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EXECUTIVE SUMMARY 

Task 10 o f  t h e  Track ing  and Data A c q u i s i t i o n  Study f o r  t h e  1990 's  was 

cha r te red  w i t h  f o u r  o b j e c t i v e s  : 

1 .  D e f i n i t i o n  o f  a  TDAS frequency u t i l i z a t i o n  p lan  

2 .  D e f i n i t i o n  o f  a  Radio Frequency I n t e r f e r e n c e  (RFI)  model 

3 .  D e f i n i t i o n  o f  system s u r v i v a b i l i t y  t o  RFI 

4. D e f i n i t i o n  o f  requirements f o r  r o b u s t  o p e r a t i o n  i n  RFI. 

These o b j e c t i v e s  were achieved, and two f requency management i ssues were 

i d e n t i f i e d  as be ing  impor tan t  t o  TDAS. These i ssues  address: ( 1 )  s e l e c t i o n  

o f  f requency bands f o r  TDAS space-to-space l i n k s ;  and ( 2 )  t h e  a p p l i c a t i o n  

o f  30/20 GHz techno logy  t o  TDAS earth-space l i n k s .  The p r imary  frequency 

p lann ing  o p t i o n s  f o r  TDAS a re  summarized i n  F iqures  ES-1 and ES-2. 

Frequency Bands f o r  TDAS Space-to-Space Appl i c a t i o n s  

With respec t  t o  f requency band s e l e c t i o n  f o r  TDAS space-to-space l i n k s ,  

t h e  60 GHz W-band (54.25 GHz - 58.2 GHz, and 59 GHz - 64 GHz) i s  t h e  p r i m a r y  

cho ice  f o r  t h e  augmented s i n g l e  access s e r v i c e  (WSA) suppor t i ng  data r a t e s  

f rom 50 kbps t o  50 Mbps. W-band i s  a l s o  a  f a l l  back cho ice  f o r  TDAS space- 

to-space c r o s s l i n k s  i f  l a s e r  techno logy  f a i l s  t o  mature i n  t ime  f o r  TDAS. 

A  t o t a l  bandwidth o f  8.95 GHz i s  a l l o c a t e d  f o r  space-to-space a p p l i c a t i o n s  

between 54 GHz and 64 GHz. T h i s  a l l o c a t i o n  o f f e r s  wide l a t i t u d e  f o r  channel 

f requency assignment, and mu1 t i p l e  access v i a  f requency s e l e c t i o n  (FDMA) . 
I n  a d d i t i o n ,  t h e  60 GHz c e n t e r  f requency suppor ts  l a r g e  s ingle-channel  

bandwidths d e s i r e d  by c e r t a i n  ea r th -obse rva t i on  spacec ra f t ,  and r e q u i r e d  

f o r  TDAS c r o s s l i n k s .  Atmospheric a t t e n u a t i o n  i n  excess o f  10 dB over  

t h e  e n t i r e  band, and g r e a t e r  than 100 dB ove r  more than 4  GHz, o f f e r s  s i g n i -  

f i c a n t  p r o t e c t i o n  aga ins t  t e r r e s t r i a l  sources o f  RFI. No f requency l e s s  

than 54 GHz o f f e r s  t h i s  p r o t e c t i o n .  F i n a l l y ,  t h e  s p e c i f i e d  bandwidth (54.25 

- 58.2 GHz and 59 - 64 GHz) i s  a l l o c a t e d  t o  t h e  i n t e r - s a t e l l i t e  s e r v i c e  

on a  p r imary  bas is .  Use of these f requenc ies  would be supported and pro-  

t e c t e d  by  U.S. and i n t e r n a t i o n a l  r e g u l a t o r y  p o l  i c y .  

PRECEDING PAGE BLANK NOT W D .  







FIGURE ES-2: KA-BAND AND W-BAND FREQUENCY PLANNING OPTIONS FOR - TDAS 
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S-band and K-band channel s are requi red for compati bi 1 i ty with TDRSS , but 
it would be nearly impossible to broaden TDRSS - authorized bands for support 
of augmented TDAS services. These bands are becoming increasingly congested, 

offer neglibible clear-sky attenuation ( <  - 1 dB), and provide limited reg- 

ulatory support for operational space-to-space communication links. The 

lack of atmospheric protection against terrestrial RFI is a factor in the 

RFI problems anticipated to TDRSS. These bands offer insufficient fl exi bi 1 i ty 
for augmented TDAS services. 

Lasers represent the primary technological choice for TDAS space-to-space 
cross-links and ultr-high rate single-access service. Their advantages 
are in large bandwidths/high data rates, heterodyne downconversion to micro- 

ware frequencies with some receiver structures, and narrow beamwidth imply- 
ing high gain. However, the high pointing accuracy requirement may repre- 
sent a weight penalty for some user spacecraft. 

Frequency Bands for TDAS Earth-Space Applications 

The 30/20 GHz bands represent the most desirable option for TDAS Earth- 
space links. These bands offer lGHz bandwidth, primary allocation status 
for all TDAS Earth-space services, and freedom from aeronautical-mobile - 
users (a source of downlink RFI) .* Lower frequency bands lack one or more 

of these desirable features. It would be possible to broaden TDRSS - 
authorized uplink and downlink bands for TDAS services. The U.S. Government 
Table of Frequency A 1  locations assigns an additional 100 MHz centered at 
15.3 Ghz, and 150 MHz below 14.2 GHz, to Space Research. But these Ku-band 

allocations offer less bandwidth than Ka-band allocations, and only secondary 

allocation status. At frequencies above 30 GHz, technology is less mature 

* The regulations proposed by the FCC/NTIA, and currently undergoing rat- 
ification, restrict government use of the 30/20 GHz bands for the fixed- 
satellite service to military users. This restriction is contained in 
Government footnote GYY4 to the U.S. Table of Frequency Allocations. As 
presently constituted, this footnote precludes TDAS use of 30/20 GHz. 
However, considering the anticipated sharing of TDAS among civilian and 
military users, it is reasonable to assume that negotiation through IRAC 
and the NTIA could open these bands for TDAS. 



and rain-induce attenuation is greater. These considerations make 30/20 

GHz the nominal best choice for TDAS Earth-space links. The 90/80 GHz 

bands represent an alternative to 30/20 GHz, but these bands require 

much larger margins ( >  > 10 dB additional margin for typical ground sites) 

to achieve equivalent link availability in the presence of rain. 



SECTION 1 

INTRODUCTION 

This final report presents study results of Task 10 of the Tracking and 

Data Acquisition Study for 1990's. Task 10 was chartered with four objec- 

t i  ves : 

1 .  Definition of a TDAS frequency uti l izat ion plan 

2 .  Definition of Radio Frequency Interference (RFI) model 

3 .  Definition of system survivability to RFI 

4. Development of requirements for  robust operation in RFI 

The goal i s  to provide information for engineering assessment of TDAS 

a1 ternatives. The s e t  of frequency band options i s  kept as broad as 

possible, providing maximum-flexibi 1 i ty for  future tradeoff analysis. A1  1 

frequency bands that  could be uti l ized in a TDAS are identif ied,  and the 

characteristics of each band are defined. Potential RFI impact on TDAS 

survivability i s  discussed, and techniques for  mi t i  gating RFI t o  yield 

greater operational robustness are identified. Since. the study e f fo r t  

documented herein wi 11 support future development of strawman TDAS designs , 
the discussion of RFI and mi tigating techniques i s  intentional 1y kept 

general. The goal i s  t o  direct  the system designer's attention t o  RFI 
scenarios that  could affect  particular designs , and hi ghl i g h t  mi t i  gati on 

techniques that could be incorporated in response t o  RFI. 

1 . 1  STUDY APPROACH 

The study approach i s  i l lus t ra ted  in Figure 1-1. Primary source documents 

[ I ]  - [5] were examined to  identify candidate frequency bands for TDAS 

servi ce. These bands are those currently employed for TDRSS operations, 

and those authorized for TDAS type service by proposed regulations of the 

NTIA/FCC. Additional bands in the optical region of the spectrum were 

identified based on technology projections [6], [7], [14]. 



FIGURE 1-1: STUDY APPROACH 
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These candidate frequency bands were investigated wi t h  respect t o  surviva- 

b i l i t y  and robustness against natural and manmade radio frequency interference. 

The object of the RFI investigation i s  t o  project vulnerability of TDAS 

t o  a1 ternate radio sources and identify operating techniques t h a t  could 

mitigate projected interference. 

1 . 2  FREQUENCY PLAN OPTIONS 

The frequency plan options developed in Task 10 are summarized in Tables 

1-1 and 1-2, where Table 1-1 addresses space-to-space link options and 

Table 1-2 addresses earth-space link options. 

Table 1-1 collates frequency bands from TDRSS, candidate bands from 

references [2]  - [5] ,  and optical bands judged technologically mature 

by references [6] ,  [7] ,  1141 . 

The f i r s t  two columns identify a  frequency band and associated bandwidth, 

with band edges in GHz and bandwidth in MHz. There i s  a  generally rising 
trend in allocated bandwidth as frequency increases, with a l l  allocated 

bands above 25 GHz offering greater than 1 GHz of bandwidth. 

Column 3 tabulates atmospheric attenuation on a  zenith-looking Earth-space 

link. This i s  the lowest value of attenuation t h a t  would ever be 

experienced, with lower elevation angles or weather effects  ( i  .e .  , rain)  

tending to  increase overall attenuation. By appropriate selection of 

a  frequency band, atmospheric attenuation can be uti l ized t o  protect space- 

space links from te r res t r i a l  RFI emitters. Frequency bands with th i s  

characterist ic  exis t  above 50 GHz. 

Column 4 identif ies frequency bands allocated for the ful l  range of TDAS 

space-to-space applications. These applications include space research, 

space operations, data return for earth exploration, data return for 

meteorological observations, and other unspecified inter-sate1 1 i t e  1 inks. 

General -purpose bands, which support a1 1  these appl ications equal 1 y ,  arE 



TABLE 1-1 

AVAILABLE FREQUENCY  BANDS^ 
SATELLITE-SATELLITE SERVICE 

THIRD AND FOURTH NOTICES OF INQUIRY IN THE PATTER OF IMPLEMENTATION OF THE 
FINAL ACTS OF THE WORLD ADMINISTRATION RADIO CONFERENCE (GENEVA, 1979). 

FROM CRANE, 1971, 174 REPRODUCED IN J.J. SPILKER, JR., DIGITAL COMMUNICATIONS 
BY SATELLITE (PRENTICE-HALL, INC. , ENGLEWOOD CLIFFS, 1977) P .  1 70. 

TDRSS FORWARD S-BAND LINKS ARE NOT SUPPORTED IN THE PROPOSED TABLE OF U.S. 
GOVERNMENT ALLOCATIONS. 

CONSISTENT WITH MARC '79, THE UPPER 10 MHZ OF THIS BAND (2.29-2.30 GHZ) 
WOULD ONLY BE USED BY TDAS TO SUPPORT DEEP-SPACE PROBES WHILE STILL IN 
THE VICINITY OF EARTH. 

1-4 



T A B L E  1-1 

A V A I L A B L E  FREQUENCY BANDS 

S A T E L L I T E - S A T E L L I T E  S E R V I C E  

SUMMARY (CONT)  

O P T I C A L  BANDS ARE NOT ADDRESSED I N  CURRENT OR PROPOSED REGULATIONS 

FREQUENCY 
BAND 
( GHz) 

1 8 5 - 1 9 0  

O P T I C A L  
-532 nm 
-832 nm 
- 1 0 6 0  nm 

LEE ,  SCHROEDER, AND CLANG, R E F  [9] 

BANDWIDTH 
(MHz ) 

5 0 0 0  

> 1 0 0 0 0  

PRIMARY 
A L L O C A T I O N  

YES 

( N O T E 5  ) 

CLEAR-SKY 
ATMOSPHERIC 
 ATTENUATION^ 

( d B )  

( T B D )  

< 5 (NOTE 6 )  

ALLOCATED FOR A L L  
TDAS SERVICES 

YES 

(NOTE 5 ) 



TABLE 1-2 

AVAI LABLF FREQUENCY  BANDS^ 
EARTH-SATELLITE SERVICE 

SUMMARY 

SECOND, THIRD AND FOURTH NOTICES OF INQUIRY IN THE MATTER OF IMPLEMENTATION OF THE 
FINAL ACTS OF THW WORLD ADMINISTRATION RADIO CONFERENCE I GENE:!A, 1579)  

CURRENTLY LIMITED TO MILITARY APPLICATIONS BY FOOTNOTE GYY4 TO THE U.S. 
GOVERNMENT TABLE OF FREQUENCY ALLOCATIONS. 

TDAS 
ALLOCATION 

PRIMARY 

PRIMARY 
EXCEPT 

0.402-0.403 

SECONDARY 

PRIMARY 

SECONDARY 

PRIMARY 

PRIMARY 

PRIMARY 

SECONDARY 

SECONDARY 

PRIMARY 

FREQUENCY 
BAND 
(GHz) 

0.137-0.138 

0.4001 5-0.401 
0.401-0.402 
0.402-0.403 

0.460-0.470 

1.427-1 .429 

BANDWIDTH 
(MHz) 

1 

2.85 

10 

2 

AERONAUTICAL- 
MOBILE 

ALLOCATION 

NONE 

NONE 

NONE 

PRIMARY 

1.99-2.11 

2.2-2.9 

7.19-7.235 

8.025-8.175 
8.175-8.215 
8.215-8.4 

8.45-8.5 

13.25-13.4 
13.4-14.0 
14.0-14.2 

14.5-14.7145 
14.7145-15.1365 
15.1365-15.35 

20.2-21.2 

TDAS SERVICES 
ALLOCATED 

DOWNLINK 

UPLINK 
+ 

DOWNLINK 

DOWNLINK 

UPLINK 

UPLINK 

DOWNLINK 

SOME UPLINK 

DOWNLINK 

SOME UPLINK 
+ 

ALL DOWNLINK 

SOME UPLINK 
SOME DOWNLINK 

DOWNLINK 

2 NONE 

9 PRIMARY 

45 NONE 

475 SECONDARY 

950 PRIMARY 

I PRIMARY 8 50 

1000 NONE 



TABLE 1-2 

A V A I L A B L E  FREQUENCY BANDS 

EARTH-SATELLITE SERVICE 

SUMMARY (CONT) 

L 

GOVERNMENT TABLE OF FREQUENCY ALLOCATIONS 

TDAS 
ALLOCATION 

PRIMARY 

PRIMARY~ 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY, 

PRIMARY 

PRIMARY 

U.S. 

