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ABSTRACT

This paper discusses the various wear mechanisms involved with single-*3*
GO

2 crystal ceramic materials in indentation and in sliding contacts. Experiments
UJ

simulating interfacial events have been conducted with hemispherical, conical

and pyramidal indenters (riders).

With spherical riders, under either abrasive or adhesive conditions, two

types of fracture pits have been observed. First, spherical-shaped fracture

pits and wear particles are found as a result of either indenting or sliding.
/

These are shown to be due to a spherical-shaped fracture along the circular or

spherical stress trajectories. Second, polyhedral fracture pits and debris,

produced by anisotropic fracture, are also found both during indenting and

sliding. These are primarily controlled by surface and subsurface cracking

along cleavage planes.

Several quantitative results have also been obtained from this work. For

example, using a pyramidal diamond, crack length of Mn-Zn ferrite in the inden-

tation process grows linearly with increasing normal load. Moreover, the crit-

ical load to fracture both in indentation and sliding is found to be directly

proportional to the indenter radius.

Finally, the tangential forces present during sliding are very potent in

producing conditions for fracture at the surface. Under such conditions, the

observed anisotropy of friction and plastic deformation is explained on the

basis of the primary slip systems of these ceramics.



INTRODUCTION

Since fracture is one of the main limitations to a wider use of ceramic

materials in tribological applications, understanding and new developments in

this area are particularly important. For example, conventional magnetic re-

cording is accomplished by the relative motion of magnetic tape against a

stationary (audio or computer) or rotating (video) read/write magnetic head.

These heads are generally made of oxide ceramics such as Ni-Zn ferrite or Mn-Zn

ferrite. For high-density, high-resolution recording, close proximity between

the tape and the head is essential. The use of the ferrites in these applica-

tions strongly involve surface interactions. Cracking at and below the surface

of ceramic oxides changes not only the characteristics of the head, but it also

drastically affects the head life.

To reduce fracture wear in practical tribological applications, it is im-

portant to understand the various fracture wear mechanisms. If the mechanism

of wear in a particular system can be identified, then some significant reduc-

tion in wear is often feasible.

This paper is principally concerned with a fundamental understanding of

fracture wear of single-crystalline ceramics in indentation and sliding con-

tact, and with demonstrating the most important intrinsic mechanisms determ-

ining fracture. The ceramic materials examined include SiC, MgO and Mn-Zn

ferrite.

MICROFRACTURE IN INDENTATION CONTACT

When two solid surfaces are placed in contact, high pressures are devel-

oped in the regions where real contact occurs at the interface. If a hard par-

ticle or a hard asperity of approximately spherical shape is in contact with a

ceramic under load, the ceramic initially deforms locally according to the

well-known Hertzian elastic equation (ref. 1). Fractures with ring cracks have



been produced in flat-surfaced ceramics critically loaded, either statically

or dynamically with hard spheres (refs. 2 to 7). In the present study, hemi-

spherical diamond indenters with radii characteristic of asperities or wear

particles were used to simulate real contact conditions.

Indenting with a hemispherical diamond indenter on a silicon carbide {0001}

surface also results in the formation of circular (ring) cracks as well as in

plastic deformation. Figure 1 presents scanning electron photomicrographs of

the permanent indentations and the surrounding circular cracks generated by

0.1-, 0.02- and 0.008-mm-radius hemispherical diamond indenters. It becomes

obvious from an examination of figure 1 that the plastic deformation is accom-

panied by nearly perfect circular cracking in the silicon carbide.

It is very interesting that, as shown in figure 1, the crystallinity of

the solid does not influence the geometry of the cracks. In other words, for

anisotropic solids such as a single crystal, some orientation dependence of the

circular cracks produced in crystals with strong cleavage tendencies might be

expected. Figure 1, however, reveals nearly circular cracks that were not

crystallographically oriented.

