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SECTION 1

INTRODUCTION



1.1	 PURPOSE OF VOLUME V

i

Stanford Tel econununIcations Inc. undertook this study on behalf of NASA to

develop and examine alternative TDAS architectures. The results of the study

are reported in nine separate volumes. The purpose of this volume is to

present the analyses and findings of the TDAS preliminary study obtained for

the ground segment architecture and the operational concept. As indicated

by the shaded aress in the study flow diagram, this volume , addresses four

principal tasks: the TDAS ground segment architecture; operational assess-

ments; ground system technology assessments; and, in part, the overall arch-

itectural evaluation.

This report first develops ground segment and operational requirements.

Then, after examining alternative RF terminal configurations, functional

descriptions of the TDAS ground segment elements are inferred from the adop-

ted TOAS control and operations concepts and the ground segment architec-

tural goals. Functional descriptions of the ground segment elements lead

to the definition of the TOAS network and required traffic flows. Finally

the TDAS ground terminal hardware technologies are identified and assessed.

The nine TDAS reports are listed below:

Volume I Executive Summary

Volume II TDAS User Community

Volume III TDAS Communications Mission Model

Volume IV TDAS Space Segment Architecture

Volume V TDAS Ground Segment Architecture and Operations Concept

Volume VI TDAS Navigation System Architecture

Volume VII TDAS Space Technology Assessment

Volume IX TDAS Cost Summaries
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1.2	 BACKGROUND

1.2.1	 Role of the Ground Segment

The ground segment provides access to and from the TDAS space relays, con-

nectivity among ground segment elements, and operations and control for both

the space and ground systems. It consists of all of the antennas, RF

equipment, baseband equipment, switching equipment, display and control

equipment, computers, software, simulation units, buildings, utilities,

communications, and support services required to maintain all ground segment

operations.
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1.2.2	 TDAS Ground Segment Architectural Goals

A primary goal of the ground architecture study has been to provide USAT

TT&C and mission data directly to the mission control centers. Other goals

include: downlink data rates equal to or exceeding 600 Mbps at each site;

rain availability of 99.9%; no impacts imposed on the users of TDRSS; and

emergency backup of all control functions.

V-1-5
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1.2.3	 From TDRSS to TDAS

The TDRSS ground segment consists of a single ground terminal with all of

the equipment necessary to support the interfaces with the TDRSS space

relays. The TDAS architectural goal of providing TT&C and mission data

directly to the mission centers leads to the kind of multilink network de-

picted in the figure.

Thus, the TDAS ground segment is quite different than the TDRSS ground seg-

ment. The TDAS era begins in 1994, when the TDRSS service contract expires.

The work reported on here begins the process of preparing for an orderly

and effective transition from TDRSS to a new system that will meet NASA's

tracking and data requirements for the 1990's.
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1.2.4	 Approach

After the TDAS space segment architecture was explored, the task statemerits

of the preliminary TDAS study required the development and evaluation of

alternative ground segment architectures. The accompanying figure illus-

trates the approach used to develop and evaluate ground segment alternative

architectures.

The process begins with the identification of TDAS ground segment functions

and individual elements. Alternative operations and control concepts allow

functions to be allocated to elements, thus defining an architecture and

the flow of information between elements.

Alternatives are evaluated at both the element level, e.g. the impact of

rain attenuation on RF terminal configuration, and at the systems level,

e.g. the total downlink capacity of a specific architectural alternative.

The scheduling efficiencies of alternative TDAS system architectures are

also evaluated here to assess channel availability and loading achieved by 	 1 
Y Y

the TDAS services for different mission models. 	 j^`
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SUMMARY

) i

LAt



^I r`

2.1	 TDAS CONSTELLATION/NETWORK OPTIONS

TDAS will require a distributed ground terminal architecture to provide

TT&C and mission data directly to the mission control centers (MCC's).

Several TDAS constellation/network options featuring distributed ground

terminal architectures are illustrated in the accompanying figure. Each

option is consistent with one of three possibilities for enhancing the TDRS

bus. While each option achieves the objective of providing TT&C and mission

data directly to the MCC's, each will place different requirements on the

TDAS ground segment architecture. For example, in option IA Houston re-

quires no antennas, but in option 3A it may require as many as four anten-

nas, if diversity operation is required. Three classas of constellations

have been considered for TDAS: two frontside satellites (option 1); one

frontside and one backside satellite (option 2); and two frontside satel-

lite with one backside satellite (option 3).

'4
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2.2	 THE IMPACT OF SCHEDULING ON CHANNEL REQUIREMENTS

The table summarizes the results of simulating the scheduling processes for

the NASA and DoD mission models. The simulation account for the character-

istics of each mission: visibility; contact time; dump rate and the need

for dedicated channels. The simulations yielded two impertant system per-

formance measures, channel availability and channel loading, for various

combinations of mission models and TDAS constellations. The results are

referenced to a baseline TDAS spacecraft which has 2 KSA and 5 WSA channels.

Excellent channel availabilities around 99% can be achieved with all 2-space-

craft constellations for the NASA mission model with a 55% channel loading.

Adding the Dod missions causes the channel availability to deteriorate to

70% for 2 Baseline TDAS spacecraft. A three-spacecraft constellation achieves

an excellent availability at 97% for the NASA + DoD Mission Model with a

loading at 83%.
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2.3	 RAIN ATTENUATION AND DIVERSITY GAIN

Rainfall degrades the performance the space/ground link at Ku and Ka bands;

severe attenuation and depolarization effects can occur and must be accoun-

ted for in the design of the ground terminal. Significant power margins

or other RF techniques, such as space diversity, may be necessary to achieve

acceptable system availability.

The accompanying table summarizes the single-site rain attenuation predicted

by the Global model and the diversity gain predicted by the Kaul model for

each of the TDAS ground locations and constellation options at three dif-

ferent operating frequencies for an availability of 99.9%.

Single-site rain attenuation is affected by regional rainfall rates and

the elevation angle to the satellite. For large enough antenna spacings

(10 km), diversity gain depends on local meterological conditions, i.e.,

the fraction of total local rainfall attributable to thunderstorms.

Significant rain attenuation occurs for both Washington D.C. and Houston

at Ka band operation, especially for the uplink. Diversity gain displays a

threshold effect. At any location, the relatively lower values of rain

attenuation primarily result from stratiform rain. Since stratiform rain

is constant over hundreds of kilometers, diversity improvement is not pos-

sible. Thunderstorm rain, on the other hand, contributes to the higher

values of attenuation and is constant over much smaller regions measuring

several kilometers. Diversity gain comes into play as the amount of thun-

derstorm rain increases.