TDAS SERVICES 
ALLOCATED 

U P L I N K  

DONWLINK 

U P L I N K  

U P L I N K  

SOME U P L I N K  
SOME DOWNLINK 

U P L I N K  

DOWNLINK 

U P L I N K  

DOWNLINK 

DOWNLINK 

U P L I N K  

DOWNLINK 

U P L I N K  

FOOTNOTE GYY4 TO THE 

AEflONAUTICAL- 
MOBILE 

ALLOCATION 

NONE 

NONE 

NONE 

PRIMARY 

SECONDARY 

PRf  MARY 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY 

PRIMARY 

APPLICATIONS BY 

FREQUENCY 
BAND 
( GHz ) 

3 0 . 0 - 3 1 . 0  

3 9 . 5 - 4 0 . 5  

42 .5 -43 .5  

4 7 . 2 - 5 0 . 2  

6 5 - 6 6  

7 1  - 7 4  
7 4 - 7 5 . 5  

81 -84 

9 2 - 9 5  

1 0 2 - 1 0 5  

1 4 9 - 1  5 0  
1 5 0 - 1  5 1  
1 5 1 - 1 6 4  

2 0 2 - 2 1  7 

2 3 1 - 2 3 5  
2 3 5 - 2 3 8  
2 3 8 - 2 4 1  

2 6 5 - 2 7 5  

CURRENTLY 

BANDWIDTH 
(MHz ) 

1 0 0 0  

1 0 0 0  

1 0 0 0  

3 0 0 0  

1 0 0 0  

4 5 0 0  

3 0 0 0  

3 0 0 0  

3 0 0 0  

5 0 0 0  

1 5 0 0 0  

1 0 0 0 0  

1 OPOO 

L I k I T E D  TO M I L I T A R Y  



tabulated with a "YES". Other bands, for which service is generally restrict- 
ed to one of the application types noted above, are tabulated with a "NO". 

For example, TDRSS K-band services are located in bands allocated on a 

secondary basis to space research. NASA depends on frequency management 

and coordination, with external agencies and entities, to maintain these 
bands without interference. The management risk for TDAS can be reduced if 

new services (i.e., those not constrained to be compatible with TDRSS) are 

located in general-purpose bands such as "Intersatellite" (for space-to- 

space connectivity) and "Fixed-Sate1 1 ite" (for space-to-earth connectivity) . 

Column 5 describes the priority of the relevant inter-satellite allocations 

relative to other services that share the band. Allocations are either 

primary or secondary, with primary services given preference in the event 
of conflict. For example, with TDAS operating as a primary service, and 
with RFI from a secondary service, the secondary service would be required 

to modify its operations and cease interference. A1 ternatively, TDAS would 

be required to modify operations if the positions were reversed.* The 

security value of a primary allocation is clear. 

Optical wavelengths are candidates for TDAS inter-satellite service. These 

wave1 engths are currently outside the scope of national and international 

allocations, and therefore available for any application. The draft fre- 

quency plan identifies optical wavelengths as suitable for space-space 

applications only--weather affects make optical wavelengths unsuitable for 
fixed-satell ite service in an operational system such as TOAS.** Current 

optical techno1 ogies that show promi se for near-term space-qua1 if ication 

are in the infrared and blue-green regions of the spectrum [6], [14] 

* 
The order of assignment is unimportant in cases of interference across 
allocation levels. But with interference among services at the same 
a1 location 1 eve1 , the 01 dest service has preference. 

** 
Cloud-induced losses > 5 dB can be expected approximately 85% of the 
time [9], page 95. 



Viewed as a whole, Table 1-1 indicates that  allocated bands above 50 GHz 

are desirable in many respects from a frequency management perspective. 

These bands offer  primary a1 locations for  a1 1 TDAS space-to-s~ace 1 inks, 

with bandwidths in excess of 1 GHz and atmospheric protection against 

t e r res t r i a l  RFI emitters. Selected bands below 50 GHz may be suitable 

for  speci a1 appl ica t i  ons. 

Table 1-2 coll ates earth-sate1 1 i t e  bands from TDRSS and proposed regulations. 

Columns 1 and 2 are similar to Table 1 -1 ,  describing frequency band and 

bandwidth for each s e t  of adjacent allocated bands. For example, three 

adjacent bands from 0.40015 GHz to  0.403 GHz have a combined bandwidth 

of 2.85 MHz. Whereas the lowest frequency fo r  space-to-space appl ications 

was 2.02 GHz, earth-space allocations extend down to 137 MHz. The 

relat ively narrow bandwidths a t  lower frequencies make these bands 

unsuitable fo r  trunking or high data rate downlinks; b u t  they may be 

used for special purpose and command links. 

Column 3 identif ies the a1 location level of the aeronautical-mobile service. 

This service presents a threat  to the TDAS-ground downlink, since an airborne 

platform could in ject  high-level RFI direct ly into the mainbeam of the 

ground receive antenna. Legal precedence over the aeronautical service 

i s  highly desirable, t o  protect against th i s  form of unintentional in ter-  

ference. Column 3 may be compared t o  column 5 to determine the precedence 

relationship. Bands not allocated to the aeronautical-mobile service ( " N O N E "  

in column 3 )  are most preferred in th i s  regard. (See Section 3 for a more 

complete discussion of th i s  problem). 

Columns 4 and 5 identify TDAS services that  can be supported and t he i r  level 

of allocation. For example, the band 137-138 MHz i s  allocated t o  a l l  down- 

link services on a primary basis. The terms "SOME UPLINK" and "SOME DOWN- 

LINKS" identify specif ic allocations in the related band. The 7.19-7.235 GHz 

band, for  example, i s  limited to uplink applications in the space research 

service. This band would be nominally off-limits for  space operations, 

earth-exploration, e tc .  The exact lfmitations are identified in Section 2 ,  

Table 2-4. 



In  the 20-40 GHz range, government use of a l l  bands allocated t o  services 

applicable t o  TDAS i s  limited to  military applications by footnote GYY4 

(U .S .  Table of Frequency A 1  locations).  However, cooperation among government 

users of the spectrum i s  possible, and  probably desirable. This i s  particularly 

true for  TDAS, where the military and a l l  other users would benefit through 

shared use of optimal resources.* This issue highlights the need for ongoing 

frequency management a t  the policy level.  Current decisions being made by 

frequency management policy makers will determine the avai labi l i ty  of the 

30/20 G H z  band to  TDAS applications. 

1.3 SURVIVABILITY A N D  ROBUSTNESS AGAINST RFI 

In the context of th i s  report, the term Radio Frequency Interference 

(RFI) i s  restr icted to unintentional interference t o  TDAS communication 

1 inks by electromagnetic radiation. This includes natural and manmade 

sources. In th is  context, the terms "survivability" and "robustness" 

should be viewed in the following quali tat ive sense: A survivable system 

i s  able . t o  operate in any anticipated RFI environment. A robust system, 

on the other hand, provides some level of resistance and graceful degradation 

in the presence of harsh RFI environments without guaranteeing a specific 

level of performance. 

For the purpose of long rang planning four classes of radio frequency 

interference (RFI) can be identif ied:  

1. Natural sources. The sum emi t s  electromagnetic radiation 

a t  a l l  frequencies of interest  to TDAS, and therefore represents 

an important source of RFI for selected geometries. 

* 
For a given weight and power limitation, shared channel resources 
should result  in greater capacity and avai labi l i ty  for  a l l  users, 
relat ive t o  a system with physically duplicated components a t  different  
frequency bands. 



2. Sel f-interference. In system configurations where several 

user s a t e l l i t e s  (USATs) share a common operating frequency, 

self-interference could lead t o  unacceptable degradation of 

user signaling. 

3 .  Other civi l ian services. Many frequency bands that  are physically 

appropriate for TDAS are allocated jointly t o  several radio 

services. In cases where a non-TDAS service i s  granted higher 

allocation status relat ive t o  TDAS, degradation of TDAS signaling 

could take place without regulatory remedy. 

4. Military services. Certain strategic and tact ical  radars 

represent high-power sources of unintentional RFI. These 

sources currently represent a degradation with respect t o  

TDRSS frequency bands which can be expected to become more 

severe in the future. 

TDAS survivability t o  these RFI sources i s  a function of projected system 

architecture, spacecraft design, user mission profiles and time of year 

(part icularly with respect t o  solar outages). A t  the current study 

level ,  a preliminary discussion of survivabil i ty i s  therefore 1 imi ted 

t o  potential RFI scenarios. Man-made RFI emitters are assumed t o  fu l ly  

uti 1 ize the RF spectrum consistent with proposed FCC/NTIA regulations 

(based on WARC '79  and the FCC Notices of Inquiry in response t o  the 

WARC) .  

TDAS survivability and robustness can be improved by incorporation of 

elements from the following l i s t :  

1. A 1  ternate routing capabi 1 i  ty to bypass 1 inks with temporary 

RFI; 

2. Frequency band selection t o  take advantage of atmospheric 

attenuation; 



3. Coding/interleaving optimized for RFI; 

4. Improved hardware to provide higher transmitt EIRP or receive 

G/T, and the use of adaptive techniques such as antenna pattern 

nu1 1 ing; 

5. Command verification protocols to trap undetected errors in 

forward 1 ink commands. 

These techniques are related to particular sources of RFI.in the discussion 

below, and addressed in greater detail in Section 4 of this report. 

Solar RFI causes a "sun transit outage" which occurs when pointing 

angles from a receiving antenna to a transmitting satellite and the 

sun are so near coincidence that both are within the receiving antenna 

beamwidth. The receiving antenna can be at an earth station or on a 

satellite. Solar RFI is paricularly troublesome on and around the spring 

and autumn equinoxes, when satellites in .near-equatorial orbits have 

high probability of achieving colinearity with the sun. In addition, 

spacecraft in nonequatorial orbits have windows of vulnerability which 

become larger in time as orbital inclination increases. 

During any solar/satellite conjunction*, reliable communication is impossible 

during actual colinearity. But at the cost of the increased spacecraft 

power/wei ght , the effects of con junction can be mi ti gated be improved 
transmit EIRP, receive G/T, or usage of lower-rate FEC coding. An alternative 

approach is maintenance of a dual-routing or mu1 tiple-routing capability. 

Since solar conjunctions are easily predicted for a1 1 spacecraft and. 

spacecraft-earth terminal pairs, alternative routing through the multi- 

satellite TDAS network can yield signficant gains in channel availability. 

The cost here is in ground software complexity, where additional constraints 

would be imposed on the TDAS scheduling algorithms. 

* A receiving station views a transmitting spacecraft as well as the 
sun in the high-gain portion of its antenna beam. 



RFI caused by sel f-interference can become a problem i n  system configurations 

that rely on beam discrimination t o  separate transmissions from various 

user spacecraft. RFI may exis t  when a TOAS s a t e l l i t e  attempts t o  service 

two user spacecraft with small angular separation (as viewed from TDAS). 

Appropriate schedul i n g  techniques can mi t igate  th is  problem, by grouping 

user spacecraft i n  se ts  such that members of a set are angularly separate 

from one another a t  the time of service. TDAS then services one set 

a t  a time, without self-interference. An important element of such 

scheduling i s  the al ternative routing capability discussed above. Simulation 

would be desirable to determine the improvement available with these 

techniques for a particular TDAS configuration and user constel la t ion.  

Other mitigating techniques include improved receiver antenna gain, 

improved modulation techniques that res is t  interference ( i  . e . ,  coding), 

or techniques that provide diversity against i t  ( i  . e . ,  FDMA, TDMA, CDMA, 

polarization diversi ty,  etc.  ) .  

Lawful interference from other civi l ian services i s  due t o  the shared 

allocation strategy pursued by FCC/NTIA. All frequency bands of in teres t  

are jointly a1 located to several user classes. For example, frequency 

bands allocated to space-earth downlink operations may be simultaneously 
allocated to  fixed and mobile t e r res t r i a l  user services. 

Operating frequencies should be chosen t o  minimize the chance of conf l ic t  

as well as maximize the TDAS precedence level should conf l ic ts  occur -- 
t h u s  insuring that  TDAS services are protected w i t h  the force of regulation. 

