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ABSTRACT

An analytic expression for the integrated Ha optical

depth profile is derived for a one dimensional slab

geometry model chromosphere, with electron temperature

increasing as a power law with height. The formula

predicts Ha opacity and profile width to be sensitive

functions of the thermal gradient. Application of the

model to observation reveals that broad Ho absorption

widths in G and K giant stars are consistent with a mean Ha

chromospheric optical depth of 50, while narrower widths in

M stars indicate slightly lower opacities. It is proposed

that differences in Ho width between late-type giants of

similar spectral type may be due, in part, to differences

in their chromospheric thermal gradient, and associated Ha

opaci ty.

Subject headings:1ine profiles-stars: atmospheres-stars:

chromo spheres



I. INTRODUCTION

Studies of the Ha absorption width in late-type stars

have been pursued by various workers. Kraft, Preston, and

Wolff (1964) (hereafter KPW) demonstrated that Ha full

width at half absorption is correlated, in a spectral type

dependent fashion, with stellar luminosity. On the

assumption that the Ho line is optically thick and Doppler

broadened, KPW attributed the Ha width-luminosity (W-L)

relation to the systematic increase of non-thermal

chromospheric velocities with decreasing stellar surface

gravity. More recent investigations of the Ha W-L

broadening have relied upon similar interpretations.

Fosbury (1973) and Reimers (1973) indicated that the Ha

width is comprised of thermal and non-thermal Doppler

velocity components: the former providing a lower limit to

the width in dwarfs, the latter responsible for the width

enhancement in giant and supergiant stars.

A commonly evoked assumption in the above studies is

that Ha chroma spheric Doppler width is a constant function

of height. However, neglect of depth variations in this

parameter is overly simplistic in view of the fact that,

associated with a general chromospheric temperature rise,

there is a corresponding increase in atomic hydrogen

thermal velocities. For example, in the case of the solar

chromosphere, mean hydrogen thermal velocities range from

approximately g km s (at the temperature minimum) to 13



km s in the coronal transition zone (T - 10* K).

The existence of thermal and, possibly, non-thermal

velocity gradients (cf. Eriksson 1980) necessarily implies

a depth dependence for the total hydrogen Doppler width.

Moreover, depth variations in temperature will influence

the hydrogen excitation state at different levels in the

chromosphere and, in particular, the height distribution of

the non-LTE level 2 population (Thomas and Athay 1961) .

The aim of the present investigation is to examine

analytically the effects of such temperature dependencies

on the Ha optical depth and, by implication, on the Ha line

width.

Our approach is to represent the stellar chromosphere

as a plane-parallel one dimensional region with electron

temperature and microturbulence that increase as power law

functions of height. The model is used to derive an

analytic formula for the integrated Ha optical depth

(assuming a Doppler broadening coefficient) and an

expression for the Ha width (according to an

Eddington-Barbier approximation). Inferred Ha widths will

be compared with observation in d III, where attention will

be restricted to giant stars (log g £ 3.5), to avoid

complications arising from the presence of photospheric

damping wings. Details of the analysis are described in

the following section.
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II. CALCULATIONS

a) Model Chromosphere

The stellar chromosphere is modelled as a

semi-infinite slab of plasma (predominantly hydrogen), with

the lower boundary at the photospheric temperature

inversion (designated T^). Integrated mass column density

_2
(m : gm cm ) is adopted as height variable. This

parameter is related to gas density (p) and geometrical

height (z) according to

dm = -pdz ,

(1)

where p= un m , and ji = 1.4 for a 10% helium composition.11 H

On the above height scale, the upper boundary of the slab

corresponds to m = 0 and the lower boundary at m = m^.

We parameterize the chromospheric temperature rise

(and associated thermal broadening velocity) by a power law

funct ion of m

T = T.(m/m,)~1/a .

(2)

where the exponent a is a free parameter to be determined

from observation (d III). Note that for a > 0, T increases

for m decreasing, becoming infinite for m=0. The situation

of constant chromospheric temperature corresponds to

,



infinitely large a. In addition, we incorporate a

chromospheric microturbulent velocity (Vtn v) to account

for random non-thermal mass motions occurring on length

scales smaller than a photon mean free path (Edmunds 1978).