Because of its larger elevation angles at each of the sites, constellation

2 achieves minimum rain attenuation among the constellation options. 	
`I



w
RAIN ATTE14UATION AND DIVERSITY GAIN ORIGINAL, 

PAGE Is
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15 GHz 20 GHz 30 GHz

RAIN
ATTEN(d8)

DIV
GAIN(d8)

RAIN
ATTEN(dB)

DIV
GAIN(d8)

RAIN
ATTEN(dB)

OIV
GAIN	 (dB)

99.9%
AVAILABILITY

SUNNYVALE

IB + 3A (W) 2.1 0 4.0 0 9.0 0

IS + 3A (E) 6.1 0 11.2 1.9 25.6 2.9

IC + 38 3.7 0 6.8 0 15.4 0

2 2.2 0 4.2 0 9.4 0

WHITE SANDS

IS + 3A (W) 2.0 0 3.8 0 8.8 0

IB + 3A (E) 2.7 0 4.9 0 11.4 0

IC,	 313 + IA 5.7 0 1016 0 24.6 2.2

2 1.5 0 2.8 0 6.4 0

COLORADO SPRINGS

IS + 3A (W) 1.0 0 2.0 0 4.5 0

IS + 3A (E) 1.4 0 2.6 0 6.0 0

IC + 3B 3.3 0 6.1 0 13.9 0

2 0.8 0 1.a 0 3.2 0

HOUSTON

IS + 3A (W) 14.5 5.5 25.1 11.3 55.0 22.2

IS + 3A (E) 12.6 4.3 22.7 9.5 47.5 17.3

IC + 3B 17.2 7.3 31.1 15.1 66.2 29.5

2 10.2 2.6 18.4 6.9 38.1 11.1

WASHINGTON, OC

IS + 3A (W) 10.0 2.5 18.3 5.7 40.5 112.7

IS + 3A (E) 4.3 0 7.3 0 17.1 J

IC + 3B 5.2 0 9.5 0.3 21.3 O

2 4.5 0 8.1 0 1719 J

BASED ON 10 KM SPACING OF GROUND ANTENNAS.

STANFORD

TELECOMMUNICATIONS INC.
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2.4	 TDAS DOWNLINK CONFIGURATIONS

The results of four downlink designs are summarized in the table. Both

Ku and Ka band configurations are displayed for each of the constellation

options 2 and 3A. Total downlink data rate, satellite power, number of

satellites, and the number of ground antennas are shown for each configura-

tion.

For either constellation option, the downlink data rate is doubled by mov-

ing from Ku to Ka band, with roughly the equivalent satellite power (1 db

increase for 3A), the same number of satellites, and an additional ground

antenna. The downlink data rate is also doubled for either frequency band

by moving from option 2 to option 3A; however, the satellite power must be

doubled, the number of ground antennas more than doubled and an additional

satellite added. In terms of the comparisons given in this figure, Ka

band operation of option 2 appears to be the most efficacious.
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2.5	 UPLINK POWER REQUIREMENTS

At Ku band no more than 30 watts of power would be required to uplink 300

kbps at 99.9% availability from any site in all constellation options.

At Ka band no more than 100 watts of power would be required to uplink 300

kbps at 99.9% availability from any site, except Houston and Washington

D.C., in all constellation options.

No more than 100 watts of power would be required to uplink 300 kbps at

99.5% availability from Houston and Washington, D.C. at K a band.

Uplink power requirements for constellation 3A at Washington, D.C. and

Houston at Ku and Ka bands are summarized in the figure.
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2.6	 THE TDAS GROUND TERMINAL

TDAS will require a distributed ground terminal architecture; that is, the

ground segment functions related to handling of forward- and return-link

user signals, performed by WSGT for TDRSS, must be distributed to the end-

points of the multibeam space/ground links for TDAS.

A new network element must be defined to implement the distributed archi-

tecture. The new network element is the TDAS Ground Terminal (TGT). The

TGT provides the interface for all network elements requiring access to

the space relays *and it is a common modular element of all ground terminals

in the TDAS network.
I
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1

2.7	 TDAS CONTROL CONCEPT

three network elements are involved in the TDAS control concept. The Net-

work Control Center (NCC) c=arols the occurrence of network events by
I
romulgating scheduling messages among the network elements. Scheduling

iessages are interpreted to yield required space segment configurations by

the White Sands Ground Terminal (WSGT) and are interpreted to yield ground

segment configurations by the TDAS Ground Terminal (TGT). The accompanying

table also indicates emergency back-up control functions for each of the

elements.
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2.8	 TOAS GROUND SEGMENT FUNCTIONAL ALLOCATION

Operations and control concepts and the ground segment architectural goals

provide the rationale to allocate basic functions to the ground segment

elements. The allocation results in a functional description of each ground

segment element which is summarized in the figure. The functional descrip-

tions of the ground segment elements define the baseline ground segment

architecture.
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TDAS N:TWORK ELEMENTS

The TDAS network elements are displayed in the figure. Each TDAS ground

element possesses a TGT to link it to the space relays. The TDAS MBA and

on-board switch perform the TDRSS NASCOM/NGT/DOMSAT data distribution func-

tion. NASCOM assumes a local distribution function for TDAS, interfacing

such elements as the NCC, the OSCF and the MCC/POCC's to the ground termi-

nals. The connectivity of the TDAS elements resembles a star network as

opposed to the serial nature of the TDRSS connectivity.
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2.10	 TDAS GROUND SEGMENT TRAFFIC

The figure summarizes the exchange of messages and data between ground seg-

ment elements. The NCC distributes scheduling and reconfiguration messages

and receives service, system and equipment status information, as well as,

performance monitoring data and requests for service. Also included are

the exchange of TDAS and user spacecraft acquisition status, in addition

to user orbit and tracking data for tracking and non-tracking MCC/POCC's,

respectively. The exchange of tracking and orbit data is based on the use

of a return link tracking technique.
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2.11
	

TGT HARDWARE CONFIGURATION

The generic TGT has appropriate hardware to receive 2 KSA, 2 SSA, 5 WSA,

1 laser SA and 10 SMA channels and to transmit 2 forward link signals each

on the KSA, SSA, WSA and SMA channels. The TDAS satellite control function

shown is applicable only to the TGT's associated with the WSGT and the GGT.

The TGT hardware configuration includes automatic equipment status/fault

monitoring and a frequency reuse feed subsystem for crosspolarized signals
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2.12	
TGT TECHNOLOGY ISSUES

The key issues ide
ntified in the TGT technology 

assessment are listed inthe figure. Issues were 
identified for the ant

enna, the LNA, the HPA, thebaseband eq

uipment and the diversity terminal. The issues relate to thereadiness of the technology for app
lication in 'the TDAS timeframe ratherthan to qu

estions of basic technology development.
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SECTION 3

TDAS GROUND SEGMENT AND OPERATIONAL REQUIREMENTS
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3.1	 DISTRIBUTED GROUND TERMINAL ARCHITECTURE

To satisfy the goal of providing USAT TT&C and mission data directly to

mission control centers, the TDAS space segment architecture makes use of

multibeam space/ground links switchable through the TDAS relay to the USAT.

In the TDAS era, the space segment performs the data distribution function

provided by DOMSAT and landline common carriers for the TDRSS.

