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1.0 [INTRODUCTION

In order to provide turbulence models useful for computations of the
flowfields involved in advanced scramjet combustion systems, a number of
features of these flowfields must be considered. These combustion systems
involve supersonic flows with embedded subsonic regions and recirculation
zones, and appropriate turbulence models for scramjet applications must ad-
dress each of these. The geometry of advanced combustors is often three-
dimensional, so that the effects of three-dimensionality in the flowfield
on the turbulence characteristics must be taken into account. Moreover,
the combustion process in a scramjet system is embedded within a highly tur-
bulent flow, so that the effects of turbulence on chemical reaction rates
must be considered; particularly, in the scramjet context, with respect to
ignition phencmena. On the other hand, to be of maximum utility in scramjet
combustor design, the turbulence modeling should be as simple and straight-
forward as is consistent with the requirements of overall accuracy. In this
application, predictions of mean flowfield structure, the effects of heat
release, and mean chemical reaction rates are of greatest importance: details
of the turbulence structure itself can be approximated if the approximations
introduced do not materially affect the prediction of overall mixing rate,
chemical reaction rate, and parameters such as the wall skin friction distri-
bution and flowfield pressure gradient. Since it can be expected that dif-
ferent effects may dominate in different regions of the flow: nonisotropy
in recirculation regions; compressibility effects in high speed flow regions;
and turbulence-chemistry interaction effects in regions in which fuel ignition
is occurring, a modular approach may be the most efficient turbulence model
overall. In such an approach, each module contains the turbulence model
elements which best account for the dominant features of each region of the
flowfield.

An assessment of turbulence models for scramjet applications was initi-
ated in September 1979. During the first year of this work, as outlined
in Ref. 1, the major effort involved the examination of the multiple dissipa-




tion Tength scale (MDLS) turbulence model, since this approach appeared to
offer the potential for greater generality than existing models in the context
of scramjet-related flowfields. In addition to this work, other efforts
carried out during the first year of this program included the definition

of a technique for the estimation of the initial conditions required by field-
equation turbulence models (Ref. 1), an examination of the use of a modified
dissipation rate equation with the basic k-e two-equation turbulence model,
and the development of a supersonic-flow compressibility correction to the
dissipation rate equation in the two-equation (or MDLS) approach.

Although the results of Ref. 1 indicated that the MDLS model is slightly
more general than the basic k-€ model, the gain did not appear worth the
added cost of solving two additional equations. Furthermore, the flowfields
considered in the analyses reported in Ref. 1, while fundamental to and under-
lying many of the structures found in scramjet flows, did not involve large
scale recirculation regions. Accordingly, the focus of the second year's
work shifted to an assessment of the performance of a variety of turbulence
models in low-speed and high-speed recirculating flows. This work, described
in Ref. 2, involved the application of several turbulence models to a variety
of recirculating flows including axisymmetric and planar sudden-expansions.
The turbulence mdoels studied included the basic two-equation model and the
algebraic stress model, in both cases with and without modifications to the
dissipation rate equation designed to enhance the model's sensitivity to
streamline curvature. Results of this work indicated that the algebraic
stress model was the most generally applicable in regions of strong recircula-
tion, and that the modification to the dissipation rate equation, while impor-
tant in the region surrounding the recirculation zone, had a deleterious
effect on the overall level of predictions in the region downstream of the
recirculation zone. On the other hand, the results described in Ref. 2 were
felt to be inconclusive, since only in planar subsonic recirculating flows
could clear model differences be discerned.

A further observation made in the course of carrying out the work des-
cribed in Ref. 2 was that in complex flowfields it is difficult to separate
some aspects of the turbulence modeling problem from the numerical problems
inherent in different computational approaches for solving the governing




equations describing the flow. These aspects include the treatment of wall
boundary conditions, the algorithms used to generate the finite-difference
form of the equations, and the algorithms used to provide the finite-differ-
ence solution of the governing equations for the particular turbulence model
chosen. While not an integral part of the work plan for the program, several
such problems were encountered and were discussed in Ref. 2. Work in this
area continued during the program described in this document, with particu-
lar emphasis on the minimization of numerical diffusion problems in turbulence
model assessment.

The work described in this report completes the assessment of turbulence
models for scramjet applications. Axisymmetric subsonic recirculating flows
were considered to complete the k-c model and ASM model comparisons initiated
in the prior program. Swirling flows, while not themselves of direct interest
in scramjet applications, were found to be stringent tests of turbulence
modeling so that assessment of the various turbulence models was extended
to these flowfields. Considerable care was taken to minimize the effects
of numerical diffusion which, if not carefully minimized, can all but swamp
differences between turbulence models. Further efforts to incorporate
higher-order turbulence models in both the time-split and time-unsplit
MacCormack predictor-corrector schemes were carried out. These efforts
were unsuccessful: the introduction of stiff equations renders the basic
solution algorithm unstable, and this result points up the need for turbu-
lence model development and numerical solution algorithm development to
proceed in parallel. Just as there is no completely general turbulence
model, neither does a general numerical solution algorithm exist. Finally,
methods of modeling scalar transport which do not invoke the Boussinesq
gradient diffusion hypothesis were investigated. Each of these areas is
described in detail in this work.

Althouah, as noted above, no completely general turbulence model
exists for scramjet applications, the work described in this report and in
Refs. 1 and 2 indicates that the algebraic stress formulation is the method
of choice. This conclusion results from the greater generality of the
approach, compared with the two-equation model, and from its ability, when
coupled with appropriate numerical resolution, to model details of the flow




such as counter-rotating vortices in a sudden expansion recirculation _
region. In regions of relatively simple flow (i.e., jets and shear layers)
the basic two-equation approach remains applicable, and it is easily
arranged to transition from the ASM to the k-c¢ approach since the turbulence
kinetic energy and dissipation rate equations are fundamental parts of the
ASM formulation. Finally, solution of the equation for transport of the
turbulent species flux, in the same general way as the ASM solution proceeds,
appears to be a viable method for generalizing these results to more complex
flows with species and energy transport. However, further model development
work is required in the latter area, and such model development work is
recommended as an outgrowth of the work described in this report.




2.0. ASSESSMENT OF TURBULENCE MODELS FOR SCRAMJET APPLICATIONS

Three major areas were addressed in this phase of the assessment of
turbulence models for scramjet appiications carried out under this program.
These areas included assessment of models for subsonic, axisymmetric, swirling
and nonswirling recirculating flows and the development of the k-¢ and the
algebraic stress model approaches for the prediction of supersonic recircu-
lating flows. The k- model relates the Reynolds stresses to the mean rate
of strain through the definition of an isotropic turbulent viscosity, whereas
the more advanced algebraic stress model calculates the stresses from implicit
algebraic relationships containing the stresses themselves, the mean rate of
strain, and the turbulent kinetic energy and its dissipation rate. HModified
versions of the models employ a new dissipation rate equation whose production
term was made more sensitive to streamwise curvature effects. A new non-
equilibrium wall-function treatment was also incorporated into each model.
These models are discussed in detail in Ref. 2. Swirling flows were investi-
gated because of the demands they place on models with respect to accurate
predictions of a wider variety of flowfield features than nonswirling flows
and their incorporation of multiple shear stress components. In the area of
supersonic recirculating flows, problems of turbulence model application were
encountered which highlight the interaction between turbulence modeling and
numerical solution techniques.

The assessment of turbulence models for axisymmetric sudden expansion
flows reported in Ref. 2 was inconclusive since only one diameter ratio was
calculated using a relatively coarse grid. In this year's program a follow-up
study covering different diameter ratios and using a finer mesh was conducted
as the final step in the assessment of turbulence models in subsonic flows.

Most computational studies to date fail to separate the effects of
numerics from the influence of turbulence models in assessing their results.
Current literature therefore abounds with discrepancies in the predictions of
flowfields with the same turbulence models but different numerical techniques.
A preliminary study was conducted to address this problem, considering the
following four areas:

-5 -



Selection of test cases
Determination of the solution domain length
Determination of convergence criteria
Reduction of numerical diffusion through grid refinement.
2.1  SELECTION OF TEST CASES

Surprisinly there are very few experimental (or numerical) studies of
mean and turbulence flowfields in axisymmetric sudden expansions. The only
applicable study that has detailed velocity and turbulence measurements is
the Chaturvedi case (Ref. 3). Back and Roschke (Ref. 4) report reattachment
length measurements in laminar and low Reynolds number turbulent flows
(Re < 4000 based on inlet diameter) for 2.6:1 diameter ratio sudden expansions.
Stuaess and Syed (Ref. 5) provide some centerline velocity data, originally
obtained by Lipstein and described in a General Electric Co. corparate report
only. These data are for diameter ratios of 1.6:1, 2.5:1 and 4:1. Finally,
heat and mass transfer measurements in axisymmetric sudden expansions are
reported in Refs. 6, 7, and 8. For this work, diameter ratios of 1.33:1, 2:1
and 3:1 were selected as representative values of the range of diameter ratios

W~
« o s s

encountered in practical and research oriented applications. Comparisons with
experiments are presented for the 2:1 diameter ratio case.

