the finite-

wordlength induced errors in Kalman filtering computation. Errors

in the crude result have been corrected, improved derivation steps

are taken, and better justifications are given. The second task is

to analyze the errors associated with the suppression of the 
f 
-noise

by rolling the spacecraft and then performing a derolling operation

by computation. This second task could use a good deal more time for

a more thorough study. The result reported here is what has been obtained

to date.

1
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CHAPTER II

FINITE-WORDLENGTH INDUCED ERRORS IN
KALMAN FILTERING COMPUTATION

1. Introduction

The problem of finite-wordlength effect on digital computations

has been investigated extensively during the past twenty years. Finite-

wordlength property of a computer requires either rounding or chopping

to be used to limit the wordlength of a number. Since most computers

use rounding technique, only rounding errors will be considered in

the sequel.

There are two approaches to analyze the rounding error, the

first approach considers the statistical nature of rounding errors,

and treats them as noise generated in the system. This approach has

been widely used by those in the field of digital signal processing.

In the statistical error analysis one is usually after the ensemble

average and standard deviation of the final error based on the estima-

ted characteristics of source errors and their propagation through

computation steps. This approach does not seem to be sufficiently

reliable for the analysis of GP-B data reduction errors for two

reasons. First, GP-B's four experiment gyros represent only a small

sample,:their combined statistical characteristics may deviate a good

deal from those of the population statistics. Thus the use of

statistical analysis here may not give a reliable result. Secondly,

the GP-B data reduction involves Kalman filtering and other rather



complex computations. The exact statistical nature of rounding error

f generation by and propagation through these computations is not easy

to establish. Therefore a more conservative approach is needed.

The second approach is to establish bounds for the rounding

errors involved in computation. This approach provides a very

conservative, though rather pessimistic, result for rounding error

analysis. This approach has often been used by those doing numerical

analysis. Because of the unusual precision required of the GP-B and

the expensiveness of the experiment the use of error boun6 approach-

E	 provide a much more reliable results for the error analysis. ThereforeI
this approach will be used for ensuing rounding error analysis. Since

Kalman filtering is the main activity in GP-B data reduction, the

present chapter is devoted to the analysis of rounding error in Kalman

filtering computation.

r

2. Rounding Procedure in Floating Point Representation

Let x be a number

x = (t.d l d2 ---) x be
	

(1)

where b is the base of the number system used and e, an integer, is

I

the exponent. In general the mantissa part of the number may have

infinite number of digits for an exact representation, such as for

12. The number (1) may also be represented in the form

x = u-be + v-be-t

r

,t

(2)

3



where b _ Jul < 1, 0 < Jv) < 1, and u contains only t digits.

Examples: Base 10 numbers.

(a) 12.3456 = .1234 x 10 2 + .56 x 10-2

Here b=,C, t=4, and e=2

(b) -.0123456 = -.1234 x 10 -1 +(-.56) x 10-5

Here b = 10, t = 4, and e = -1

The rounding procedure drops off the second term on the right

side of (2) by appropriately adjusting the value of the first term.

Thus, after rcunding, x becomes x which has a t-digit mantissa

.d 1 d2 --- d t and an exponent b e . The conventional round-off procedure

for any number is as follows:

u-be
	

if Iv) < 1

Q =	 u-be + be-t
	

if v _	 (3)

3t

u-be - be-t
	

if v<-

i

Note that u and v always have the same sign.

Examples: b = 10 and t = 4

(a) x = 765.4567 = .7654 x 103 + . 567 x 10'1

Here v > Y and e = 3, so

A = u-be + be-t = . 7654 x 10 3 + 103-4 = . 7655 x 103

4 a

r
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IXI = IX-XI	 O

From (2) and (3), it is clear that

(4)
	

I

4
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(b) x	 123.426 = .1234 x 10 3 + .26 x 10-1

Here v < y, so

A
x = u-be = .1234 x 103

(c) x = - 765.4567 = -.765 x 10 3 -.567 x 10-1

Here v < - -7, so

A = u-be - be	 = -.7654 x 10 3 - 103' 4 = -.1655 x 103

These results are intuitively obvious. The reason for going through

the formulations of Equations (1), (2) and (3) is to pave a way for

the subsequent analysis of rounding errors.

3. Rounding Errors in Floating Pointing Representation

The "absolute rounding error" in x is defined as

JXI1 
1 b

e-t	 (5)

Examining (1) shows that ju-be l : be-1 because u > b" 1 ; and

jxj : ju-be l because the second term, having similar sign, is dropped.

Hence

Ixj ^ l u , bel _ be-1
	

(6)
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Define the "absolute relative rounding error" E as

E =-^	 - Lj	 (7)

f

By (5) and (6), (7) gives

E _ bl-t	
B	

(8)

The quantity B is called the "unit rounding error" which represents

the absolute bound of rounding error in the floating point represen-

tation of a number of base b and having a t-digit mantissa. It is

an important parameter in the analysis of rounding errors.

Example: Consider b = 10 and t = 4

s

Then B =	 b l " t =	 10' 3 	i

Let x = 767.4567 = .7654 x 103 + .567 x 10-1

then x = .7655 x 103	E.

fix) = 12-xj = .0433

E _ ^4W = .56568 x 10-4 < B

For the sake of comparison, the chopping error in floating

point representation of a number will be analyzed next.

4. Chopping Error in Floating Point Representation

For a floating point number in the form of (2), a t-digit

chopped number is given by

6
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xc - U-be	
(9)

Define the "absolute chopping error" R C as

IxC I = Jxc-xj _ jv) be-t	 (10)

Since jvj < 1

1 xcl ; be-t	 (11)

Define the "absolute relative chopping error" as

Ec	 IXCI	 (12)
IX)

Clearly,

be- t
cc ` be-F = bl-t = Sc	 (13)

where Sc is called the "unit chopping error." Comparing (13) and

(8) shows

Sc = 2S	 (14)

Example: b = 10 and 6 = 4

Then Sc = 10 1 - 4 = 10-3

Let x = 765.4567 = .7654 x 103 + .567 x 10-1

then xC = . 7654 x 103

IRC I _ 1xC-x) _ .567 x 10-1

7
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E C = 7w6gu _ . 74073 x 10-4 < sc

5. Rounding Error in Basic Computer Arithmetic Operations

For the convenience of the subsequent analysis, notation for

rounded floating point number is defined here in two equivalent forms.

