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1.1 STUDY OBJECTIVES

Stanfordford Telecommunications Inc. undertook this study on behalf of
NASA to develop and examine alternative architectures for the Tracking

and Data Acquisition System (TDAS). The TDAS era begins in 1994, when

the service contract for the Tracking and Data Relay Satellite System
(TDRSS) expires. The objective of the study has been to define a baseline
TDAS architecture that will satisfy NASA's requirements in the 1990's

and maintain the TDRSS services.

The organization of the study and key findings are given in the Introduction.
After summarizing requirements, the report presents the TDAS Space Segment,
Ground Segment, and Navigation System Architectures. The results of

the study are reported in eight separate volumes listed below.

TDAS REPORTS

Volume I Executive Summary

Volume II TDAS User Community

Volume [II TDAS Communications Mission Model
Volume [V TDAS Space Segment Architecture
Volume V TDAS Ground Segment Architecture and

Operations Concept
Volume VI TDAS Navigation'System Architecture
Volume VII TDAS Space Technology Assessment
Volume VIII TDAS Frequency Planning

[-1-2



STUDY OBJECTIVE

¢ DeFINE A BASELINE TDAS ARCHITECTURE THAT
WILL SATISFY NASA’S REQUIREMENTS IN THE
1990's anD MAINTAIN THE TDRSS SERVICES.
- MISSION PROFILES
- COMMUNICATIONS AND NAVIGATION REQUIREMENTS
- TDAS SYSTEM ARCHITECTURE
~— SPACE SEGMENT
-— GND SEGMENT
-— NAVIGATION
-~ OPERATIONAL ASSESSMENTS
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1.2 STUDY FLOW

The study began with defining mission profiles for both NASA and DoD

users of TDAS. Mission profiles describe the mission (experiments, orbits,
timeframe) and summarize user requirements (dump rate, contact time,
navigation accuracy). Communication models were then derived from the
mission profiles. |

With communications requirements specified, the space segment, ground
segment, and navigation system architectures were developed. Critical
technologies, identified in the architecture studies, for both TDAS and
users were identified and assessed.

Alternative control and operations concepts were explored. The operational
impacts of scheduling and acquiring the new TDAS services were assessed,

as well as the use of new navigation techniques in the TDAS timeframe.

Finally, alternative architectures were evaluated for their capability
to meet requirements and for their costs.

I-1-4
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1.3 KEY FINDINGS

By the mid 1990's NASA requirements for single access channels will exceed
TDRSS capacity by 250%. Whereas TDRSS has four single access channels,
NASA will require at least ten to support its missions with a channel
availability of 90% or better.

A 2-TDAS spacecraft constellation will satisfy NASA requirements. The
baseline TDAS spacecraft can be developed with low-risk technology and

a 5 to 10% increase in weight over the TDRSS spacecraft. TDAS will require
about 1300 watts of additional power.

TDAS will allow users direct access to their spacecraft and payloads
and eliminate the need for high cost DOMSAT relays.

In the TDAS timeframe, beacon one-way tracking will satisfy users in

the TDAS mission model with accuracy requirements down to 10 meters.

One-way tracking eliminates much of the operational complexity of coordinating
forward and return links required of two-way tracking.

I-1-6
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KEY FINDINGS

NASA REQUIREMENTS WILL EXCEED TJDRSS CAPACITY
BY THE MID 1990°s.

TDRS NASA CAPABILITIES TDAS NASA REQUIREMENTS
(1985 - 1995) (1995 - 2005)

SA CHANNELS | MA CHANNELS SA CHANNELS | MA CHANNELS
4 20 10 20

TO ACHIEVE A MINIMUM CHANNEL
AVAILABILITY oF 90%

A 2-TOAS SATELLITE CONSTELLATION, WITH SPACECRAFT
WEIGHT ONLY SLIGHTLY GREATER THAN THAT oF TDRS
(wiThIN 10Z), can meeT TDAS NASA REQUIREMENTS.

TDAS CAN BE DEVELOPED USING LOW RISK TECHNOLOGY .

TDAS ELIMINATES THE NEED FOR DOﬁSAT RELAY
REQUIRED BY TURSS.

BEACON ONE-WAY TRACKING WILL SATISFY USERS IN THE
TDAS MISSION MODEL WITH ACCURACY REQUIREMENT DOWN

70 10 METERS IN ADDITION TO REDUCING THE NEED
FOR COMPLEX TWO-WAY OPERATIONS.
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2.1 SCIENCE AND ENGINEERING DATA REQUIREMENTS

Estimates for the growth of science and engineering data over the 20
years covering both the TDRSS and TDAS timeframes are shown in the figure.