The ideal s i tuat ion i s  a primary allocation for  TDAS-type service,  with a l l  

other services allocated on a secondary basis only. Less desirable s i tua-  

tions are shared allocations on a primary basis to TDAS as well as other 

services , or secondary a1 1 ocati on s t a tus  to  TDAS - type services. Regulatory 

precedence fo r  TDAS i s  most desirable on space-to-space link al locations,  

where variable geometries among TDAS and user spacecraft permit interference 

from vir tual ly  a1 1 t e r r e s t r i a l  locations. Space-space 1 inks can be protected 

by judicious selection of frequency bands i n  the atmospheric absorption regions 

around 60 GHz. Attenuation of t e r r e s t r i a l  emissions in excess of 50 dB 



can be achieved by careful band selection,  making the question o f  t e r res t r i a l  

RFI vir tually moot. Up/down link allocations cannot take advantage of  

atmospheric attenuation, b u t  ground equipment design can mi t igate  most pro- 

blems o f  manmade RFI. A combination of high-power, h i g h  gain u p l i n k  trans- 

mission can protect the uplink, while the h i g h  gain receiver possibly coupled 

w i t h  sidelobe suppression equipment can protect the downlink. The major threat 

with respect t o  downlink RFI becomes the mobile aeronautical service, which 

could in ject  RFI from an airborne transmitter directly i n t o  the main beam of  

the TDAS ground receiver. A primary allocation status for  TDAS i s  the most 

straightforward mi t i  gation technique in th is  case, b u t  certain modulation 

techniques may prove effective w i t h  further research. In part icular ,  coding 

and interleaving may prove effective depending on projected a i rc ra f t  dynamics 

and the radio operation regime of airborne users. 

Military services of the United States and foreign countries employ radar 
transmitters that  pose an unintentional hazard to  TDAS. Main beam-to-main 

beam coupl i n g  from s t ra tegic  radars can exis t  regardless of emitter location 

on the ea r th ' s  surface. Tactical radars, with the i r  relat ively low-elevation 

scanning angles, are chiefly a problem near the ea r th ' s  limb (as viewed by 
the receiving spacecraft) .  Space-to-space 1 inks are particularly vulnerable 

to radar emissions, due to the re1 at ive spacecraft motions that  bring different  

parts of the earth i n t o  view of the receiving spacecraft. Characterization 
of th i s  hazard i s  d i f f i cu l t ,  particularly with respect to  current and future 

planning of foreign nations. In view of these d i f f i cu l t i e s ,  a n d  the 

documented impact on TDRSS [ I l l ,  i t  i s  prudent to  incorporate techniques 

to  guarantee TDAS robustness. These techniques include: 

1 . A1 ternative routing capabil i  ty.  

2. Band selection t o  optimize atmospheric screening. 
3. High-gain receive antennas t o  minimize coupl i  ng.  

4. Coding/interleaving optimized for  projected RFI. 



Since most ground terminals are a t  inland locations within CONUS, and most 

U.S. radars are located near the coasts,* up /down links are less vulnerable t o  

radar interference than space-to-space links. Coastal and  near-coastal 

s i t e s  may experience vulnerability t o  U.S. tact ical  radar emissions as a 

function of frequency band, ground s i t e  equipment, TDAS orbital location, 

t e r res t r i a l  geography in the vicinity of the ground s i t e ,  a n d  radar operating 

regime. 

With respect to  the general RFI problem described above, command verification 

protocols can provide significant  operational robustness even with degrada- 

tion of data. Comand verification involves echo-back of commands t o  the 

originating authority, where the echo i s  compared to  a copy of the original 

command. If  the echo matches the copy, a go-ahead signal i s  transmitted. 

This signal triggers execution of the command, which was read b u t  not immediat- 

ly implemented by the receiving sate1 1 i t e .  Command cycle time i s  approximately 

tr ipled due to three transmissions instead of one ( i n i t i a l  command, echo- 

back and go-ahead) .** Command verification a1 so i nvol ves an increase i n 

spacecraft command processor complexity -- t o  handle echo-backs, latching of 

commands, verification timeout periods, e tc .  With these costs ,  however, the 

probabil i ty of uncommanded spacecraft action i s  vir tually el  iminated. 

1.4 ORGANIZATION OF REPORT 

This report i s  organized in 4 sections as follows: 

Section 

1 

CONTENTS 

Introduction. Discusses method01 ogy , major 

conclusions i n  the form of frequency plan options, 

and a description of report organization. 

Candidate Bands for TDAS Service. Discusses 

a1 1 bands authorized for TDAS inter-sate1 1 i t e  

and f ixed-sate l l i te  service. 

* Foreign radars are naturally excluded from CONUS. 

** Processor delays are assumed negligible relat ive t o  the propagation delays. 



Projected Surv ivab i l i ty  to  RFI. Projects  

impact of RFI on various bands i den t i f i ed  

in Section 2 ,  via a  geometric in te r fe rence  

model and a1 t e rna t e  se rv ices  authorized i n  

the In te rna t iona l  and U.S. Tables of 

Frequency A1 l oca t i ons .  

Techniques f o r  Robust Operation. Discusses 

modulation, a r ch i t e c tu r a l  and operat i  onal 

techniques capable o f  mi t i  gat ing RFI. 



SECTION 2 

CANDIDATE BANDS FOR TDAS SERVICE 

This section ident i f ies  candidate frequency bands for  TDAS use. These bands 

are suggested by three sources: 

1.  Current TDRSS frequency ut i l iza t ion  plan. 

2. Proposed regulations of the NTIA/FCC, consistent with the f inal  

acts  of the NARC (Geneva, 1979). 

3 .  Techno1 ogy projections fo r  1 aser-based communication systems. 

The in tent  a t  t h i s  stage i s  to  identify a broad s e t  of frequency bands 

sui table fo r  TDAS, maintaining suff ic ient  la t i tude  to allow engineering 

tradeoffs a t  a l a t e r  date. The union of a l l  frequency bands suggested by 

the above three sources i s  developed in t h i s  section -- no e f fo r t  i s  made 

to  eliminate candidate bands on the basis of engineering or  economic 

feas ib i l i ty .  However, issues of concern are highlighted in the t ex t  

wherever imp1 ementati on of a part icular  frequency band would encounter known 

obstacles. The contributions of the above sources are discussed in turn 

be1 ow. 

2.1 TDRSS FREQUENCY UTILIZATION PLAN 

The TDRSS frequency bands are identif ied in Table 2-1. These bands represent 

proven technology and can be made interoperable with TDAS to support 

t ransi t ion service. Offsetting these advantages, TDRSS bands will be 

affected by RFI from man-made t e r r e s t r i a l  emitters (Section 3 ) .  These 

emitters ex i s t  a t  S-band and K-band, affecting forward and return 1 ink 

service between TDRSS and user s a t e l l i t e s .  The problem i s  currently 

most severe a t  S-band, where signigicant depl oyrnents of a i r  defense radars 

share the TDRSS bands. Main-beam-to-main-beam coup1 ing wi 11 occur with 

re la t ive ly  high probability. 



TABLE 2 - 1  

TBRSS FRE2UENCY BANDS 

S e r v i c e  Frequency 1 (MHz) 

Forward Links 

MA 2103 - 2110 

SSA 2020 - 2123 

KSA 13748 - 13802 

j Return Links 

i MA 2284 - 2290 
SSA 2200 - 2300 

KSA 14888 - 15119 

Composite Down1 ink  2 13401 - 14044 

Composi t e  Up1 ink  2 14599 - 15226 

1 Frequency band edges a r e  g iven  t o  t h e  n e a r e s t  MHz, a s  sensed  

by t h e  r e c i p i e n t .  

2 Composite bandwidths f o r  up l ink  and downlink a r e  no t  f u l l y  

occupied .  



K-band i n t e r f e r e n c e  w i l l  be l e s s  severe because o f  1  i m i  t e d  deployment 

o f  K-band equipment, t he  i n t e r m i t t e n t  o p e r a t i n g  regime o f  may o f  these 

rada r  se ts ,  and the  a p p l i c a t i o n  o f  these radars  t o  p r i m a r i l y  t a c t i c a l  

miss ions .  The r e l a t i v e l y  low main-beam e l e v a t i o n  angle o f  these t a c t i c a l  

radars  i m p l i e s  low p r o b a b i l i t y  o f  main-beam-to-main-beam coup l i ng  except  

when TDRSS i 11 umi nates t e r r i t o r y  near the  e a r t h  ' s  1  imb. 

Many of TDRSS's a n t i c i p a t e d  problems w i t h  RFI stem from a  l a c k  o f  knowledge 

of these RFI sources when t h e  TDRSS des ign  was f i n a l i z e d .  Th i s  y i e l d e d  a  

system c o n f i g u r a t i o n  t h a t  i s  suboptimum f o r  t h e  a c t u a l  envi ronment.  With 

proper  eng inee r ing  design, much o f  t h i s  impact  cou ld  be avoided i n  a  f o l l o w -  

on TDAS. On t h e  o t h e r  hand, t he  deployment l e v e l ,  s i g n a l  s t r e n g t h  and oper-  

a t i n g  regimes o f  m i l i t a r y  radars  a re  l i k e l y  t o  i nc rease  i n  t h e  coming decade. 

Any TDAS des ign  based on these f requencies f o r  TDAS-USAT l i n k  suppor t  must 

cons ide r  t h i s  i ssue  c a r e f u l l y .  

The u p l i n k / d o w n l i n k  TDRSS band i s  c u r r e n t l y  una f fec ted  by K-band rada r  RFI 

s i n c e  these l i n k s  te rm ina te  w e l l  w i t h i n  t h e  i n t e r i o r  o f  CONUS. Th i s  o f f e r s  

p r o t e c t i o n  a g a i n s t  U. S. t a c t i c a l  K-band radars ,  which a r e  t y p i c a l l y  deployed 

o u t s i d e  o f  CONUS. With respec t  t o  TDAS, system c o n f i g u r a t i o n s  w i t h  a l t e r -  

n a t i v e  ground s i t e s  near U.S. shore1 i n e  may exper ience some deg rada t i on  on 

K-band up1 i n k s  and down1 i n k s  as w e l l .  

2.2 PROPOSED ALLOCATIONS DUE TO WARC ' 7 9  

The FCC has pub l i shed  f o u r  No t i ces  o f  I n q u i r y  (NOI ' s )  i n  t he  m a t t e r  o f  

imp1 ementat i  on o f  t he  f i n a l  a c t s  o f  t he  World A d m i n i s t r a t i v e  Radio Conference 

h e l d  i n  Geneva i n  1979 [Z] - [5]. These No t i ces  o f  I n q u i r y *  coo rd ina te  

t h e  p o s i t i o n s  o f  t he  FCC and the  NTIA. The FCC** r e g u l a t e s  the  U.S. 

nongovernrnent te lecommunicat ions community. The NTIA*** coo rd ina tes  

* Hencefor th,  t h e  term "No t i ce (s )  o f  I n q u i r y "  should be const rued as 
r e f e r r i n g  t o  one ( o r  severa l  ) o f  re ferences [ 2 ]  - [5].  

** FCC = Federal Communications Communication 

*** NTIA = Na t i ona l  Telecommunication and I n f o r m a t i o n  A d m i n i s t r a t i o n .  



the U.S. government telecommunications community ( t h i s  includes uses 

of the radio spectrum for purposes other than communication, such as 

radiolocation ( r ada r ) ) .  These documents have been ra t i f ied  by the Senate 

and  are awaiting Presidential signature. They represent the current 

best estimate of the U.S. regulatory framework for the 1980's and beyond. 

The NO1 format i s  i l lus t ra ted  in Figure 2-1, which i s  a n  excerpt from the 

third NOI. The frequency spectrum i s  divided into dis jo int  b u t  contiguous 

intervals according t o  allocated service. For example, the band 20.2 - 
2 1 . 2  GHz i s  allocated t o  s a t e l l i t e  downlink service for fixed or mobile 

earth stat ions in government systems. The use of a l l  capitals  (i . e . ,  

"FIXED-SATELLITE") indicates primary allocation s ta tus ;  the use of lead- 

ing capital s ( i  . e . ,  "Standard Frequency and Time Signal -Satel 1 i  t e " )  

indicates secondary a1 location s ta tus .  In confl i c t s  among services a t  
d i f ferent  allocation levels ,  the secondary service must give way t o  the 

primary service. Primary services may continue t o  interfere with second- 

ary services, b u t  n o t  vice versa. Where they ex i s t ,  parenthetical expres- 

sions represent limitations on a particular service. For example, a l l  

services in Figure 2-1 are limited to space-to-earth links. Other bands 

would be needed to support earth-to-space uplinks or space-to-space cross- 

1 inks. Footnotes add additional 1 imitations and refinements t o  the a1 lo- 

cation table. In Figure 2-1,  the U.S. Government footnote G Y Y 4  1 imits the 

i 11 ustrated band t o  mi 1 i  tary operati ons. 

Since TDAS i s  envisioned primarily as a service of the U.S. qovernment, 

the Table of Government Allocations was examined for applicable service 

authorizations. Non-government use i s  not precluded by th i s  approach since 

coordination t h r o u g h  NASA would be a1 1 owed. A1 1 ocations appl icabl e t o  TDAS 

service are l i s ted  in Table 2-2, where a dichotomy i s  introduced t o  identify 

service classif icat ions by link type or end-use. In te r - sa te l l i t e  service 

applies to  any sa te l l i t e - to - sa te l l i t e  service, regardless of data type a n d  

spacecraft identi ty.  Fixed-sate1 1 i  t e  service simi 1 a r ly  appl i  es t o  any u p /  

downlink between a s a t e l l i t e  and ground s ta t ion.  Services classif ied by 

end use are nominally limited to particular user classes. I n  the absence 



FIGURE 2-1 : SAMPLE FORMAT E F C C  NOTICE OF INQUIRY 

(PROPOSED) 
.------------------+------------------+------------------ 

INTERNATIONAL TABLE .................... ------------------ 

A1 locat Gllz ion 1 1 A!:::i:n 

(1) 
l - - I - - - -P-=D-=- - l - - -  ----I-------------- -.---------.--I----= 

FIXED SATELLITE (space-to-Earth) 
Hobile-Satellite (space-to-Earth) 

FIXED-SATELLITE (space-to-Earth) 
MOBILE-SATELLITE (epace-to-Earth) 
Standard Frequency and Time Signal 

Satellite (epace-to-Earth) 

CYY4 In the bands 7250-7750 and 7900-8400 HIIz 
and 20.2-21.2, 30-31, 39.5-40.5, 43.5-45.5 and 

50.4-51.4 CHz the fixed-eatellite and mobile-eatsllite 
aervices are limited to military operations- 



TABLE 2-2 
SERVICE CLASS1 F I CAT1 ONS APPLICABLE TO TDAS 

Services Classified by Link Type Services Classified by End-Use* 

Intersatel 1 i t e  Space Operations 
* 

Fi xed-Sate1 1 i  t e  Space Research 

Meteor01 o g i  cal -Satel 1 i t e  

Earth Exploration-Sate11 i t e  

* Limitations may apply, indicated in the Table of Frequency 

Allocations by a parenthetical expression. For example, 

Meteorological -Satel 1 i  t e  (space-to-earth) would 1 imi t the 
indicated band t o  downlinks from meteorological s a t e l l i t e s .  



of specif ic  coordinating agreements by a1 1 interested par t ies ,  for example, 

the space telescope would be precluded from a band allocated solely to the 
meteorological-sate1 1 i t e  service. Such end use c lass i f ica t ions  are d i f f i -  

cu l t  to incorporate i n  a TDAS intended for  broad user support. Bands 

allocated in th i s  way a re ,  nevertheless, retained a t  th i s  stage t o  provide 

maximum f l e x i b i l i t y  for  future tradeoffs.  