For simplicity, we follow Thomas (1973) in equating this

largely adhoc quantity to the local sound speed: V . =

h t]

1/2

1/2c = (kT/nmH) . This component is combined with the mean

atomic hydrogen thermal velocity [ V.. = (2kT/m_) ] tot n n

give the following dependence of hydrogen doppler width (V,

: km s ) upon m

v = (v * + c ») ' = V (m/m ) x'*u ,d v v t h s ' Yd*vm/UI*'

(3)

where V.t denotes the value at T^.

b) The Hydrogen Level Two Population

In the region where Lyman continuum optical depth is >.

100, Lya opacity is sufficiently large to drive hydrogen

levels 1 and 2 into radiative detailed balance. Under

these circumstances, it can be shown that the departure

coefficients for these levels are approximately equal (bt ~

ba) and the corresponding non-LTE population ratio (na/n1)

follows closely the LTE Boltzmann relation (Thomas and

Athay 1961). Furthermore, if hydrogen is less than 50%

ionized its ground state population can be equated

approximately to the total hydrogen density (nR).

According to these assumptions, we infer
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na = (n^/nj) nx = (na /nt ) (ba/bx) nt

i.e.. na ~ (gj/gi) exp(-Xla) nfl ,

(4)

where g a/g x = 4 and Xla = hvla/kT is the Lya excitation

potential in units of thermal energy. (Asterisks denote

LIE value s) .

Differentiation of the logarithm of equation (4) with

respect to z yields

31og na/3z = 31og nH/3z + (Xla/T) 3T/3z .

(5)

For a steep chromospheric temperature rise ( dT/dz >> 0),

this relation implies that an outward decrease in na -

arising from a hydrostatic density gradient in n - can be11

partially compensated by increased T. This behavior is

borne out formally in the following calculation.

Assuming hydrostatic equilibrium, we can formulate

momentum conservation as

gm = l.ln^kT + O.Sn-jjim.. V. * (g: surface gravity),n n n t ur D

(6)

where the left hand term corresponds to the weight of

chromospheric material at height m, and the right hand side

represents the sum of partial pressures in a perfect

hydrogen (and 10% helium) gas containing turbulence. We



employ equation (6) to eliminate n_ from (5), and utilizen

relations (1), (2) and (3) to express the z derivative of

na in terms of m, p, and a. Thus,

31og na/3z = (p/ma)(Xla - 1 - a) .

(7)

In order to ensure that na be monotonica1ly increasing with

height, we require that a < Xla - 1, which (for a

representative T = 6000 K) implies a < 19. Therefore, a

sufficiently steep temperature rise (small a) can

effectively counteract a density gradient in na and enhance

the na chromospheric column density above its isothermal

value.

c) Calculation of the Ha Optical Depth Profile

We represent the Ha line absorption coefficient by a

gaussian profile. This approximation is valid provided

that Ha photon transfer is confined primarily within three

to four Doppler widths of line center (Fosbury 1973). From

equation (3), we deduce 4V. = 46 km s at a meand

chromospheric temperature of 6000 E. Examination of the

KPW data reveals that Ha half widths in late-type giants

range typically from 30 to 35 km s and, hence, fall

within this nominal 4V, limit separating the Doppler core

from the outer line damping wing. Accordingly, we express

the integrated Ha optical depth at velocity shift AV from
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line center by (Mihalas 1978)

CD

TAV = («1/2a*/mc)fli Xa, J (na/Vd> exp[-(AY/Vfl)*] dz ,

Z* (8)

where stimulated emission has been neglected. In the

above, fa , denotes the Ha transition oscillator strength

and Xaj the corresponding wavelength. The integral over

height ranges from the upper boundary of the slab

chromosphere (z •> <°) to the slab base at z = z^.

Substitution of expressions (1), (2), (3), and (4)

into (8) yields

m»
TAU = (K/V_)f (m/m.)1/2a expr-a(m/n. )

1/al dm ,
AY o™J L J

° (9)

where a = (hvla/kTt) + (AV/Vd%)*

(9a)

and K = (nl/2e»/me)(fa,Xa,/urn )(ga/g±)

= 1.07 x 1013 (Allen 1973) .