The growth in science data is principally the result of two factors: increased
resolution of earth-resources observation and the implementation of the

space station. On the other hand, the growth in requirements for engineering
channels is attributable to increased operations in space, including

the suport of man in space. Such channels are dedicated 24 hours per

day to the return of engineering data on the health and welfare of the

vehicle in space.

The growth of science and engineering data depicted in the figure is

based on the activity projected for a busy day during any given year

in the 20 year period, that is, the simultaneous operation of all available
vehicles and science missions.

I-2-2
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2.2 PROJECTED MISSION PROFILES

Mission profiles were developed for both NASA and DoD missions. NASA
planning information, analysis of past experience, and interviews with
NASA program manager and the user community were used to develop the
NASA mission profiles. The DoD mission profiles were derived from a
prior STI study performed for the Air Force and published in Dec., 1979,
“Satellite Control Satellite" (SCS).

The NASA mission profile projects user activity over the period 1995-2005
and the DoD mission profile shown projects requirements over the period
1986-2000.

While no specific NASA requirement for data rates exceeding 300 Mbps

were identified, it is very likely that some NASA users will require
data rates in this range in the TDAS timeframe. '

I-2-4
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2.3 NASA AND DoD CHANNEL REQUIREMENTS

Channel requirements for the NASA and the NASA-plus-DoD mission models

are shown in the figure. TDAS constellations with two baseline spacecraft
satisfy the NASA mission model with ample margin, but do not meet the
NASA-plus-DoD mission profile requirements, which require three baseline
TDAS spacecraft to meet requirements in the 50 Kbps - 300 Mbps range.

The TDAS constellations satisfy the DoD channel requirements for data
rates greater than 300 Mbps.

I-2-6
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2.4 SCHEDULING THE NASA AND DOD MISSION MODELS WITH TDAS SPACECRAFT

Results of simulating the scheduling process for the NASA and DoD mission
models are shown in the table. The simulation accounts for the dynamics
of the scheduling process and the characteristics of each mission. Two
important system performance measures, channel availability and channel
loading, were obtained form the simulations.

While 2 TDAS spacecraft yield excellent scheduling performance for the

NASA mission model, adding the DoD users lowers channel availability

to an unacceptable level. Good scheduling performance for the NASA-plus-DoD
mission model results when a third TDAS spacecraft is added.

[-2-8



SCHEDUL ING 'PERFORMANCE FOR MASA AND DOD MISSION
MODELS WITH THE TDAS BASELINE SPACECRAFT

SINGLE ACCESS NUMBER OF CHANNEL CHANNEL
SERVICES TDAS BASELINE AVAILABILITY LOADING

(KSATWSA) SPACECRAFT 2 )4
NASA ONLY 2 98.9 | 55
NASA & DOD 2 | /1.0 | 88

_ _ 88

NASA & DOD 3 97.0 83 X 0]

o &

MINIMUM REQUIREMENTS: AVAILABILITY > 90% Sfm?:

o]

W | STANFORD
M. ]| TELECOMMUNICATIONS INC.
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2.5 SCHEDULING THE NASA MISSION MODEL WITH TDRSS SPACECRAFT

Results of simulating the scheduling process for the NASA mission model

are shown in the table. Five TDRSS spacecraft are required to exceed

the minimum availability requirement of 90%. The table indicates the

tradeoff between channel availability and channel loading. While adding

a sixth TDRSS spacecraft decreases channel loading by 9%, channel availability

increases by 3%.

[-2-10
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3.1 TDAS ARCHITECTURE GOALS

The development of the TDAS architecture has been guided by achieving
the following goals: an improved SMA service; the provision of user
satellite TT&C data directly to the mission centers; an increased number
of high-rate single access channels; the reception of mission data and
the control of experiments at 5 CONUS locations; improved coverage; and
the provision of ultra-high rate single accesses.

[-3-2



TDAS ARCHITECTURAL GOALS

IMPROVE SMA SERVICE

PROVIDE USAT TT&C DATA
DIRECTLY TO MISSION CENTERS

ALLOW USERS TO RECEIVE MISSION
DATA AND CONTROL EXPERIMENTS
AT 5 OR MORE CONUS LOCATIONS

PROVIDE INCREASED NUMBER OF
- HIGH—RATE ACCESSES

PROVIDE ULTRA-HIGH RATE ACCESSES
(> 300 mePs)

ProvIDE 100Z COVERAGE
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3.2 CAPABILITY SUMMARY

The table contrasts the TDAS space segment capabilities with those of

TDRSS. The key features of TDAS that distinguish it from TDRSS are: onboard
beam forming for the multiple access system; the W-band and laser single
accesses; the multiple beam antenna space/ground link with onboard switching;
and the crosslink system. .