Let x be a floating point number. The rounded value of x is denoted

by z or fi(x).

Let "*" denote any of the four basic arithmetic operations

x, and /. The computer value of x* y is f A(x*y), which is re-

lated to the exact value x*y by

ft(x*y) = (x*y)(i+E) 	 (15)

where a is the actual relative rounding error. The absolute relative

error in (x*y) is bounded by

IEI = Ift x* x*y 
x* (	 B	 (16)

where S is the unit rounding error.

6. Rounding Error in Composite Computer Arithmetic Operations

Repeated Additions and subtractions consider the sum

s=xl+x2+x3+x4

_ ((x l+x2 ) + x3 ) + x4

The rounded value is

f = ([(xl+x2)(1+E1) "33 (1+E2) + x41 (1+E3)

(xl+x2)(1+E1)(1+E2)(1+'-3) + x 3 (1+E2 )(1+E 3 ) + x4(1+E3)

i

	 8
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a (x l+x2 )(1+c 1 +E2+c3 ) + x3 (1+c2+c3 ) + x4(1+c3)

The rounding error is

s 2 (xl+x2) ( c l +E 2+E 3 ) + x3 (`2+E3) + x4 (e3)

_ (x l+x2+x3+x4 ) (c 1+c2+c2) - x 3c l - x4 (c1+c2)

The absolute relative rounding error is bounded by

s = 38 + s (1 + 2S (j	 30 + 38
C - 1 11	 Amax

where 1xj1max is the largest of all (xj (. In general, for a sum of

n terms

n

S =
3=1 

xi 	(17)

the absolute relative error is bounded by

s 1= 
(n-1)S 

^=3
+ F(J-2)s1-S , I (n- 1)B + (2

C - I
-1 ^	 max s

Repeated Multiplication and Division. Consider the following

combination of product and quotient

Q = xy12 = (xlx2)iYl

the rounded value is

Q - 
xlx2

y

i +cl)
(1+q1 )= xyl 2 (1+cl+nl)

where c l and nl are relative rounding errors due to multiplication

and division, respectively. The rounding error and the absolute

relative rounding error are, respectively,

9
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Q	 xyx2 (E1 +n;)
1

and

E =I I= lel + n1).1 20

For the general case

Q	 x 1 x2 --- xn	(19)
_
y1y2 --- Ym

The absolute relative sounding error is bounded by

C 
=1411 

(n+m=1)S	 (20)

7. Norms of Vectors and Matrices

Norms of vectors and matrices are useful in the analysis of

rounding errors in matrix operations. The following definitions

of norm will be adopted in this study.

For an n•vector x with elements x j , define the vector norm

as

	

Ilxll	 - Maxl xi l 	(21)

Clearly, the norm has the following properties:

(i) Ilxll _ 0

(ii) II11I = 0 only if x = 0

tiii)	 IIx+Y II 1 IIXII + IIrII

	

(iv)	 Ila x Ii = lal • IIXII for any real a.

For a mxn matrix A with elements a ij , define the matrix norm as

10
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M
IIAII	 = Max	 I	 JaijJ (22)

j	 i=1

This norm has the following properties:

(i )	 I JAI	 ? 0

(ii)	 IJ A II	 = 0 only if A = 0

(iii)	 IIA+BII	 a	 IIAII	 +	 IIBII

(iv)	 Il a All	 =	 lal • IIAII	 for any real	 a

(v)	 I IABI I	 =	 IIAII • I JBI

8.	 Rounding Error in Matrix Addition

Let A and B be two mxn matrices, the rounded sum of them is

f1(A+B] = A+B+R (23)

where R is the rounding error matrix. 	 By the definition of matrix

norm (22) and in view of (15), the norm of the rounding error matrix

is bounded by

JJRJJ	 :a	 IIA+BII (24)

where a = 1 bl-t as given by (8). 	 The relative norm of JJRJJ	 is

bounded by

IIRIJC = ^a (25)
FA+B

which is the same as the relative rL 	 iding error of the sum of two

numbers as shown in (16).



9. Rounding Error in Matrix Multiplication

Since elements of a matrix product are inner products of vector

pairs, the rounding error associated with an inner product will be

analyzed first. The result will then be used to analyze the rounding

error in a matrix product.

9.1. Rounding Error in Inner Product

Consider the inner product of two 3-vectors a and b

I = aTb = albl + a2b2 + a3b3

The rounded value of aTb is

I 
= ft[aTb]

{[a l b l (1 +E 1 ) + a2 b2 (1 +E2 )1(1+e 3 ) + a3b3(1+E4)}( 1 +ES)
I,

= d l b l (1+e 1 +E 3+E S ) +a 2b2 ( 1 +E 2+E 3+E 5 ) + a3b 3 ( 1 +E4+E5)

where e i 's are relative rounding errors associated with basic

arithmetic operations. The rounding error in I is
r	 _

I = a l b l (e l +E 3+e 5 ) + a2 b2 ( 1 +E 2+E 3+e 5 ) + a3b 3 (E4+E5)

The absolute value of this rounding error is bounded by

III a 361a l b l l + 36Ia 2b2 I + 
26Ia3b31

In general, the absolute rounding error of the inner product of two

n-vectors is bounded by

III a 6 {n)a l b l ) + I (n+2-j) I aj bjl}	 (26)
j=2

The expression for the absolute relative rounding error for ari inner

product appears cumbersome and is not given here.

12
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9.2 Rounding Error in Matrix Products

Consider the matrix product C = AB where A is mxn and B is nxp.

The number n will be called "interface dimension" for matrices A and

B. Using the result of (26) the absolute error of the elements of

C is bounded by

Jcij ( 18 {n,ailj-(b1j1 + n(a 12 1 • jb2j 1 + ( n-1)jai31'jb3j1

+ - - - - + 2 1 a inl :
lbnj 1} 	(27)

Let [C] be a matrix whose elements are {c ij {, [A] be a matrix whose

elements are (a ij j, and [B] be a matrix whose elements are Jbijj.