Note that, following elimination of n_ via (1), then

variable of integration is transformed from z to m. The

above integral is reduced to more tractable form by a

second change of variable to u = a(m/m4) . Thus,

a

TAV = (K a n</Vds) a~a~1/2 J ua~1/2 exp(-u) du

° (10)



or, equivalently,

TAV = (K a »*/Vd<) a~°~1/2 y(a+l/2.a) .

(11)

where y(x,a) denotes the incomplete gamma function.

For AY > 0 and T, < 4500 K (appropriate to giant stars

later than about spectral type GO), equation (9a) implies a

> 26. Series expansion of y(x,a) for large a gives

(Abramowitz and Stegun 1964)

Y(a+l/2,a) ~ T(a+l/2) - a°~1/2 exp(-a) [l + terms order(a/a)j ,

(lla)

where I"(x) is the complete gamma function. For a > 26 and

a < 19 (a II b ), we find that the expansion terms in (lla)

can be neglected relative to T(a+l/2) with an error of less

than 3%. Hence, we obtain the following approximation for

the integrated Ha opacity profile

TAV = (K a m</Vd0) a~a~1/2 T(o+l/2) .

(12)

This formula indicates that Ha chromospheric opacity is

directly proportional to the mass column density at the

temperature minimum or, equivalently, the chromospheric

"thickness."
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It is important to recognize that in the upper and

considerably hotter chromospheric layers (T > 7000 K),

where hydrogen is greater than 50% ionized, the Lyman

continuum optical depth approaches unity. In this region,

it can be shown that na no longer follows the

psendo-Boltzmann relation (4) and is, instead, a decreasing

function of height which depends sensitively upon electron

density (Heidemann and Thomas 1980). Consequently,

integration of (9) over this domain would tend to

overestimate ^Av. Allowance for this effect is, however,

beyond the scope of this investigation.

III. RESULTS AND DISCUSSION

a) Dependence of Ha Width upon Temperature Gradient

Implications of the optical depth formula (12) for the

general behavior of Ha widths are now discussed. A

relatively straightforward technique of linking wavelengths

of characteristic features in a line profile with

atmospheric optical depths is provided by the

Eddington-Barbier (E-B) approximation (Mihalas 1978).-

Physically, the E-B relation implies that at wavelength

shift AX from line center, the emergent radiation is

characteristic of the source function at an atmospheric

layer corresponding approximately to unit integrated

optical depth (Athay 1972). Thus, for example, solution of

(12) for the velocity displacement AV (with T... = 1) yields
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(13)

where H0 refers to the line full width (2*AV : km s~ ) and

T„ denotes the Ha optical depth evaluated at line center

(AV = 0 in equation 12). This equation admits a power law

dependence of H0 upon TO (or mt), modified by a temperature

sensitivity arising from the Boltzmann excitation term.

Note that the formula becomes invalid when TO < 1. In the

latter optically thin cases, the Ha width loses its

sensitivity to chromospheric opacity and is, instead,

dominated by Doppler broadening velocities (cf. Goldberg

1957) .

The above relationship can be converted into an

approximate dependence upon surface gravity and effective

temperature (T ff) by invoking the theoretical scaling law

of Ayres (1979)

m ~ * « T 10~13
 ff"

1/2 T 7/2m* ~ 3.6 x 10 g T
eff

(14a)

and the empirical relation (Linsky and Ayres 1973)

T ~ 0 7 7 T
* ef f '

(14b)

where the constants of proportionality are derived from

solar values of g, T »., m^, and T^ (Ayres et al. 1976).

Utilizing these expressions in (12) and (13), we compute

the variation of H0 with respect to a for a sequence of

- 12 -



giant stars of representative spectral types GO, 65, KO,

K5, and HO. Gravities and effective temperatures (see

Table 1) employed for the calculation are obtained from

Allen (1973). Figure 1 illustrates the resulting curves

for a in the range 6 < a < 18.