I1-3-4
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3.3 TDAS TECHNOLOGY ASSESSMENT

To meet the projected implementation schedule, the TDAS technologies
must be available by 1989. The accompanying table summarizes an assessment
of the expected risk attending the availability of the TDAS technologies.

With the exception of the crosslink technologies, all developments are
expected to be low risk. Development of the 2-Gbps GaAs laser crosslink
by 1989 incurs moderate risk; somewhat less risk is associated with the
development of the 2-Gbps 60-GHz crosslink and even less risk is incurred
with the development of a 1-Gbps 60-GHz crosslink. The 1 Gbps 60-GHz
crosslink permits an all low-risk TDAS technology development.

I-3-6
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3.4 THE TDAS SPACECRAFT

The two figures that follow depict the TDAS Spacecraft; a 60-GHz crosslink
system is shown in the first figure and a laser crosslink system is shown
in the second figure.

The TDRSS heritage is evident in the TDAS bus architecture. Features

required to maintain the TDRSS services have been retained, while elements
have been added to support the new TDAS services and capabilities.

[-3-8
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3.5 TDAS CONSTELLATIONS

The two-satellite constellation meets NASA requirements in the TDAS timeframe.
Additionally, the constellation mitigates the impacts of rain attenuation

by achieving favorable elevation angles for all CONUS locations. The
advantages of this constellation operating at K3 band are considerable:

high space/ground 1ink availabilities and high capacities can be achieved
with minimal use of diversity operation. Additionally, a coverage of

at least 98% is achieved for all users with altitudes greater than 200 km.

The three-satellite constellation meets the NASA-plus-DoD mission requirements
in the TDAS timeframe. Since each ground station views two spacecraft,

the space/ground link capability is doubled compared to the two-satellite
constellation. Because of smaller elevation angles, sites like Houston

and Washington require diversity operation. A coverage of 100% is achieved
for all users with altitudes greater than 200 km.

I-3-11
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3.6 TDAS TECHNOLOGIES

3.6.1 Improved S-Band Multiple Access

The key development of the TDAS S-Band multiple access subsystem is onboard
beamforming. Onboard beamforming allows direct links to be established
between the user spacecraft and the user ground facilities through the

TDAS relay.

The TDAS SMA offers two forward links as compared to one for TDRSS and
achieves a 4.5db Tink gain over TDRSS.
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3.6.2 60-GHz Single Access

The 60-GHz single access service offers data rates up to 50 Mbps. The

one meter dish chosen for the service minimizes the system pointing losses
for user acquisition and tracking. The dishes are mounted on the main
body of the spacecraft for attitude stability.

The key technology developement is power generation; the 60-GHz service
requires a 10-watt transmitter. Since the user 60-GHz terminal also
requires a 10-watt transmitter, TDAS 60-GHz terminal development will
also satisfy a principal user terminal development requirement.
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3.6.3 Laser Single Access

The laser single access service offers data rates up to one Gbps. GaAs
or ND: YAG lasers using direct detection are the candidate technologies.

Power generation is the key technology development; a few hundred milliwatts
of output power is required. As in the case for 60-GHz, TDAS terminal
development of the laser crosslink equipment will also satisfy user terminal

development requirements.
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3.6.4 30/20 GHz MULTIBEAM ANTENNA

The multibeam antenna has 5 fixed and 4 movable feeds. One of the fixed
and one of the movable feeds will operate at K, band and will provide
the space/ground link with backup for the White Sands Ground Terminal.

Dual frequency operation and dual polarization operation at both K; and
Kz bands are the key technology developments.
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3.6.5 IF Switch

The'TDAS onboard IF switch user a 9 x 36 crossbar coupler architecture.
The use of dual gate GaAs MESFET switching devices achieves a low power,
light weight switch.

The development of broadband switching elements is the key technology

issue. Since there is no requirement for fast switching, switching speed
is not a technical issue.
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3.6.6 60-GHz Crosslink

The 60-GHz crosslink subsystem user frequency division multiplex and
maintains the coherence of the crosslink signals. The crosslink signals
are heterodyned through the repeater; there is no need to demodulate
them.