Figures l(b) and (c) also reveal cracks propagating and expanding radially

from the center of the contact circle. The cracks form preferentially on the

planes of easy cleavage in the silicon carbide. These photomicrographs clearly

show several slip lines, accompanying plastic deformation, in the indentations.
I

The slip lines are crystallographically oriented and are in the <112~0> direc-

tions. To summarize, the indenting experiments generally revealed (1) a plas-

tically deformed indentation, (2) circular cracks produced around the indenta-

tion without cleavage tendencies of a given crystal, and (3) radial cracks with

strong cleavage tendencies for the given crystals.

Figure 2(a) is a scanning electron photomicrograph of an indentation on

the single-crystal silicon carbide surface accompanied by an exceptionally



large fracture pit. The deformation and fracture made by the hemispherical

indenter are also shown schematically in figure 2(b). Yet there are not con-

firmed criterions or reasonable data to explain what conditions can produce

this exceptionally large fracture pit. The pit is, however, found in the in-

denting experiment which was conducted with a 0.008-mm-radius hemispherical

diamond indenter at a load of ION. There was a discharge of fragments that

were displaced from the surface of the silicon carbide. The fracture pit is

like a volcanic crater. The crater forms a wide basin with steeply sloping

sides. The fracture pit (crater) contains a plastically deformed indentation

in the center of the crater with small fracture pits. The crater is much

larger than the indentation. The partially spherical surface in the crater and

on the sides of the basin are all produced by the indenting and unloading ac-

tions of the diamond hemispherical indenter. There are many fracture steps on

the surfaces of the spherical hillsides and on the sides of the basin. These

steps may be due to sequential rupture of cohesive bonds along easy fracture

planes such as the cleavage and quasi-cleavage planes. There are also many

radial cracks on the nearly spherical fracture surface. The radial cracks are

similar to those shown in figures l(b) and (c).

Figure 3 presents scanning electron photomicrographs of indentations on a

single-crystal magnesium oxide {001} surface (99.99 percent pure). The indent-

ing experiments were conducted with the magnesium oxide in contact with a 0.02-

mm-radius diamond indenter in air and in mineral oil with sulfur additive at a

load of 0.25 N. The observed patterns of nearly circular cracks and crystal 1-

ographically oriented cracks are much like those previously mentioned for sil-

icon carbide..

The most prominent features of all of the crack patterns presented in fig-

ures 1 to 3 may be plausibly explained by reference to figure 4. When two

solid surfaces are in contact, the stress concentration at the contact area may



produce a small zone of plastic deformation in ths solid, as shown in figure 4.

Cracks will subsequently be initiated in the solid. The cracks develop stable

growth in a subsurface region and on the surface around the plastic deformation

zone during the loading and unloading processes. The cracks, which are gener-

ally circular, spherical, and radial, are schematically shown in figure 4 with

a model. As suggested by this schematic diagram, spherical cracks appear to

develop along the spherical stress trajectories (refs. 7 to 9). Although crys-

tallinity, however, is imposed on the crack geometries of anisotropic materials

such as silicon carbide, it is possible that the cracks may grow and pile up

in atomistic terms by the sequential rupture of cohesive bonds along the circu-

lar or spherical stress trajectories shown in figure 4.

MICROFRACTURE IN SLIDING CONTACT UNDER ABRASIVE CONDITIONS

If a tangential force is applied to the normally loaded hemisphere, the

additional tangential stress compresses the ceramic and opposes the tensile

tangential stress due to the normal load on the leading side of the rider.

Conversely on the trailing side the tensile tangential stress is augmented.

As a result, cracking will be restricted to the rear of the contact region and

suppressed at the leading edge. Cracks of this type have long been observed

when a hard hemisphere slides over the surface of a brittle solid (refs. 10

to 13).

In the present work, sliding friction experiments were conducted with a

hemispherical diamond (0.02 mm radius) in contact with a flat either of silicon

carbide or of Mn-Zn ferrite. Figure 5 presents scanning electron photomicro-

graphs of wear tracks on these surfaces. As shown in these photomicrographs

plastic deformation occurs in both the silicon carbide and the Mn-Zn ferrite.