Examination of this diagram reveals the following

important features:

1. For a fixed exponent a, H0 decreases with

decreasing T ff. This behavior is qualitatively consistente i x

with observations reported by KPW which indicate generally

narrower Ha widths in cool giants (e.g., M type) relative

to hotter counterparts (e.g., G type) of similar

luminosity. Fosbury (1973) attributed this temperature

sensitivity to a reduction in chromospheric Ha opacity with

advancing spectral type. Within the context of the present

model, the latter effect is a consequence of the Boltzmann

temperature sensitivity of the n2 population in the low

chromosphere (cf. equation 4). Cooler temperature minima

in late-type stars (T^ ~ 0.77 T --) imply lower na and,

hence, decreased integrated Ha opacity.

2. The Ha profile width is a sensitive function of

the thermal gradient. For each spectral class, H0

increases with decreasing a. This variation can be

understood in terms of the enhancement of na column density

(and corresponding increase in TO) with steepening

temperature rise above T, (cf. eqs [7] and [12]). Thus,
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within the framework of our model, the Ha absorption width

can be considered a diagnostic of the chromospheric thermal

gradient.

b) Comparison With Observation

Further insight into the dependence of H0 upon a is

gained by comparing predictions of formula (13) with Ha

data of KPW. The Ho width inferred from the E-B relation

applied to (12) refers to that part of the line profile

(probably the line wing) formed in the vicinity of T^. By

contrast, the measurements of KPW are defined in terms of

the foil width at half absorption, which likely is

representative of hotter chromospheric layers (T ~ 6000 K;

Fosbnry 1973). However, if we restrict our attention to

late-type giant stars which (unlike G and early K dwarfs)

do not exhibit broad photospheric damping wings, the

difference between the above widths is probably small (KPW;

Lo Presto 1971).

We bin Ha width measurements of KPW according to the

following criterion. Giants falling within + 2

sub-divisions of the reference spectral types in Table 1

are considered to be of approximately equal T .f. Thus for
C £ I

example, G3, G4, 65, G6, and G7 are treated as GS.

Similarly G8, G9, KO, Kl, and K2 are grouped as KO and so

on. Each width point is then plotted on the appropriate

spectral curve in Figure 1, at its corresponding value of
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H0. This procedure allows a graphical solution for values

of a and TO that produce consistency between our model and

observation. For the plotted sample of 24 stars, we infer

the range 9 < o < 12; with cooler giants tending to

require smaller a relative to hotter giants of the same H0.

It is instructive to compare the above constraints

with results of radiative transfer calculations. Table 2

lists the quantities T^, m0, and m0 derived from studies of

Ca II (and Hg II) resonance line formation in 0 Ceti (G9

III), 0 Gem (KO III), a Boo (K2 III), and a Tau (K5 III).

The parameter m0 designates the mass column density at T =

8000 K. (This point corresponds approximately to the

location of Lyman continuum optical depth unity [Athay

1981]). For each star, we use equation (2) to derive an

equivalent a exponent for a power law temperature rise

between (n^.T^) and (m0, 8000 K). The resulting values are

listed in Table 2. Given the approximations implicit in

equation (13), and the uncertainties associated with the

boundary temperatures and densities in Table 2, we find

reasonable overlap between the range of computed exponents

and the range deduced from Figure 1.

However, it should be emphasized that

temperature-density profiles in late-type stars do not

follow simple constant-exponent power laws, but

characteristically display a temperature gradient that is

variable with height (refer to Linsky 1980 and references
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cited in Table 2). For the case of the solar chromosphere,

Athay (1981) has demonstrated that height variations in

plasma radiative properties (e.g., changes related to a

switch from continuum to spectral lines as the dominant

radiative loss mechanism) can lead to perturbations in the

chromospheric temperature gradient.

