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DELTA WINGS WITH SHOCK-FREE CROSS FLOW

S. S. Srltharan

Institute for Computer Applications in Science and Engineering

Abstract

It has been realized recently that in order to have a high level of

maneuverability, supersonic delta wings should have a cross flow that is free

of embedded shock waves. The conical cross flow sonic surface differs from

that of plane transonic flow in many aspects. Well-known properties such as

the monotone law are not true for conical cross flow sonic surfaces. Using a

local analysis of the cross flow sonic llne, relevant conditions for smooth

cross flow are obtained. Using a technique to artificially construct a smooth

sonic Surface and an efficient numerical method to calculate the flow field,

cones with smooth cross flow are obtained.

Research was supported by the National Aeronautics and Space Administration
under NASA Contract No. NASI-17070 while the author was in residence at ICASE,

NASA LangleyResearch Center, Hampton, VA 23665.
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INTRODUCTION

It is well known that the most suitable structure for a slender wing

airplane has leading edge separation [I]. The resulting vortices are highly

stable, and while contributing to the induced drag, also increase the lift

because of the low pressure they induce. These vortices usually increase the

lift-to-drag ratio for a delta wing. However, the modern supercruiser concept

demands efficient supersonic cruise and high-level supersonic, as well as

transonic, maneuverability [2]. In order to obtain this level of performance,

the wings have to be relatively thick and should have transonic leading edges

and attached flow [3]. A delta wing with transonic leading edge will, in

general, have embedded cross flow shocks. To obtain attached flow, this

configuration should have a cross flow that is free of embedded shocks or

should contain only weak shock waves. Present study is tailored to find such

configurations but is limited to conical wings and irrotational flow. Using a

novel technique to construct smooth embedded sonic surfaces, shock-free cross

flow is constructed for the first time for conical wings. We have also

provided, based on a local analysis, the necessary geometric condition that

should be satisfied by a configuration in order for a shock-free cross flow to

exist.

IRROTATIONAL CONICAL FLOWS

Let {_a} be the surface coordinates of a unit sphere centered at the

apex of the cone and gab be the corresponding metric tensor. Let Va be

the tangent velocity field (Figure I) generated on the sphere by the

mainstream flow. Irrotational assumption implies
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Va a_ _F
--g _B ' a, B --I, 2

where F is the conical potential. The total velocity q is given by

2 Vaq = V + F2.
a

The continuity equation is [4],

a

(pV)lla + 2pF = 0, (I)

where II denotes surface covariant differentiation and p is the gas density

and is given by the Bernoulli equation,

pY-i = 1 + Y_---!lM2(l-q2). (2)

Here Mm is the free stream Mach number and y is the ratio of specific

heats. Combining equations (I) and (2), we obtain the quasilinear form of the

governing equation,

(gab Va VB
2 )Vall_+ (2 - M_)F = 0, (3)

a

where a is the speed of sound and Mc is the cross flow Mach number

(Mc = qc/a). The equation (3) changes from elliptic to hyperbolic type when

Mc increases through unity. The above behavior is similar to plane transonic

flows and therefore can be utilized to develop an extremely efficient

numerical method to calculate supersonic flows past arbitrary conical shapes

at incidence [5].
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CROSS FLOW SONIC SURFACES

Sonic bubbles that appear in conical cross flows differ from those of

transonic flows in many aspects. In transonic flow the flow properties attain

uniform state on the sonic line, whereas in conical flows the appearance of

the radial velocity term in the Bernoulli equation causes the flow properties

to vary along the sonic line. Plane transonic flow is governed by a

homogeneous set of partial differential equations, and therefore, it is

possible to obtain a linear problem through a Legendre transformation. This

property also gives us the well-known Nikolskii-Taganov monotone rule [6]: if

an observer moves along the sonic llne, keeping the subsonic zone always to

his left, then the stream vector will rotate in the clockwise direction.

However, in conical flows, due to the inhomogeneous terms in the governing

equations, it is not possible to obtain linear equations using a hodograph

transformation, and also it is difficult to say anything definite about the

streamline slope. Some properties of conical sonic surfaces have been worked

out by Salas [7], and with the aid of some of his results, we will study some

relevant aspects for shock-free flows.