The strategy employed was to examine a l l  frequency bands in the proposed 

U.S. Table of Government Allocations and extract  those bands applicable 

to  TDAS. Table 2-3 1 i s t s  a l l  bands applicable t o  the inter-sate1 1 i t e  

service,  including bands c lass i f ied  by enduse tha t  support space-to-space 
service. Table 2-4 l i s t s  a l l  bands applicable to  the f ixed-sa te l l i t e  

service (up1 inks and down1 inks to  fixed earth s ta t ions)  , including bands 

c lass i f ied  by enduse that  support up1 ink/downl ink service. For 

each band of in te res t ,  the a l locat ion(s)  i n  support of TDAS-type ac t iv i ty  

i s  indicated in column 2 -- "A1 located Services Relevant to TDAS." 

Other service a1 1 ocations for  government a n d  non-government users are 
l i s t e d  in column 3 .  This allows comparison of TDAS allocation s ta tus  

t o  the allocation s ta tus  of a l l  other services. Comments are added 

where required t o  describe related data and footnotes tha t  may modify 
the sense of allocation. 

Tables 2-3 and 2-4 indicate extensive support i n  the proposed regulatory 

framework for  TDAS and TDAS-like service. However, certain discrepancies 
may be noted among TDRSS frequency bands, ongoing research in space comrnunica- 
tions and the pooposed regulations. 

With respect to TDRSS frequency bands, comparison of Table 2-1 and Tables 
2-3 and 2-4 indicate l i t t l e  support for  TDRSS in the proposed al locat ions.  

Forward links (TDRSS-to-User) a t  S-band are not authorized in any way. 

All other services are abthorized on a secondary basis and only for  "space 

research". TDRSS services are only protected from interference by ongoing 

participation of NASA frequency managers. 



TABLE 2-3 

INTER-SATELLITE BANDS 



TABLE 2-3 

INTER-SATELLITE BANDS (CONT) 

* See Glossary f o r  D e f i n i t i o n  o f  these terms 

Bands (GHz) 

14.0 - 14.2 

14.5 - 14.7145 

14.7145 - 15.1365 

15.1365 - 15.35 

23 - 23.55 

25.25 - 27 

A1 1  oca t e d  Services 
r e 1  evant  t o  TDAS 

Space Research 

Space Research 

Space Research 

Space Research 

INTER-SATELLITE 

Ear th  Exp lo ra t i on -  
Sa t e l l  i t e  

(space-to-space) 

Other A1 1  oca t e d  
Serv ices 

FIXED-SATELLITE 
(Earth- to-space) 

RADIONAV IGAT ION 

FIXED 
Mobi 1  e  

MOBILE 
F ixed 

FIXED 
Mobi 1  e  

FIXED 
MOBILE 

FIXED 
MOBILE 

Standard Frequency 
and t i n ~ e  S a t e l l i t e  

( ~ a r t h - t o - s p a c e )  

- -. 

Comments 

Not a l l  da ta  se rv i ces  
au tho r i zed  

Secondary a1 l o c a t i o n  o n l y  

Not a l l  da ta  se rv i ces  
au tho r i zed  

Secondary a1 1  o c a t i o n  o n l y  

Not a l l  data se rv i ces  
au tho r i zed  

Secondary a1 1  o c a t i o n  o n l y  

Not a l l  da ta  se rv i ces  
au tho r i zed  

Secondary a1 1  o c a t i o n  o n l y  

Passive sensing i n  t h i s  band 

Radio astronomy i n  upper 
ad jacen t  band 

Radio astronomy s p e c t r a l  
l i n e  observat ions  a t  23.07 - 
23.12 GHz ( f o o t n o t e  3801 D) 

- . - - - 



TABLE 2-3 

INTER-SATELLITE BANDS (CONT) 

Band (GHz) O the r  A1 l o c a t e d  
S e r v i c e s  

-. 

FIXED 
MOBILE 

A1 l o c a t e d  S e r v i c e s  
r e l e v e n t  t o  TDAS 

E a r t h  E x p l o r a t i o n -  
S a t e l l i t e  

(space-  to -space)  

INTER-SATELLITE 

INTER-SATELL ITE 

INTER-SATELL ITE 

INTER-SATELLITE 

INTER-SATELLITE 

- - -- 

EARTH EXPLORATION- 
SATELLITE ( p a s s i v e )  

FIXED 
MOBILE 
SPACE RESEARCH 

( p a s s i v e )  

FIXED 
MOBILE 
RADIOLOCAT ION 

EARTH EXPLORATION- 
SATELLITE ( p a s s i v e )  

FIXED 
MOBILE 
SPACE RESEARCH 

( p a s s i v e )  

FIXED 
MOBILE 
RADIOLOCATION 

Comments 

* 
EES and I S  s e r v i c e s  n o t  
p r o t e c t e d  a g a i n s t  FIXED 
and MOBILE s e r v i c e s  

Federa l  Republ i c o f  Ger~nany , 
Japan, and UK a1 l o c a t e  t h i s  
band t o  r a d i o l o c a t i o n  on a 
p r i m a r y  b a s i s  

Oxygen a b s o r p t i o n  band 

I n d u s t r i a l ,  s c i e n t i f i c  and 
med ica l  s e r v i c e  i n  61 - 61.5 
GHz, w i t h  s p e c i a l  adirri n i  s t r a -  
t i o n  a u t h o r i z a t i o n  

* 
ISM o p e r a t i o n s  may be a u t h o r i z e d  
i n  122 - 123 GHz 

Rad io  astrononry i n  l owe r  ad ja -  
c e n t  band 

FIXED 
MOBILE 

174.42 - 175 .02  GHz a l l o c a t e d  
t o  Radio astronoirry or1 a second- 

. - 
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TABLE 2-4 

FIXED-SATELLITE BANDS (CONT) 

Other A1 1  oca t e d  
Serv ices  

Band (GHz) 

0.460 - 0.470 

Comments 

LAND MOBILE I U.S. FOOTNOTE 201: I 

A1 1  oca t e d  Serv ices 
Re1 event  t o  TDAS 

M e t e o r o l o g i c a l - S a t e l l i t e  
( space-to-earth)  I n  t h e  band 460 - 470 MHz, 

space s t a t i o n s  i n  t h e  e a r t h  
e x p l o r a t i o n  sate1 1  i t e  se r -  
v i c e  may be au tho r i zed  f o r  
space- to -ear th  t r a n s n ~ i s s i o n s  
on a  secondary bas i s  w i t h  
r e s p e c t  t o  t h e  f i x e d  and mo- 
b i  1  e  se rv i ces .  When opera- 
t i n g  i n  t h e  me teo ro log i ca l -  
sate1 1  i t e  se rv i ce ,  such 
s t a t i o n s  s h a l l  be p r o t e c t e d  
f rom harmfu l  i n t e r f e r e n c e  
f rom o t h e r  a p p l i c a t i o n s  o f  
t h e  e a r t h  exp l  o r a t i o n - s a  t e l -  
1  i t e  s e r v i c e .  The power f l u x  
i n  t h i s  band s h a l l  n o t  exceed 
-1 52 dBw/m**2/4kHz. 

. 

As s p e c i f i e d  i n  U.S. Footnote  
216, t h e  f requency bands 
460.5125 - 460.5625, 462.9875 
- 463.1875, 465.5125 - 465. 
5625 and 467.9875 - 468.1875 
MHz a re  au tho r i zed  f o r  Govern- 
mentlnon-Government ope ra t i ons  
i n  medical  r a d i o  c o m ~ u n i c a t i o n s  
systems . 



TABLE 2-4 

FIXED-SATELLITE BANDS (GONT) 

FIXED 
MOBILE 

Band ( GHz) 

1 .427 - 1.429 

1 .990  - 2.110 

2 . 2  - 2.29 

O t h e r  A1 l o c a t e d  
S e r v i c e s  

FIXED 
MOBILE e x c e p t  ae ro -  

n a u t i c a l  m o b i l e  

F i x e d  ( t e l e m e t e r i n g )  

Land M o b i l e  ( t e l e -  
m e t e r i n g  and t e l e -  
command ) 

FIXED 
MOBILE 

A1 1  oca t e d  S e r v i c e s  
Re1 even t  t o  TDAS 

SPACE OPERATION 
( E a r t h -  t o - space )  

[See Comments] 

SPACE RESEARCH 
( space - t o -Ea r t h )  
(space- to -space)  

- 

Comments 

Rad io  ast rononly  i n  
l o w e r  a d j a c e n t  band 

SET1 b y  sonie c o u n t r i e s  

Foo tno tes  1  i s t e d  be low 
a l l o w  Ea r t h - t o - space  and 
space- to -space  o p e r a t i o n s  
f o r  space r e s e a r c h  and 
E a r t h  e x p l o r a t i o n  s e r v i c e ,  
w i  t h  some r e s t r i c t i o n s  
and on  a  case-by-case 
b a s i s .  

R e l e v e n t  Foo tno tes :  
U.S. 90 
U.S. 111 

C u r r e n t  u t i l i z a t i o n  by  
government e a r t h  s t a t i o n s  
i n  t h e  band 2 0 3 5  - 21 10 
MHz 

Foo tno te  GI01 a1 lows  
space o p e r a t i o n s  (space-  
t o - e a r t h )  on a  coequal  
b a s i s  

TDRSS MA a t  c e n t e r  f r e -  
quency o f  2287 .5  MHz 

E x t e n s i v e  KFP (111i l i t a r y )  



TABLE 2-4 

FIXED-SATELLITE BANDS (CONT) 

- 

A1 1  ocated Serv ices 
Relevent  t o  TDAS 

SPACE RESEARCH 
(Ear th- to -space)  

FIXED-SATELLITE 
(space-to-Earth)  

EARTH EXPLORATION- 
SATELLITE 
( space-to-Earth) 

FIXED-SATELL ITE 
(Ea r th -  to-space) 

EARTH EXPLORATION 
SATELLITE 
(space-to-Earth)  

FIXED-SATELLITE 
(Earth- to-space) 

METEOROLOGICAL- 
SATELLITE 
(Earth- to-space) 

Band (GHz) 

7.19 - 7.235 

7.25 - 7.30 

8.025 - 8.175 

8.175 - 8.215 

Other A1 l o c a t e d  
Serv ices  

FIXED 

MOB ILE-SATELLITE 
(space- to -Ear th)  

F i xed  

FIXED 

Mobi 1  e - S a t e l l  i t e  
(no a i r b o r n e  
t ransmiss ions )  

FIXED 

Mobi l e - S a t e l l  i t e  
(Ear th - to -space)  
(no a i r b o r n e  
t ransmi ss ions )  

-- 

t 

Comments 

Pass ive  microwave sensing 
performed i n  t h i s  band 

Government use i s  l i m i t e d  
t o  m i l  i t a r y  ope ra t i ons  by 
f o o t n o t e  GYY4 

Non-government a1 l o c a t i o n  
i s  p r imary  f o r  EES. 

A u t h o r i z a t i o n s  on a  case- 
by-case b a s i s  f o r  EES. 

F ixed-sa te1 1  i t e  s e r v i c e  
l i m i t e d  t o  m i l i t a r y  

Non-government a l l o c a t i o n  
i s  p r imary  f o r  EES. 

A u t h o r i z a t i o n s  on a  case- 
by-case bas i s  f o r  EES. 