To accomodate the multibeam space architecture, the ground segment must,

of course, provide access to the space segment at several appropriate

ground locations. Furthermore, to achieve the goal of meeting NASA mission

requirements in the year 2000 with no impact on the users of TDRSS, requires

that the ground segment functions related to handling of forward- and

return-link user signals, performed by WSGT for TDRSS, must be distributed

to the endpoints of the multibeam space/ground links.for TDAS. TDAS will,

therefore, require a distributed ground terminal architecture to interface

the mission control centers (MCC) or project operations control centers

(POCC) to the TDAS network. No user impact occurs when the ground terminals

interfacing the MCC/POCC's to the space relay are part of the TDAS network.
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3.2	 TDAS CONSTELLATION/NETWORK OPTIONS

The TDAS spacecraft architectural task identified five specific technology

enhancements to increase the capability of the TORS bus:

W-band single access (WSA);

•
	

60 element S-band multiple access array with on-board beam

forming (SMA);

multiple beam antenna with on-board switch (MBA);

•
	

crosslinks between relays (X-Links);

laser single access (LSA)

The accompanying table depicts several TDAS constellation/network options

for including five fixed ground terminals in the TDAS network. Each

option is consistent with a particular enhanced TORS bus. The table illu-

strates how the MBA and X-Link enhancements increase the complexity and

diversity of the TDAS constellation/network options. Each option places

different requirements on the TDAS ground segment architecture. Antenna,

RF, data and tracking ground subsystems will vary for different options,

as well as the control system to schedule., allocate and monitor the TDAS

network resources. The Option 1 constellations use two front side satel-

lites, while the Option 2 constellation uses one front side and one back

side satellite. The constellations of Option 3 use two front side satel-

lites and one back side satellite.
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ENHANCEMENTS
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TDAS CONSTELLATION/NETWORK OPTIONS

OPTION 1A:	
171'W	 41'W

ENHANCEMENTS
SMA

WSA

DOMSAT

OPTION 1B:	 140'W	 60'W

ENHANCEMENTS

SMA

WSA
MBA

LSA

OPTION 1C:	 171'W	 41'W

ENHANCEMENTS
SMA

WSA

MBA

LSA

X-LINK

OPTION 2:	 100'W	 98'E

ENHANCEMENTS
SMA

WSA

MBA

LSA

X-LINK

OPTION 3A:	
140'W	 60'W	 80'E

ENHANCEMENTS
SMA

WSA
	

ii 11

MBA

LSA

X-LINK
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3.3	 MISSION SUPPORT REQUIREMENTS

3.3.1	 Projected Mission Profiles

Since TDAS is a common user system, the missions expected to be supported

in the TDAS time frame determine the required TDAS capabilities. In par-

ticular, the TDAS ground segment must accomodate the types and volumes of

forward- and return-link traffic, as well as schedule, monitor and control

TDAS resources to meet the needs of the user community. Volume II of this

study, "TDAS User Community Characteristics", identifies and describes the

missions and experiments, while Volume III, "TDAS Communications Mission

Model", derives the communications requirements.

Mission profiles were developed for both NASA and DoD missions. NASA

planning information, analysis of part experience, and interviews with

the NASA program managers and the user community formed the basis of the

NASA mission profiles. The DoD mission profiles were derived from a prior

STI study performed for the Air Force and published in DEC, 1979, "Satel-

lite Control Satellite" (SCS).

The NASA mission profile projects user activity over the period 1995-2005

Two SCS mission profiles were examined, SCSA and SCSB. The SCSA mission

profile projects TT&C and medium to medium-high rate data requirements

over the 1986-1990 period, while the SCSB mission profile adds high to

ultra-high rate data requirements for the 1986-2000 period. The DoD mis-

sion profiles include geosynchronous satellites * ; mission profiles with

the geosynchronous satellites deleted are designated SCSA- and SCSB-.

{

^a
c Y.

J `

i

* TDAS is not required to support geosynchronous satellites.
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3.3.2	 TUAS Communications Channel Requirements

The mission profiles lead to communication mission models. Communication

mission models specify the total number of channel hours required per day

to support users in a given data-rate range. The assumptions listed in

the figure were used to construct the communications mission model from

the mission profiles.

Communication requirements are based on supporting mission activities on

a "busy day" in the year 2000 as defined in the figure. All of the vehi-

cles listed as active during the busy day require dedicated high-rate sin-

gle access channels 24 hours per day to return engineering data, in addi-

tion to channel requirements to return science data. Thus, the communica-

tions mission model includes a total of six KSA and WSA channels dedi-

cated to engineering data. The return of science data, on the other hand,

can be scheduled for shorter varying durations and channels assigned when

they are needed.

In satisfying the science-data contact time, it was assumed that a 75%

scheduling efficiency was achieved, i.e., on the average 75% of the chan-

nels that can be scheduled for science data are carrying traffic. This

later assumption leads to a static communication mission model in which

scheduling inefficiencies decrease a channel's utilization from 24 hours

to 18 hours per day. The 25% reduction in channel loading attempts to

account for the scheduling loss incurred by the random and conflicting

load placed on the system by, the science-data contact time requirements.

Daily contact time requirements for science data can vary from a few hours

to a full day depending on the mission. Contact time epoch depends on the

mission as well.
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.3.2	 TDAS Communications Channel Requirements (Continued)

7
T

1	 f

I	 ^

The figure compares the NASA and the NASA-plus-DoD communications mission

models with the channel capacities achieved by both two and three TDAS-

spacecraft constellations. TDAS constellations with two baseline space-

craft satisfy the NASA mission model requirements with adequate margin,

but do not meet the requirements of the DoD mission models for the WSA

service. At least four active TDAS spacecraft are required to exceed the

WSA channel requirements of the static DoD mission models.

The return channel requirements shown in this figure estimate the total

traffic, by service type, that the ground segment must schedule and dis-

tribute to the appropriate user.
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3.4	 THE IMPACT OF SCHEDULING ON CHANNEL REQUIREMENTS

While the static communications models are useful in estimating overall

channel requirements, they do not shed light on how the system would per-

form in a complex operational environment that includes the dynamics of

scheduling and visibility for a group of heterogeneous users. To obtain

performance measures that account for such dynamics, the scheduling pro-

cess was simulated for the users in the various mission models. The simu-

lation accounted for the characteristics of each mission: visibility;

contact time; dump rate and the need for dedicated channels. Two impor-

tant system performance measures, channel availability and channel loading,

were obtained from the simulations for various combinations of mission

models and TDAS constellations.

Channel availability is the ratio of hours scheduled to hours demanded,

expressed as a percentage. It is the percent of time that a channel is

free when a user requests service or the probability that a user will not

experience a scheduling conflict when requesting service. Channel loading

is the ratio of hours scheduled to the total number of hours available for

scheduling. There is a tradeoff between channel loading and channel

availability. Higher channel availability is achieved at the expense of

lower channel loading.