2.2. DETERMINATION OF THE SOLUTION DOMAIN LENGTH

Specification of the solution domain length is an important considera-
tion in computational work. Too short a length causes the exit boundary
condition to affect the rest of the flowfield more strongly than is physically
realistic, and an excessively long solution domain results in poor resolution
or a waste of grid points. Thus a study was conducted to determine a realis-
tic solution domain length for turbulent axisymmetric sudden expansion flow
calculations. For this purpose the 2:1 diameter ratio geometry of Chaturvedi
(Ref. 3) was chosen as the test case, using the k- turbulence model. This
grid refinement study consisted of increasing the length of the solution
domain while maintaining a fixed mesh spacing. More nodes were added in the
streamwise direction to allow these increases -- a necessary step to exclude
effects due to changes in grid spacing. The value at which the reattachment
Tength, the flow parameter chosen to be tested, ceased to vary with further
increases was taken as the lower 1imit for the solution domain length. The
results of this study, presented in Figure 2.la, indicate a value of 1] step
heights or more as the recommended length for the k-¢ model predictions
of this geometry. A solution domain length of sixteen (16) step heights

-6 -
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was adopted for subsequent computations to accommodate anticipated differences
in reattachment length predictions for the different turbulence models inves-
tigated. Results of a similar study for the 1.33:1 diameter ratio, given

in Figure 2.1b, also confirm these observations with respect to solution
domain length.

2.3. DETERMINATION OF CONVERGENCE CRITERIA

In iterative codes the convergence criterion is a measure of the degree
to which a computed solution satisfies the finite-difference equations.
For the STEP family of programs (Ref. 9) this criterion is the level of the
residual sources (SORMAX). A study was conducted, again using the k-¢ turbu-
lence model, to determine a realistic convergence criterion for the test cases
considered in this work. This study was carried out by sequentially decreas-
ing the level of SORMAX until the change in the reattachment length, the
flow parameter tested, was less than 1 percent for an order of magnitude

reduction in SORMAX. For all three area ratios, a satisfactory convergence
criterion was determined to be 0.001.

2.4 REDUCTION OF NUMERICAL DIFFUSION THROUGH GRID REFINEMENT

[t is a well-known fact that all upstream or hybrid-upstream* based
finite differencing techniques, although computationally very stable, intro-
duce numerical diffusion into the formulation. Unless the effects of this
artificial viscosity are removed, the solution thus obtained does not satisfy
the governing partial differential equations and can be in serious error, The
source of this problem is the truncation error in the one-sided first differ-
ence used in upstream differencing

P5 - d5.
-u ———1A Lk R [(—gi) -4 gzd: Ax + HOT] (1)
X i
or
d. - ¢,
i+] i 24
YT T [(-3—3). +u 5 axs Hm] (2)

Note that the leading-order discretization term is equivalent to a physical

diffusion term with an effective diffusion coefficient of
*Hybrid upstream finite differencing techniques (currently used in many codes
including the STEP family) use upstream differencing for |Pecet1>2 and central
differencing for -2<Pece]1<2. Pecel]l is the cell Peclet number defined in
Eq. 4.
-8 -




+ YBX (3)

PNumerical = %
This term is one explanation of the stability of upstream differencing tech-
niques. By choosing (1) when u > 0 and (2) when u < 0, the discretization
error terms are always stabilizing. However, they also introduce a numerical
diffusivity that may dominate the physical diffusion terms. The appropriate
parameter is the cell Peclet number, defined as the ratio of discretized
convection terms to discretized diffusion terms

_ ulx
Pece]] = T (4)

where T is the effective (laminar or turbulent) diffusion coefficient. This
parameter can also be interpreted as

r .
- Numerical
Pe ayy = 2 EE— : (5)

Therefore, when Pecel] = 2, numeriga] and physical diffusion are of the same

size. Computationally, if Pecell's 1 the flow is diffusion dominated and

the form of finite differencing used in the convection (first derivative)
terms does not affect the results. For lPece]]l > 2, central differencing

of the convection terms becomes potentially wiggly, and for convection domi-
nated flows (IPece]1| > 5), upstream differencing can produce numerical diffu-
sivities that can interfere with and completely dominate physical diffusion
terms.

It is usually quite difficult to accurately quantify numerical viscosity
effects in multi-dimensional flows. Nevertheless, a good estimate of the
magnitude of the numerical diffusion coefficient in two-dimensional cases
can be obtained from Ref. 10 as

Ug &xAysin2g

- . _ (6)
Numerical 4(Aysin3e + Axcos39)

where UR is the resultant velocity, dx and Ay are the grid spacings in the
x- and y-directions, respectively, and 8 is the angle (between 0% and 90°)
the velocity vector makes with the x-direction. Several key observations



about the nature of numerical diffusion can be made in terms of this expres-
sion:

1. Numerical diffusion vanishes when the streamlines are perpendic-
ular to the mesh, i.e., when the flow is along one of the sets
of grid lines (& = 0° or 90°). On the other hand, numerical
diffusion increases with streamline curvature becoming most seri-

ous when the velocity vector makes an angle of 45° with the grid
lines.

2. There is no numerical diffusion when the gradient of the dependent
variable normal to the direction of the flow is zero.

3. Numerical diffusion gets larger with increasing Reynolds number
and could become serious in convection dominated flows.

4, Effects of numerical diffusion can be removed by realigning the
grid with the flow direction (reducing 8), by changing the size
of the mesh (reducing Ax and ay) or by using both techniques.

Recirculating flows are especially susceptible to numerical diffusion even
if the grid is aligned with the primary flow direction. The presence of
large regions with strong streamline curvature, such as in the reverse flow

zone, creates local regions where numerical diffusion effects can be substan-
tial.

Current techniques for the reduction of numerical diffusion involve
the use of grid refinement (or grid-independency) studies in which the number
of grid points to be used, to minimize the effects of numerical diffusion,
is determined separately in each coordinate direction. In this work grid-
independency was determined in the following manner. First, the number of
points in the r-direction (NJ) was fixed and the number in the x-direction
(NI) was increased in increments for a fixed-length computation domain.
The same procedure was then repeated for a fixed NI and variable NJ. The
flow parameter tested as a function of grid spacing was the reattachment
length X The number of mesh points for grid-independent results was taken
as the value of NI and NJ where the reattachment length curve appeared to
approach an asymptotic limit. A separate grid refinement study of this nature

- 10 -




was conducted for the 2:1 and 1.33:1 diameter ratios. Since the 3:1 diameter
ratio expansion represents a flow in which diffusive effects are smaller

than in the Tower diameter ratio test cases, no separate grid refinement
study was conducted for this case, and the grid determined for the 2:1 diam-
eter ratio geometry was used in the definitive calculations of this flow.

The results of this work are reviewed below.

2:1 Diameter Ratio Grid Refinement Study

The results of this study are presented in Figure 2.2. For the x-direc-
tion, an asymptotic limit for the reattachment length was achieved at values
of NI equal to 72 or greater as shown in Figure 2.2a. A slightly different
behavior was observed in the r-direction grid refinement study in Figure -
2.2b. The reattachment length initially increases with the number of cross-
stream grid points, reaching a peak at an NJ of 28. The curve then monotoni-
cally decreases approaching an asymptotic limit at values of NJ exceeding
52. This behavior is probably due to the non-equilibrium wall-function treat-
ment that requires y+* values of 40 to 100 for plausible near-wall results.
This range of values for y+ is approached only at the higher NJ values as
shown in Table 2.1.

TABLE 2.1. Variation of y' Values

GRID SIZE

NN v
22 22 250
2 24 218
22 28 181
22 32 161
22 36 144
22 42 125
22 52 103

Comparison. of velocity profiles provides more insight into the effects
of numerical diffusion. Figure 2.3 presents the axial velocity profiles

ky'2 .
y+ ='-1;712 where k, is the turbulent kinetic energy at the edge of the vis-

cous sublayer, yp is the distance of the node to the wall and v is the ki-
nematic viscosity.

- 11 -
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at x/h locations of 2 and 8, as predicted using 22 by 22, 22 by 32, 22 by

42, and 22 by 52 node grids. The main differences between the profiles are

in their behavior near the wall, and across the separated shear layer towards
the centerline. Excluding the coarsest 22 by 22 mesh, the differences between
the predictions for the remaining grids are small. This is consistent with
the reattachment length computations reported in Figure 2.2b which also show

a relatively small variation of Xn with the number of cross-stream grid points
for meshes finer than 22 by 32. Axial velocity predictions carried out using
22 by 22, 32 by 22, 42 by 22, and 52 by 22 node grids are reported in Figure
2.4 at x/h locations of 2 and 8. The differences between these velocity
profiles are more pronounced than those observed with increasing number of
grid points in the radial direction since the reattachment length changes
significantly with the number of streamwise grid points, as shown in Figure
2.2a.