Two kinds of crack are observed. One occurs in the wear tracks and propagates

perpendicular to the sliding direction. The other is primarily observed on



both sides of the wear track, propagating outward from the wear track. Two

effects of potential importance for sliding contact will be considered:

(1) The deformation and fracture behavior of ceramic materials may be very

dependent on crystallographic orientation;

(2) The cracks may grow easily by application of shearing force during

sliding.

Effects of Crystallographic Orientation

Coefficient of friction and widths of the permanent grooves in plastic

flow accompanied with surface cracking were measured as a function of the crys-

tallographic direction of sliding on the {0001}, {lOTO}, and {1170} planes of

SiC for the conical diamond rider in mineral oil. The apical angle of the coni-

cal rider was 117±1° and the radius of curvature at the apex was less than 5 pm.

Mineral oil was used to minimize adhesion. Figure 6 indicates that the effects

of crystallographic orientation on the coefficient of friction and groove width

are correlated. Thus, the <1120> direction on the basal {0001} plane has the

larger groove, primarily as a result of plastic flow and is the direction of

high friction for this plane. The <0001> directions on the {lOTO} and {1120}

planes have the greater groove width and likewise are the directions of high

friction when compared with the <1120> on the {lOTO} plane and the <101/0> on

the {11?Q> plane (ref. 14).

The contact pressure calculated from the data of the groove width is also

represented in figure 6, together with the Knoop hardness obtained by Shaffer

(ref. 15). The anisotropies of this contact pressure and Knoop hardness

clearly correlate with each other. The anisotropies of friction, groove width,

contact pressure, and Knoop hardness on the {0001}, {lOTO}, and {112~0} planes

of SiC are primarily controlled by the slip system {lOTO} <11ZO> and are ex-

plained by a resolved shear stress calculation (refs. 16 to 19).



Figure 6 suggests that the <10TO> directions on the basal plane of SiC

which exhibit the lowest coefficient of friction might show the greatest re-

sistance to abrasion resulting from plastic deformation.

To investigate the effect of crystallographic orientation on microfrac-

ture, a pyramidal Vickers diamond has been used. Figure 7 shows the variation

of total crack length around such an indentation on Mn-Zn ferrite (100), (110),

(111), and (211) planes and their Vickers hardness values for experiments at

loads of 0.25 to 2.0 N. Measurements were made with one of the diagonals of

the Vickers (pyramidal) indentation making angles of approximately 0, 22.5° and

45° to the [Oil] OP (100), [001] on (110), [117] on (111), and [Oil] on (211).

The averages of these three measurements of crack length and hardness are plot-

ted in figure 7. This plot reveals two features of consequence: (1) there

exists a crystallographic orientation effect on crack growth and Vickers hard-

ness, and (2) crack growth is linear with increasing load. The cracking of

Mn-Zn ferrite was determined to be based on {100} and {110} primary systems.

It was also determined that the deformation of Mn-Zn ferrite is controlled by

the slip system {110} <110>.

Effects of Tangential Force

In 1891 Auerbach demonstrated that the load for Hertzian cone crack initi-

ation varies linearly with the radius of the indenting sphere (refs. 2 to 7).

This relationship, known as Auerbach's law, is of special interest to fracture

theorists, (1) because it predicts a size effect, the smaller the indenter, the

higher the stress required to initiate fracture, (2) because of its implica-

tions concerning the validity of certain brittle fracture criteria, and (3) be-

cause of its potential use as a means for measuring fracture surface energies

(ref. 5). The theoretical justification of Auerbach's law has consequently

been the target of many treatments of Hertzian fracture mechanics.



With a 0.02 iron-radius diamond hemisphere, Circular cracks formed on the

silicon carbide {0001} surface, when the normal load exceeded 2 N in the

indentation process. However, if a tangential force was applied, cracking oc-

curred at the rear of the contact region for a normal load of 0.4 N (ref. 20).