Then, based on (27), one has

[C] < S[A]D[B]

where the comparison is done on element by element basis for the

left and right hand matrices, and

n n 0
n-1

D=I

0
2

Clearly 11D11 = n. The norm of th

therefore bounded by

13
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I IBI I _ nsi JAJ I • I IBI I = n b 1 - t I JAi I- I IBI I	 (28)

Generalize the above result to a product of N matrices

P=MA - - - MN	(29)

with interface dimensions d l , d2 , - - - dN-1 . Let

Pi =MA - - - Mi

Then the result of (28) implies the following rounded matrices, with

e being the worst error.

P2 = fx(M1 M2 ] = M1M2(1+dlE)

and

P3 = f'[02 M3 ] = P2M3(1+d2e)

= MlM2M3(1+dlE)(1+d2c) t- MlM2M3[1+(dl+d2)E]

and

PN = M1 M2 - - - MN[1+(dl + - - - +dN-1 )E]	 (30)

Rounding errors in PN is

PN = MA - - - MN (d l +d2 + - - - +dN -1)E	 (31)

The norm of this error matrix is therefore

11x1 0 1 a S( N I 1 di)	 n	 IIMj i!	 (32)
i=1	 j=1

The results of (24) and (31) can be used jointly to handle

the matrix equation containing both products and sums. This will

be demonstrated by the following two examples, assuming the worst

error c at every computation.

14
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Example 1	 Compute

R = ABC+D

where all matrices are nxn. The rounded R is

R - ABC(1+2nc)(l+c) + D(1+e)

The rounding error of R is

R z [(2n+1)ABC + D]c

and its norm is bounded by

I IRI I a 8[(2n+1)I IABCI I+ I IDI I]

Example 2 Compute

R= ABC +D

where A is nxm, B is mxr, c is rxs, and D is nxs. Then

R = ABC[1+(m+r)c](1+c) + D(1+c)

R = ABC(l+m+r)e +Dc

II4I1 1 s[( 1 +m+r)I IABCI I + I IDII]

These two examples shows that the rounding error norm of matrix

addition does not involve the !imension of the matrices, but that

of matrix product involves all the interface dimensions.

10. Rounding Error in Matrix In%ersion, First Approach

Let A be a nonsingular n.,.n matrix, its inverse A" 1 satisfies

the relationship

A A- 1 = I, the identify r,iatrix

Let ^j be the jth colum,, vector of I and h j be the column of A-1.

Then hi is the solution of

15



Then

E'= A-1R

The norm of E is bounded by

IIEII I IIA- 1 11-IIRI

L

11

Ax = u j	 j= 1 to n	 (33)

Thus A-1 can be obtained by solving (33) n times using different

uj each time. The solution is usually done by a method based on

the Gaussian elimination with partial pivoting. The present concern

is the rounding error associated with the computation of A -1 . The

analysis will be done in two steps: First, find error in A -1 com-

puted from the exact A. Second, find error in A -1 computed from

A' = A + AA where AA is the error in A.

Rounding Error in A-1 when A is exact. Let h j be computer

solution of (33). Define the "residue" associated with h j as

A

rj = A hj - uj	 (34)

The error in hj is

hj = hJ - ^j = A-1 . j	 (35)

The rounding error matrix for the computer inverse of A is

E=[hl h2 ---hn ]	 (36)

Define the "residue matrix" for the computer inverse

R=[n1f2 ---rn ]	 (37)



pper^..

l-

and the relative norm of E is bounded by

c _ II R II
	

(40)

Rounding Error in A-1 when A+AA is inverted. Let A be erred

w

to A+AA, then the computer solution	 for

[A+AA]x = !Lj 	j = 1 to n	 (41)

must satisfy

F^

[A+AA]h- = uj + rj 	J = 1 to n

where r^ is the residue. Then

hJ+A-1AA^ =A' yj+OrJ =hJ+A-1nj

The error in h^ is

ha = hj - _hj = A-1 [ rj - AA hj ]	 (42)

Using the notation defined in (36) and (37), (42) gives the error

matrix

E= OR -  A -1 AA fI[A- 1 ] = OR -  A-1AA A-1

The norm of the error matrix is bounded by

IIEII ; IIA- 1 11-IIRII + IIA-l II 2. I1AAl1	 (43)

the relative error norm is

E= I IAE^-i- J	= I IRI I+ I I A- 1 1 l- I I AAI I	 (44)
1

Comparing (44) to (40) shows that the latter is a special case

of the former where AA = 0. Eq. (44) appears elegant, but its practical

17
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usefulness is in doubt. The problem is that the residue matrix R

cannot easily be obtained. In addition, both (43) and (44) do not

explicity depend on any wordlength related parameter, such as, the

unit rounding error s.

11. Rounding Error in Matrix Inversion, Second Approach

The usual method of matrix inversion by a computer is based

on a repeated use of Gussian elimination procedure. The procedure

consists of two parts, namely, triangularization of a matrix and

back substitution. The rounding error for each part will be

analyzed first, followed by the analyze of the resultant error.

In the following analysis a will denote the worst value of any

rounding error e i . Thus lei < B.

11.1. Rounding Errur in Matrix Triangularization

Consider a 3x3 Matrix Equation

all	 a12	 a 13	 xi	 bl

a21	 a22	 a23	 x2	 =	 b 2	 (45)

a31	 a 32	 a33	 x3	 b3

A matrix

Let a ij (0) = a ij and b i (0) - b i for i, j = 1 to n. The first step

is to condition the first column. Let

2i
m2l	

all	 a^) 	
(46)

18
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then let

a220) = a22 (0) + m21 a12 (0) = a22(0) - al^f a12(0)

122(1) = fI(a22(0) al--O) a12(0)1

= a22(0) ( l+E) - all(0) a12 (0) (1+3E)

[a22 (0 )	 (a ll ( 0 ) a 12( 0 )1 + a22 (0)E -	
(all ( 0) a12 ( 0)(3E)

= a22 (1) + a22 0 )(3E) - a22(0)(2E)

Similarly

x23(1) = a23 (1) + a230) (3E) - a23 (0) (2E)

x32(1) = a320) + a 32 (1) (3E) - a32 (0) (2E)

43(1) = a330) + a330) (3E) - a 33 (0) (2E)

After the first step, the error in the new A, designated A(1), is

given by A(1) whose elements are

0	 i=1; j=1,2,3

aij(1) -	 0	 j=l;i=2,3	 (47)

a ij (1) (3E) - a ij (0) ( 2E)	 i,j=2,3

19
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Define

Al (0)

and

Al (1) =

Then

A(1) = [

Expressing A in terms of A rather than A is important since A is

available from the computer but not A.