This study shows that practically numerical diffusion free and fully-
converged results can be obtained for a 2:1 diameter ratio axisymmetric sud-
den expansion, with the STEP code (Ref. 9), by using a 72 by 52 node mesh
(uniform in each coordinate direction) for a solution domain length
of 16 step heights and a convergence criterion of a residual source level
of 0.001. However, it is possible to obtain acceptable results by using
a smaller number of carefully nonuniformly distributed grid points, as demon-
strated in Figure 2.1, where a nonuniform 22 by 22 node mesh resulted in
reattachment length predictions in excess of 8.8 step heights, reasonably
close to the ultimate value reached in the grid refinement study just des-
cribed. Thus, the second phase of this grid refinement work involved estab-
lishing a nonuniform grid which minimized numerical diffusion effects through
comparison with the results obtained using the 72 by 52 node mesh determined
previously. Nonuniform 22 by 22 and 59 by 43 node grids were devised by
studying measurements and coarse mesh calculations of the given geametry to
identify the regions of sharp gradients, and adjusting grid spacing accord-
ingly for efficient node distribution. The baseline 72 by 52 node mesh compu-
tations were then matched with the predictions obtained using these two non-
uniform grids for both the standard and "modified" versions of the k-¢ and
the ASM models. The goals of this study were to document the effects of
numerical diffusion in terms of reattachment length, velocity, turbulent
kinetic energy, and Reynolds shear stress predictions.

- 14 -
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Calculations of this geometry were carried out for a solution domain
Tength of 16.471 step heights, with a residual source convergence criterion
of 0.001. A sketch of the computational domain is shown in Figure 2.5.

For all three grids, the same inlet velocity profile extracted from the
Chaturvedi data (Ref. 3) was used at x/h = -0.471 to start the computations,
and the inlet turbulent kinetic energy and dissipation rates were calculated
from this profile using Prandtl’'s mixing length hypothesis.

Reattachment Length Predictions

In Table 2.2 the reattachment length predictions obtained using the
22 by 22 and 59 by 43 node grids with the 72 by 52 node baseline results for
all four models are compared. These results indicate that the reattachment
Tength predictions with the 22 by 22 grid do indeed suffer from numerical
diffusion. The reattachment length increases by 16.9%, 16.2%, 14.7%, and
5.0%, respectively, for the k-c, "modified" k-¢, algebraic stress and
"modified" algebraic stress models when the grid is further refined to the
baseline 72 by 52 mesh. The relatively small change in the "modified"
algebraic stress model predictions may be explained in terms of two counter-
acting phenomena. The fine grid reduces numerical diffusion so that the
computed separated shear layer spreads less rapidly which in turn produces
a larger recirculation region. On the other hand, the better resolution
provided by the fine mesh enhances the sensitivity of the model to the
secondary strains created by the curvature of the flowfield. Thus, the net
result is a smaller increase in the reattachment length than that observed
for the other models. Predictions made with the 59 by 43 node are in excel-
Tent agreement with the baseline results indicating a good node distribution
within the mesh. The danger associated with not separating the effects of
numerics from the performance of turbulence models is especially apparent
for this case. Note that the numerically diffusive 22 by 22 grid predictions
seem to agree very favorably with the experiment, giving a false impression
of the predictive capability of the models at this diameter ratio.

Velocity, Turbulent Kinetic Energy and Reynolds Shear Stress Predictions

The effects of grid refinement on the velocity, turbulent kinetic energy
and Reynolds shear stress predictions are discussed below. The results are
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TABLE 2.3. Reattachment Length Predictions

MODEL GRID REATTACHMENT LENGTH IN STEP HEIGHTS
k-g 72 x 52 9.53

59 x 43 9.57

22 x 22 8.15
M. k-€ 72 x 52 9.62

59 x 43 9.68

22 x 22 8.28
ASM 72 x 52 9.30

59 x 43 9.34

22 x 22 8.11
M. ASM 72 x 52 10.22

59 x 43 10.21

22 x 22 9.73
Data, Ref. 3 : 9.4 + 1*

* The uncertainty in the Chaturvedi 2:1 diameter ratio reattchment
Tength measurements is estimated to be + 1 step height.
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presented at an x/h Tocation of 5 for the 22 by 22, 59 by 43 and 72 by 52
node grids.

Figures 2.6 and 2.7 present the U, k and uv predictions for the k-¢
and "modified" k-€ models, respectively. Similar results are reported in
Figures 2.8 and 2.9, respectively, for the standard and "modified" versions
of the algebraic stress model. The following conclusions can be drawn on

the effects of numerical diffusion in the Chaturvedi predictions from these
results: .

1. The qualitative effects of numerical diffusion are the same for
all models. Quantitatively, the "modified" algebraic stress
model predictions appear to be the least sensitive to grid refine-
ment. However, this may be the result of the two counteracting
phenomena discussed in the preceding section.

2. The agreement between the baseline results and the 59 by 43 grid
predictions is excellent for all variables and models.

3. The differences between the 22 by 22 grid results and the baseline
predictions are significant, and these should be viewed in con-
junction with the reattachment length computations.

a. The main effect of numerical diffusion is a more rapid
predicted rate of spread for the separated shear layer,
and consequently a shorter reattachment length.

b. These effects can be seen in the progressively faster rate
of decay of the centerline velocity. Also higher levels
of kinetic energy and shear stress are predicted, indicating
a shorter yet more intense recirculation zone.

c, A subsequent drop in the levels of these quantities, typical
for the recovery region, signals reattachment of the separ-
ated shear layer and beginning of the relaxation regime.

Summary

The results of this study showed that the nonuniform 59 by 43 node
grid does indeed match the baseline predictions extremely well and can be

- 19 -



-OZ-

370-06278)-000rn

378-06220)=009FR

25 ~—— Case #1; 22 x 22

251 —— Case *#1: 22 x 22
— — Case #2: 59 x 43 — — Case #2: 59 x 43
e Gase #3; T2 x5682 | e Case #3: 72 x 52
2.0 .
1.5F
Y/h Yih
1.0
Sk
1 ] L 1 i [] i
-5 K 1.5 2.0 0 .01 .02 .03 .04 .05
U/Uin k/Uin=+2
(a) U-velocity (b) k

Figure 2.6. U-velocity, k, and @iv prediclions at X/h=5.0, k-¢

Y/h

2.5"

20

1.5

—— Case #1;

22 x 22
—— Case #2: 59 x 43
........... Case #3: 72 x 52

0

.05 .10
U-v/Uin2 - 10

(c) uv

.15

.20



te -

Y/h

1.5

——— Case #1;

22 x 22 28
— — Case #2: 59 x 43
e Case #3: 72 x 52

Yih

U/Uin
(a) U-velocity

1.5

2.0 0

——Case #1:

22 x 22
— —Case *#2: 59 x 43
- Case #3; T2 x 52

.02 .03

k/Uin++2
(b) k

Y/h

2.5[‘

2.0

1.0}

——Case #1; 22 x 22
— —Case #2; 59 x 43
~-Gase #3; 72 x §2

Figure 2.7. U-velocity, k, and UV predictions at X/h = 5.0, M. k—¢

0 05 .10 .15 20
U-V/Uin2 + 10

(c) v



-Zz-

Y/h

2.5F

2.0

1.0

-—— Case +1:
— — Case +2:
- Case #3:

2.5

U/Uin
(a) U-velocity

22 x 22 —— Case +1;: 22 x 22
59 x 43 — — Case #2: 59 x 43
72 x 52 - GCase #3; 72 x 52
Y/h
1 1 i 1 i L 1
1.5 20 0 .01 .02 .03 .04 .08
k/Uin+2
{b) k

Yih

25

20}

1.5]-

1.0|

—— Case #1: 22 x 22
--— Case #2; 569 x 43
- Case #3; 72 x 62

Figure 2.8. U-velocity, k, and GV prediclions at X/h = 5.0, ASM.

0 Y R
.05 10 .15 .20
U-v/Uin2 <10

(c) av



.EZ-

Y/h

2.5 —— Case #1: 22 x 22 2.5r ——Case #1: 22 x 22 25r -——Case £1: 22 x 22
— — Case #2: 59 x 43 ——Case #2: 59 x 43 -- - Case #2; 59 x 43
e Case #3: 72 x 52 w-Case #3: 72 x 52 - Case #3: 72 x 52
20} 2.0}
1.5} 1.5}
Y/h Yih
1.0 1.0}~
S S5f
i ] 1 1 1 1 1 1 1 ol——-—- U TR SUSURR W
-5 5 1.0 1.5 2.0 0 .01 .02 .03 .04 .05 -.05 0 .05 .10 .15 .20
U/Uin k/Uin-*2 U-V/Uin2 10
(a) U-velocity (b) k (c) av

Figure 2.9. U-velocity, k, and GV prediclions at X/h = 5.0, M. ASM.



used in definitive numerical diffusion free predictions of the Chaturvedi
geometry at substantial savings (= 40%) over the 72 by 52 node baseline grid.
The nonuniform 22 by 22 node grid suffers from the effects of numerical diffu-
sion, and thus, grids of this coarseness should be used mainly in preliminary
computations or to establish qualitative flow trends. In addition, this
study confirmed the role of the reattachment length as a sensitive index

of the degree of numerical diffusion in both the k-¢ and algebraic stress
model predictions. Hence, parametric studies of reattachment lengths as

a function of grid spacing are sufficient in constructing nonuniform grids

to minimize numerical diffusion. This important observation was used in

the subsequent studies.