F ixed-sa te1 1  i t e  s e r v i c e  
1  i m i  t e d  t o  nli 1  i t a r y  

-- 
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TABLE 2-4 

FIXED SATELLITE BANDS (CONT) 

MOBILE 
F ixed 

Band (GHz) 

14.5 - 14.7145 

14.71 45 - 15.1365 

15.1365 - 15.35 

20.2 - 21.2 

30.0 - 31 .O 

FIXED 
Mobi 1 e 

A1 1 oca t e d  Serv ices 
re1  event  t o  TDAS 

Space Research 

Space Research 

Space Research 

FIXED-SATELLITE 
(space-to-  Ear th )  

FIXED-SATELLITE 
(Earth- to-space) 

Other A1 1 oca t e d  
Serv ices  

FIXED 
Mobi 1 e 

MOBILE-SATELLITE 
(space- to -Ear th)  

Standard Frequency 
and Time S igna l -  
Sate1 1 i t e  (space- 
t o -Ea r th )  

MOBILE-SATELLITE 
(Ear th- to -space)  

Standard Frequency 
and Time S igna l -  
Sate1 1 i t e  (space- 
t o -Ea r th )  

---- x-_ 

Comments 

L i m i t e d  t o  m i l i t a r y  
ope ra t i ons  by f o o t n o t e  
GYY4 

L i ~ n i  t e d  t o  mi 1 i t a r y  
ope ra t i ons  by f o o t n o t e  
GY Y4 

-- 
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TABLE 2-4 

FIXED SATELLITE BANDS (CONT) 

Band (GHz) 

. 9 2  - 95 

102 - 105 

149 - 150 

150 - 151 

151 - 164 

202 - 217 

231 - 235 

235 - 238 

- - - - - - - - - - - - - 

A I 1  oca ted  S e r v ~ c e s  
Re1 even t  t o  TDAS 

FIXED-SATELLITE 
(Ear th - to -space)  

FIXED-SATELLITE 
( space - t o -Ea r th )  

FIXED-SATELLITE 
(space- to -Ear th )  

FIXED-SATELL ITE 
(space- to -Ear th )  

FIXED-SATELL ITE 
( space - t o -Ea r th )  

FIXED-SATELLITE 
(Ear th - to -space)  

FIXED-SATELLITE 
(space-  t o - E a r t h )  

FIXED-SATELLITE 
(space- to -Ear th )  

1 + - -- - - - - - - - -- - - -- - - -- 

Other  A1 1 oca t e d  
Serv i ces 

FIXED 
1408 I L E 
RADIOLOCATION 

FIXED 
MOBILE 

FIXED 
MOBILE 

EARTH EXPLORATION- 
SATELLITE 
( p a s s i v e )  

FIXED 
MOBILE 
SPACE RESEARCH 

( p a s s i v e )  

FIXED 
MOBILE 

FIXED 
MOBILE 

FIXED 
MOBILE 
R a d i o l o c a t i o n  

EARTH EXPLORATION- 
SATELLITE ( p a s s i v e )  

FIXED 
MOBILE 
SPACE RESEARW ( p a s s i v e  

- .  -- 

Comments 

93.07 - 93.27 i s  a l s o  
used f o r  r a d i o  ast ronomy 
s p e c t r a l  1 i n e  measurements 

SET1 o v e r  e n t i r e  band 

Radio astronorny i n  upper  
a d j a c e n t  band 

Rad io  as t ronor~ ly  i n  
upper  a d j a c e n t  band 

SET1 o v e r  e n t i r e  band 

Rad io  astronomy i n  
l o w e r  a d j a c e n t  band 

- -  - - - .  -- 
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With r e s p e c t  t o  ongoing r e s e a r c h  in  space  communications, t h e  c u r r e n t l y  

a c t i v e  30/20 GHz r e sea rch  program (NASA ' s  Advanced Comuni c a t i o n s  Techno1 ogy 

S a t e l l i t e )  must be viewed in  t h e  l i g h t  of  U.S. government f o o t n o t e  GYY4. 

This  f o o t n o t e  l i m i t s  government use of  t h e  bands 20.2 - 21.2 GHz, 30.0 - 
31.0 GHz and 39.5 - 40.5 GHz t o  m i l i t a r y  a p p l i c a t i o n s . *  With t h e  excep t ion  

o f  t h e s e  bands,  l i m i t e d  t o  m i l i t a r y  a p p l i c a t i o n s ,  t h e  spectrum from 

16 GHz t o  40 GHz i s  devoid of  government a l l o c a t i o n s  f o r  e a r t h - s p a c e  l i n k s .  

This  would seem t o  p rec lude  a  d e s i r a b l e  f requency  band f o r  TDAS usage .  On t h e  

o t h e r  hand, c o o r d i n a t i o n  wi th  mi 1  i  t a r y  a u t h o r i t i e s  may be mutua l ly  d e s i r a b l e  

i n  view o f  t h e  l i k e l y  dual  m i l i t a r y / c i v i l i a n  s u p p o r t  a f f o r d e d  by a TDAS. S ince  

t h e  f o o t n o t e  a p p l i e s  s t r i c t l y  t o  t h e  U.S. Table  of  Frequency A l l o c a t i o n s  ( i  . e . ,  

no i n t e r n a t i o n a l  r a m i f i c a t i o n s ) ,  c o o r d i n a t i o n  i s  on ly  neces sa ry  w i t h i n  t h e  * *  
United S t a t e s .  Due t o  t h e  t e c h n i c a l  d e s i r a b i l i t y  of  30/20 GHz, an e f f o r t  
should  be made t o  s e c u r e  waiver  of f o o t n o t e  GYY4 wi th  r e s p e c t  t o  TDAS, and 

c o o r d i n a t e  u se  of t h i s  band wi th  t h e  m i l i t a r y .  A c a s e  promoting coo rd ina t ed  
use  of  30/20 GHz could be found a long  t h e  fo l lowing  1  i n e s :  

a )  Advantage of dual use.  I f  TDAS i s  al lowed t o  o p e r a t e  a t  30120 GHz, 

m i l i t a r y  u s e r s  o f  TDAS d e r i v e  t h e  b e n i f i t s  a v a i l a b l e  a t  t h o s e  f r e -  

quenc i e s .  I f  TDAS waiver  o f  t h e  f o o t n o t e  i s  n o t  s ecu red ,  two o p t i o n s  - 
a r e  p o s s i b l e .  TDAS could  o p e r a t e  e n t i r e l y  a t  o t h e r  f requency  bands,  

o r  TDAS could s u p p o r t  dual  m i l i t a r y  and nonmi l i t a ry  communication 

packages - with  t h e  m i l i t a r y  package o p e r a t i n g  a t  30/20 GHz. The 
f i r s t  o p t i o n  r e p r e s e n t s  i n f e r i o r  performance f o r  a l l  u s e r s  due t o  

t h e  t e c h n i c a l  d i s advan tages  of o t h e r  bands. The second o p t i o n  

r e p r e s e n t s  a  weight ,  power, and c o s t  pena l ty  r e q u i r e d  t o  s u p p o r t  

dual  pay1 oads .  

* The 39 .5  - 40.5 GHz band i s  a l l o c a t e d  t o  F i x e d - S a t e l l i t e  s e r v i c e  f o r  non- 
government u s e r s .  In addi  t i o n ,  bands a d j a c e n t  t o  t h e  20.2 - 21.2 GHz and 
30.0 - 31.0 GHz bands suppor t  F i x e d - S a t e l l i t e  s e r v i c e  f o r  non-government 
u s e r s .  However, t h e  a c t i v i t y  and i n t e r e s t  i n  t h e s e  bands may make i t  
d i f f i c u l t  t o  a u t h o r i z e  TDAS s e r v i c e s  i n  t h e s e  non-government bands,  should  
t h e  c u r r e n t  proposed regul  a  t i  ons be imp1 emented 

** The c o o r d i n a t i o n  procedure  r e q u i r e d  t o  s e c u r e  waiver  o r  m o d i f i c a t i o n  of  a  
government f o o t n o t e  i s  t y p i c a l l y  a  p roces s  o f  n e g o t i a t i n g  among t h e  i n t e r -  
e s t e d  p a r t i e s ;  t h i s  i s  i n  c o n t r a s t  t o  t h e  r e l a t i v e l y  more p r o t e c t e d  e f f o r t  
r e q u i r e d  t o  c o o r d i n a t e  government and non-government u s e r s ,  e s p e c i a l l y  i n  
c a s e s  where government use  encroaches  on non-government a l l o c a t i o n s .  



b)  Negligible R F I  impact of dual use. Since TDAS w i l l  employ a  small 

number of  large, fixed earth s ta t ions ,  there w i l l  be minimal 

impact of TDAS 30/20 GHz ut i l iza t ion on other users of  the band. 

Coordination w i t h i n  CONUS, and the lack of  TDAS earth-space 1 inks 
outside CONUS, imply min ima l  impact o n  worldwide m i 7  i t a r y  ope ra -  

t i  ons. 

W i t h  respect to the ent i re  spectrum, allocated bandwidths tend t o  increase 

along w i t h  band center frequency. Technology constraints as well as extensive 

competition in the commercially mature regions of the spectrum tend t o  decrease 

available bandwidths a t  the lower frequencies ( the  spectrum below % 10 GHz i s  

f inely subdivided t o  support a wide range of government a n d  non-government 

a c t i v i t i e s ) .  From a  planning perspective higher frequencies afford increased 

bandwidth and protection against R F I ,  b u t  they also increase technical r i sk .  

Atmospheric absorption follows a  generally increasing trend as frequency 
increases and additionally exhibits several extreme reg ions of absorption 

due to  molecular resonance of oxygen and water vapor. This characterist ic  

i s  i l lus t ra ted  in Figure 2-2. In the mill imeter-wave region of the spectrum 

(30 GHz - 300 G H ~ )  , inter-sate1 1 i t e  allocations are typically close t o  the 

absorption maxima while fixed-sate1 1 i  t e  a1 locations are near the absorption 
minima. However, th is  i s  only generally true and attenuation should be 

checked for each specific frequency band candidate as part of the tradeoff 

process. For example, broad bands allocated to i n t e r - s a t e l l i t e  service 

between 54 GHz and 64 GHz actua1l.y straddle an absorption peak. While 

the absorption maximum i s  in excess of 100 dB, frequencies a t  e i the r  end 

of th i s  band experience attenuations on the order of only 10 t o  50 dB. 

This implies wide differences i n  the level of RFI protection afforded t o  
inter-sa t e l l  i  t e  1 inks via atmospheric attenuation of t e r r e s t r i  a1 emissions , 
unless care i s  exercised in frequency selection within a  broad allocated 

band. 

Finally, the generally r is inq trend exhibited by Figure 2-2 implies a  

penalty for  high-frequency up/downlinks. Under clear-sky conditions, low 
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elevat ion angle l i nks  a t  80 or  90 GHz would experience c lear-sky a t t enua t ion  

of 1 dB t o  3  dB. Attenuation due t o  r a i n f a l l  i s  g r ea t e r  as  well .  Figures 

2-3 and 2-4 i l l u s t r a t e  ra in  a t tenuat ion* a t  four f requencies  and two 

d i f f e r e n t  operat ing scenar ios ,  f o r  the TDRSS spacecra f t  loca t ions .  These 

f igures  high1 i gh t  the major points  regarding ra in  a t t enua t ion .  F i r s t ,  

s i g n i f i c a n t  d i f fe rences  e x i s t  among po ten t ia l  ground terminal s i t e s .  

Second, a  heavy pr ice  must be paid t o  achieve 99.9% l i nk  a v a i l a b i l i t y ,  

a s  apposed t o  99%. Pa r t i cu l a r l y  a t  the 90/80 GHz frequencies ,  the margin 

required t o  achieve 99.9% a v a i l a b i l i t y  s u b s t a n t i a l l y  exceeds 10 dB. 

A t  t h e  lower 30/20 GHz bands, addi t ional  margin t o  achieve 99.9% a v a i l a b i l i t y  

r a r e l y  exceeds 10dB. Third,  f o r  a  given a v a i l a b i l i t y  and ground s i t e  

loca t ion ,  the  d i f f e r e n t i a l  a t t enua t ion  between 30/20 GHz and 90/80 Ghz 

i s  subs t an t i a l .  A t  a  99% a v a i l a b i l i t y  l e v e l ,  most s i t e s  experience a  

d i f f e r e n t i a l  a t t enua t ion  on the  order  of 10 dB**. A t  the  higher a v a i l a b i l i t y  
level  of 99.9%, d i f f e r e n t i a l  a t t enua t ions  exceed 20 dB i n  a l l  cases  except 

Denver. Fourth, s i t e  d i v e r s i t y  i s  general ly  not e f f e c t i v e  in combating 

fades  a t  these  a v a i l a b i l i t y  l e v e l s .  The underlying impairment a t  the 

99% and 99.9% a v a i l a b i l i t y  l e v e l s ,  i s  s t r a t i f o r m  r a in .  S i t e  d i v e r s i t y  

i s  c h i e f l y  geared toward fading due t o  thunderstorm events .  The l i n k  

a v a i l a b i l i t y  i s  a  funct ion of user  needs and system requirements,  but 

i t  i s  c l e a r  t h a t  ra in  can exact  a  heavy penal ty  a t  80 GHz. 

I t  appears t h a t  millimeter-wave a l t e r n a t i v e s  e x i s t  t o  the  30/20 GHz bands, 

although these  a1 t e r n a t i v e s  involve increased technical  r i s k  and higher 

co s t .  Further research can r e f i n e  the  t radeof f s  involved, b u t  the  30/20 

Ghz band i s  cur ren t ly  the  primary technical  choice f o r  up/down access .  

Use of 30/20 Ghz i s  contingent on securing waiver of  government foo tno te  

GYY4. 

* Analysis of ra in  a t t enua t ion  was based on the  Crane model as  reported 
in [13]. 

** The major exception i s  Denver, which has r e l a t i v e l y  low margin requirements 
due t o  i t s  high e levat ion and the  corresponding sho r t  communication 
path through the  ra in  l ayer .  
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2.3 LASER-BASED TECHNOLOGIES 

* 
The use of optical wavelengths for TDAS is constrained by technical and 

physical factors rather than regulatory constrai nts. 

Technically, selection of a laser communications system for TDAS in the 

1990's is limited to three wavelength regions: 

1. 0.832 pm supported by GaAs laser technology 

2. 1.06 um supported by ND: YAG laser technology 

3. 0.532 vm supported by frequency-doubl ed ND: YAG 1 aser techno1 ogy 

GaAs is a primary candidate for TDAS-to-TDAS crosslinks. ND:YAG is an 
alternative (to GaAs) for user-to-TDAS ultra-high data rate laser single 

access service. 

The laser technologies involved are approaching the point of operational 

feasibility in terms of power output, date rate, lifetime and space qualifications. 

However, neither GaAs nor ND:YAG communication systems have been fully 

qualified in terms of reliability and lifetime at the time of this writing . 