Therefore relatively small tangential stresses are very potent in producing

conditions for fracture at the surface.

Figure 8 indicates the critical normal load to fracture of Mn-Zn ferrite

as a function of radius for both indenter and rider in indentation and in slid-

ing contact. The load to fracture is directly proportional to the radius of

the indenter and rider. The tangential force introduced by sliding plays an

important role in the generation of surface fracture. With indentation, the

cracks produced in the single-crystal Mn-Zn ferrite surfaces were not circular

(ring) cracks, but rather extended in radial directions from the indentation.

The cracks generated in sliding propagated perpendicular to the sliding

direction in the wear tracks.
/

MICROFRACTURE IN SLIDING CONTACT UNDER ADHESIVE CONDITIONS

The removal of adsorbed films (usually water vapor, carbon monoxide, car-

bon dioxide, and oxide layers) from the surfaces of ceramics and metals re-

sults in very strong interfacial adhesion when two such solids are brought in-

to contact. For example, when an atomically clean silicon carbide surface is

brought into contact with a clean metal surface, the adhesive bonds formed at

the silicon carbide-to-metal interface are sufficiently strong that fracture

of cohesive bonds in the metal and transfer of metal to the silicon carbide

surface results (refs. 16 and 20). This is observed in the scanning electron

microscope.

Figure 9 presents scanning electron photomicrographs of the wear tracks

generated by ten passes of rhodium and titanium riders on the SiC {0001} sur-
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face along the <10TO> direction. Metal transfer is evident in the sliding con-

tact. The sliding of a metal on a silicon carbide surface also results in

local cracks along cleavage planes. The cracks, which are observed in the wear

tracks, primarily propagate along cleavage planes of the {10TO} orientation.

In figure 9(a), the hexagonal light area is the beginning of a wear track, and

there is a large crack where cracks primarily along the {lOTO} planes were gen-

erated, propagated and then intersected during loading and sliding of the rho-

dium rider on the SiC surface. It is postulated from figure 9(a) that subsur-

face cleavage cracking of the {0001} planes, which are parallel to the sliding

surface, also occurs. Figure 9(b) reveals a hexagonal pit and a copious amount

of thin titanium film around the pit. The hexagonal fracturing is primarily

due to cleavage cracking along {10TO} planes and subsurface cleavage cracking

along the {0001} plane.

Similar fracture pit and multiangular wear debris, having crystallograph-

ically oriented sharp edges, have been previously observed with single-crystal

Mn-Zn ferrite in contact with itself or a metal (ref. 21). The fracture be-

havior of the ferrite crystal during sliding was similarly found to be signif-

icantly dependent on the cleavage systems of the {110} planes.

Figure 10 presents a scanning electron photomicrograph of the wear track

on the silicon carbide {0001} surface generated by single-pass sliding of an
—ft

iron rider at 800° C in a vacuum of 10 Pa. The wear track contains micro-

fracture pits in very small areas in the sliding contact region (ref. 8). Un-

der adhesive conditions then, the same two kinds of fracture pits were gener-

ally clearly observed as under the abrasive conditions described earlier

(figs. 2 and 5), namely: (1) pits with spherically fractured surfaces and (2)

pits with polyhedrally fractured surfaces that are nearly of a hexagonal

platelet shape. These results reconfirm that spherical fracture may occur



even -in single-crystal silicon carbide during sliuing. Figure 11 presents a

scanning electron photomicrograph of another spherical fracture, showing that

a nearly spherically fractured surface can exist in the fracture pit in a very

local area of the wear track.

The experimental evidence assembled in this section then allows the con-

clusion that .substantially the same mechanisms operate to produce fracture

under adhesive conditions as those described earlier under abrasive conditions.

CONCLUSIONS

From the results of indentation and sliding friction experiments on

single-crystal ceranic materials the following conclusions are drawn:

1. Fracture pits with spherically fractured surfaces result from indenting

or sliding with hemispherical riders under either abrasive or adhesive condi-

tions. Spherical fracture occurs along the spherical stress trajectories be-

neath the plastic deformation zone.