1.33:1 Diameter Ratio Grid Refinement Study

The computational domain length and convergence criteria for this geom-
etry were established as 16 step heights and SORMAX = 0.001, respectively,
based on the 2:1 diameter ratio results already discussed. The flow geometry
and solution domain are shown in Figure 2.10. The grid refinement work pro-
ceeded in the same manner as that already described: the number of points
in the r-direction (NJ) was first fixed, and the number in the x-direction
(NI) was increased ininstaliments for the fixed Tength computational domain
until further changes in predicted recirculation zone Tength no Tonger
occurred. The same procedure was then repeated for a fixed NI and variable
NJ. The number of mesh points for grid independent results would have been
taken as the value of NI and NJ where the reattachment length curve appeared
to approach an asymptotic 1imit. However, within the NI (22-78) and NJ
(22-82) values studied, this 1imit was not reached. Therefore, as shown in
Figure 2.11 the reattachment length curves were extrapolated to their
asymptotic 1imits using the reported Xn values. These results showed that
a mesh of at least 108 by 130 nodes of uniform spacing was needed to obtain
grid independent predictions of this geometry.

The next step was to devise and test nonuniform grids employing fewer,
but nonuniformly distributed grid points against the reattachment length
predictions reported in Figure 2.11. Nonuniform meshes of 22, 32, 42, 52,
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and 64 nodes in the streamwise direction coupled with 22 uniformly-spaced
nodes in the radial direction were matched against the asymptotic reattachment
length predictions in Figure 2.11(a). A similar study, Figure 2.11(b), was
also conducted using 22, 32, 42, 52, and $2 nonuniformly-spaced nodes in

the radial direction and 22 nodes with constant spacing in the streamwise
direction. These tests produced the 64 by 62 nonuniform grid that was used

in the definitive numerical diffusion free calculations of this geometry

with the k-g, "modified" k-e, ASM, and "modified" ASM models.

This work again emphasizes the need for grid refinement and related
studies before model evaluations are undertaken. The difference in the reat-
tachment length predictions alone varies by as much as 1.2 step heights be-
tween the finest (62 by 22) and the coarsest (22 by 22) grids tested. It
is interesting to note that nonuniform grids simply shift the reattachment
length curve to higher values at a given value of NI or NJ. The variation
of reattachment length with grid spacing is remarkably smooth in both coordi-
nate directions and by and large displays the desired behavior.

3:1 Diameter Ratio Grid Refinement Study

Since this diameter ratio represents numerically a less diffusive
flow than the 2:1 diameter ratio case, the 59 by 43 node grid determined
for the 2:1 diameter ratio expansion was also used for this diameter ratio.
The computation domain length and convergence criteria were again taken as
16 step heights, and 0.001, respectively. The flow geometry and the solution
domain are shown in Figure 2.12.

Summary

This phase of the work involved a parametric study to assess the effects
of numerics on the accuracy of flowfield predictions. Solution domain length,
convergence criteria and numerical diffusion were all considered. A study
of this nature is essential in most computational work to separate the effects
of numerics from the influence of analytical models in assessing the predic-
tions. The results of the present study, which provided the solution domain
length, convergence criteria and the mesh size to be used in the definitive
test case calculations, are summarized in Table 2.3.
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TABLE 2.3. Summary of Results.

SOLUTION
DIAMETER GRID DOMAIN CONVERGENCE
RATIO SIZE LENGTH, CRITERIA

Step Height

1.33:1 64 by 62 16 0.001
2:1 59 by 43 16 0.001
3:1 59 by 41 16 0.001

It was also shown that the reattachment length is indeed a sensitive index
of the degree of numerical diffusion for both k-¢ and algebraic stress model
predictions.

2.5  ASSESSMENT OF MODELS FOR AXISYMMETRIC SUDDEN EXPANSION FLOWS AT DIFFER-
ENT DIAMETER RATIOQS

This phase of the study included the definitive prediction of the
1.33:1, 2:1, and 3:1 diameter ratio cases with the standard and the "modified"
versions of the k-e and the algebraic stress models for the computation domain
Tength, convergence criteria and the mesh size specified in Section 2.1.1.
Assessment of model performance and the effects of diameter ratio on sudden
expansion flow predictions are discussed next in terms of reattachment length,
mean velocity and Reynolds stress calculations.

Reattachment Length Predictions

The reattachment length predictions for the different diameter ratios
investigated are shown in Table 2.4 and Figure 2.13. Here the “"primary"
recirculation zone is that which forms downstream of the step along the outer
wall of the sudden expansion; the "secondary" recirculation zone is a counter-
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TABLE 2.4, Reattachment Length Predictions

DIAMETER REATTACHMENT LENGTHS IN STEP HEIGHTS
RATIO PRIMARY RECIRCULATION ZONE SECONDARY RECIRCULATION ZONE
KEM  M.KEM  ASM . M.ASM  MEASUREMENTS  KEM  M.KEM  ASM  M.ASM

1.33:1 7.40

2:1 9.57

3:1 8.61

-08-

7.60 7.73 8.82 0.19 0.18 0.55 0.51
9.68 9.34 10.21 9.4 +1 0 0 0.44 0.41
8.66 8.20 8.37 0 0 0 0
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FIGURE 2.13. Turbulence Model Predictions of Primary and

Secondary Recirculation Zone Length as a Function
of Diameter Ratio.
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rotating eddy which, with some turbulence models, is predicted to exist in
the corner between the step and the outer wall. The physical presence of
this eddy is somewhat controversial; however certain indirect evidence points
to its existence. Note from the tabulated data and Figure 2.13 that all
models predict the existence of a counterrotating eddy at small diameter
ratios and that the predictions indicate that the size of the eddy decreases
as the sudden-expansion diameter ratio increases. Prediction of the Tocation
and size of the counterrotating eddy is a function of both turbulence model
and grid resolution, providing again evidence of the need for fine grid reso-
Tution in prediction of the details of turbulent reacting flows.

Note from Figure 2.13 the existence of a maximum in recirculation zone
length (in step heights) as a function of diameter ratio. This is somewhat
misleading, since step height also increases with diameter ratio, as h = (D-d)/2.
In fact, the absolute length of the recirculation zone continues to increase
as diameter ratio (or step height) increases, as shown in Figure 2.14. A data
correlation obtained by Drewry (Ref. 11) from a variety of sources is also
shown on Figure 2.14, and the predictions of all of the turbulence models
examined are in reasonably good agreement with this correlation.

Several inferences can be drawn from this comparison of reattachment
Tength predictions. First, compared with the differences observed as a
function of grid spacing with a single turbulence model, the differences in
zone length prediction between difference turbulence models in this sudden
expansion flowfield are nearly negligible. Only at the Towest diameter ratio,
where pressure gradient effects on the mixing process are smailest, do signif-
icant differences in results of the different models become evident, and
in this case it is only the modified algebraic stress model which provides
significantly different results. The difference in results zone length
between the modified ASM and other turbulence models is consistent with the
results for planar separated flows described in Ref. 2; however, it must be
noted that at a diameter ratio of 2.0, where the Chaturvedi data (Ref. 3)
is available, the recirculation zone length experimentally measured does
not agree with the modified ASM result (Table 2.4). It might also be
noted that the computational results (and Chaturvedi's data) are not fully
in agreement with the correlation band shown in Figure 2.14 and, indeed,
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the computed results indicate that the linear relationship between recircula-
tion zone length and step height obtained by Drewry may not, in fact, exist.

Velocity and Shear Stress Profile Comparisons, Diameter Ratio = 2.0

Figure 2.15 presents a comparison of the axjal velocity profiles as
predicted by the four turbulence models and Chaturvedi's experimental data
(Ref. 3) at x/h values of 2, 4, 6, 8, and 12. Up to an x/h of 8, there are
no significant differences between the profiles as predicted by the four
models. In fact, referring to the results shown in Section 2.1.1, the differ-
ences observed throughout the flow are much smaller than differences induced
by grid refinement. At the final two stations, the standard and "modified"
versions of the ASM predict larger centerline velocities which correspond
to a slower rate of spread of the separated shear layer toward the center-
line. This behavior is more pronounced for the modified ASM, consistent with
the larger recirculation zone this model predicts.

Agreement between tha measurements and the predictions is generally
acceptable but by no means perfect in the recirculation and near-centerline
regions. Across the separated shear layer, predictions consistently fall short
of the data indicating a more slowly developing shear layer. KEM and "modified"
KEM display better agreement with the measurements near and downstream of the
reattachment point. All models seem to do equally well further upstream.