For the b i coefficients we have

bi(1) = bi(0) - m il b i (0) = bi(0) - all(0) bi(0)

Then

bi(l) = fl [ b i( l )] = bi(0)(1+c) - ail 	 bl(0)(1+3E)

= b i (1) + E b i (0) - 3c all(0) bl(0)

= b i (1) + 3E b i (1) - 2E bi(0)

20
r
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and let

a33(2) = i330) + m32 ;23(1) = ; 33 (1) - 322(l) a230)
22

21

•;; . i

Define

0
A

b1( 0 ) =	 b2(0)

b3(0)

then

0

and b i (1) =	 b2(1)

b3(1)

b(1) = 3c b i (1) - 2E b 1 (0) = s[3b1 (i) - 2 b l (0)1	 (49)

Again, expressing b in terms of b rather than b is imp(, rtant since

b is available from the computer but b is not.

After the first reduction step, one has

al l (0)	 a 12 (0)	 a13(0)	 xi	 f bl(0)

0

	

i220)	 a230)	 x2	 =	 b2(1)

0	 x32(1)	 a33 0)	 x3	 b3(1)

where a id and bj are rounded quantities. Their errors will be com-

pounded.to the new rounded quantities in the next step of the

reduction process.

The second step of the reduction concerns the second column

of the matrix. Let

x32(1)
m32 = - - 2^

j	(50)

f



Then
i

I	 A(2)

I
F

Fo r th
i
I

^.	 b3(2)

i

The rounded

w

b3(2)

i

= 3cA2 (2) - 2cA2(1)

e b  coefficients in

= b3(1) + m32 620)

value is

= fL(b3 (2)) = 930)

w

= b3 (2) + 3c b3 (2) -

ORIGINAL PAGE 18
OF POOR QUALITY

The rounded value is

w

x33(2)	 fL[a33 (2)]	 a33 0 )(1+c) - 82
	

x23(1)(1+3c)

= 833 (2) + 3c a 33 (2) - 2c x33(1)

Let

0 0	 0
w

A20) = 0 0	 0

0	 0	 a33(1)

and

0	 0	 0

A2(2) =	 0	 0	 0

0	 0 a33(2)

= S[3A2 (2) - 2A20)]

the second reduction step,

= b3(1) - a2^^ b2(1)

1+c) - 
-

a 22

32(1) b2
(1)(1+3c)

2e b30)

22

(51)
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0	 0

b2 (1)	 0	 and	 (2) =	 0

b3(1)	 b3(2)

b(2) _ [ 3 ^2( 2 } - 2 :b2(2)] e = 8[3 ;?(2) - 2 b2(1)]	 (52)

The resultant errors,

A = A(1) + A(2) = 8[3 A l (1) - 2 Al (0)] + S[3 42 (2) - 2 A201

2	 w

{ 

i 1 [3A
i (i) - 2A i (i-1)]}9	 (53)

b = 9(1) + b(2) = 8[3b l (1) - 2bl (0)] + 8[3^2(2) - 21 (1)]

2
= S {

	

	 1 [3b i (i) - 2b i (i-1)]}	 (54)

i=1

Generalization to an nxn matrix A

all - - - aln

A = A(0) = A(0) = I	 (	 (55)

and - - - ann

ai j (0) = aij(0) = aij
	

(56)

Then

23
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The matrix obtained after the kth reduction step is

all (k) - - - ain(k)

A ( k )	 (51)
I	 ^

an l (k) - - - ann(k)

o{ o
A 

(k)	 I —	
—	

58

1	

(	 )

I

The (n-i)x(n-i) lower right
diagonal block matrix from A(k)

The resultant reduction or triangularization errors in A and b are,

respectively,

A = 81n  [3Ai(i) - 2A i (i-1)]	 (59)
i=1

b = B{n 1 [3; i (i) - 2bi(i-1)J)	 (60)
i=1

Finally, the norms of errors due to triangularization are given

by

_	 n-1

	

= 

8{i 1 (
3IIAk( k )JI + 2 11 A k (k -1)111}	 (61)	 1

n-1

H i ll = o f 	 _k[311^(k)^I + 2^(bk(k-1)11]}	 (62)

24
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Note that after the (n-1)th reduction step, the original matrix

A has been reduced to an upper triangular form. Denote it by

j	 AT = A(n-1). Thus,

All(0) 
a12 (0) - - - a lk (0) - - - fin(0)

a22 ( l ) - - -
 '2k(0) - - - '2n(0)

i

AT	
akk(k-1) - - akn (0)	 (63)

ann(n-1)

Similarly, the original b vector has been reduced to bT given by

bT = b(n-1) = [b l ( 0) b2 (1) - - - 6 n (n-1) 1 T 	 (64)

11.2 Rounding Error in Back Substitution

This problem is approached as follows: Consider the equation

A x = b	 (65)

where A is an nxn upper triangular matrix. Let x be the solution

of this equation which contains rounding errors, then find A and b
Such that

A x = b	 (66)

has error-free solution x. Thus the rounding error problem has been

transformed to an error problem caused by perturbations in A and b.

Define

i	 AA = A-A, Ax = x-x, Ab = b -b	 (67)

25



W

ORIGINAL PAGE IS

OF POOR QUALITY
Then (65) gives

A	 A

(A-©A)Ix-Ax) = b - Ab

Ax = A-1 [4b-AA x]
	

(68)

In (68), Ax is the rounding error in x, A-1 and x are computed by

the computer while solving (65), and Ab and AA are computed from

formulas to be developed. Since A is an upper triangular matrix,

the solution of (65) involves only the back substitution operations.

Rounding error due to back substitution will now be analyzed.