First we note an interesting behavior of the pressure at the point where

a cross flow streamline exits the hyperbolic zone. Consider the Bernoulli

equation

1 2 Y
_(qc + F2) + _ = constant;Y-Ip

taking the derivative in the s direction and substituting the adiabatic

relation

1

P ._f_ p '
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we get

_P r_qc F)_s = -Pqcl_-_--+ •

Now, from the definition of the cross flow Mach number

_Mc 1 [_ M _a_s a c _s ]"

Using this and the energy equations, we obtain the relation at the sonic

surface for the streamwise pressure gradient, namely

_M

_p 2 [qc c F]._s = - (_-i) Pqc _ +

From this we see that since F is always positive, the pressure always

decreases when the streamline enters the hyperbolic zone, which is similar to

transonic flows. However, when it exits the hyerbolic zone, the pressure

could either increase or decrease. This is in contrast to what happens in

transonic flows, where the pressure always increases as the streamline exits

the sonic surface because the radial velocity term F does not appear in the

equation for _p/_s. This possibility leads us to believe that a shock-free

situation is more likely in conical flows. We recall here that in transonic

flows the shock-free situation has been proved to be mathematically isolated.

(It has been established experimentally [9], [i0] that the neighboring flows

have only weak shock waves.) A similar perturbation theory for shock-free

conical flows does not yet exist and shock-free solutions have not previously

been shown to exist.
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Next_ we will observe a unique feature of the cross flow sonic line. We

will first obtain a description for the sonic line by expanding the cross flow

velocity and the speed of sound and equating them. Thus we write

. raa *a = a + _-_sj ds + dn + ..-

= * (aq c * (aqc*
qc a + _-_--) ds + _n j dn + ...

and also, from the energy equation,

(aa]* = _
_an J "

Thus_ the equation of the llne qc = a is

aM *

sonic line = -(y--_') a aqc) .
('an j

This relation indicates that the angle at which the cross flow sonic line

(aqc)*
meets the body is determined by the sign of _--n---j .

This means that if this quantity is negative, the sonic line could meet

the body at an obtuse angle. Salas incorrectly predicts this possibility for

a circular cone and then uses an argument based on pressure to speculate on

the possibility of a shock wave. However, one could rule out the existence of

smooth flow with this kind of a bubble, using the following argument.
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At the sonic line, the characteristics are normal to the streamlines, and

therefore, from Figure 2, it is clear that for a sonic line of this kind,

characteristics of the same family will intersect. Thus, if through the above

analysis, we arrive at a sonic line of this type, then for this cone a shock-

free cross flow is impossible. In fact, one may work out rules to identify

conical shapes for which shock-free cross flow is impossible. For

convenience, we will work in the stereographically projected plane. If one

chooses a Cartesian system (x,y) in this plane, then the metric tensor will

be

I 0]gab = 0 j2 '

where

2
J =

I + x2 + y2 "

If _ denotes the iclination of the streamline with

A

dy = tan a,dx

then the irrotationality condition becomes

8qc 8_ I _J
-_n = qc['-- j Fn ]8s

We have already noted that when

_qc
--<0
_n
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at the body_ shock-free cross flow on a general cone is impossible_ and hence

cones with

1 _J ]
o

shock-free cross flow is impossible.

We note that

1 ^ 9 1 ^ 9

8s j cos c _-_ + _ sin c 8y

8 1 ^ 8 1 "8

8n j sin _ _x + "J cos a 8y

ds2 = j2(dx2 + dy2)_

and R is the radius of curvature of the image of the cone in the

stereographlcally projected plane. Thus_ cones that satisfy the above rule

will not have a shock-free cross flow.

We will now show that this condition _s not satisfied on a circular

cone. Consider a circular cone of half angle _c" Then the radius of the

circle on the stereographlcally projected plane is

since

o

_c < 90 , a < i.

Thus on the body

2
J =

2
l+a
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and

qc _ qc 1
3n j (_- Ja) > O.

A DESIGN METHOD TO OBTAIN CONICAL WINGS WITH SHOOK-FREE CROSS FLOW

It is possible to devise a direct approach to search for shock-free

configurations. Suppose we consider a test case with shocked cross flow and

change the expression for the density (equations) inside the cross flow bubble

in such a way that the resulting partial differential equation is elliptic;

then the elliptic-to-elliptic transition will result in a smooth sonic

surface.