Predicted and measured profiles of the axial Reynolds stress component
are presented in Figure 2.16 for x/h values of 2, 4, 6, 8, and 12. A1l four
models compute similar E;U: profiles along the duct which only differ in mag-
nitude. Up to an x/h of 8, the KEM, "modified" KEM and ASM predictions are
hardly distinguishable. In this region the "modified" ASM predictions show
the most rapid decrease in shear stress level. Beyond x/h = 8, the KEM and
modified KEM predictions of shear stress decay rate increase and eventually -
these models predict Tower shear stress levels than both the modified and
standard ASM. The behavior of the measured stress profiles is successfully
predicted by all models. The computed stress levels however are generally
higher, except at the first station, than the measured values. In the
recirculation region the "modified" ASM shows the better agreement with the
data. Further downstream, KEM and "modified" KEM predictions appear to be
more successful in this respect.
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Velocity and Shear Strass Profile Comparisons, Diameter Ratio = 1.33

At this diameter ratio, effects of pressure forces can be expected to
be smaller than at a diameter ratio of 2.0 relative to the details of the
turbulent mixing process, so that more substantial differences between tur-
bulence model results than was evident in the diameter ratio 2.0 calculation
may be expected.

The axial velacity profiles predicted by the four turbulence models
considered in this work in the 1.33 diameter ratio case are shown in Figure
2.17 for x/h values of 2, 4, 6, 8, 10, and 14. There are no experimental
data available for this diameter ratio. Within the recirculation region,
excluding the immediate vicinity of the reattachment point, there appears
to be no significant differences between the profiles as predicted by the
four models. Beyond the recirculation region, the standard and "modified"
versions of the ASM predict slightly larger centerline velocities which
correspond to a slower rate of spread of the separated shear layer toward
the centerline. This behavior is more pronounced for the "modified" ASM
consistent with the larger recirculation zone this model predicts.

Similarly, small differences in model predictions are observed when the
axial Reynolds shear stress component E;U;'is examined, Figure 2.18. All
four models predict similar u . profiles along the duct which only differ in
magnitude. In the recirculation region, up to an x/h of 4, the highest stress
Tevels are predicted by the KEM models. Here, the "modified” ASM predicts
approximately 15% lower peak stress lavels. Further downstream, the stress
levels begin to decay. In this region, the standard and "modified" KEM
models experience a more rapid decay, and eventually predict stress levels
lower than both the "modified" and standard ASM. These results are also
consistent with the U;U: predictions for the 2:1 diameter ratio.

Results for the diameter ratio 3.0 case are completely consistent with
those already discussed for diameter ratios of 1.33 and 2.0 and are not
presented herein.
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Summary

The results of this assessment can be summarized as follows:

1,

The mean velocity and turbulence field predictions do not change
significantly with different turbulence models.

In these pressure dominated flows, simple k- model predic-
tions appear to be comparable to the more sophisticated ASM
computations.

At the lower diameter ratio, predictions seem to be more sensi-
tive to modeling effects; however prassure forces still dominate
the flowfield. The influence of these pressure forces can be
appreciated by comparing the axisymmetric and planar reattach-
ment length predictions at the same effective expansion ratio.

Performance of the "modified" ASM is consistent in both axisym-
metric and planar sudden expansion flows. This model is, how-
ever, more sensitive to grid refinement in low diameter ratio
axisymmetric flows. An increase in reattachment length of 15%
is observed in axisymmetric flows over the standard version of
the model as compared with a 28% increase in planar backward-
facing step flows of the same expansion ratio.
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3.0. ASSESSMENT OF TURBULENCE MODELS FOR SUBSONIC SWIRLING FLOWS

The results of comparisons of turbulence model predictions in axisym-
metric sudden expansion do not produce a clear-cut choice among the turbu-
lence models tested. This is partially due to the domination of the flow-
field by the pressure forces, which reduces the sensitivity of the calcula-
tions to the turbulence models used, and partially to the lack of detailed
experimental data for model evaluation. A more stringent test of model per-
formance is the calculation of swirling axisymmetric sudden expansion flows
where the swirl-induced flow anisotropy combined with the pressure forces
generated by swirl create a more complicated flowfield for turbulence model
assessment. While detailed experimental data are again lacking, and swirl
flows are not of great interest in scramjet applications, assessment of model
performance in highly swirling flows can provide some information on model
behavior which can be of use in selecting a generally-useful model for scram-
Jet applications. Thus modifications to the governing equations and the tur-
bulence models for swirling flows were derived and implemented in the STEP
codes. Fine grid calculations of a swirling flow of the constant angle type
for a given swirl number were then carried out using the k-< and algebraic
stress models. The selection of the k-¢ and algebraic stress models for
this study is significant in that the algebraic stress model represents the
only general purpose turbulence model outside a full Reynolds stress closure
(where a differential transport equation has to be solved for each stress
component) that does not use an isotropic turbulence viscosity concept.

3.T. GOVERNING EQUATIONS AND TURBULENCE MODEL FORMULATIONS FOR SWIRLING
FLOWS

The governing equations of motion for turbulent axisymmetric swirling
flows are

Conservation of Mass
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where U, V, W are the axial, radial and tangential components of the

mean velocity, P is the pressure, o and u are the fluid density and dynam-

ic viscosity, respectively, and u? v? w? uv, uw, vw are the Reynolds stresses.
This set of equations, however, is not "closed" due to the appearance of the
Reynolds stress tensor U;U; which introduces six additional unknowns to raise
the total number of variables in the four equations to ten (Ui’ P, U;;;).
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The k-c and the algebraic stress models are used in this context to

express uiuj in terms of known or calculable variables to "close" these
equations.

k- Model

The k-c model achieves closure by relating the Reynolds stresses
to the mean strain rate through the Boussinesq approximation
BUi BUj
-puu, =y — + —= ] - 2/33.. ok (3)
1 t X, X H
J i
The effective (turbulent or eddy) viscosity appearing above, Hys is
defined in terms of a characteristic length and velocity. If this length
L
is taken as the turbulence length scale, k3/2/e, and the velocity as k*
can be expressed as

» He

T c,0 e (4)

where k is the turbulence kinetic energy, ¢ is the dissipation rate and cLl is
a constant of proportionality. The Reynolds stresses are then defined as

-out = o 30k (5)
3x
-pv?2= 2u, Y _ 2730k (6)
ar
- W e 2 - 2/30k (7)
r  3x 4
- o o= op M (9)
X
— 3 (w)
- oW = . r=— = (10)
t 3 r

for swirling axisymmetric flows. Note that the same single value of Hy
appears in all of the Reynolds stress relationships: this is the isotropic
viscosity assumption.
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Algebraic Stress Model

A complete second-order closure of the Reynolds-averaged governing
equations would require the solution of a transport equation for
each of the stress components. Even for two-dimensional flows this can
be a formidable task, since, in addition to the mean flow equations (equa-
tions (1) and (2)), eight other transport equations (for U, V, W, uv, uw,
VW, k, and €) need to be solved. Under the assumption that the convection
and diffusion of each Reynolds stress component can be related to the con-
vection and diffusion of turbulent kinetic energy, however, the stress
transport equations can be reduced to a set of implicit algebraic expres-
sions for the stresses in terms of the mean strain rate, turbulent kinetic
energy, dissipation rate, and the stresses themselves. The equation for
the algebraic stress model for a swirling flow, including the near-wall
correction terms are

- k _g,“ + + ] + I. ) ll
Uidy = (p-s)(P” 38455 F 945,10 F %ig,2 T %4y, F 0,2 ) (1)
where
P = -u.u, -, the production rate of kinetic energy
ik axk
Yegre M i f individual
Pij = - Uy axk + ujuk 5;; » the production rate of individua
Reynolds stresses

¢ij,1 = -cle/k< uiuj - 2/3 dij k) , the modeled form of the contribution

of fluctuating quantities to the pressure-strain correlation

%i5.2 ° -c2<P1.j - 2/3 61j P), the modeled form of the contribution of mean

strain effects to the pressure-strain correlation

! = c! uu_ - uu. non, - u U, non. —&_
i1 T 9 e/k <Ukum M Gij 3/2 Ul My 3/2 Uy s nknJ> f ( > ,

wall correction to ¢ij 1

- 48 -




25,2 €2 ( Oum,2 MM S35 = 32 04 My = 32 85y 5 mny ) F (2mpry )
wall correction to ¢ij 2
A

is the length scale function.
n.r.

i
Equation (11) is the version of the algebraic stress model used in this study.

The details of the derivation and the underlying assumptions for the model are
discussed in Ref. 2.

For axisymmetric swirling flows the algebraic stress model representa-
tion of the Reynolds stresses become
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where

Ty S 2/3 Ak/e r = 2/3 oAk¥e

Ao (1o /(e - 1) + /)

a;, = czcé cx/ (1 - c2) a;, = czcé Cr/(l - c2)

d T cre/kg /(1 - c,) 4, = cye/keg /(1 - C,)
3/2

fx = E%;g7é§ fr z E%;é;%f

Cis Cos ci, and cé are constants defined in Table 2.6, K is the von Karman
constant (0.4187) and "a" is the near-wall value of -uv/k (generally taken
as 0.25).