3x3 Triangular Matrix Equation. Consider the equation

a ll	 a 12	 a13 xl 1 bl

0	 a22	 a23 x2	 = b2 (fi9)

0	 0	
a33	 J x3 b3

The equivalent perturbed equation for evaluating rounding errors is

a ll	 a12 a13 xi bl

0	 a22 a23 X2 = 62

0	 0 a33	 J L	 x3 1 63

(70)
1

White (69) as

	

a ll x l + a 12x2 + a 13x3 = bl
	

(a)

	

aZ2 x2 + a23 x3 = b2
	

(b)
	

(71)

	

a33 x3 = b3
	

(c)

26
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The rounded value is

b
x3 = a33 ( 1+E) = x3(1 +E)

giving

x3
x3 =11+c

Substituting into (71c) and rearranging terms, give

a33 x3 = b3 ( l+c )

a 33	 b3

where a33 and b3 are also defined. Next, from (71b)

x2 
= a22 [b2-a23x3]

Its rounded value is

x2	 a22 [ b2- a23 x3( 1+c )] (1+2c)

= a22 [b2 -a 23 x 3 (1+2c)] (1+2c)

2 b - 4 a x

X2	 E 2	
E 23 3	 (75)

2
a22

27

(72)

(73)

(74)
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giving

202 - 4e a23x3
X2=x2 -

a22

2eb2 - 4E a23x3/(l+E)
=x2 -

a22	 (16)

Substituting (76) and (73) into (71b) and rearranging terms, give

a22x2 + a23(1+3E)x3 = b2(1+2e)

S22	 a23	 b2

where a22, a23, and b2 are also defined. Next, from (71a)

_ 1x l	 all [b^_a12x2-a13x31

Its rounded value is

_

x1

	 —I—- all [bl(1+3E) - a12x 2 (1+4 E ) - a13x3(1+3E)1

With the help of (72) and (75),

xl = x1 + all {3Eb 1 - 4Ea 12 x2 - 2E	
b2 + 4E 

a122a23

a22 

	
x3	 a	 1	 }

22	
E a 3x3

Using the approximations x2 = x2 and x3 = x3 , x1 is expressed in terms
of x11 x2 , and x3 as

xl = x l - all{3Ebl - 2Eb2 a^2 - 4Ea 12 z2 + 14E ( aa2a23 _ a )x }

22	 13 3

(i8)

28	 f
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Substituting (78), (76), and (73) into (71a) and rearranging terms,

give

all x l + a 12 ( 1+4c)z2 + a 13 (1+3c) x3 = b l (1+3c)	 (79)

a
11	 a12	 a13	 ^1

where all , a 12 , a13, and b l are also defined. Finally, put (74),

(77) and (79) into a single matrix equation.

a11 =a11 a 12 =a l2( 1+4c )	 a13=a 13 (1+3c)	 x l	 b1=bl(1+3c)j

0	 a22=a22	 a23-a23(1+3c)	 x2 = b2=b2(1+2c)

0	 0	 a33=a33x3	 b3=b3(1+c)

A=A+AA	 x	 b=b+Ab

(80)

from which one easily gets

	

0	 4ca 12 	 3ca13	 0	 a12

	

AA = 0	 0	 3ca23 = 0 0

	

0	 0	 0	 0 0

a13 1 0	 0	 01

a23	 0	 4	 0 I (81)

0	 0 0 3

(82)

3bl	3	 0	 0	 bl

Ab =	 2b2 e=	 0 2	 0	 b2 c

b3	 0 0	 1	 b3
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Generalization to nxn Triangular Matrix Equation. Consider

	

a ll a12 - - - a ln	 xi	 bl

	

a 22 - - - a2 n	 x2	 -	 b2	(83)

L 
0 \^ I	 I	 I

	

a nn	 xn	 bn

A	 x	 b

Its equivalent perturbation equation for evaluating rounding errors

can be obtained by generalizing the result of (80), which is

	

a ll a12 - - - aln	 xl	 bl

	

a22 - - - a2n	 x 2	-	 b^	 (84)

	

0` I I	 4

	

ann 	 x3	 bn

A	 x	 b

where

akj	 k=j

	a kj = akj [l+(n-j+3)E]	 1<k<j<n	 (85)

0	 otherwise

A

bk = bk[1+(n-k+l)c]	 k=1 to n	 (86)

30
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Thus,

akj(n- j +3)E	 1<k<j®n

aakj =	
(81)

	

0	 otherwise

	

Ab k = bk(n-k+1)E	 k - 1 to n	 (88)

0	 ( n +l)a12	 na13 -- 4al(n-1)	 3aln

0	 na23 -- 4a2(n-1)
	

3a2n

	

AA =	
\

0	

I E

^	 I

3a(n-1)n

0

	0 	 a12	 a 13 -- aln	 0

0.	 a23 -- a2n	 n+1 0
I	 s	 (89)

	

0	 a(n-1)n	 4

0 0 3

AD	
MA

31
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I

C:

nbI	 n	 bl

(n-1)b2	n-1 0 
b2

Ab =	 (	 E	 \	 (	 S	 (90)

b 
	 1 j	 bn

Mb	b

where matrices A0 , MA , and Mb are also defined.

11.3 Resultant Rounding Error in the Inverse Matrix

Two sets of equivalent perturbations for A and b have been ob-

tained to account for rounding errors. One set, A and b as given

by (59) and (60), account for errors from triangularization. The

second set, AA and Ab as given by (89) and (90), account for errors

from back substitution. The resultant equivalent perturbations for

A and b are given by the sums

SA= A +AA =A -A	 (91)

db=b+Ab=b-b	 (92

The resultant rounding error in z in the solution of

A x = uj	j = 1 to n,	 (93)

where !Ij is the jth column vector of the identify matrix I, is given

by

dxj = A" 1 [dbj -dA xj ] (94

32
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This equation is obtained in a way similar to that of (68). Rounding

error in A' 1 is then given by

d(A-1 ) _ [dx 1 - - - dx,n]

= A' 1 [(db 1 -dAx 1 ) - - - (db^-6A^x	 (95)

The error norm of the computer's inverse matrix of A is therefore

116(A- 1 )11 ,1 IIA' 1 11 • IIEII
	

(96)

where the matrix E has been defined in (95). The relative error

norm is

E <	
Id 

A-1	 I = II E II
IIA

—lil

It is obvious that the evaluation of (96) or (97) involves

a good deal of computation and should be done by a computer. Figure

III-1 is a computation block diagram for this purpose.

11.4. A Numerical Example

Consider inverting the following matrix

	

3.235	 -1.234	 3.256

	

A = 1.023	 -5.235	 0.921

	

1.336	 2.120	 -8.235

using computer of different finite decimal wordlength. Then evaluate

the corresponding error norms using the procedure of Figure 1. The

33
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Given matrix A

'Triangulariza-lion of A into AT,

'Use the same triangularization
Transformation to change u__^^ to
b_^, j=1 to n. Thus we hauls
cf5ange A x=u j to ATx=b j	 A

'Generatebj , error in bj	 bj, j=1-n

'Generate A, error in AT.