[7]. The technical issues and tradeoffs relating to these technologies 

are outside the scope of this report; further information is available 

in [6], [8], [9] and [14] for blue-green and infrared communication systems. 

Physical ly, laser communication on earth-space 1 inks is severely restricted 
by weather conditions. While research continues in sate1 1 i te-to-submarine 

laser communication in the blue-green region 181, [9], the goal is a very 

low data rate system not easily adapted to TDAS. In an operational system 

such as TDAS, requiring high data rates and high link reliability with a 

cost effective system, laser communication appears unsuited to earth-space 
links. 

* 
Optical bands are typically specified by wavelengths rather than fre- 
quency. Blue-green light at 523 nm (1 nm = 1 nanometer = 10-9 meter) 
corresponds to a frequency of ; 5.7 x 1014 Hz, or 570,000 GHz. 

2- 27 



Space-space links provide an application for laser  technology with one 

or several of the technologies noted above. Unlike earth-space l inks,  

exoatomospheric laser communication i s  essential ly free of molecular 

absorption, scattering and dispersion. This offers a natural medium 

for the highly col limated wide bandwidth signals possible with laser 

equipment. 

Currently, there are no regulations that  1 imi t the use of laser communication 

systems. Selection of a laser a1 ternative (or a1 ternatives)  should be 

based on technical characterist ics and r isk.  



SECTION 3 

PROJECTED SURVIVABILITY TO R A D I O  FREQUENCY INTERFERENCE 

This sec t ion  develops a  model o f  RFI i n c i d e n t  on TDAS, and p ro j ec t s  TDAS 

s u r v i v a b i l i t y .  Four gener ic  sources o f  RFI can be i d e n t i f i e d :  

1. Natura l  Sources. The sun emits e lect romagnet ic  r a d i a t i o n  a t  a l l  

f requencies o f  i n t e r e s t  t o  TDAS, and i s  t he re fo re  an impor tant  

source o f  RFI f o r  se lected geometries. 

2. Se l f - i n te r fe rence .  I n  system con f igu ra t ions  where severa l  user 

sate1 1  i tes  (USATs) share a  common opera t ing  frequency, s e l f -  

i n t e r f e rence  could  l ead  t o  unacceptable degradat ion o f  user 

s i gna l i ng .  

3. Other c i v i l i a n  serv ices.  Many frequency bands t h a t  are p h y s i c a l l y  

appropr ia te  f o r  TDAS are a l l o c a t e d  j o i n t l y  t o  several  r a d i o  

serv ices.  I n  cases where a  non-TDAS serv ice  i s  granted h igher  

a l l o c a t i o n  s t a tus  r e l a t i v e  t o  TDAS, degradat ion o f  TDAS s i g n a l i n g  

cou ld  take place w i t hou t  a  r egu la to r y  remedy. 

4. M i l  i t a r y  serv ices.  Cer ta in  s t r a t e g i c  and t a c t i c a l  radars  gene- 
race high-power un in ten t i ona l  RFI. Such RFI w i  11 Qegrade the  

frequency bands chosen f o r  TDRSS, and can be expected t o  become 

more severe i n  the  f u tu re .  

TDAS s u r v i v a b i l i t y  t o  these RFI sources depends on the system a rch i t ec tu re ,  

frequency plan, spacecraf t  design, user miss ion p r o f i l e s  and t ime o f  year  

( p a r t i c u l a r l y  w i t h  respect  t o  s o l a r  outages). I n  t h i s  study our  d iscuss ion 

o f  TDAS s u r v i v a b i l  i t y  i s  l i m i t e d  t o  po ten t iad  RFI sources. Man-made RFI 
em i t t e r s  a re  assumed t o  f u l l y  u t i l i z e  the  RF s '~ec t rum cons i s t en t  w i t h  pro- 

posed FCC/NTIA regu la t i ons  (based on WARC ' 7 9  and the  FCC Not ices o f  
I n q u i r y  i n  response t o  the  WARC). 



This section i s  organized into four subsections relating t o  the four sources of 

RFI l isted above. Each subsection describes RFI characteristics a n d  potential 

interference modes re1 a t i  ve t o  TDAS. 

3.1 NATURAL SOURCES OF RFI 

For practical purposes, the sun i s  the only natural source of RFI. While other 

natural sources of electromagnetic radiation exist  (e.g. , terrestr ia l  blackbody 

radiation, cosrni c background radiation, etc. ) , they are typical ly 1 ow-energy and 

well-behaved. As a result ,  their  effects are absorbed in the baseline link bud- 

get in the form of anticipated thermal noise a t  the antenna. I n  contrast to 

these sources, the sun emits high-level electromagnetic radiation a t  a l l  frequen- 

cies of interest  to TDAS, and i t  i s  impractical t o  design receiver/transmi t sys- 

tems against worst-case solar noise. Other methods must be employed t o  mitigate 

solar RFI. This subsection identifies the scope of the solar RFI p rob lem,  and 

Section 4 addresses mi tigating techniques that may be selected t o  combat i t .  

The geometries for solar RFI on space-to-space links are i l lustrated in 

Figure 3-1 ( a )  and ( b ) .  The assumption here i s  that TDAS sa te l l i t e s  are * 
in nearly geostationary orbits. Figure 3-1 ( a )  i 1 lustrates the geometry 

a t  spring o r  autumn equinox. Solar radiation i s  parallel t o  the 
equatorial plane, and sa t e l l i t e s  in this  plane may move into conjunction 

with the sun. In the absence of earth blockage effects ,  s a t e l l i t e s  i n  

dual geosynchronous orbits would achieve solar conjunction twice per 

orbit  during the period of equinox, w i t h  each sa t e l l i t e  eclipsing the 

solar disk once.wi t h  respect t o  the other sa t e l l i t e .  With a geostationary 
TDAS and a USAT in low earth orbit ,  there are an additional two conjunc- 

tions each time the USAT "laps" the TDAS. 

During any conjunction as described above, re1 iable transmission from the 
eclipsing sa t e l l i t e  t o  the eclipsed sa t e l l i t e  will be impossible. However, 
certain equipment designs may a1 low re1 iable commun ication in the other 

direction (where the eclipsing sate1 1 i t e  positions the incident solar 

* 
If TDAS uti l izes slight eccentricity or incl ination t o  enhance physical 
survivability, the effects noted in this section would be modified 
somewhat, b u t  would remain qua1 itatively unchanged. 
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FIGURE 3-1: TDAS GEOMETRIES FOR SOLAR R F I  



radiation in i t s  receiving antenna's backlobe). The u t i l i t y  o f  such simplex 

communication depends on overall system architecture and operating require- 

men t s  . 

The duration of outage a t  conjunction can be calculated from orbital 

geometries, available link margins and spacecraft antenna designs. The 

solar disk subtends of angle of .48" from the vicinity of the earth [12], 

which i s  narrower than traditional spaceborne antenna beamwidths b u t  may * 
be on the order of beamwidths in the TDAS era.  The sun i s  perceived as 

a disk of extreme thermal noise with a minimum noise temperature for a 

mean quiet sun of 25,000°K for a single polarization [Hogg, 1968, reported 

in [12]]. To a f i r s t  approximation, conjunction extends over the period 

in which a t  least  part of the sun i s  within the main beam of the receiving 

spacecraft's antenna. For dual geosynchronous sate1 1 i tes , this i s 

Conjuncti on Duration 2 
rnax (antenna beamwi d t h  , solar di a. ) 

360" ] ( 2 4  hours) 

rnax (antenna beamwidth, 0.48') 
( 2 4  hours )  360' 1 

where duration i s  in hours and beamwidth i s  in degrees. The period of communica- 
tion outage wi 11 typically extend beyond the period of conjunction, since antenna 

gain does n o t  drop to zero outside the nominal beamwidth. The additional extent 
can be calculated with knowledge of specific equi:pments, link budgets and perfor- 

mance requi remen t s  . 

The period of time immediately before and af te r  an equinox i s  susceptable t o  
conjunction in di rect proportion t o  the parameters affecting outage duration 

( i  e .  , receive antenna bearwidth, equipment capabi 1 i t ies  , link budgets and per- 

formance requirements). Conjunctions wi 11 occur while the sun i s  within one 
beamwidth of the celestial  equator. Outages will extend over a greater time 
window, dependent on exact system architecture and requirements. 

* 
Laser receivers represent a notable example. 



Figure 3-1 ( b )  i 1 l u s t r a t e s  an outage geometry f o r  a  non-equator ia l  USAT (here 

depic ted i n  a  near-po lar  o r b i t ) .  The Earth-Sun geometry i s  t h a t  o f  a  summer 

s o l s t i c e .  Due t o  the USAT's h i g h l y  i n c l i n e d  o r b i t ,  con junct ion i s  poss ib le  

a t  any t ime o f  year .  V u l n e r a b i l i t y  throughout the year  e x i s t s  f o r  any s a t e l -  

l i t e  whose i n c l i n a t i o n  equals o r  exceeds ~ 2 3 . 5 ' ~  the angle between e a r t h ' s  

ax i s  and the plane o f  the  e c l i p t i c .  With non-equator ia l  USAT's, con junct ions 

may f a i l  t o  occur on a twi.ce p e r - o r b i t  bas is .  The added dimension o f  motion 

outs ide the  equa to r i a l  p lane in t roduces v a r i a b i l i t y  i n  the  occurance of con- 

junc t ions .  

The preceeding d iscuss ion has concentrated on space-to-space 1 i n k  degradat ion.  

Space-to-earth down1 inks  f rom TDAS experience a s im i  1  a r  problem around the 

equinoxes. The ex ten t  o f  t h i s  problem depends on ground s t a t i o n  l a t i t u d e ,  

the  d i f f e r e n c e  i n  long i tude  between the  e a r t h  s t a t i o n  and the TDAS subsate l -  

l i t e  po in t ,  and the beamwidth o f  the ground antenna. This outage occurs f o r  

approximately s i x  days tw ice  y e a r l y  a t  apparent noon a t  the s a t e l l i t e  l o n g i -  

tude. Lundgren [I 970,1943-19721 has descr ibed d i v e r s i t y  arrangements o f  

phased and s l i g h t l y  i n c l i n e d  o r b i t  s a t e l l i t e s ,  which avo id  simultaneous 

outages by us ing a p a i r  o f  s a t e l l i t e s .  However, these d i v e r s i t y  s a t e l l i t e s  

r equ i r e  e a r t h  te rm ina l  antenna o r  feed sw i tch ing  and s a t e l l i t e  handover t o  

avo id  the  outage [12]. 

A major c h a r a c t e r i s t i c  o f  s o l a r  con junct ions i s  t h e i r  p r e d i c t a b i  li t y .  For any 

o r b i  t a l  con f igu ra t ion ,  sys tem a rch i  t e c t u r e  and performance requirement, outages 

can be p red ic ted  w i t h  v i r t u a l  c e r t a i n t y .  Th is  c h a r a c t e r i s t i c  can be e x p l o i t e d  

by t he  system designer,  as descri'bed i n  Sect ion 4. 

3.2 RFI DUE TO SELF-INTERFERENCE 

I n  system a rch i t ec tu res  employing frequency reuse among var ious  s a t e l l i t e  p a i r s ,  

se l f - i n t e r f e rence  must be examined c a r e f u l l y .  Depending on schedul ing software,  

system loading and antenna equipments, se l f - i n t e r f e rence  cou ld  become a domina- 

ti ng i nf 1  uence on sys tern performance and throughput. 

The s e l f - i  n te r fe rence  problem i s  bes t  in t roduced  by example. Assume TDAS sys tem 

a r c h i t e c t u r e  incorporates the  f o l l o w i n g  elements: 



e 3 TDAS s a t e l l i t e s  i n  geostat ionary  o r b i t  

5 e n t r y  po r t s  per  TDAS, u t i l i z i n g  1-meter antennas, a t  frequency 

fc  z 60 GHz 

e F u l l  system u t i l i z a t i o n  by user sate1 1 i t e s  (uSATS) i n  low ea r t h  

o r b i t  (LEO) a t  a l t i t u d e  1200 nmi 

With these assumptions, each TDAS a c t i v e l y  supports 5 USATs a t  frequency 

S i g n i f i c a n t  RFI can o n l y  occur i f  two o r  more USATs, supported hv t he  

same TDAS, happen t o  be w i t h i n  a  few beamwidths o f  one another as seen 

from the TDAS. This i s  the cond i t i on  f o r  main beam-to-main beam coup l ing .  

The 1-meter antennas assumed f o r  TDAS have a 3 dB beamwidth o f  0.40 a t  

W-Band. A 40 separat ion between USATs prov ides 20 dB o f  antenna d i s c r i m i n a t i o n  

(CCIR small p a t t e r n  [ l o ] ) .  Taking t h i s  separat ion as an opera t iona l  

cons t ra i n t ,  each USAT can be considered the  cen te r  o f  a  f i e l d - o f - v i e w  

"patch" t h a t  subtends a s o l i d  angle o f  approximately 15 x 10-3 s terad ians.  

The LEO spher i ca l  s h e l l  w i t h  a l t i t u d e  1200 nmi subtends a s o l i d  angle 

o f  0.132 s terad ians from GEO, so each USAT's f i e l d - o f - v i e w  patch covers 

* lo% o f  the  a v a i l a b l e  f i e ld -o f -v iew.  So there  a re  approx imate ly  10 USAT 

patches over  the LEO sphere. I f  USAT v iewing angles f rom TDAS are  d i s t r i b u t e d  

randomly over t h i s  sphere*, the probabi  1  i t y  o f  random mutual i n t e r f e rence  

i s  the probably  o f  two o r  more repeats  i n  a  se r i es  o f  5 Bernoul l  i t r a i  1 s, 

w i t h  a  popu la t ion  o f  lo.* 

* This  ignores the  f a c t  t h a t  USATs are l i k e l y  t o  t r a v e l  i n  one o f  several  
"standardn o r b i t s ,  and fur thermore appear t o  accumulate a t  the  l imbs 
o f  the sphere (where motion vectors  are r a d i a l  t o  TDAS). 