A 25 watt transmitter and a 4 meter dish are required to support a 1.8 Gbps
crosslink. Both power generation and reflector smoothness are key technology
developments.
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3.6.7 Laser Crosslink

The laser crosslink uses a GaAs laser with phase or frequency modulation
and heterodyne detection. There is no need to demodulate the user spacecraft
signals at the repeater.

Power generation is the key technology issue. Promising techniques to

achieve one watt of transmitter power include both coherent and noncoherent
power combining and multidiode arrays with inverse spectroscopic combining.
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3.7 SPACECRAFT WEIGHT AND POWER SUMMARY

The table presents a comparison of the TDAS spacecraft weight and power
estimates with the weight and power requirements of the TDRSS spacecraft.

The weights of the two spacecraft are comparable. The TDRSS weight includes
1700 pounds for the Advanced WESTAR package which is primarily fuel.

The TDAS spacecraft will have over 2000 pounds of enhancements instead

of the Advanced WESTAR package.

The TDAS spacecraft will require more power than the TDRSS spacecraft,
3000 W versus 1700 W.
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4.1 GROUND SEGMENT ARCHITECTURE GOALS

The ground segment architecture goals stem from the overall TDAS architecture
goals. A primary ground segment architecture goal has been to provide
USAT TT&C and mission data directly to the mission control centers.

Other goals of the ground segment architecture have been: downlink data

rates of 600 Mbps or greater at each site; 99.9% rain availability; no
impacts on the users of TDRSS; and emergency backup of all control functions.
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4.2 TDAS GROUND SEGMENT ARCHITECTURE

The figure displays the TDAS ground segment architecture for the 2-satellite
constellation. The use of the K,-band space/ground link is retained

at White Sands to maintain continuity of the TDRSS services and Ki-band
space/ground links are used at the other TDAS sites including mobile
terminals. Diversity operation is required to achieve 99.9% availability

on the Houston downlink at Kz-band.
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4.3 THE TDAS NETWORK VS THE TDRSS NETWORK

In TDRSS all user data is first sent to the White Sands ground terminal.

High rate user data is then relayed via DOMSAT to the users' mission

control centers. TDAS eliminates the need for the DOMSAT relay by distributing
data directly to the ground terminals serving the users' mission control
centers. The users also have more direct access to the TDAS space relay

and their spacecraft through this ground terminal.
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4.4 TDAS GROUND TERMINAL

TDAS requires a distributed ground terminal architecture to accomodate

the multibeam space/ground links. A new network element must be defined
to implement the distributed architecture. The new element is the TDAS
Ground Terminal (TGT) which provides the interface for all network elments
requiring access to the space relays. Thus, the TGT will be a modular
element common to all ground terminals in the TDAS network.

The figure displays a functional block diagram of the TGT and the interfaces
to other network elements. The TGT includes a monitoring and control
element which controls the configuration of the TGT subsystems and monitors
their performance and status. The TGT control element communicates with

the NCC, deriving configuration messages from NCC scheduling messages

and sending performance and status data to the NCC.
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4.5 THE WHITE SANDS GROUND TERMINAL

The White Sands Ground Terminal (WSGT) controls the space segment configuration;
it communicates with the NCC, deriving configuration control for the

space segment from NCC scheduling messages, and returns performance and
monitoring data back to the NCC. A space segment control element is

~ shown (TOCC, TDAS Operations Control Center), as well as the functions

and processes that determine the configuration of the space segment. The

WSGT includes a TGT to interface it to the TDAS space relay. The backup
emergency network control function is also shown to reside at White Sands.

In the TDAS timeframe, WSGT must be augmented to accomodate the new services
and technologies, such as the WSA, the MBA, the onboard switch, and the
crosslink. On the otherhand, SMA beamforming and autotrack functions
performed at WSGT for TDRSS will be moved to the space segment.
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4.6 TGT CONFIGURATION CONTROL

Each TDAS ground segment network element has a TGT to interface it with
the space segment. TDAS ground segment control is distributed to each
TGT; that is, each TGT controls its own configuration on the basis of
NCC scheduling and operations messages.

The TGT subsystems are capable of autonomous operations and recovery.
Each possesses distributed monitoring and control intelligence and fully

redundant equipment strings.

The TGT has an executive monitoring and control computer and microprocessor
interfaces with each subsystem.
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4.7 TGT MONITORING AND CONTROL ARCHITECTURE

The TGT monitoring and control architecture is depicted in the figure.