TABLE 3.1 Recommended Values for Turbulence Model Constants

K = 0.4187 ck = (.22
Cu = 0.09 Ce, = 0.36 (c€2 - Cel)
o = 1.00 4 = 1.8
2 ) 1/2 .

a. =k /(cez S 0.6

c = 1.44 ci = 0.5

1

C = 1,92 (o = 0.3

%) 2
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k and € Transport Equations

Both the k-g¢ eddy viscosity and the algebraic stress model require
evaluation of the turbulent kinetic energy and its dissipation rate to define
turbulent time and Tength scales. The high Reynolds number forms of the k and
e transport equations used in this study are

ak 3k 3k 3 13
Par U TRV Er TPt e D Frar () (18)
3 3¢ e _ . 3 13
pig Tl toVsy see/k(c P-c &) +3: DEX - (rDsr) (19)
where
kK-¢ Model
u
t ak
b, = ('-— + u) vl (20)
kx Gk X
u
t ak
b = (_+u) (21)
kr Uk or
He 3E
D = (—+u> — (22)
€x 06 axX
u
t 3
D = (-—+u) o~ (23)
Er GE ar
u A1\ 2 2 n 2
ke 3U AN ., v
P = —[2[(37) +(F) +(ar> } +(ar ax)
+( 2 (E))2+(3_)2] - 2/3 k[ﬂ+_+ﬂ] (24)
r ar r aX 3 ar

9 and g_ are turbulent Prandtl numbers for k and ¢ respectively. These are
defined in Table 2.6 with model constants Ce, and Ce,-
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Algebraic Stress Model

- ( S {rE wik}. 2k (25)
D - c S [P wE) X (26)
o = c€3§{52§—§+wg—§}+ug—§ (27)
Dsr = c€3§{.'\722—§+ﬁg—§}+ug—f, (28)
P - [PHeTRRL W ()

wew 4 (4)]) -

Cx and c:€3 are model constants given in Table 2.6.

Wall Function Treatment

Most turbulence models including the present versions of the algebraic
stress and k-e models are devices for high Reynolds number flows. However,
in the vicinity of solid boundaries where the velocities are small, the low
Reynolds number effects previously neglected become significant and should be
accounted for. This can be accomplished either by solving the low Reynolds
number form of the transport equations or by developing wall functions that
introduce these effects into the existing high Reynolds number models.

Chieng and Launder (Ref. 12) found that the first option required vast amounts
of computer time due to the slow convergence characteristics of the low
Reynolds number models. On the other hand a new wall function treatment pro-
posed by the same authors was shown to incorporate these effects with prac-
tically no increase in computing time. An expanded version of this treatment

- 53 -



is used in the present study. Details of this approach are given in Ref. 3.

3.2 MODEL ASSESSMENT IN SUBSONIC SWIRLING FLOWS

Model assessment for swirling flow computations was carried out through
fine grid calculations of a constant angle swirl flow at a swirl number of 2.
Swirling flows are usually characterized by defining a swirl number which is
the ratio of the axjal flux of tangential momentum to the axial flux of axial
momentum times the inlet radius. The definition of the swirl number is then

S =2 (30)

where

6, - fRR"
J

(Wr) oU 27r dr

[p]
f

Ri R_i
(Up) U 27r dr f/~ P 2rnr dr
R R

X
U = Axial velocity component

W = Tangential velocity component
R = Inner radius (hubbed swirlers)
Ri = Inlet radius

o) = Local density

P = Local static pressure

A number of flow phenomena are related to and affected by the presence of
strong swirling in combustor flows. These phenomena are complexly inter-
related and can have profound effects on performance parameters such as
combustion efficiency, pressure losses, flammability limits, combustion flow
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stability, and nozzle thrust losses. While a swirl number of 2 is extremely
high from the standpoint of practical combustor flows, assessment of turbu-
lence models in high swirl number non-reacting swirling flows provides a use-
ful step in developing turbulence modeling for complex flows, for at high
swirl numbers the differences between models are maximized. This suggests
the utility of experiments run at swirl numbers that would otherwise be of
little interest from a propulsion system standpoint.

Two-equation (k-c) model and algebraic stress model calculations were
carried out for a uniform density flow in a 2:1 diameter ratio sudden expan-
sion with and without swirl. The computational domain and flow parameters
for these calculations were as shown in Figure 2.19: inlet swirl was of the
constant-angle type. No separate grid-refinement tests were conducted for
these calculations; however, based on the criteria given in Section 2.1.1,
these results should not be significantly affected by numerical diffusion.

The effects of swirl on the overall flowfield at this swirl number
is demonstrated by the streamfunction plots given in Figures 2.20 and 2.21.
The formation of a large centerline recirculation zone and the enhanced radial
mixing shown are both direct consequences of the axial momentum deficit crea-
ted by the non-zero tangential component of the mean velocity. Significant
differences between the k-¢ and the algebraic stress models appear only in
the swirling flow calculations. This supports the hypothesis noted earlier
that the two models would show a different sensitivity to flow anisotropy,
induced, in this case, by swirl. While detailed experimental data does not
exist for this configuration, experiments such as those discussed in Ref. 13
indicate very large centerline recirculation regions at high swirl numbers,
indirectly supporting the ASM prediction of the swirling flow. It might also
be noted that a large recirculation region along the centerline such as seen
in Figure 2.21 would be unstable to small disturbances (and thus would be
subject to axial position fluctuations) (Ref. 13). Note further that near
the wall the predicted flowfields are very similar, so that measurements of,
for example, static pressure distribution would not necessarily reflect the
large centerline differences between these flows. Thus detailed measurements
within the flowfield will be required to provide data with which to directly
test the models.
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Stream Function Calculations with the k-¢ Model.
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The axial velocity profiles shown by Figure 3.4 compare the swirl and
the no swirl cases for the two models. The k-c model predictions indicate a
large (4.68 step heights long) irreqularly shaped centerline recirculation
region shown in Figue 3.2 that extends weli into the inlet and appears to
signal an eventual breakdown on the existing vortex at higher swirl inten-
sities. The algebraic stress model calculations on the other hand show an
actual breakdown of the centerline recirculation region into three discrete
vortices -- two small eddies appear in the inlet and a large primary eddy
(6.37 step heights long) is positioned roughly 0.76 step height downstream
of the expansion plane (Figure 3.3). The tangential velocity profiles pre-
sented in Figure 3.5 show the same qualitative behavior for both models,
however, the magnitude of the velocities are significantly lower for the
algebraic stress model. The turbulent kinetic enery distributions plotted
in Figure 3.6 also show roughly the same behavior for both models; here,
however, the algebraic stress model predicts significantly higher levels of
turbulence intensity along the combustor axis. The Reynolds shear stress
profiles given in Figure 3.7 appear quite similar with the k-c model, pre-
dicting slightly higher stress levels in the near-field flow and the algebraic
stress model further downstream. These predictions are consistent with the
flow pattern depicted in Figures 3.2 and 3.3.

Summary

The computations just described show that significant differences be-
tween the k-c and ASM models exist in flows in which anisotropic viscosity
effects can be expected. For flows in which there is only one major shear
stress component, such as the conventional sudden expansion in regions away
from the recirculation zone the additional complexity involved in the ASM
formulation may not be warranted. Note, however, that even in simpler flows
there are regions in which secondary shear stress components may be nonnegli-
gible. Just such a region is the near-corner region, and it will be recalled
that in this region the ASM formulation indicates a larger secondary eddy
than does the k-¢ approach.
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4.0. ASSESSMENT OF TURBULENCE MODELS FOR SUPERSONIC
RECIRCULATING FLOWS

Previous efforts (Ref. 2) to incorporate the k-¢ model in to the
TWODLE code of J.P. Drummond (Ref. 14) for supersonic recirculating flow
calculations were hindered by numerical stability problems. Eventually,
a scheme was devised that appeared to be stable but required very small
time steps due to the explicit nature of the technique. In addition, the
fact that the k and € transport equations were solved in the physical co-
ordinates introduced inaccuracies for irregular geometries. Two options
were available: modify this scheme so that the k and € equations are
solved implicity and simultaneously in the transformed coordinates, or
implement the k-c model in a new implicit version of the TWODLE code (Ref.
14) that does not use time-split finite differencing. The second option
was investigated as part of this year's work.

4.1. GOVERNING EQUATIONS AND WALL FUNCTIONS

Mean Flow and Turbulence Equatijons

The mean flow and turbulence model equations for the k-c¢ model can be
written as follows for two-dimensional elliptic planar flows:

Conservation of Mass

%9.+ g&- ol + g%— oV =0 (31)
x-Momentum

o+ ol

at X 3y

(32)
- LA 3y | U L3V, D, (3U 3V
h " X [ZuT 3X 2/3“1' (ax * 8y> 2/3pk] ¥ dy l}T (By ¥ ax)]
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= streamwise mean velocity component
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= pressure
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= turbulence kinetic energy
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Wy = My tou (total viscosity)
K2 .
My = Cup = (turbulent viscosity)

% and o are the Prandtl numbers for k and €, respectively, and C.

c and ¢, are constants.
€2 U

’
1

Following Ref. 12 these equations can be put in TWODLE form by defining the
U, F, G and H vectors as

22,
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+
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Currently recommended values for the constants are

c = 0.09
u

Ckl = 0.22

C = 1.44
€1

c = 1.92
€2

K = 0.4187

with these values Ik and o, become

1.0

[l

O'k'i-

1.217

qQ
R

Wall Functions

The near-wall low Reynolds number effects are incorporated to the k-¢
model using the non-equilibrium wall functions of Chieng and Launder (Ref. 12).
However, since TWODLE uses nodal values rather than control volume averages,f*
some changes were made in implementing these wall functions. A typical near
wall region is shown in Figure 4.1. Here it is assumed that node w is at

the wall, and w + 1 is in the fully turbulent region

A
%ﬁlkv

AV

> 20 (37)

where Yokl is the distance from node w + 1 to the wall and kv is the turbulent
kinetic energy at the edge of the viscous-sublayer. The level of kv is obtained
by extrapolating the line through kw+l and kw+2 to Y=Yy hence

<+
i

O actually becomes 0.614, however a value of 1 is more common in the
literature. There are no significant differences in the predictions
obtained with these two values.