We may accept the solution outside this surface (which includes the bow

shock wave and part of the cone) and use the flow properties on this surface

to solve the Cauchy problem for the actual gas law (for the actual gas law,

the governing equation is hyperbolic) to obtain the new body shape inside this

surface. However_ one should note that in this method there is no guarantee

that a certain gas law will provide Cauchy data that will provide a smooth

flow up to the body. This method is still preferable because it is direct and

only part of the configuration is being modified. This method has been

successfully introduced to transonic flows by Sobieczky [Ii]. The application

of this fictitious gas method is not straightforward for conical flows for the

following reasons.

In plane transonic flow_ a sonic bubble is defined by the statement

q > a _ where a is the speed of sound at the sonic condition and is a

known constant. In conical flows_ however_ a varies and thus is an unknown.

This difficulty can be eliminated by first computing the actual speed of sound
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and_ whenever it is less than the cross flow velocity_ replacing it by the

fictitious speed of sound. When we change the gas law_ we must take care to

preserve mass conservation at the sonic llne. In conical flows_ because the

density varies along the sonic liner the gas law should be chosen to give

continuous density across the sonic line. Let us look at the simplest way to

meet these requirements. The energy equation is

+ 2 F2)M2 a2 = pY-I = i YZ21 4(1 - qc - '

and at the sonic conditions

2
2 = py.-iM2 a. = c@)

Thus, if we use the gas law of the form

M2 2 p'y-1a -

then the flow properties would be continuous across the sonic line and the

resulting partial differential equation will have the form

aB 22 F

g = B + .... 0_

and be elliptic. This could be called the incompressible analogue for conical
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flows. In changing the gas law inside the sonic surface_ one needs to make

sure that the gas law near the bow shock wave is correct.

This was done by first solving the real problem to convergence_ so that

the bow shock and the cross flow sonic bubble were well developed 9 and then

using this as the initial condition to solve the problem with the fictitious

gas law inside the sonic surface. Inside the bubble the artificial viscosity

[5] should be switched off and the iteration scheme should be specialized to

the case of a . _. We will now consider the Cauchy problem for the cross

flow bubble. The domain _2 is first mapped to a rectangle_ using an "onion

peel" transformation as shown in Figure 3. Since this transformation is

singular at the end points_ it is decided to use the covarlant velocities in

the spherical polar coordinate system (6_) as dependent variables.

Let

U = F6 and V = F_;

then the governing equation is

AUe + B(U$ + V6) + C V$ + D = 0

and the {rrotationality gives

u_ - ve = 0r

where

1 U2
A-

2 . 4
sln2" _ a sln
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UV
B =

2
a sln2

V2
C = I ---

2
a

and

2 u2 )D = (2 -M )F + V cot _Ii + 2
a sln 2

The derivatives of covariant velocities are now transformed from (6,_) to

(_,n) plane• Thus we get

U n = P_+ •

U = •

The Cauchy problem is then solved by a predlctor-corrector method• We write

F* = F0 + AnCV8 n + V_n)0

-,, o "'_Cp°_) _o)U = U + (6_ +

F+ = I[F* + F0 + An(UOn + V_)*]

i -%* * +-%*

= _[U + U_0 + An(P (6_ U ) + _*)].
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ON THE WELL-POSEDNESS OF THE MARCHING PROBLEM

The marching problem would be well posed in the absence of any kind of

singular points or limit lines. Conical equations do allow the cross flow

streamline to meet the sonic line at right angle. However, at this point, the

characteristics are tangent to the sonic line and the marching is not well

posed. This situation occurs for two kinds of sonic lines, as shown in Figure

4. Only type (B) is relevant for our design. From the earlier arguments we

see that for this kind of bubble, the same family of characteristics will

intersect 9 and therefore if the fictitious gas chosen leads to a bubble of

this shape, it should be discarded.

A sonic llne that does not have such a singular point on it could still

lead to a limit line (as shown in Figure 5) in the subsequent marching. If

this limit llne occurs above the body, then this sonic line should again be

discarded.