The results of simulating the scheduling processes for the NASA and DoD

mission models with constellation 1A are plotted in the accompanying

figure. For the NASA mission model, two baseline satellites (2 KSA and

5 WSA channels each) achieve high single access service availabilities

98% for the KSA service and 99.6% for the WSA service. On the other

hand, for the NASA + DoD mission models, an availability of approximately

67% is achieved for the WSA service. If the number of WSA channels is

increased to 15, the equivalent of 3 baseline TDAS spacecraft, then the

availability for the WSA service would be 97% for the NASA + DoD mission

models.
l
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3.4	 THE IMPACT OF SCHEDULING ON CHANNEL REQUIREMENTS (Continued)

Simulation results obtained for channel Toading as a function of the number

of channels per service are shown in the figure. For the NASA mission model 	 1

and two baseline TDAS spacecraft, channel loadings of 57% and 51% are achieved

for the KSA and WSA services, respectively, while the WSA service would be

fully loaded for the NASA + DOD mission models. The WSA service would be

97% loaded for the equivalent of three TDAS baseline spacecraft while 75%

WSA service loading is achieved for four baseline spacecraft.

Bdcause visibility changes, channel loading is sensitive to varying the

TDAS spacecraft constellation, especially the 2-spacecraft constellations.

Coverage differences among the 2-spacecraft constellations can cause the

total contact time of the dedicated users to vary as much as 15 hours per

day which, in turn, causes variations in channel loading as large as 10%.
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THE IMPACT OF SCHEDULING ON CHANNEL REQUIREMENTS (continued)

;radeoff between availability and loading is evident in the figure,

i was obtained from simulation of the scheduling process for the NASA

e access users. As previously mentioned, high availability is achieved

e expense of low channel loading; for example, to achieve an availability

% or higher requires a channel loading less than 60% for the NASA SA

{
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3.4	 THE IMPACT OF SCHEDULING ON CHANNEL REQUIREMENTS (Continued)

The table summarizes scheduling performance for the baseline spacecraft in

various constellation options. Simulations of the NASA and DoD mission

models determined the performance measures, channel availability and chan-

nel loading, for each constellation listed in the table.

The results demonstrate that excellent channel availabilities in the vicin-

ity of 99% can be achieved with 2-spacecraft constellations for the NASA

mission model with a channel loading of 55%.

When the• Dod missions are added the scheduling performance of the 2-space-

craft constellations deteriorates. Adding DoD missions causes the avail-

ability to be reduced to 71%. A 3-spacecraft constellation achieves ex-

cellent availability: 97% for the combined NASA and DoD Single Access users

with an 83% loading.
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3.5	 FUNCTIONAL REQUIREMENTS

The ground segment must perform several basic functions to schedule, moni-

tor, and control both space and ground facilities to provide the users

proper end-to-end links between their ground locations and their space-	 )

craft. The table lists all of the basic functions of the ground segment,

including those of the TOAS network ground elements and the user ground i

elements.

The functions are organized into three decending levels of organizational

generality: the provision of network services; the control of network 	 )

resources; and the control of user resources. A particular allocation of

these functions to a set of ground segment elements leads to a ground seg- 	 !

ment architecture.
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3.6 SECURITY REQUIREMENTS

Besides supporting the DoD shuttle missions„ TDAS will have additional

capacity to accomodate a variety of other national-security related mis-

sions. To support classified missions, TDAS must provide adequate secu-

rity arrangements. 	 Classified missions and the need to protect TDAS

resources place the following general security requirements on the ground

segment: }

s Secure communications between space segment control at WSGT and

the TDAS spacecraft for command and telemetry messages;

`
t

• Secure communications for transfering classified information in
i

both digital and analog form among the nodes of the ground seg-

ment.	 Such information includes event scheduling and planning

data, acquisition data, control data, and status messages

related to classified missions.

• Secure processors for determining orbital parameters for classi-

fied spacecraft;

• Secure processors for TDAS TT&C; 4^	 ,.•I

• Secure files for storing operations data related to classified

' missions;

• Software and hardware processes to segment classified and it

j unclassified information;

' • Control	 led access to classified information with automatic

audit trails;

j• End-to-end secure links between a user and his spacecraft.
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4.1	 SPACE/GROUND LINK FREQUENCIES

ThQ downlink capacity required to satisfy the NASA mission model dictates

the choice of either Ku or Ka band for the TDAS space/ground links. Ka

band can support downlink data rates in excess of 300 Mbps, whereas 300

Mbps is about the maximum practical data rate for QPSK'at Ku band.

Rainfall degrades the performance of satellite systems at these frequencies.

Adverse effects, such as attenuation and depolarization of the space/ground

link signals can be very severe and must be taken into account in the

design of the ground terminal. Significant power margins or other RF

techniques, such as space diversity may be necessary to achieve acceptable

s
system availability. Since these techniques are quite costly and usually

involve achieving large margins, it is critical to accurately access both

the effects of the degradation and the remedies to cure them.
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REPRESENTATIVE GROUND STATION LOCATIONS

The location of a ground terminal determines the severity of the rainfall
e

	

	
experienced by that terminal. There are eight rain climate regions in the

continental U.S. Each is characterized by a different measured cumulative

distribution function for rain rate, which records the percent of time

during a year that the rain rate exceeds a given level. For example, the

rain rate in Washington D.C. exceeds 14.5 mm/hr, 8.77 hrs. during a year

or .1% of the time.
6

f

F' !

fj

V-4-3

I
I

11
i

5

^^	 1

PY,

Y	 1



1

,.W

ORIGINAL PAGE 18
OF POOR QUALITY

L.

1

rN ^
W N r [V GO ri7 N

G'^ V' l0 I^ Q1 ^ N In um)
N, M

2

Q 2
^ O

rr

WC
m m f.^ C C C W W

n
N
O
O

Z
O

Z
O Qen V
co -+
W J
C C1

O
W 0.
ti

ui V

	

-j Z	 z
J W

	

w	

0

V;

N

.Z. w
F

	¢ 	 U

^ ^ Z
7

G^

00
Z U
Q J
F- ua
lA h

s^ t

Cr
F a	 j^



4.2	 REPRESENTATIVE GROUND STATION LOCATIONS (Continued)

The accompanying table lists 5 candidate locations for TDAS ground stations.

The locations are fairly representative, in so far as satisfying operation-

al requirements, geographic diversity and climate variation for a multi-

beam TDAS system.

The table indicates wide variation in rain rate at a given exceedance level

among the locations. As will be shown, large differences in rain rate

portend correspondingly large differences in required rain margin,

especially at Ka band.