The executive monitoring and control computer communicates with each

of the subsystem microprocessors, sending each: set-up data; configuration
control messages; real-time operations data; and test commands. The
subsystem microprocessor reports performance and status back to the executive
computer. The executive computer responds to NCC scheduling and operations
messages. The subsystems operate autonomously, automatically switch

in redundant equipment strings to recover from faults, and respond to

manual override.
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4.8 GROUND SEGMENT IMPACTS ON TDAS ARCHITECTURE

A two satellite constellation, one frontside and one backside operating

at K3 band, is the preferred choice to meet NASA requirements in the

TDAS timeframe. Continued Ky-band operation for the White Sands space/ground
1ink allows TDRS compatibility in the transition from TDRSS to TDAS.
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4.9 TDAS FREQUENCY PLANNING

The following two figures present frequency plans for TDAS. With the
exception of adding spectrum to the K,-band space/ground link, the S

and K, plans are identical to the TDRSS frequency plans. Frequency plans
are shown for the TDAS Kj-band space/ground link and the TDAS W-band
single access service. |
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SECTION 5

TDAS NAVIGATION
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5.1 TDAS NAVIGATION ARCHITECTURE GOALS

The goals of the TDAS navigation architecture have been to reduce the
requirements for complex two-way operations, support user onboard orbit
and time determination, and satisfy users in the TDAS mission model with
accuracy requirements down to 10 meters.
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5.2 USER ONE-WAY NAVIGATION ALTERNATIVES

Three one-way navigation techniques were evaluated: forward link beacon
tracking (FLBT); forward 1ink scheduled tracking (FLST); and return link
scheduled tracking (RLST).

With FLBT, tracking signals are available continuously and the USAT performs
the R and é measurements and orbit/time computation. In the scheduled
tracking techniques, tracking signals are only available when scheduled.

The R and R measurements and orbit/time computation are made by the USAT

in FLST and by the ground segment in RLST. The ground segment periodically
updates the USAT's navigation data in RLST.
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5.3 ERROR SOURCES FOR BEACON TRACKING

The accompanying table lists the source and magnitude of various errors
for both current and projected capabilities. The principal error for
beacon tracking stems from the model used to account for the effects
of gravity. Model improvements, however, are expected to reduce this
error by at least a factor of 5 by the early 1990's.

For beacon tracking drag has only secondary effects on accuracy for users
with orbits above 200 km.

TDAS orbit and velosity determination is projected to be improved by
100%; however, a minimal BRTS configuration (2 BRTS per spacecraft) will
not satisfy this projection, whereas VLBI techniques will meet the projected

accuracy.

User oscillator drift has negligible impact on beacon accuracy.
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5.4 BEACON TRACKING PERFORMANCE SUMMARY

Current and projected position errors are shown in the figure for three

user orbit classes and three TDAS constellations. The figure demonstrates
that beacon tracking satisfies users in the TDAS mission model with accuracy
requirements down to 10 meters.
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5.5 FORWARD LINK SCHEDULED TRACKING PERFORMANCE SUMMARY

FLST satisfies users in the TDAS mission model with orbits greater than

600 km and accuracy requirements down to 10 meters. Projections of position
error are not made for lower-altitude users since drag is the primary

source of error at these altitudes and is highly mission dependent. Modeling
current capabilities leads to poasition errors in the 50 to 100 meter

range for Tow altitude users.
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5.6 RETURN LINK SCHEDULED TRACKING PERFORMANCE SUMMARY

RLST satisfies users in the TDAS mission model with orbits greater than

600 km and accuracy requirements down to 10 meters. Projections of position
error are not made for lower-altitude users, since drag is the primary

source of error at these altitudes and is highly mission dependent. Modeling
current capabilities leads to position errors in the 200 to 300 meter

range for low altitude users.
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5.7 NAVIGATION STUDY CONCLUSIONS

The navigation study has demonstrated that beacon tracking can satisfy

users in the TDAS mission model with accuracy requirements down to 10

meters. Both forward and return link scheduled tracking also meet accuracy
requirements down to 10 meters for user with altitudes greater than 600

km. At Tower altitudes scheduled tracking technigues are sensitive primarily
to drag. Finally, projected TDAS tracking accuracy requirements can

not be met with minimal BRTS configurations, (2 BRTS per spacecraft),

but are satisfied with VLBI tracking.
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5.8 SUMMARY OF PROPOSED TDAS NAVIGATION FUNCTION

The TDAS architecture will accomodate all three one-way techniques in
addition to two-way tracking. The table suggests a role for each technique.
For example, beacon tracking is suggested for routine requirements, while
forward and return link scheduled tracking are suggested for initial
acquisition and TDAS antenna pointing, respectively. Two-way tracking

is suggested for verification, while all techniques can be used for backup.
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