The Jacobian's

JG = 0_ _n -0H _

and

2

JL = -An0 - 2Bn0 n_- Cn_,

respectively, signal grid singularities and limit lines by changing their

signs.
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RESULTS

A simple test case is given to validate the method. A circular cone of

I0° half angle at an angle of attack of 20° at Mach 2 is considered. Figures

6 and 7_ respectlvely_ show the sonic surfaces and pressure distributions for

the original as well as the modified cone. Figure 8 shows the required

surface modification of the cone. In the actual design process the fictitious

gas method should be combined with a change in camber to produce the required

performance.
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Figure Captions

Figure i. The classical tangent field representation of conical flows on unit

sphere.

Figure 2. Types of sonic lines that terminate in the body.

Figure 5. Limit line.

Figure 6. Bow shock position and the cross flow sonic line for a i0° circular

cone at 20° angle of attack at M = 2.

original cone 9 • modified cone

Figure 7. Surface pressure distribution on the circular cone.

[-] original cone, O modified cone

Figure 8. Surface modification of the i0° cone.



-17-

I
l UNITSPHERE

BOWSHOCK

CROSS FLOW
SONICBUBBLE

BODY

CONE
\

\
\

Figure 1



-18-

Y Y

S

X _X
n

SHOCK FREECROSSFLOW SONICLINEMEETINGTHE BODY
AT AN OBTUSEANGLE

Figure 2



-19-

A rMODIFIED CONE
CONE -_ A

-C g21 B

A /-F B

_CROSS FLOW
1 1 STREAMLINE

Q2 __/_/ AT THE
AI _ -_--_ BI NEWBODY

Figure 3



-20-

C- .i..

\
/-r

HYPERBOLIC ELLIPTIC

C- ELLIPTIC C" HYPERBOLIC

C+ +

A B

Figure 4



-21-

F (SONICLINE)

C-I-
C-

Figure 5



-22-

7

6

5

4

3-

2
__Y
XLE1

0

-1

-2

-3 I I I I I I
0 1 2 3 4 5 6

X
XLE

Figure 6



-23-

-0.30 -

-0.2O- []o

-0.100S

CP O.10

0.20

O.30

O.40

0.50

O.60 t I l _ t I
0 O.20 O.40 O.60 O.80 1 I. 20

X
XLE

Figure 7



-24-

9.8-

9.6-
PSI (deg)

9.4-

9.2 --

9 I I I I I I I I
-20 -10 0 I0 20 30 40 50 60

THETA(deg)

Figure 8





1. ReportNo. 2. GovernmentAccessionNo. 3. Recipient'sCatalogNo.
NASA CR- 172297

-4. TitleandSubtitle 5. ReportDate

February 1984

Delta Wings With Shock-Free Cross Flow 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

S. S. Sritharan 84-6
10. Work Unit No.

9. Performing Organization Name and Address

Institute for Computer Applications in Science '11. Contract or GrantNo.
and Engineering

Mail Stop 132C, NASA Langley Research Center NASI-17070

Hampton, VA 23665 13. Typeof ReportandPeriodCovered

12. SponsoringAgencyNameandAddress contractor report

National Aeronautics and Space Administration 14, SponsoringAgencyCode
Washington, D.C. 20545

15. Supplementary Notes

Langley Technical Monitor: Robert H. Tolson

Final Report

16. Abstract

It has been realized recently that in order to have a high level of maneuverability

supersonic delta wings should have a cross flow that is free of embedded shock waves.
The conical cross flow sonic surface differs from that of plane transonic flow in many

aspects. Well-known properties such as the monotone law are not true for conical
cross flow sonic surfaces. Using a local analysis of the cross flow sonic line,
relevant conditions for smooth cross flow are obtained. Using a technique to

artificially construct a smooth sonic surface and an efficient numerical method to
calculate the flow field, cones with smooth cross flow are obtained.

i

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

aerodynamics 02 Aerodynamics
CFD 64 Numerical Analysis

supersonic
shock free wings Unclassified-Unlimited

19. Security Oassif. (of thisreport) 20. SecurityClassif.(of this pege) 21. No. of Pages 22. Dice
Unclassified Unclassified 26 A03

Forsale by the NationalTechnical InformationService,Springfield,Virginia 22161
NASA-Langley, 1984