L Chieng and Launder wall functions use near-wall cell integration to cal-

culate mean production and dissipation rates for those cells.
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K = + Yyt Yy

k — (k -k
v wtl Vb2~ Vsl wt2

1) (38)

The thickness of the viscous sublayer, Yy and the mean flow velocity at that
location, Uv, were then calculated from

Y, =V Rev/kv% (39)

and

3
U, = Re, (t,/0)/k,> (40)

Rev+ is assumed to be 20, and the wall shear stress Ty is given by

Yoy k2
T, =K p U kY| me" LY (41)
v

* L * K*Rev .
where K 0.4187 < and E =e /Rey. The production rate of k at w+tl

is then calculated as

U - U
; wtl v (42)
WEL \ Yye1 = Yy

and the near-wall dissipation rates are expressed, following Spalding (Ref. 15)
and Pope and Whitelaw (Ref. 16), respectively, as

- 3/2
w1 Kl /Sl (43)
and
k
g, = 2v—%. (44)
Yy
L
t yvkv2
The universal viscous sublayer thickness constant,
v
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4.2 MODEL IMPLEMENTATION AND TEST CALCULATIONS

Model Implementation

The k-c¢ model and the associated wall functions discussed in Section
2.3.1 were implemented into the solution procedure of the code in such a
way as to set up a sequential calculation of the velocity and turbulence
fields. In this scheme, the density and velocity fields are obtained
first. The turbulent kinetic energy equation is solved next in the same
way as for the velocity field. Then the dissipation rate equation is in-
tegrated, using the latest density, velocity and turbulent kinetic energy
fields. Finally, the turbulent viscosity is updated and the source and
sink terms for the k and ¢ equations are calculated. This scheme intro-
duces three additional subroutines to the code:

1. MUKEM: Calculates the turbulent viscosity from its
s _ 2,
definition, My Z cLl o k¥/¢e

2. PRODK: Calculates the production rate of turbulent

kinetic energy,

o, \°
R
J

3. SQURCE: Calculates the source-sink terms for the k
and ¢ transport equations, p(P-¢) and
pe/k (c_P-c_e), respectively.

€1 g2

The solution procedure thus becomes

CALL INTEG (158S=1) Solve for velocity and density fields
CALL INTEG (1Ss=2) Solve for k field

CALL INTEG (ISS=3) Solve for ¢ field

CALL MUKEM Calculate My

CALL PRODK Calculate P

CALL SOURCE Calculate p(P-€) and p =/k (CEIP - ceze)

Advance the time and repeat.
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FIGURE 4.1. Typical Near-Wall Region.
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There are, of course, many variations within any given scheme that
can be tried to improve stability and/or numerical efficiency. This parti-
cular scheme was chosen for its proven stability characteristics in ellip-
tic flow calculations with other computational techniques. The flow chart
of the TWODLE code with the k-e model is given in Figure 4.2.

Test Calculations

Initial testing entailed assessing the compatibility and the logic
of the changes to the code with and without the k-¢ model. The first step
was to reproduce, with one of the existing algebraic viscosity models, pre-
vious predictions of the Mach 5 10° comprassion corner test case. Upon
completion of this task, detailed assessments of the k-c model in this
application were to be undertaken. Preliminary calculations of the Mach 5 10°
compression corner test case with this model showed severe stability prob-
Tems. To track down the cause of the problem, it was decided to simplify
the flow geometry further, to a Mach 5 flow between two parallel plates,
and specifying a uniform grid by bypassing the coordinate transformation.
This geometry represents possibly the simplest internal flow test case
that still contains the features needed to evaluate the k-c model. The
use of a uniform grid eliminates any potential problems due to coordinate
transformation and aiso simplifies the computation of the source-sink terms.
Calculations of this geometry were done in stages to isolate and identify
the source of the stability problems. The k and € transport equations can
be written in the following general form

elelc) 3 3 .
5t T OPU 5t eV 3y D¢}+ S¢ , (45)
R , . -~ -’ [ A g
I I III IV
where ¢ = k or e
ca (M, Nakl o, s f(Re ok

D 7 3x {<Uk * “) 3x } * ay {(c:k * ”) dy }

D‘b =



FIGURE 4.2 TWODLE Flow Chart.
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Numerically, the transient, I, convective, II, and diffusive transport,
ITT, terms are stabilizing in nature, whereas the source terms, IV,
especially when stiff, can cause stability problems. The first step in

the investigation was to set the source terms identically to zero and
carry out the calculations with only the transient, and convective and
diffusive transport terms activated. These calculations produced stable
results for this initial/boundary value problem. The next step involved
predictions with the complete transport equations for k and ¢ except that
the production term, P, in the source terms was set to zero. These re-
sults also proved to be stable. The final test was calculations with the
complete k and e transport equations. These calculations, however, experi-
enced stability problems almost immediately, leading to negative k and ¢
values and to eventual collapse of the solution scheme within 120 time
steps. This clearly shows the adverse effects of the stiff source terms

on the solution scheme. Changes in the wall boundary treatments, and vari-
ations in the relative order of calculations of the source terms within the
solution scheme failed to improve the outcome.
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These results, combined with previous experiencea, indicate severe
stability problems in the solution of source-dominated (stiff) transport
equations with both time-split and time-unsplit MacCormack predictor-
corrector algorithms. This is a serious problem since most advanced tur-
bulence (k-¢ and higher-order closure schemes) and combustion kinetics
models inherently contain stiff partial differential equations. The ef-
forts in this respect described in this report were directed to investi-
gate and devise stable implementation techniques for the k-c model and its
boundary conditions within the given solution scheme of the code. In other
words, the goal was to tailor the model to fit the code. These efforts
have failed due the inability of the solution algorithm to negotiate, in
any direct way, the effects of the stiff source terms in the k and  (or
in any other source dominated) transport equations. Other researchers
have also encountered similar stability problems with MacCormack
predictor-corrector type block solution algorithms. These findings sup-
port the results described in Ref. 2, in which a compromise scheme that
solves for the mean flow and the density fields with the MacCormack tech-
nique, and then evaluates the k and ¢ equations explicitly was recommended.
Overall, this study raises two fundamental questions. One is the apparent
lack of versatility of this widely used computational technique which seems
to be severly restricted in its applicability to advanced turbulent fluid
flow analysis. The second question is the relative merits of the current
practice of separating the development of physical models from research
in numerical analysis as opposed to a unified approach that closely coordi-
nates developments in computational techniques with the advances in physi-
cal models to ensure compatibility in their eventual application to scien-
tific and engineering problems.
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5.0. ASSESSMENT OF MODELS FOR TURBULENT SCALAR TRANSPORT

Transport of a scalar mean quantity C (heat, species, etc) is described
by the equation

50C ¢ . 8 (« oL
ot * pUi axi axi f3xs pu;c

(46)

where Ui is the mean flow velocity, p is the density, Y is a molecular trans-
port coefficient, and ujc is the scalar flux correlation which is the turbu-
lent scalar transport counterpart of the uiuj correlation of the momentum
equations. Closure of the above equation requires either solution of a
transport equation for G;E'or the modeling of this quantity in terms of

known or calculable variables.

5.1. CLOSURE QF THE SCALAR TRANSPORT EQUATION

A transport equation for the scalar flux U;E can be derived by multi-
plying the equation for the instantanecus value of the scalar € (=C+c) by
Ui and adding it to the xi-component of the Navier-Stokes equations multi-
plied by c. Upon ensemble averaging, the results may be expressed as

U, —_
D = . AL o 1 pc
ot Yi¢ ‘{ Uily ax; T Y5 ax.}+ o 9
J J
I. II. III.
Convective Generation of the Generation by
Transport combined action of buoyant forces

mean velocity and
mean scalar gradi-

ents.
U,

3¢ i P ac
- (YY) —=— — + —
axj axj o axj

Iv. V.