AT

b j, j='.-n

*Back substitution to solve	 AA

ATx=bj , j=1 to n	
Ab j

The solutions are xj , j=1 to n.
j-1 to n

'Generation of AA, do it once.

Generation of Aba, j=1 to n.

xj , j=1-n

dA=A+AA

db j = bl + Abj
	

i

j=1ton	 -j

SA, Sbj , j=1-n

A-1 = [ xl --- xn]

	

	 ildxjll = 11A-111.11db'j- 6A'ij 11
1 2 j , j=1-n

and A-1

1ldxjil

Compute 116(A -1 )11 I

116(A-1)11
The Error bound
for A-1

Figure III-1. Flow chart for evaluating rounding error bound of
matrix inverse
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effectiveness of the procedure is examined by comparing these error

norms to the corresponding actual error norms. The actual norms

are approximately obtained by using a computer having a much longer

decimal wordlength. The result is given in Table 1, which shows

jthat error norms obtained by using the proposed procedure are indeed

very conservative. Notice that error norm decreases with increasing

worklength. It is interesting to note that when the proposed method

j	 is used all er ror norms have the same mantissa.

Table 1

Matrix Inversion Error Norms

Wordlength:	 No. of places Error norm

after decimal	 point By proposed method Actual value

3 3.706 x 10-2 7.782 x 10-5

5 3.706 x 10-4 4.530 x 10-7

8 3.706 x 10-7 4.672 x 10-10

12. Rounding Error Bound for Kalman Filtering

Consider a process modeled by the following set of equations.

_'Pk-1 xk-1 + wJr. -1 	 dim xk = n

z k = Nk xk + v k	dim es = m

35
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E x(0) = x0	 E[R(0) R( 0) T] = Po

wJc ti A (O,Qk)	 Vk ti N(O,Rk)

E[wk v j ] = 0	 all	 J,k

The Kalman Filter algorithm consists of the following equations.

^c = Ok-1 Jc-1 + Kk[^k - Hk 'Dk-1 .4-1 1 •	 X*(0) _ ^0	 (98)
I

Kk = PkpHk[Hk PkpHk + Rk J' 1 or Kk	 P k HkRk l	(99)

-

Pk p 	 P	 mT	 +	 100kp	 k-1	 k-1	 k-1	 Qk	 (	 )

i

4

Pk = Pkp - KpHk Pkp	 (101)

1

where x* is the estimate of x. 	 The present interest is to find the -^

bound of the rounding error norm for x*. 	 For the sake of convenience,

the asterisk "*" will be dropped, and x will denote the rounded value_ 1

of the estimate.

i

Error in Rounded Pkp .	 Recall	 (100),	 that is,

Pkp = Ok-1 Pk-1 'tk-1 + Qk-1

Its rounded result is

Pkp = mk-lPk - ltk-1(1+2n+1e) + Qk_1(1+e)

= Pkp;1+2n+1c)-2ncQk-1
	

(102)

36



ORIGINAL PAGE 10

OF POOR QUALITY

S	
The rounding error is

1
Pkp - (2n+1)c pkp - 2ncQk- 1 1(2n+1)EPkp

Error in Rounded P k . Pecall (101), that is,

Pk - [ I - KkHk]Pkp

Its rounded value is

w
Pk - [I(1+c) - KkHk(1+m+Ts))]Pkp(l+nc)

w
_ [I(1+n+ T£) - Kk Hk ( 1 +n+m+ c)]Pkp

_ [1(1+n+—TE) - KkHk(l +n+m+ E)][Pkp+Pkp]

Pk + [(n+l)cI - Kk H k (n+m+l)c]P k p + [I-KkHk]Pkp

- Pk[1+(n+m+1)E] - me Pkp + [I-KkHk]Pko

Pk - (n+m+l)cPk - mcP kp + [ I -KAIk kp

(n+m+l)cP k - mEPk p + [I-Kk Pk ](2n+1) Pkp

(2n+1)cPk
(3n+m+2)cpk

Error in Rounded Kk . Recall (99), that is,

Kk = PkHkRkl

37
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Its rounded form is

Kk = P kHkRk l ( 1 +IR'-Wc )

By (104) and (103)

A

Pk ! (1+n+m+rc)P k - meP k p + [I-K_ kHk](2n+1)EPkP

(2n+1)cPk

_ (1+3n+m+2c)Pk -mcPkp

Assume Rk diagonal

Rk1 
= Rk1(1+E)

Then (106) becomes

Kk s [(1+ n+m+ E) Pk - mcPkp]HkRkl(1+ E) (1+n+mc)

_(1+ n+ m+ c)P kHkRk'- mEPkpHkRk

A

(106)

(107)

(108)

i

i

i

I^

The rounding error is

T -1
Kk = (4n+2m+3)cKk - mcPkpHkRk

< (4n+2m+3)cKk

Error in Rounded x k . R;call (98), which i:.,

_ 1^k-11k-1 + Kk[3k - Hkh -lxk-1]

_ [ I - Kk Hk ] 'tk-1U-1 + K
k k	 (98)
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Let

Fk = [I-KkHk]ok-1 (109)

A =Kklk (110)

Then (98) becomes

Xk= FkJc-1+Yk (111)

Develop the following rounded quantities.