,_. ...v	 ,...	 .... .. ..	 .,.	 r :"^	 T... ..	
- Y	 ^	 11	 ,. ..,	 7..	 ch^,"/^:e19 ,*5"Kr[

^i

9

ORIGINAL PAGE IS

	

OF POOR QUALITY	

to

N
Z
O
o-.
H
Q
U
O
J

Z	 LO ^ L

N
EEE

D 
OW 

W
^ O ~
5 Q
C7	 Z

W ^
W f- C

UZZ Ow a
NWCd
C	

Z
yZ
a
V
z

CĜ
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4.3	 RAIN ATTENUATION PREDICTION MODEL 	 j

RF ground system design requires an accurate statistical characterization

of the attenuation caused by rainfall. Five commonly used models are

available to the system designer to estimate the cumulative attenuation

statistics for the space/ground paths: Rice - Holmberg; Dutton - Daugherty; 	 ^}

Global; Lin; and Piecewise Uniform Rain Rate. Because of its proven 	 t

accuracy and ease of use, the Global Model of Crane and Blood was chosen

for this study.	 I

i
The Global Model transforms cumulative statistics of point rainfall rate

into cumulative statistics of rain attenuation. Exceedance level, location

and constellation determine the inputs to the model which are: rainfall

rate; height of the 0° isotherm; height of the ground station; and elevation

angle. Elevation angle is a function of location and constellation. The
I

model then computes the output: the rain attenuation value for the input

exceedance level.
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RAIN ATTENUATION PREDICTION MODEL

GLOBAL MODEL DUE TO CRANE & BLOOD
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THEORETICALLY DERIVED

RELATIONSHIPS

RAINFALL RATE
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4.4.	 LINK AVAILABILITY

When a system is designed with a margin for rain, link availability is the

probability that rain attenuation will not exceed the margin or the percent

of time that rain attenuation is below the margin. Link availability as a

function of margin is simply the cumulative distribution function for rain

attenuation.

The figures that follow plot availability (actually one minus availability)

as a function of margin for each of the five locations. Results for both

Ku band (15 GHz) and Ka band (20/30 GHz) depict the worse case attenuation,

i.e., the constellation yielding the smallest elevation angle for the

location. For example, constellation 1B or 3A requires 40 db of rain

margin at 30 GHz at Washington D.C. to achieve an availability of 99.9%.

The curves illustrate the price that must be paid in terms of increased

margin to obtain availabilities above 99.9%.

The availability levels and margins shown in these figures are for the

constellations with 2 front-side satellites located at longitudes off the

east and west coast of the U.S. While these constellations possess desir-

able coverage properties,'they obviously will present difficulties in

achieving rain margins required for high operational avialability at all

of the ground locations. This is especially true at K a band. As will be

shown shortly, constellation 2 with a front-side satellite directly over

the U.S. mitigates most of the extreme effects of rain attenuation by

achieving larger elevation angles for the more troublesome sites.
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4.5	 DIVERSITY IMPROVEMENT

4.5.1	 The Kaul Model

While space diversity is a common technique used to combat the deleterious

effects of RF fading on point-to-point ground links, its application on

space/ground links at the frequencies of interest here is not well under-

stood. Investigators are only beginning to include local meterological

effects in their diversity modeling efforts. The often-applied diversity-

gain computations, which predict large gains for increasing antenna separa-

tions independent of local climate conditions, are of marginal value in

assessing the performance of space diversity systems. The difficulty here

is that rain rate can be constant over quite extensive areas in some parts

of the country, causing fading patterns that are correlated at large

distances. The predicted diversity gain (based on data gathered in a

different region) then fails to materialize because of correlated fading.

In 1980 Kaul began to explore a two component rain model that could account

for local variability in diversity gain. Kaul suggested a method of extend-

ing the well-known Hodge emperical model for diversity gain; the Hodge

model depends only on single-site attenuation and antenna separation.

Notwithstanding its sparce development, the Kaul model will be adapted to

our needs.
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I	 DIVERSITY IMPROVEMENT
Y

i

c	 j •	 KAUL EXTENSION (1080) OF THE HODGE

k EMPIRICAL MODEL ( 1976)

j

e	 BASED ON A TWO COMPONENT RAIN MODEL
• 'I

' FOR DIVERSITY IMPROVEMENT

' •	 FREQUENCY DEPENDENT THRESHOLD

r	 i

•	 MODEL DEVELOPMENT LIMITED
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4.5.2 Two Component Rain Model

^;	 l

The accompanying figure displays the form of the distribution function of

point rainfall rates predicted by the Rice-Holmberg model. The model	 f

decomposes rainfall into 2 distinct modes:

•	 convective or thunderstorm rain (mode 1) which usually

extends over several kilometers; and

.I

•	 stratiform rain (mode 2) which is constant over hundreds of

kilometers.

When two antennas are separated by several kilometers, it is unlikely

that both will be simultaneously affected by the same thunderstorm rain

cell. The antennas will experience different fading patterns and a diver-

sity gain for the path will be achieved for the mode 1 rainfall. On the

other hand, since the rainfall rate is constant over very large distances

for the stratiform or mode 2 rainfall, space diversity gain is not possible. 	 r

Thus, space diversity gain is determined by the amount of thunderstorm 	 ^) -

activity along the path. Local meterological conditions are then critical 	
'.1

in determining the performance of a space diversity system.

The two component model displays a threshold effect. Diversity improvement 	 1^

is available only when the rain rate exceeds a given level. Also, for a

specific availability, there will be a maximum achievable diversity gain, 	 1

which depends on the amount of mode 1 rain contributing to the total

rainfall.
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4.5.3

e

f

Y'

M.

Diversity Gain

V-4-19

Modifying the Hodge model according to Kaul I s suggestions leads to the

approximations displayed in the figure for diversity gain when the antennas

are separated by 10 km. Empirical relations for the maximum gain and the

threshold were derived from data found in NASA Reference Publication 1082.

The data were computed for the values of average annual rainfall depth

(M), ratio of thunderstorm annual depth to total annual rainfall depth

_	 (a) and elevation angle (E) shown in the figure.
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Diversity Gain (Continued)
	

i

The product 9M measures the thunderstorm or mode 1 rainfall depth and thus

is a measure of the effectiveness of space diveriity. That is, the effec-

tiveness of space diversity increases with the amount of mode 1 rainfall.

The mode 1 ratio S and the total average rainfall depth M vary according

to local meterological conditions.

The table compares the actual 9M products for each candidate TDAS site with

the value of BPI assumed for the diversity gain model. The model's assump-

tions are very optimistic in estimating the diversity gain at Sunnyvale,

White Sands and Colorado Springs; however, rain attenuation is mild at

these locations and not likely to require the application of space diversity

Slightly conservative results will be obtained for Houston, while the

results for Washington D.C. will be somewhat optimistic.
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4.5.4	 Rain Attenuation and Diversity Gain

The accompanying table summarizes the single-site rain attenuation predic-

ted by the Global model and the diversity gain predicted by the Kaul model

for each of the TDAS ground locations and constellation options at three

different operating frequencies for an availability of 99.9%. Large var-
iations in rain attenuation and diversity gain occur among locations and

among constellations. The threshold effect of diversity gain is evident.

That is, diversity gain is zero unless the single-site attenuation exceeds

a threshold.