2. The same conditions also produce fracture pits with polyhedrally frac-

tured surfaces which are the result of anisotropic fracture. This is primarily

controlled by surface and subsurface cracking along cleavage planes.

3. Cracks in Mn-Zn ferrite during indentation elongate linearly with in-

creasing load.

4. Critical normal load to fracture in indentation and sliding is directly

proportional to the radius of the hemispherical rider. Tangential forces are

very effective in reducing this critical load at the surface of ceramic mate-

rials in sliding contact.

5. Primary slip systems of ceramics can explain the anisotropy of friction

and plastic deformation observed under abrasive conditions.

10
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/—CIRCULAR
/ CRACK

(a) Indentation generated by 0.1-mm-radius hemispherical
indenter. Load, 10 N.

CIRCULAR
CRACKS--.^^^

(b) Indentation generated by 0.02-mm-radius hemispherical
indenter. Load, 5 N.

Figure 1. - Scanning electron photomicrographs of indentation
and cracks on silicon carbide {00011 surface generated by
hemispherical indenter.
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(c) Indentation generated by 0.008-mm-radius hemispherical
indenter. Load, 2N.

Figure 1. - Concluded.



(a) Scanning electron photomicrograph.

Fracture pit

Spherically

surface

(b) Schematic.

Figure 2. - I ndentation and fracture pit with a hemispherically
fractured surface generated by 0.008-mm-radius hemispher-
ical indenter. Load, 10 N.



-Circular
*••? crack

(a) In air.

(b) In mineral oil with sulfur additive.

Figures. - Scanning electron photomicrographs of indenta-
tion and cracks on single-crystal magnesium oxide {0011
surface generated by 0.02-mm-radius hemispherical dia-
mond indenter. MgO crystals cleaved in air and in min-
eral oil with sulfur additive. Indentations made on
surface in air or immersed in the oil. Load, 0.25 N; room
temperature.



Radial crack profile

Surface

Subsurface

Plastically
deformed zone

—Spherical
crack profile

Figure 4 - Schematic of a hemispherical crack formation under plastically
deformed zone.



Poly hedra I ly fractured
surface

(a) Silicon carbide. Load, 2 N.

Polyhedral ly fractured
surface

(b) Mn-Zn ferrite. Load, IN.

Figure 5. - Scanning electron photomicrographs of wear
tracks on single-crystal silicon carbide(0001) surface
and manganese-zinc ferrite {110} surface generated
by 0.02-mm-radius hemispherical riders.
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CRACKS ALONG
{10101 PLANES-

RHODIUM TRANSFER
TO SI LI CON CARBIDE

(a) Hexagonal cracking.

CLEAVAGE SURFACE
OF (10101 PLANE

TRANSFER OF
TITANIUM -

SLIDING
DIRECTION

CLEAVAGE SURFACE
OF {OOOD PLANE.

(b) Hexagonal pit.
Figure 9. - Scanning electron photomicrographs of wear tracks

on the {0001} surface of single-crystal SiC in contact with
rhodium and titanium as a result of ten passes of a rider
in vacuum. Sliding direction, <1010>; sliding velocity,
3 mm/min , load, 0.3 N; room temperature; pressure,
10"8 Pa; metal pin rider, 0.79 mm radius.



/•—" Spherically fractured
surface

" Hexagonally fractured
surface

Figure 10. - Wear track with fracture pits on silicon carbide{0001} surface as a result of single-pass sliding of iron rider (0.79 mm radius).
Sliding velocity, 3 mm/min; load, 0.2 N; temperature, 800° C; vacuum, 30nPa.



Spherically fractured
/ surface

Figure 11. - Fracture pit on silicon carbide {0001} surface with spherically fractured surface as a result of single-pass sliding of iron rider
(0.79 mm radius). Sliding velocity, 3mm/min; load, 0.2N; temperautre, 800° C; vacuum, 30 nPa.
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