Fk = 1I(1+c)	 - KkHk(l+-m-+TE)](Dk_1(1+nE)

_ [I(l+n+le) - Kk (1+4n+ m+3E)Hk(l+n+m+le)]'^k-1

_ [I(l+n+lc) - KkHk(1+5n+3m+4E)]Ok-1

= F01+5n+3m+4e) -	 (4n+3n+3)cl) k _ i (112)

uk = Kk zk(1+me)

= Kk(1+4n+2m+3E)zk(l+me)

= Kkzk(1+4n+3m+3e)

= A(1+4n+3m+3e) (113)

xk = Fk xk-1 (l+n+le) + uk(1+E)

I (1+5n+3m+4e)F k,^k _ 1 (1+nn+1c) + !Lk(1+4n+3m+3c)(1+c)

= ( n+ m+ c+1)F kxk _ 1 + (4n+3m+4E+1)uk (114)
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Define

AA

Fk = (1+6n+3m+5e)Fk	(115)

yk = (1+4n+3m+4E)y k	(116)

Then (114) can be written as

A	 A

xk = Fk Jc-1 + u k	 (117)

Case of k = 3	 Eq. (111) gives the exact ^3 as

x3 = F3F2F1 x0 + F3F2 u 1 + F3 u2 + -U	 (118)

The rounded n is

z
x3 = F 3F2F 1M(1+3n+3e) + F3F2ul(1+2n+3e)

+F3.^2(1+n+2e) + !L3(1 +e)

Using (115) and (116), and combining terms,

= F3F2 F l.^0[1+3(7n+3m+6)e] + F3F2ul[1+18n+9m+17E]

+ F3u2[1+lln+6m+lle] + u3[1+4n+3m+5e]

_ 3[1+3(7n+3m+6)e] - (3m+1)eF3F2.!!l

-(10n+3m+7)eF3u2 - (17n+6m+13)eu3	(119)

The rounding error is

= 3(7n+3m+6)e.^3 - (3n+1)EF3F2ul

(10n+3m+7)eF3Y2 - (17n+6m+13)Ey3	(120)

40
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Its norm is bounded by

11	 11! 3(7n+3m+6)E`j .^3 II - (3n+1)cjjF3F2R111

	

- (10n+3m+7)eIIF 3y2 ll - (17n+6m+13)cllu 3 ll	 (121)

Assume IIFkI I < F, IJAII I u, and F i u < B for i = 0 to 2, then

3 ( 7n+3m+6 )cllx3ll + (30n+9m+21)cB

a 8j3(7n+3m+6)(jx3 jj+[3(3n+1) + 3(3-1) (7n+3m+6)]B}

(122)

Case of k=4. Again, by (111),

	

X4 = F
4F3F2 Fl 2^0 + F4 F3 F2 u l + F4F3 Y2 + F4 Y3 + u4	 (123)

Following similar derivation, gives the norm of rounding error as

jjx411 < 6{4(7n+3m+6)jjx 4 jj + [4(3n+1 + 4(2-1) (7n+3m+6)]B}

(124)

The general case k. From the equation pattern of (122) and

(124) for k=3 and 4, the general case is found to be

11 xk11	 Bjk(7n+3m+6)jj^)j + [k(3n+1) + k k-1)<	 (7n+3m+6)]B}

(125)

Eq. (125) is the main result of this chapter, which gives the

bound of error norm for the rounded state estimate. The bound

41
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I
depends on B, the unit rounding error; k, the number of iteractions;

n and m, the dimension parameters of the process; 11 .k (j, the norm

of the estimated state; and B, a quantity depends on K k , Hk, Ok and

uk . The usefulness of this equation is at providing a general idea

on the desired number of digits for the mantissa of the computer's

floating number system. The following e.cample will illustrate this

point.

Example. Consider a one year G?-3 operation where relativistic

data are taken every 10 seconds. Assume that the Kalman filtering

involved in data red!•ction is al c operated at 10 second interaction

period. Then, at the end of one year period, the value of k would

be k=365 x 24 x 3600/10 -= 3.1536 x 10 6 . Assume x k be a 10-vector

and ^k be a 2-vector, so n=10 and m=2. then,

k(7n+3m+b) = 2.6490 x 108

K(3n+1) + 0.5k(k-1)(7n+3m+6) = 1.2949 x 1016

Just for the sake of discussion, assume only one term at the right-

hand side of (125) dominates the result. If the first term dominates,

one may estimate the desired B from

K(7n+3m+6)s = 1

so

6 = 0.3775 x 108

42
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c'mparing to (8), the formula S= 0.5 x 10 1-t , gives t = 9, therefore

9 dig'Its are desired for the mantissa of the floating point number

system. On the other hand, if the second term of (125) dominates,

one may estimate the desired $ from

[k(3n+1) + 0.5k(k-1)(7n+3m+6)]s = 1

so

S = .7723 x 10-16

comparing to (8), gives t = 17. Hence 17 digits are desired for

the mantissa.

13. Remarks

1. The main result of this chapter, given by (125), can

probably be further refined to tighten the predicted bound while

maintaining its reliability. This result was obtained after several

different approaches to the problem had been attempted.

2. It is desirable to find out the effectiveness of (125)

by a computer emulation of the GP-B data reduction. This has not

been done.
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CHAPTER III

COMBATING THE EFFECT OF	 NOISE

ThisThis chapter contains a discussion of the effectiveness of

spacecraft rolling and the use of filtering for eliminating the 	 -

noise from the measured relativistic drift data.

1. Rolling and Derolling

The effect of rolling the spacecraft on the relativistic signal

	

j	 is equivalent to the modulation operation in communication engineering,

	

`	 while the derolling the signal by software coordinate transformation

is equivalent to the demodulation operation. Figure III-1 helps

to show the effect. The -f-noise may be considered as an additive

	

Ei	 noise whose power spectral density 4)nn is inversely proportional

to the frequency f. Therefore its power density is the heaviest 	
( y

near the zero frequency where the power spectrum, a ss , of the

relativistic signal is lying. This is shown in Figure III-1(a).

i

Under this condition, it is very difficult to extract the true signal

from the noise-contaminated signal by filtering.
f
i

By rolling the spacecraft, a carrier signal is generated on

each GP-B gyro and is being modulated by the relativistic signal.

The modulation process takes place before the true relativistic signal

has been contaminated by the f noise. Thus the true signal's power

spectrum (Dss is transformed to a power spectrum (Dsisi situated in

a higher frequency region centered at the roll frequency wr where
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(b) With roll and deroll operations.

Figure III-1. Effect of roll and deroll on signal and noise.
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the power density of the 
L 

noise is much less. This is shown in

Figure III-i(b). After receiving the signal by measurement, the

signal is derolled and filtered by digital computation. An analytical

description of the entire process is given below.

Referring to Figure III-1(b), let s(t) be the true signal.

The rolling motion of the spacecraft produces a carrier signal

C(t) = cos wrt, where wr is the radian frequency of the rolling.