Constellation option 2 achieves minimum rain attenuation at all sites,

because of its favorable elevation angle.
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4.5.5	 Cross Polarization Discrimination

Frequency reuse by transmitting cross-polarized signals doubles the capa-

city of the downlink channels, Rain attenuation, however, can alter the

polarization of a signal and destroy the orthogonality between the cross-

polarized channels. The table summarizes the cross-polarization discrim-

ination ratio (XPD) at the 99.9% level. XPD is the ratio of the recieved

copolarized signal power to the received cross-polarized signal power when

only the copolarized signal was transmitted. It is a measure of the isola-

tion between the received cross-polarized channels and depends on the

polarization transmitted, the elevation angle and the rain attenuation.

Depending on the requirement placed on the ground terminal design, it may

be necessary to enhance the isolation between the cross-polarized channels

at the ground terminal receiver. Constellation Option 2 yields an XPD in

excess of 33 db at all TDAS locations, which should be adequate for all

TDAS applications.
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4.6
	

REFERENCE DOWNLINK BUDGET

The table presents the reference downlink budgets for both K u and Ka band

TDAS operation; the downlink budget for TDRSS K u band operation is included

for comparison. The budgets were computed for 300 Mbps uncoded quadraphase

and the TDRSS constellation.

The downlink reference budgets summarize our assumptions regarding TDAS;

for example, we assume a 3 meter multibeam antenna on the spacecraft and

a ground G/T of 41.5 db at Ku band and 43 db at Ka band for TDAS. The

assumptions for the TDAS downlink budgets are consistent with the TDRSS

downlink budget and achieve identical system margins. The 8 db serial

combining loss insures that the spacecraft-to-ground link will not place

an additional burden on the user spacecraft signal energy to noise inten-

sity ratio.

The figure also displays our assumptions regrading the HPA backoff as a

function of the number of carriers on the downlink. When there are six

carriers, we assume them to be spaced so that the effects of intermodula-

tion products are minimized, for example the use of Babcock spacing.
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REFERENCE DOWNLINK BUDGET
ORIGINAL PAGE 19
OF POOR QUALITY

White Sands 171°W - 41°W Constellation
300 Mbps - Uncoded Quadraphase

LINK BUDGET
'Ku Ku KaLINK BUDGET	 LOCATION

- d8 TDRSS TDAS TDAS

HPA RATING 14.25 12.50 16.00

LOSSES -4.00 -4.00 -4.00

TDRS ANTENNA GAIN (2m) 42.75

TDAS MBA GAIN	 3m 44.50 47.00

EIRP 53 dB 53 dB 59 dB

PATH LOSS + ATMOS LOSS -209 -209 -211.5

GROUND G/T 41.5 41.5 43

BOLTZMAN CONSTANT 228.6 228.6 228.6

RAIN ATTENUATION - 6 - 6 -11

SERIAL COMBINING LOSS - 8 - 8 - 8

DATA RATE -85 -85 -85

AVAILABLE E/N o 15.1dB 15.ldB 15.ldB

EQUIPMENT LOSSES - 4 - 4 - 4

REQUIRED E N - 9. 6 - 9.6 -	 9.6

SYSTEM MARGIN WITH RAIN I.SdB 1.5dB 1.5dB

HPA BACKOFF ASSUMPTIONS

NUMBER OF CARRIERS BACKOFF	 d6

1 0
2 1
6 6

MANY 10

STANFORD

TELECOMMUNICATIONS INC.
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4.7	 TDAS DOWNLINK CONFIGURATIONS

4.7.1	 Downlink Designs

The following tables summarize 4 different designs for the TDAS downlink

configuration. Both Ku and Ka band designs are presented for each of the

constellation options 2 and 3A. Required satellite power was computed for

the rain attenuation, data rate and ground antenna size (60 ft, for each

case) shown in the tables, using the reference downlink budget. The need

for space diversity operation is also indicated in the tables where required

and rate 1/2 coding was assumed where indicated.
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4.7.2	 Downlink Configuration Como risnns

The 4 TDAS downlink configurations are compared in the table in terms

of total downlink data rate, satellite power, number of satellites and

number of ground antennas.

It is interesting to observe that for either constellation option, the data

rate is doubled by moving from K u to Ka band, with roughly the equivalent

satellite power (1 db increase for 3A), the same numoer of satellites,

and an additional ground antenna. Similarly, the data rate is doubled for

either frequency band by moving from option 2 to option 3A; however, the

satellite power must be doubled, the number • of ground antennas more than

doubled and an additional satellite added. In terms of the comparisons

quantified in this table, K a band operation of option 2 would appear to

be the most efficacious configuration. ii
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UPLINK POWER REQUIREMENTS

Assuming a maximum uplink data rate of 300 kbps, no more that 30 watts of

uplink power would be required to achieve an availability of 99.9% at Ku

band for any of 5 TDAS sites and all constellations.

Again assuming a maximum uplink data rate of 300 kbps,.no more than 100

watts of uplink power would be required to achieve an availability of 99.9%

at Ka band for all TDAS sites, except Houston and Washington D.C., and for

all constellations.

F:

	

	 No more than 100 watts of uplink power would be required at Houston and

Washington, D.C. to achieve an availability of 99.5% at K a band for all

<< 1	constellations.

The figure summarizes uplink power requirements for the constellation 3A

for Washington, D.C. and Houston at both Ku and Ka bands.
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GROUND SEGMENT/SPACE SEGMENT INTERFACE

As pointed out in Section 3, TDAS requires a distributed ground terminal

architecture. A new network element must be defined to implement the

distributed architecture. The new element is the TDAS Ground Terminal

(TGT) which provides the interface for all network elements requiring

access to the space relays.
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5.2	 TDAS CONTROL CONCEPT

The control concept adopted for TDAS is summarized in the accompanying

table. The Network Control Center (NCC) controls the occurrence of network

events by promulgating scheduling messages among the network elements.

Scheduling messages are interpreted to yield required space segment config-

urations by the White Sands Ground Terminal (WSGT) and are interpreted to

yield required ground segment configurations by the TDAS Ground Terminal

(TGT). Network events are under the control of the NCC, space segment

configuration under the control of the WSGT, and ground segment configura-

tion under the control of the TGT. The control concept also embraces

emergency back-up capabilities for the three control functions resident at

alternate locations.
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	5.3	 TDAS GROUND SEGMENT FUNCTIONAL ALLOCATION

In Section 3 we identified the basic ground segment function and organized

them into three categories: the provision of network services; the control

of network resources; and the control of user resources. It was stated

there that a particular allocation of these functions to the ground segment

elements leads to a ground segment architecture. The control concept

provides the operational rationale to allocate the basic functions to the

ground segment elements. The control concept described in the previous

section results in the allocation depicted in the figure, which associates

each basic function with one or more of the four ground segment elements,

the NCC, the WSGT, the TGT, and the MCC. Observe that the allocation

implies a functional description of each ground segment element which is

summarized in the figure. The functional description of the ground segment

elements is the foundation for the baseline ground segment architecture.
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THE TDAS GROUND TERMINAL

A functional block diagram of the TGT is displayed in the figure. In

addition to specifying functions, the diagram depicts message flows over

interfaces to other network elements, such as the NCC and the MCC.