Dissipation Pressure-scalar-gradient

correlation
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3 pc
- — T + . .
( u1ch 5 513 )

VI.
Diffusion Transport

(47)

This equation is valid for incompressible flows and where gradients in C
are small enough for Y'/Y and v'/v to be entirely unimportant (Y' and v'
being the fluctuating parts of Y and v) and for o0'/o to be significant
only in the gravitational term. The first and the second terms in this
equation are exact and require no modeling. The buoyant generation term,
ITI, is conveniently modified as follows

where the dimensionless coefficient o is defined as*

Q

- o C
b

Q
111
[o %]

The dissipation term, IV, is zero in isotropic turbulence and is negli-
gible in non-isotropic turbulence provided that the turbulence Reynolds
number is high. The pressure-scalar-aradient correlation, V, is the
counterpart of the pressure-strain correlation in the stress equations.

With direct dissipation negligible, this provides the mechanism which limits
the growth of fluxes. Finally, term VI denotes the rate of spatial trans-
port of U;E due to velocity and pressure fluctuations. This level of clo-
sure corresponds to a full Reynolds stress formulation for momentum trans-
port and requires modeling of the pressure-scalar-gradient correlation, V,

and spatial transport, IV, terms. Modeling of these terms are discussed in
some detail in Refs. 17 and 18.

[f C stands for temperature and the fluid is an ideal gas, ais unity.

- 77 -




Solution of transport equations for scalar flux components is both
conceptually possible and economically feasible for most flowfields. Simi-
lar levels of closure however also exist and are widely used in computa-
tional work. These are discussed next.

5.2. ALGEBRAIC STRESS MODELS FOR SCALAR TRANSPORT

These schemes, the counterpart of the hydrodynamic algebraic stress
models, employ algebraic stress modeling rather than a complete differen-
tial closure of equation (47). These models for the scalar fluxes, given
here for the temperature field, generally have the following form (Ref. 18)

TT = k 3k
S U= CDT e Yi'% X qbT € E?T (49)
where €1 -1
QDT = [ c1T +3% (P/le - 1) + 4 k/e = (PT/sT - 1)]
. = @ (1- CZT)
- o T an c:g'l T2 : T
PiT = - ukT 5;; + —T—-T ~ production rate of uiT
p2 = -2T7 2L production rate of T'?
T - k axk
= EIWEIM issipati T2
€ = 2Y (Bxk> (ax ) ~ dissipation rate of T

k

This form of the model requires solution of transport equations for
T'2 and €1 which can be derived in a similar fashion to the k and ¢ equa-

tions (Ref. 1). Further simplifications however are possible by relating
er to e, k and T'2 by

2 —
€+ = S g/k T'2 (50)
T CT
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and approximating T'2, when the dissipation and production rates of T'2
are nearly in balance, as

The recommended values for the model constants ¢1_s Sy and cT' are 3.2,
0.50, and 1.6, respectively. This model, first pIoposgd 7 years ago, has
yet to be tested in recirculating flows. Free shear flow predictions with
this model (Ref. 18) however, exhibit the correct behavior of progressive
collapse for horizontal buoyant mixing layers and surface jets as the mean
Richardson number increases, and also show reasonably good agreement with
published turbulent wake and plane jet thermal data. These models are yet
to be applied to recirculating flow calculations. Further model develop-

ment, refinement and testing is needed to explore the full potential of
this level of closure.

5.3. GRADIENT DIFFUSION MODELS

These simpler models relate the scalar fluxes to the hydrodynamic
turbulence properties and the mean scalar gradient

| k 3C
- uic ”i”j . axj (52)

or in terms of an effective turbulent Prandtl number, Gt

Vv
= - .t 2aC
B G, 3x; (53)

where v, = cu kz/e. This is the scalar-transport model that nearly all
practical calculation schemes have adopted to date. Experiments suggest
Gt is approximately two-thirds in many free shear flows but is some 50%
higher in the vicinity of a wall. The biggest drawback of this model is
that it is based, like the k-c model, on an isotropic turbulent transport
coefficient concept and thus is theoretically limited to free shear flow
and some boundary layer calculations.
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6.0 SUMMARY:  TURBULENCE MODELS FOR SCRAMJET FLOWFIELDS

The overall objective of the work described in Refs. 1 and 2 and in
this report has been to establish appropriate turbulence models to use in
computations of scramjet flowfields. These combustors involve three-dimen-
sional reacting flows with embedded recirculation regions, and the fuel-air
mixing rate is critical to the overall performance of the combustor. Thus
to be usable in design evaluation and data interpretation, turbulence models
must be reasonably accurate over a broad range of conditions.

Based on the work reported in Refs. 1 and 2 and in this report, the
recommended turbulence modeling approach for use in scramjet calculations
is the algebraic Reynolds stress model. In regions of strong streamline
curvature, this model should be used with the dissipation equation modifica-
tion described in Ref. 2 which were designed to improve the sensitivity of
the model to these effects. The algebraic Reynolds stress approach is par-
ticularly valuable where multiple stress components are important, such as
in three-dimensional flows, since the basic twb-equation k- model involves
an assumption of effective viscosity isotropy that is not borne out by ex-
perimental results. Where only a single stress component is non-negligible,
the two-equation approach provides good results, Since the algebraic Rey-
nolds stress formulation involves the solution of the turbulent kinetic
energy and dissipation rate equations, it is easily arranged to allow the
algebraic stress formulations to relax to a two-equation model as the dif-
ferent stress components become negligible in a given calculation.

This work has also indicated the extreme importance of considering the
interaction of the turbulence model and the numerical solution procedure as
key parts of the development of scramjet combustor models. The interaction
takes two forms: compatibility of the turbulence model and the solution
procedure, and the interaction of the model-predicted diffusion with that
generated artificially by the solution procedure itself. Compatibility
issues arise because the models recommended in this study involves the solu-
tion of source-dominated, "stiff" transport equations. The numerical solu-
tion procedure must be able to accept stiff equations to be compatible with
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these models. Numerical diffusion is a feature of most numerical solution
procedures and under some circumstances it can dominate the diffusion pre-
dicted by the turbulence model. This must be avoided by careful attention
to grid size and location. Finally, establishment of the proper initial

and wall boundary conditions is critical to proper use of turbulence models.
This has been emphasized throughout this work, and the techniques reported
herein and in Refs. 1 and 2 for establishing initial and boundary conditions
are recommended for future scramjet modeling work.
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7.0. CONCLUSIONS AND RECOMMENDATIONS

The conclusions reached as a result of the work outlined in this
report can be summarized as follows:

7.1. SUBSONIC AXISYMMETRIC RECIRCULATING FLOWS

L.

For diameter ratios of 2:1 and 3:1, in axisymmetric flows,
mean velocity and turbulence field predictions do not
change significantly with different turbulence models.
This can be ascribed to the dominance of pressure forces
over turbulence diffusion in these flowfields.

Axisymmetric sudden expansion flowfield predictions are
especially sensitive to grid refinement. The numerical
diffusion inherent in a coarse grid can produce effects
on the predicted overall mixing process which are larger
than those produced by variations in turbulence models.

The algebraic stress model produces results in axisymme-
tric flows at low diameter ratios (where pressure effects
are reduced) which are consistent with its performance in
planar backward-facing step flows. Thus the ASM with modi-
fications introduced to increase the model's sensitivity

to streamline curvature can be recommended in regions

where strong recirculations exist, and the unmodified ASM
in other regions.

7.2. SUBSONIC SWIRLING FLOWS

L.

Although of Tittle direct interest in scramjet applications,
swirling flows at large swirl numbers are stringent tests
of modeling: 1large differences between k-¢ model and ASM
model predictions are evident. This is due to the strong
anisotropy of the stress components in swirling flows, which
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is not adequately accounted for by the effective viscosity
assumptions inherent in the k-e model.

Comparison of model predictions with experimental results
for strongly swirling flow could provide the means to fur-
ther develop and improve the ASM model. Appropriate exper-
imental data is not now available. The ability of the ASM
to handle strongly nonisotropic flowfields is of potential
value in the modeling of 3D flows in scramjet combustors,
even in the absence of swirl.

7.3  SUPERSONIC RECIRCULATING FLOWS

1.

Efforts, described in this report, to devise stable tech-
niques for the implementation of the k-e¢ model and its
boundary conditions in both the time-split and time-unsplit
MacCormack predictor-corrector algorithms were unsuccessful.
This result is apparently caused by the inability of the
solution algorithm to negotiate, in any direct way, the
effects of stiff source terms in the k and e transport
equations.

A more detailed study is needed to identify the required
changes in the MacCormack solution scheme that will elimi-
nate the drawbacks identified in this work. The present
work raises fundamental questions with respect to the merits
of separating the development of physical flowfield models
from research in numerical analysis. Coordination is re-
quired to ensure that numerical schemes and physical models
are ultimately compatible.

7.4. MODELING OF TURBULENT SCALAR TRANSPORT

1.

Solution of the transport equations for scalar flux compo-
nents is both conceptually possible and economically feasi-
ble. Schemes that employ the algebraic stress closure
rather than a complete differential closure are appealing




in terms of consistency with the level of closure chosen
for the hydrodynamic field.

Further work is requirad to assess the potential of alge-
braic scalar flux modeling in more complicated flowfields
such as recirculating sudden-expansion flows.
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