The modulated signal is

Si(t) = s(t) c(t) = s(t) cos wrt

The available measured signal is

m(t) =s i (t) + n(t) = s(t) cos wr t + n(t)

where n(t) is the 
f
-noise. The derolling by software is to multiply

m(t) by d(t) = cos(wrt + e) where a accounts for the phase difference

between c(t) and d(t). The resulting signal is

S2(t) = m(t) d(t)

= s(t) cos(wrt + e) + n(t) cos(wrt + o)

= i s(t) cos e + 2 s(t) cos(2wrt + o) +
n(t) cos(wrt + o)

After a filtering process the low frequency component if s 2 (t) is

retained, giving,

S = -T s(t) cos 0
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For maximum strength of the recovered signal, o = 0, meaning a

synchronous demodulation is desired.

For the GP-B experiment the relativistic signal consists of

a pair of signals sx(t) and s y(t). The process of rolling, derolling

and filtering is shown in Figure III-2. The spacecraft rolling

transform sx (t) and sy(t) to sl(t) and s 2 (t) modeled by

s l (t)	 COS wrt	 sin wrt	 -;A t)

(5)
s2 (t)	 -sin wr t	 cos wr t	 sy(t)

where wris the radian frequency of rolling. The measured signals

are m l (t) and m2 (t) which contain the f -noise n 1 (t) and n2(t)

ml (t)	 sl(t) + nl(t)

MOM s2 (t) + n2(t)

The ideal software deroll is a recursively computed coordinate

transformation given by

s3( t )	 cos W 
r 
t
	

-sin w rt l `mi(t)

s4 (t)	 l sin wrt
	

cos Wrt J j m2 (t) J

sx 	r cos Wrt
	

-sin wrt 1	 nl(t)	
(7)

sy 	sin wrt
	

cos W 
r 
t	 n2(t)
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After a filtering process to retain the low frequency component of

the signal, one gets

1

sx sx

L s s 

(8)

2. Potential Error Sources

The potential error sources for the roll-deroll process consist

of the following:

1. Phase difference between the roll signal and deroll signal.

2. Off-tuned deroll frequency.

3. Rectification error due to the 
f 

noise component at

J
	 roll frequency.

4. Imperfect filtering of noise.

5. Variation ?n roll rate.

The first three of these error sources will be further dis-

cussed below. Study of the last two error sources is not yet complete.

3. Effect of Nonzero Phase Between Roll and Deroll Signals

A nonzero phase angle o between the roll and deroll signals

does not directly introduce any error. However, it does reduce the

strength of the measured true signal by a factor of cos 0 as shown

in Eq. (3). The effect is a reduction of the signal-to-noise ratio,

making the extraction of the true signal by filtering harder. If

the absolute value of 0 can be kept below one degrees, then
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I - cos25° = 1 - .99982 = .0004,

the reduction of signal-to-noise ratio will be less than .04X.

Synchronizing the two signals to within one degree is not hard to

do, since the roll motion is tracked by the signal from a star

blipper sensor.

4. Off-Tuned Deroll Frequency

Consider a ore-dimensional true signal s(t). Let wr be the

roll frequency and wr+ Aw be the deroll frequency. Assuming zero

phase difference, that is 0=0, the error caused by Aw, the off-

tuned deroll frequency, can be analyzed as follows:

The rolled signal is s(t) cos wrt and the measured signal is

M(t) - s(t) cos wrt + n(t) 	 (9)

The derolled signal is

s2 (t) - m(t) cos (wrt + Awt)

_ {s(t) cos wr t + n(t)) cos(wr t + Awt)

s(t) cos Awt +	 s(t) cos (2wr t + Awt) +

n cos (wrt + Awt)	 (10)

The low frequency component of s2(t) will be extrar.'ed by filtering,

giving

s(t) = fS(t) cos Awt	 (11)
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w
Assuming s(t) is a constant signal, then the extracted signal S(t)

can be affected by Aw to various degrees depending on the size of

Aw.

Ideally, ow•0, that is, the deroll frequency equals the

roll frequency. The roll frequency is monitored repealtedly by the

use of a star blipper sensor. Ho,:zver, the finite wordlength

limitation of the computer register will cause a finite wordlength

induced Aw. Twu sample calculations will illustrate this point.

Sample Calculation 1. Consider a roll period of T = 600

seconds. The roll frequency is

wr = T _ . 1041 - - - x 10 -1 rad/sec

For a register having six places for mantissa,

Aw = .000000540-1 = .5x10-1 rad/sec

Therefore Eq. (11) has a period of

TAW _ n- = 1.2566x108 sec -• 4 years

During a one year period Awt begins with a :clue of 0 and ends mith

a value of T. Correspondingly, cos Lit changes from 1 to 0, resulting
in an extracted signal value of

A

s(t) = s(t)	 to	 S(t) = 0

which involves very severe errors.

f

4

i

t

`.
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Sample Calculation 2. Same sample roll frequency as the

previous case is used, but use a register having ten places for

mantissa. Now

Aw = .00000000005x10
-1
 = .540-11 rad/sec

Then Eq. (11) has a period of

TAw = L
AW
' 	 1.2566x10+12 sec = 40,000 years

Thus for a time averaging process over an one-year time, the effect

of round-off induced Acs is negligible. This is because that at the

end of one year

cos 
(40,000) 	

.999999907

giving an error in "s(t) of only 1.234x10-6a.

In conclusion, if good synchronization is maintained between

the roll and deroll signals and if the wordlength of the computer

registers are sufficiently long, the problem of off-turned deroll

frequency can be eliminated.

5. Rectification Error Due to the 
f 
-noise Components Within the

Frequency Spread of the Signal

The relativistically drifted gyro position may be considered

a ramp function of time, that is

s(t) = kt	 t > 0
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Hence it has a Fourier transform of

s 	 = 12
W

and a power spectral density function of

ASS M - w4

The signal has a spectrum spread of dw which is nonzero. This

spectrum spread is shifted to a higher frequency centered at the

roll frequency wr, and is contaminated by the power spectrum of

the 
f 
-noise as shown in Figure III-3(a). After derolling not only

the power spectrum of the true signal be shifted back to low frequency

band but also the inphase components of the noise spectrum lying

in the same frequency spread, as shown in Figure III-3(b). These

components of noise cannot be suppressed completely, but an optimum

choice of the bandwidth of a low-pass filter can provide a maximum

signal-to-noise ratio. A quantitative treatment of this subject

requires further study.
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