A control and monitoring element is shown for the TGT which controls the

configuration of the TGT subsystems and monitors their performance and

status. The control element communicates with the NCC, deriving configura-

tion control messages from the NCC scheduling messages and sending perfor-

mance and monitoring data to the NCC. The TGT includes an antenna sub-

system, an RF subsystem, a data subsystem, and an intersite communications

interface.

While the configuration shown in the figure interfaces a MCC to the network,

the TGT will be a modular conaion element of all ground terminals in the

TDAS network.
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5.5	 THE WHITE SANDS GROUND TERMINAL

The functional block diagram of the WSGT is displayed in the accompanying

figure. The WSGT controls the space segment configuration; it communicates

with the NCC, deriving configuration control for the space segment from

NCC scheduling messages, and returns performance and monitoring data back

to the NCC. A space segment control element is shown, as well as the

functions and processes that determine the configuration of the space

segment. The WSGT includes a TGT to interface it to the TDAS space relay.

The back-up emergency network control function is also shown to reside at

White Sands.
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5.6	 THE GODDARD GROUND TERMINAL 	 I"•

The Goddard Ground Terminal (GGT) interfaces the TDAS elements at NASA,

Goddard to the TDAS space relay; it consists of a TGT, interfaces to the

NCC and other network elements at Goddard through a local NASCOM net, and

an emergency space segment control function. Although not shown, part of

the emergency space segment control function would most likely reside at

a Goddard facility other than the GGT. 	 71;
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5.7	 THE TDAS NETWORK CONTROL CENTER

The accompanying figure displays the TDAS NCC subsystem and the allocation

of functions among the subsystems. The communication and display subsystems

support the main subsystem in scheduling and monitoring network events,

while the NCC control subsystem is responsible for the allocation and

status of the NCC resources.

In addition to scheduling the new single access services, the NCC must

control the use and monitor the performance of the new TDAS facilities,

such as the MBA, the on-board switch, the crosslink, and the TGT.
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THE TDAS NETWORK



6,1	 TDAS NETWORK ELEMENTS

The elements of the TDAS network include the space relays, the WSGT, the

GGT and several TGT's. Local networks (provided by NASCOM) will inter-

face such elements as the NCC, the OSCF and the MCC/POCC's to the ground

terminals. While the NCC and the OSCF are network elements, the MCC/POCC's

;t	 and the data user sites need not be part of the TDAS network.
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TDAS NETWORK ELEMENTS (Continued)

The connectivity of the TDAS element resembles a star network as opposed

to the serial nature of the TDRSS element connectivity. The data dis-

tribution functions performed by WSGT, NGT and NASCOM for TDRSS are per-

formed by the on-board switch, the MBA and the TGT's for TDAS. Observe

that NASCOM performs local area communications for TDAS, as opposed to

its intersite communications function for TDRSS.
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6.2 TDAS NETWORK DEFINITION "{

i u
The accompanying figure depicts the TDAS network as those elements inside

' the dashed box.	 Elements of the TDAS network are under the control of

the NCC, whereas the user spacecraft and the MCC/POCC resources are under

control of the MCC/POCC. Tj !

,

The scheduling, payload, tracking, telemetry, status, and performance data
j

exchanged among the network elements and between network and user elements !	 I

are shown in the figure.	 Appropriate communication links and interfaces

will be required to support the data flows indicated.
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6.3	 TDAS BASELINE CONCEPT 	 j

The baseline concept encompasses both the space and ground network elements,

their functions and how they are interconnected to support the projected

mission profiles. In the figure we show both fixed and flexible ground

terminals and 2 TDAS spacecraft connected by a crosslink in a space/ground

network to provide the user services indicated.

The functions associated with the network elements at the ground terminals

are also shown, in addition to the kinds of traffic on the space/ground

links.
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6.4	 TDAS NETWORK TRAFFIC FLOWS

6.4.1	 NCC Origination
i

The NCC sends service schedules, configuration messages and orbit data 	 -

to both the WSGT and the TGT. It controls the allocation of intersite

communications resources through messages to WSGT. The NCC transmits

scheduling messages to the MCC/POCC, as well as ground control message

(GCM) dispositions, service assistance responses, emergency routine

;t	 verification service (ERVS) recommendations and post-event reports.
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6.4.2	 WSGT Origination

I.

V

	

	 The WSGT sends the NCC status and performance information regarding space

segment equipment, in addition to TDAS tracking data, TDAS acquisition

status and post-event reports. TDAS acquisition status (of the user space-

craft) is also sent to the TGT. WSGT controls the TDAS spacecraft and their

payloads through SC commands.
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6.4.3	 TGT Origination

The TGT sends the NCC status and performance information regarding the

ground segment equipment, in addition to post event reports. Ground

segment equipment status, service performance monitirir1;, and service

status messages are sent to the MCC/POCC.
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MCC/POCC Origination6.4.4

4

In addition to sending the NCC scheduling messages and post-event reports,

the MCC/POCC requests service reconfiguration, antenna or signal reacquisi-

tion, and service assistance from the NCC. It informs WSGT regarding the

acquisition status of the user spacecraft, requests status and performance

data from the TGT, and commands the user spacecraft and payload. It sends

the NCC user spacecraft tracking or orbit data, depending on whether or

not the MCC/POCC tracks the user spacecraft.
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6.4.5
	

TDAS Spacecraft Origination

The TDAS spacecraft transmits telemetry and tracking data to WSGT;

emergency telemetry and tracking data are sent to GGT.
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6.4.6	 User Spacecraft Origination

The MCC/POCC receives telemetry, tracking, and payload data from the

user spacecraft.
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6.4.7
	

TDAS Ground Segment Traffic Summary

The figure summarizes the messages and data that are exchanged between

pairs of ground segment elements. For example, NCC sends out scheduling

and reconfiguration messages; in return it receives service, system

and equipment status information, as well as, performance monitoring data.

The exchange of tracking and orbit data, shown for both tracking and non-

tracking MCC/POCC's, is based on the use of a return-link tracking

technique.

Not Shown in this figure are possible direct communications between WSGT

and TGT regarding the status of TDAS acquisition of the user spacecraft

and between WSGT and the MCC/POCC regarding the status of the user

spacecraft acquisition of TDAS.
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6.5	 TDAS CONTROL MESSAGES

6.5.1	 TDAS Control Messace Traffic

The exchange of TDAS control messages between the MCC and other ground

segment elements is summarized in the figure. , As mentioned previously

the MCC transmits scheduling and reconfiguration messages and receivers

status and performance messages from other network elements.
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6.5.2	 TDAS Control Network Option

One option for implementing the TDAS control network is the use of the

space/ground MBA links and the TDAS on-board switch to connect ground

terminals. For example, full duplex 56 Kbps data and voice channels could

be derived from a small allocation of the TDAS capacity to this function.
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6.5.3	 Control Network Channel Requirements 	 l

Assuming that 7 TGT's are connected to both the NCC and the WSGT and that

the NCC and WSGT are interconnected, then 15 full duplex voice and 15 	 t

full duplex digital channels would be required. A total of 60 50 KHz

FDMA channels would satisfy this requirement. Our analysis of traffic 	
Nj

indicated that the only information exchanged between WSGT and the TGT

would be the acquisition status of the TDAS and the user spacecraft.