** Phrased another way; I f  a TDAS i s  al lowed t o  s e l e c t  5 USATs, w i t h  each 
USAT randomly assigned t o  one o f  ten  l oca t i ons ,  what i s  t he  p r o b a b i l i t y  
t h a t  two o f  the  f i v e  ( a t  l e a s t )  w i l l  have t he  same l o c a t i o n ?  



2 P[dup l i ca t ion  i n  5 draws w i t h  replacement from a  popu la t ion  o f  101 

= P [dup l i ca t ion  i n  f i r s t  two draws] 

+ P[no d u p l i c a t i o n  i n  f i r s t  2  draws] . P[dup l i ca t ion  on 3rd draw] 

+ P[no d u p l i c a t i o n  i n  f i r s t  3 draws] . P [dup l i ca t ion  on 4th draw] 

+ P[no d u p l i c a t i o n  i n  f i r s t  4  draws] P [dup l i ca t ion  on 5th draw] 

The t y p i c a l  assumptions noted above, the re fo re ,  y i e l d  an i n t e r f e rence  

p r o b a b i l i t y  o f  approximately 70%. Th is  l e v e l  o f  se l f - i n t e r f e rence ,  which 
i s  on l y  one f a c t o r  tend ing t o  reduce a v a i l a b i l i t y ,  i s  unacceptable i n  

an operat iona l  system. The conc lus ion i s  t h a t  s e l f - i n t e r f e r e n c e  should 

be addressed throughout the design process, where so lu t i ons  can be incorpora ted  

i n  a  c o s t - e f f e c t i v e  manner. Poss ib le  so lu t ions ,  such as FDMA and schedul ing 

f l e x i b i l i t y ,  are  discussed i n  Sect ion 4. 

As w i t h  so l a r  conjunct ions,  s e l f - i n t e r f e r e n c e  i s  p red i c t ab le  based on USAT 

o r b i t s  and known equipment compliments. Th is  knowledge may be used t o  

avo id  o r  m i t i g a t e  the  problem. 

3.3 RFI  DUE TO OTHER CIVILIAN SERVICES 

A review o f  Tables 2-3 and 2-4 i nd i ca tes  m u l t i p l e  a l l o c a t i o n s  f o r  a l l  f r e -  

quency bands 1 i sted. For example, frequency bands a1 1  ocated t o  F i  xed- 

Sate1 1  i t e  (space-to-earth) down1 i n k  operat ions may be s imul taneous ly  a1 1 ocat -  

ed t o  f i x e d  and mobi le t e r r e s t r i a l  user serv ices.  Th is  m u l t i p l e  a l l o c a t i o n  

s t r a tegy  a1 lows cross-serv i  ce i n t e r f e rence  among i n d i v i d u a l l y  au thor i zed  

and law-abiding users. Two qua1 i t a t i v e l y  d i f f e r e n t  problems e x i s t  w i t h  respect  

to :  ( 1 )  i n te r fe rence  on space-space 1  inks ;  and ( 2 )  i n t e r f e rence  on earth-space 

1  inks.  



Civilian RFI on Space-Space Links 

The primary civilian threat t o  TDAS space-space links are the fixed and mobile 

services. The fixed service includes point-to-point microwave and other radio 

transmissions among fixed, specified earth stations ( b u t  excludes broadcast- 

ing). The mobile service includes transmission among mobile and fixed l a n d  
* 

stations, as well as jointly mobile stations. The fixed and nonmobile 

stations in these services represent potential ly high-level sources of RFI, 

depending on geometry with respect t o  TDAS and possible attenuation due t o  

atmospheric absorption. 

Due to the variable geometry of TDAS space-space links, virtually al l  

terrestr ia l  stations are potential sources of background RFI; as a  USAT 

transits the earth as viewed by a  TDAS, the TDAS receive antenna beam 

examines a  s t r ip  of terri tory "behind" the USAT. Geometry i s  i l lustrated 

in Figure 3-2. Note that the s t r i p  examined by TDAS's receive antenna 

beam i s  not necessarily the USAT's ground track. 

Terrestrial stations with high-gain antennas are typically used for point- * 
to-point transmission, and the antenna beam i s  unscanned. In principle, 

many of these fixed stations could be excluded as potential sources of RFI 

due to  orientation of transmissions away from TDAS locations (for  example, 

stations transmitting northward from the continental United States) .  How- 

ever, this  situation must be viewed as serendipitous with respect t o  parti-  

cular terrestr ia l  stations. I t  becomes less likey as one considers stations 

near the earth 's  limb as viewed from TDAS. 

High power stations operating in a  broadcast mode, particularly fixed stations 

in the mobile service ( i  .e . ,  ground stations for land-air or shore-ship 

transmission), represent a  threat due to their  near-isotropic transmissions. 

* 
Examples of these mobile service classes would be ship-shore and ship- 
to-ship respectively. 

** 
This i s  in contrast t o  military stations,  examined in Subsection 3.4 ,  
which typically scan over large sol id angles. 
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Particularly in the case of low-gain USAT antennas, the inherent power 

advantage of ground-based transmitters over space-based transmitters 

indicates a potential source of RFI .  

In addition t o  the fixed and mobile services discussed above, the 14.0 - 14 .2  

GHz band i s  a1 1 ocated t o  non-government fixed-sate1 1 i te  earth-to-space 

transmissions. I f  this band i s  utilized by some non-government entity for 

communication w i t h  a nongeostationary satell  i t e ,  interference could result 

when the non-government sate1 1 i t e  and a TDAS sate1 1 i t e  achieve conjunction 

with respect to the ground-based transmitter. Given the primary allocation 

status of the fixed sa t e l l i t e  service and the secondary allocation status 

of TDAS activity in this band, such RFI would be unresolvable. 

3.3.2 Civilian RFI on Earth-Space Links 

TDAS Earth-space links are relatively secure against R F I  since TDAS earth 

stations will employ high-power transmitters and high-gain antennas. H i g h  

transmit EIRPs yield substantial protection against uplink RFI, while the 

high gain antenna provides discrimination for the downlink. The primary 

interference mode appears to be from air-mobile transmitters, which could 

conceivably inject RFI directly into the ground receiver's antenna beam. 

The geometry i s  i l lustrated in Figure 3-3. Due to the range advantage of 

the interfering a i rc raf t ,  such RFI would have significant impact. Here 

again, the problem i s  unresolvable i f  the mobile service retains a superior 

allocation status relative to TDAS. 

3 . 4  RFI DUE TO MILITARY SERVICES 

Military services of the United States and foreign countries employ radar 

transmitters that pose a hazard to TDAS, a lbiet  unintentional. These trans- 

mitters can be classified as either strategic or tact ical ,  with unique RFI 

impact modes for each. lh i s  unclassified discussion summarizes RFI impact 

on TDRSS and identifies likely trends for the future. The material for 
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FIGURE 3-3: AIR-MOBILE R F I  TO TDAS DOWNLINK 

TO TDAS 

FOR: (1 )  ANTENNA ELEVATION ANGLE 9 = 20' 

( 2 )  MAXIMUM AIRCRAFT ALTITUDE = 50,000 FEET 

THEN: THREAT RADIUS = 26 STATUTE MILES 



t h i s  d iscuss ion i s  based on an ST1 study, Re f . [ l l ] ,  "TDRSS RFI Impact 

Assessment" : 

St ra teg i c  radar  impact on TDRSS i s  p r i m a r i l y  a t  S-band, where Sov ie t  a i r -  

defense radars generate pu lsed RFI i n  TDRSS communication bands. This R F I  

a f f e c t s  forward and r e t u r n  l i n k  t ransmiss ion between TDRSS and user s a t e l -  

l i t e s .  The pu lsed nature o f  t h i s  RFI makes i t  q u a l i t a t i v e l y  d i f f e r e n t  f rom 

n o n m i l i t a r y  RFI discussed above. I n  t he  frequency domain, t h i s  RFI extends 

over  broad i n t e r v a l s  i n  the  forward and r e t u r n  l i n k  bands. The impact on 

TDRSS i s  s u f f i c i e n t  t o  warrant  a  recommendation aga ins t  use o f  SSA r e t u r n  

and forward l i n k s ,  and MA forward l i n k s ,  i n  RFI zones over  eastern Europe 

and eas t  Asia. Whereas an unmodified TDRSS i s  vu lnerab le  t o  such RFI, t h i s  i s  

p r i m a r i l y  due t o  a  design opt imized f o r  benign-envircriments. Planned modi- 

f i c a t i o n s  t o  TDRSS ground demodulation equipment w i l l  reduce the impact 

o f  RFI, and awareness o f  t he  problem can y i e l d  even g rea te r  m i t i g a t i o n  i n  

f u t u r e  systems. 

Tac t i ca l  radar  impact on TDRSS i s  p r i m a r i l y  a t  Ku-band, where c u r r e n t l y  

sporadic RFI e x i s t s  due t o  i n t e r m i t t a n t  opera t ion  o f  t a c t i c a l  radars .  

Again, RFI i s  pu lsed and e x i s t s  over  wide frequency i n t e r v a l s .  Cur ren t l y ,  

K-band radar  deployments a re  smal l  and opera t ing  regimes a re  non-continuous. 

As w i t h  S-band RFI, forward and r e t u r n  l i n k  impact i s  due t o  a  design op t im iz -  

ed f o r  a  benign environment. 

While t he  c u r r e n t  impact o f  m i l i t a r y  RFI cou ld  be m i t i g a t e d  w i t h  c a r e f u l  

design i n  a  TDAS, t he  RFI environment i s  l i k e l y  t o  become mo're severe i n  

the f u tu re .  Th is  i s  due t o  the  t r e n d  toward higher-power, h igher -ga in  

radar equipment and the simultaneous t r e n d  toward more continuous opera t ing  

regimes (due t o  i n t r o d u c t i o n  o f  more r e l i a b l e  equipment). These t rends 

i n d i c a t e  a  need f o r  carefu l  examination o f  frequency bands considered f o r  

TDAS. RFI due t o  m i l i t a r y  radar  equipment i s  a  s i g n ' f i c a n t  degrading i n -  

f luence, and must be examined on a band-by-band bas is  as t he  TDAS frequency 

u t i l i z a t i o n  p l an  develops. For t h i s  assessment, care should be taken t o  

p r o j e c t  probable impact over the  nex t  two decades. 



SECTION 4 

TECHNIQUES FOR ROBUST OPERATION 

This sec t ion  describes n i ne  techniques f o r  improving TDAS l i n k  s u r v i v a b i l i t y  

and robustness i n  the presence of RFI. While none o f  these techniques i s  a 

panacea, var ious techniques i n  combination y i e l d  s i g n i f i c a n t  improvement 

against  a l l  types of RFI addressed i n  Sect ion 3. The techniques discussed 

here in  are: 

Frequency band se lec t i on  t o  take advantage o f  atmospheric a t tenua t ion .  

Close coord ina t ion  w i t h  o the r  serv ices,  t o  achieve mutua l l y  des i rab le  

performance w i t hou t  s a c r i f i c i n g  one serv ice  o r  another. 

Increased EIRP o f  s a t e l l i t e  t ransmiss ion equipment. 

Improved ga in  o f  s a t e l l i t e  and ground antennas. 

Forward e r r o r  co r rec t i on  (FEC) coding and i n t e r l e a v i n g  o f  data and 

command messages. 

Regulatory i n j u n c t i o n  against  i d e n t i f i a b l e  i n t e r f e r e r s .  

Mu1 t i p l e  r o u t i n g  through the  mu1 t i s a t e l  1 i t e  TDAS network. 
S i gna l i ng  formats t h a t  prov ide modulation d i v e r s i t y  i n  frequency, 

t ime o r  code. 

Command v e r i f i c a t i o n  p ro toco ls  t h a t  t r a p  undetected e r r o r s  i n  a 

pr imary t ransmission. 

Table 4-1, tabu la tes these techniques aga ins t  the  f o u r  sources of RFI descr ibed 

i n  Sect ion 3. The no ta t ions ,  i n d i c a t i n g  improvements i n  robustness (R) and 

s u r v i v a b i l i t y  (S),  should be viewed i n  a q u a l i t a t i v e  sense. A su r v i vab le  system * 
i s  t y p i c a l l y  ab le  t o  operate i n  any a n t i c i p a t e d  RFI environment. A robus t  

system, on the o ther  hand, provides some l e v e l  o f  res is tance  and graceful  de- 

gradat ion i n  the presence o f  harsh RFI environments w i t hou t  guaranteeing a 

s p e c i f i c  l e v e l  of performance. 

P * 
We emphasize the word "an t i c i pa ted " .  

4- 1 
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Each mitigating technique involves certain implementation costs. These 

must be borne by the user sa te l l i tes ,  TDAS sa te l l i tes ,  ground equipment 

and managerial infrastructure. The task of the system planner i s  t o  select 

some set of mitigating techniques that: 

a )  offers the required level of protection against the perceived 

RFI environment; and 

b )  shares the implementation costs equitably among a1 1 interested 

parties. 

The second condition i s  particularly diff icul t  t o  satisfy i n  a system with 

mi 1 i tary , governmental , industrial and scient i f ic  user communities. 

The remainder of this section addresses each mitigating technique in turn, 

with a brief description of capabilities and costs. The discussion is  

nontechnical, and intended primarily as an overview of available techniques. 