In view of the above caveat, the a exponent inferred

from equation (13) should only be interpreted as a

parametric (rather than definitive) description of the

chromospheric temperature gradient required to produce an

observed Ha width. As an application of this formalism, we

use empirical Ha widths to delimit the T0 parameter. With

the aid of equation (12), we connect the spectral curves in

Figure 1 with lines of constant TO = 20 and 100,

respectively. Data points for G5, KO, and K5 fall

predominantly within these extremes, while cooler M giants

tend to cluster about TO ~ 20. Hence, we deduce that (for

the case of a sonic microturbulence) the observed Ha widths

of G and K giants are consistent with an average t0 of 50 -

60. The latter estimates conform with a mean t0 of 50

derived independently by Fosbury (1973) from a study of the

Ha W-L relation in G and K stars.
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IV. CONCLUSIONS

The Ha absorption profile is not normally considered

to be a useful diagnostic of chromospheric thermodynamic

conditions in late-type giants (Fosbury 1974). Cool low

gravity stars are characterized by relatively small

9 ~3chromospheric electron densities (N 1 10 cm ) that
6

guarantee radiative control of the Ha line. In other

words, the Ha source function is essentially uncoupled from

chromospheric thermal structure and is, instead, dominated

by fixed photospheric Balmer and Paschen radiation fields

(Gebbie and Steinitz 1974).

However, our theoretical calculations indicate that -

due to the temperature dependence of the hydrogen Doppler

width and non-LTE level 2 population - Ha optical depth

scales can possibly couple to thermal structure. In

particular, this coupling is found to induce a sensitivity

of Ha width to the chromospheric temperature gradient. On

the basis of this result, we conclude that future

observational and numerical investigations of Ha, in

conjunction with the more traditional diagnostics Ca II H

and K, may prove viable in constraining chromosphere

temperature models of late-type stars.

In addition, we have demonstrated that the Ha

absorption width (despite its Doppler broadened nature) can

be a potentially sensitive function of chromospheric

optical depth in a region of steep temperature rise (cf.
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power law in equation 13). By contrast, the slab formula

of Goldberg (1957) (derived for the case of a constant

chromospheric Doppler parameter) predicts a much weaker

logarithmic association between Ha width and opacity. The

latter distinction suggests that opacity effects may be an

important consideration in the understanding of the Ha W-L

relation; particularly in giants exhibiting strong Ca II K

emission and, hence, possibly enhanced chromospheric

temperature gradients (Kelch et al. 1978). Furthermore,

we conjecture that differences in observed Ha width between

giants of similar T .. (and equal chromospheric non-thermal
Gil

broadening), may likely reflect differences in their

chromospheric temperature gradient and associated Ha

opa ci ty.

Finally, it is important to realize that chromospheric

velocity fields in the forms of microturbulence (Fosbury

1973; Eriksson 1980), macroturbulence (Smith and Dominy

1979) and stellar winds (Mallik 1982) are known to

profoundly influence the widths of spectral lines such as

Ha in late-type giants (and supergiants). Clearly, further

detailed calculations are required to determine the extent

to which these dynamical processes combine with opacity

effects in governing the behavior of the Ha profile.
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TABLE 1

GRAVITIES AND EFFECTIVE TEMPERATURES EMPLOYED

FOR CALCULATION OF Ha W I D T H S

S p e c t r a l T
e f f L o g ( g )

Type (K) (cm s~ )

GO 5600 3.3

G5 5000 3.0

KO 4500 2 .6

K5 3 8 0 0 1.9

MO 3 2 0 0 1.4
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TABLE 2

SELECTED MODEL PARAMETERS FOR FOUR LATE-TYPE GIANTS

a

S t a r S p e c t r a l T^ m^ m0 a ref

Type (K) (gm cm" )

P Gem KO III 3805 0 .30 1 .6(-5) 13.2

p Cet G9 III 3575 0.185 2.K-5) 11.3

a Boo K2 III 3200 1.78 3.2(-5) 11.9

a Tau K5 III 2700 0.30 7.9(-5) 7.6

References.- (1) Kelch et al. 1978. (2) Eriksson, Linsky

and Simon 1983. (3) Ayres and Linsky 1975.
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Figure Caption

Fig. 1. Log (H0) versus a for a series of

representative giant stars of spectral type GO, 65, KO, K5,

and MO, respectively. Solid carves are generated according

to equation (13). Superimposed filled points denote Ha

width measurements (from KPW) for selected G, K and M

giants. The procedure for grouping the latter data is

discussed in the text. Note that H0 for GO III is not

given by KPW. Upper and lover dashed lines correspond to

constant Ha line center optical depths of 100 and 20,

respe ctively.
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