Since acquisition status information could be relayed by the NCC between

the WSGT and the TGT or exchanged by voice or low rate data lines, the

capacity shown in the table is most likely a conservative estimate of the 	 y,

control channel requirements. Some channels would be dedicated to

specific links while others could be assigned on demand. The adequacy

of this estimate of channel requirements also depends on the need to

send raw tracking data (rather than orbit data) from the MCC/POCC's to

.the NCC.	 !A
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6.6	 EXAMPLES OF TDAS OPERATIONS	 R

r	 6.6.1	 User Spacecraft Acquisition
i

In the transition from TDRSS to TDAS various functions performed at WSGT

regarding acquisition of the user spacecraft and signal will be the respon-

sibility of the TGT. User spacecraft acquisition is a particularly good 	 j
i

example of TOAS operations, since it involves coordinating the activities

of all four ground segment elements and both the TDAS and user spacecraft. 	 i	 1

Events in the acquisition process are dependent and must occur in the

proper sequence. The TDAS sequence illustrated for acquiring the user 	 I

spacecraft differs in several significant ways with the TDRSS acquisition

sequence: the forward link signal is generated and transmitted by the 	 i

TGT; open loop user spacecraft antenna commands generated by the MCC are 	 i

transmitted by the TGT; TDAS autotrack occurs on board the TDAS spacecraft;

and TGT acquires the user signal.	 j
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6.6.2	 Simulation/Verification Service

The simulation/verification service is a particularly straightforward TDAS

operation. K and S band antennas and appropriate transponders simulate the

TDAS spacecraft to.user spacecraft forward and return links. A W band

simulation capability will have to be added to the WSGT.
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SECTION 7

TDAS GROUND TERMINAL HARDWARE
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7.1
	

TGT GENERIC HARDWARE CONFIGURATION

A generic hardware configuration of the TGT is given in the accompanying

figure. The salient assumptions regarding the ground terminal design are

listed below:

•	 tracking terminal;

•	 frequency reuse feed subsystem;

a	 flexibility of polarization orientation;

•	 cooled low noise amplifier;

•	 automatic equipment status/fault monitoring;

•	 deicing provisions;

•	 adequate reflector smoothness; and

•	 minimal gain loss due to pointing/tracking errors.

The generic TGT has appropriate hardware to receive 2 KSA, 2 SSA, 5 WSA,

1 laser SA, and the SMA channels and to transmit two forward link signals

each for the KSA, SSA, WSA cnd SMA channels. The TDAS satellite control

function included in the configuration is applicable only to the TGT's

associated with the WSGT and the GGT.
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7.2.1	 TGT Monitoring and Control Concept

The TGT Monitoring and and Control concept is based on distributing in-

telligence to the subsystem level to allow automonous subsystem operations

F and and recovery (with manual over-ride). The sytem consists of an execu-

tive computer that communicates with the NCC and microprocessor interfaces

with each subsystem. Each string of subsystems communications hardware is

fully spared. The microprocessor automatically configures each subsystem,

sets up the appropriate hardware string and automatically switches to the

spare string when subsystem faults are detected.
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7.2.2	 TGT Monitoring and Control Elemebt

The TGT monitoring and control executive computer sends the subsystem micro-

processor messages that include: set-up data, configuration control messages,

operations data, updates and test messages. In return it receives performance

and status data from the subsystem microprocessor. The executive computer

resignals to scheduling and operations messages from the NCC and sends the

NCC performance and status messages.
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7.3	 TGT EQUIPMENT COMPLEMENT

The list of key eq
uipment for the generic TGT is given in the table. Three

equipment groups are shown: RF equipment; baseband 
equipment; and controland interface equipment. TDAS satellite control e quipment would be required

only at the TGT's associated with the WSGT and the GGT.
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TGT PARAMETERS

In the following tables we list the parameters of the TGT for both K u and Ka

bands. To minimize TDAS spacecraft power and weight requirements, we have

assumed 60 ft. antennas for ground terminals in either frequency band.

No mafor technical difficulties are anticipated in realizing the TGT para-

meters and characteristics listed in the tables.
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7.5	 TGT HPA SIZING AT Ka BAND

7.5.1	 Transponder Signal Flow

To determine the required HPA power rating we.w111 compute the flux density

at the aperature of the TDAS receive antenna required to support a 300 KBPS

quadraphase uplink signal at a 10 -5 BER. The flux density will be found

by first computing the required uplink carrier power indicated in the

figure.

Since rain attenuation can be quite severe at 30 GHz, it is important to

determine if uplink power requirements with rain margin are reasonable.
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46

Tj

Uplink Carrier Power

We assume the uplink C/N
o to be 10 db stronger than the forward link C/N 0

and the uplink system temperature to be 30 db - O K. The accompanying link

budget indicates a required uplink power of -123.6 dbW.
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The required flux density at the TDAS antenna is computed in the budget 	

..Ipresented in the table. The computations result in a required flux density 

of -117 dbW/m2 . With this flux density a  adequate drive level is obtained

for the TWT with a transponder gain of 98 db. The design value chosen for 	 I

the flux density is -113 dbw/m2.
ii

r

7.5.3	 Flux Density
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7.5.4	 TGT HPA POWER REQUIREMENT

The link budget shown derives the TGT HPA power rating from the flux density

required at the TOAS antenna aperature. A reasonable value of 50 watts is

obtained for the assumptions given in the budget, including a 25 db rain

margin. A 31 db rain margin could be achieved with a 200 watt HPA.
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7.6	 POLARIZATION ISOLATION

Section 4.5.5 discussed the effect's of rain attenuation on orthogonally

polarized downlink signals. It was shown there that it is possible for

the cross-polarization discrimination ratio to be as low as 20 db at the

99.9% availability level for some of the site and constellation combina-

tions. To achieve adequate isolation in such cases, it may be necessary to

employ adaptive compensation techniques to restore the orthogonality of

the original signals. A technique to transform two nonorthogonal ellip-

tically polarized signals into two orthogonal linealy polarized signals

is illustrated in the figure. Such techniques require trading signal

strength for increased polarization isolation.
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7.7	 TGT TECHNOLOGY ISSUES

In assessing the technologies identified to achieve the performance goals

of the TGT, several key issures emerge. Issues are listed for the antennas,

the LNA, the HPA, the baseband equipment and the diversity terminal. These

issues relate to the readiness of the technology for applications, rather

than to questions of basic technology development.
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