4.1 FREQUENCY BAND SELECTION FOR ATMOSPHERIC ABSORPTION 

A system design that takes advantage of atmospheric abosroption can enhance 

survivability of TDAS space-space 1 inks a t  relatively modest cost. The 
lowest frequency band offering significant attenuation i s  the 54-64 G H z  

band, with attenuations of 10 dB t o  over 100 dB. While the range of > 100 dB 
attenuation spans only = 5 GHz, careful system design could share this  band- 

w i d t h  among the most vulnerable TDAS space-space 1 inks ( i  .e . ,  USAT-TDAS and 

TDAS-USAT) and distribute the relatively less vulnerable links t o  the edges 

of the absorption region. The advantage of this  technique i s  that terrestr ia l  
sources of RFI, military as well as civil ian,  become insignificant without 

excessive expenditure of power or coding complexity . 

On the other hand, some development work would be required t o  exploit this  

band -- and atmospheric absorption i s  ineffective against solar RFI, self-  
interference and RFI experienced on Earth-space links. 



4 . 2  COORDINATION WITH OTHER SERVICES 

In most cases i t  i s  possible t o  alleviate RFI by negotiation and compromise 

with the entity responsible for the interference. An example i s  the 

air-mobile threat t o  the TDAS downlink, where a well-defined coordination 

area similar to that i l lustrated in Figure 4-1 could res t r ic t  non-TDAS 

use of particular frequencies. Such coordination becomes less practical 

as RFI impact regions become larger, since the operational effect on the 
interferer becomes more severe. This case may exist  with mu1  t i  beam down1 inks. 

The cost here i s  in the social sector, where additional administration 
i s  required and where non-TDAS act ivi t ies  may be degraded. The social 

and economic cost of such coordination must be assessed on a case-by-case 

basis. 

4.3 INCREASED EIRP FOR SATELLITE TRANSMITTERS 

Increasing the EIRP of TDAS and USAT transmitters i s  a brute-force method 

for achieving a measure of robustness. The excess EIRP translates directly 

into improved Eb/No a t  the receiver, or reduced J/S rat io  i f  the RFI i s  due * 
t o  interfering signals rather than thermal noise. Against solar RFI, 

increased EIRP allows closer grazing angles with the sun before communication 

i s  lost .  While actual conjunction s t i l l  causes outage, the period of outage 

i s  reduced since EIRP can be traded for antenna offpointing discrimination. 

Against civi 1 i an and mi 1 i tary RFI , increased EIRP reduces the re1 a t i  ve 

strength of an interferer,  yielding improved performance. Increased EIRP 

fa i l s  t o  address self-interference, since a user's increased power i s  offset ** 
by a proportionate increase by the interferer.  Increased E I R P  i s  ineffective 

against the downlink threat posed by an a i r  mobile interferer.  Given the 

* 
The cr i t ical  assumption with respect t o  reduced J/S ratio i s  that the 
interfering signal maintains constant power. This i s  true of signals 
from other services, civilian or military. I t  i s  false in the case 
of RFI due t o  self-interference. 

** 
Disproportionate power increases within the TDAS community could protect 
certain users a t  the expense of others. This may be desirable for h i g h -  
priority and  manned missions. 
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FIGURE 4-1: COORDINATION REGION FOR TDAS DOWNLINK 
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range differential between a TDAS sate1 1 i te  and interfering a i rc raf t ,  n o  
reasonable increase in EIRP would overcome this problem. 

The cost of increased EIRP i s  borne by the transmitting s a t e l l i t e ( s ) .  The 

increased power requirement translates into 1 arger solar cell arrays and 

batteries, heavier support structures and electronics, and 1 arger maneuver- 

ing fuel requi rements . 

4.4 IMPROVED GAIN FOR SATELLITE AND GROUND ANTENNAS 

Improving the receive antenna gain yields a measure of robustness against 

a l l  forms of RFI. The technique operates by narrowing the receive antenna 

beamidth, thereby reducing the probability of main-beam-to-main-beam inter- 

ference. In the case of solar RFI, outage time i s  reduced by improving 

the level of offpointing discrimination afforded by a given angular separa- 
tion between transmit spacecraft and solar disk. In the case of down1 i n k  

RFI from a i r  mobile transmitters, improved ground antenna gain similarly 

narrows the antenna beamidth and reduces the probabi 1 i ty  of a ircraf t  

occurrence i n  the beam. B u t  while robustness i s  improved this  technique does 

not achieve survi vabil i ty since interference windows are only narrowed without 

being eliminated. 

The cost of improved antenna gain i s  borne by the receiving spacecraft or 

ground  station. In the case of spacecraft the additional weight involved 

in a larger antenna bears the additional penalty of heavier structures and 

1 arger maneuvering fuel requirements. 

4 .5  FORWARD ERROR CORRECTION CODING AND INTERLEAVING OF DATA AND COMMAND 

MESSAGES 

Interleaving and FEC coding are discussed together since interleaving i s  

ineffective without an underlying code to correct or detect errors. 



Interleaving can be used in conjunction with a convolutional FEC code. 

A 1  ternati vely, a block code with burst-error correcting capabi 1 i ty (such 

as a BCH code) can be used without an interleaver. The choice depends 

on the data rate,  RFI scenario, correction abi l i ty  required, and equipment 

constaints. 

Since RFI due to military radar equipment i s  characterized by pulsed 

energy, interleaving and coding can enhance RFI survivability. The design 

issue i s  t o  characterize the periodicity and duration of RFI pulses. 

This data allows design of interleavers and codes optimized for the en- 

vi ronment. The technique owes i t s  effectiveness to  the re1 a t i  vely short 

pulse durations of military radars. 

RFI due t o  other civilian services, self-interference and solar conjunctions 

are mow diff icul t  to resolve by interleaving and coding alone, The 

problem here i s  the long duration of outages--on the order of seconds or 
minutes. For the high-end data rates expected in the TDAS era, interleaving 

spans t o  address these outage durations would be on the order of 108 or 1010 

bits.  This i s  f a r  beyond the capability of present-day interleavers, and could 

introduce severe synchronization problems i f  ever implemented. I t  there- 

fore appears that interleaving and coding fa i l  to enhance survivabi 1 i ty against 

interfering signal streams or solar conjunctions. B u t  they nevertheless offer 

some improvement in robustness by a1 1 owing operation during short "grazing" 
events . 

An operational definition of the term "short grazing event" depends on 

interleaver design and code capability. These parameters may be selected 

by the system designer or user t o  achieve necessary performance goals. 

The cost of interleaving and coding f a l l s  on the user spacecraft and ground 

terminal equipment. The major weight and complexity penalty i s  on the 

receiving side, particularly in the FEC decoder. When coding i s  employed 

on forward link communication ( i . e . ,  from the ground t o  a user s a t e l l i t e ) ,  the 

associated power and weight of decoder equipment implies secondary penalties 

of support weight, solar cell array size and manuevering fuel. 



The advantages of interleaving and coding not equivalent t o  those of 

increased EIRP or gain. Interleaving/coding attacks the worst error 

events rather than the average channel (which i s  l ike ly  to  be f a i r l y  

good). On the other hand, interleaving/coding rapdi ly reaches an implement- 

ational 1 imi t as er ror  bursts approach 105 channel symbol s .  These techniques 

should be viewed as complementary, rather than separate means to  the 

same end. 

4.6 REGULATORY INJUNCTIONS AGAINST IDENTIFIABLE INTERFERERS 

Regulatory remedies can be considered an RFI mitigation technique in a broad 

system context encompassing social as well as technological elements. In 

the event of RFI due t o  U.S. o r  foreign c iv i l i an  services,  t h i s  technique 

may, in some cases, offer  hope of controlling the source of RFI. How- 

ever, the method's success depends on the unsure outcome of regulatory 

proceedings. I t  i s  wise to  consider t h i s  recourse during frequency plan 

development, b u t  unwise t o  rely on i t  exclusively. 

The regulatory basis fo r  protecting TDAS from RFI emitters  1 ies in assigning 

TDAS services a higher allocation s ta tus  in i t s  operating bands than the 

potential RFI emitters. Showing primary allocation s ta tus  f o r  TDAS, b u t  

only secondary allocation s ta tus  for  the RFI emitter ,  i s  the most s t ra igh t -  

forward. In cases of equal a1 location s ta tus ,  precedence in time must be 

established. The des i rab i l i ty  of operating with a primary a1 location 

s ta tus  i s  c lear- - i t  of fers  support i n  the event tha t  regulatory remedies become 

necessary, and guards against s imilar  proceedings taken against TDAS by 

other services. In addition t o  the time-consuming nature of the regulatory 

process, it requires precise identif icat ion of the RFI source. This may not 

be easy in an operational TDAS, where the emphasis i s  on service rather than 

pinpoint electromagnetic sensing. In contrast  to  techno1 ogi cal means of RFI 

m i  t iga t ion,  which only require characterization of RFI, regulatory proceed- 

ings require characterization and ident i f ica t ion of the RFI emitter .  



4.7 MULTIPLE ROUTING 

In a TDAS constellation with three or more s a t e l l i t e s ,  a USAT will frequently 

view two or more TDAS sate1 1 i tes  simultaneously. Some deci sion-making en t i ty  

must se lect  one TDAS from several as a support link fo r  the USAT. This 

choice can be made dependent on known RFI source locations, t o  avoid main- 

beam-to-main-beam interactions.  

Outages due to  solar  RFI and self-interference can be predicted on geometric 

grounds and known equipment performance. In the event of predicted outage, 

a1 ternative routing will sidestep the RFI geometry. Interference from other 

civi l ian and mili tary services can be mitigated as well, although predic- 

tion i s  more d i f f i cu l t  since these users may not have formal coordinating 

channels with the TDAS control system. 

4.8 ACCESS DIVERSITY 

Access diversi ty encompasses the techniques of frequency division multiple 

access (FDMA), time division multiple access (TDMA) and code division 

mu1 t i p l e  access* (CDMA).  These techniques are primarily ef fect ive  against 

self-interference, since a1 1 elements of a sel f-interference scenario 

are subject t o  control. These diversi ty techniques can be thought of 

as additional elements in a multiple routing universe. Where a l ternat ive  
routing separates transmissions in space, the divers i ty  techniques addressed 

here separate transmissions in time or frequency. One potenti a1 advantage 
of access diversi ty over multiple routing i s  the f a c t  that  main-beam-to-main- 

beam conf l ic t  can ex i s t  on a geometric level ,  without actually degrading 

performance. This may offer  enhanced f l ex ib i l i t y  to  the scheduling algorithms, 

depending on the diversi ty implementation selected. 

CDMA offers mitigation against narrow band interference, b u t  f a i l s  t o  protect 

against broadband-noise type signals.  In general FDMA and TDMA are vulnerable 

to  external RFI. FDMA and TDMA o f fe r  no protection against mi l i tary  RFI. 

These techniques are also ineffective against solar  RFI, since the sun 
emits radiation continuously a t  a l l  frequencies. They are similarly 

* 
Code division mu1 t i p l e  access i s  also known as spread-spectrum mu1 t i p l e  
access (SSMA), since i t  operates by a f a s t  binary code m u 1  t ip1 ied with 

- the unmodulated data stream that  spreads the signal energy over a band- 
w i d t h  much larger than the information bandwidth. 



ineffective against non-TDAS civilian services, since these are typically 

continuous and a t  frequencies not subject t o  TDAS control. 

COMMAND VERIFICATION PROTOCOLS 

Command verification protocols are error-detecting rather than error- 

correcting techniques, useful on command transmission b u t  n o t  data trans- 

mission. A typical method i s  for spacecraft A ,  receiving a command, t o  

echo i t  back to the transmitter. The transmitting station compares the 

echo t o  a stored copy of the original message and transmits a go-ahead 

in the event of a match. The command i s  executed when the go-ahead i s  

received by spacecraft A .  This protocol approximately t r iples  the command 

cycle time since three transmissions are involved rather than one. B u t  i t  

guarantees detection of a l l  errors in command transmission. As a resul t ,  

RFI will never be the cause of uncommanded activity by a spacecraft. 

RFI survivability i s  not achieved, since RFI s t i l l  enters the communication 

link and disrupts reception. B u t  robustness i s  enhanced since inaction i s  
prefered over incorrect action. 

The costs of .verification protocols are mostly in command delay time. 

The approximately tripled cycle time may entail degraded performance for 

realtime control scenarios. For example, ground-commanded antenna pointing 

and acquisition of a user sa t e l l i t e  may become sluggish due t o  additional delays. 

This could be resolved by dividing the command set  into two classes: 

commands that require verification and commands that do not. Verifiable 

commands would typically commit the spacecraft t o  a cr i t ical  activity such 

as a propel lent b u r n ,  while unverifiable commands would be non-cri t ical  , 
such as init iation of search procedures for a particular user sa t e l l i t e .  

An a1 ternative t o  command classification into verifiable and nonverifiable 

sets i s  a capability for more complex decision-making on the s a t e l l i t s ,  

so that a single verifiable command could trigger a complex series of 

actions without additional ground interaction. This would boost the 

cost, weight, and complexity of the spacecraft processor. 



GLOSSARY 

CONUS 

Eb/No 
EES 

EIRP 

FCC 

ISM 

J/S 
LEO 

NO1 

NTIA 

RFI 

SET1 

TDAS 

TDRSS 

USAT 

WARC 

Continental United States 

Energy per bit-to-thermal noise per hertz 

Earth-exploration satellite 

Effective Isotropically Radiated Power 

Federal Communications Commission 

Industrial-Scientific-Medical 

Jammer-to-Signal Ratio 

Low Earth Orbit 

Notice of Inqufry 

National Telecommunications and Information Administration 

Radio Frequency Interference 

Search for Extraterrestrial Intelligence 

Tracking and Data Acquisition System 

Tracking and DBta Relay Satellite System 

User Sate1 1 i te 

World Administrative Radio Conference 
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