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- l.0 INTRODUCTION

In order to provide turbulence models useful for computations of the

flowfields involved in advanced scramjet combustion systems, a number of

features of these flowfields must be considered. These combustion systems

involve supersonic flows with embedded subsonic regions and recirculation

-- zones, and appropriate turbulence models for scramjet applications must ad-

dress each of these. The geometry of advanced combustors is often three-

- dimensional, so that the effects of three-dimensionality in the flowfield

on the turbulence characteristics must be taken into account. Moreover,

_ the combustion process in a scramjet system is embeddedwithin a highly tur-

bulent flow, so that the effects of turbulence on chemical reaction rates

must be considered; particularly, in the scramjet context, with respect to

ignition phenomena. On the other hand, to be of maximumutility in scramjet

combustor design, the turbulence modeling should be as simple and straight-

-- forward as is consistent with the requirements of overall accuracy. In this

application, predictions of mean flowfield structure, the effects of heat

_ release, and mean chemical reaction rates are of greatest importance: details

of the turbulence structure itself can be approximated if the approximations

introduced do not materially affect the prediction of overall mixing rate,

chemical reaction rate, and parameters such as the wall skin friction distri-

bution and flowfield pressure gradient. Since it can be expected that dif-

ferent effects may dominate in different regions of the flow: nonisotropy

in recirculation regions; compressibility effects in high speed flow regions;

- and turbulence-chemistry interaction effects in regions in which fuel ignition

is occurring, a modular approach may be the most efficient turbulence model

__ overall. In such an approach, each module contains the turbulence model

elements which best account for the dominant features of each region of the
flowfield.

An assessment of turbulence models for scramjet applications was initi-

_ ated in September 1979. During the first year of this work, as outlined

in Ref. 1, the major effort involved the examination of the multiple dissipa-
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tion length scale (MDLS) turbulence model, since this approach appeared to

offer the potential for greater generality than existing models in the context

of scramjet-related flowfields, in addition to this work, other efforts

carried out during the first year of this program included the definition

of a technique for the estimation of the initial conditions required by field-

equation turbulence models (Ref. I), an examination of the use of a modified

dissipation rate equation with the basic k-m two-equation turbulence model,

and the development of a supersonic-flow compressibility correction to the

dissipation rate equation in the two-equation (or MDLS) approach.

Althoughthe resultsof Ref. I indicatedthat the MDLS model is slightly

more generalthan the basic k-_ model,the gain did not appearworth the

added cost of solvingtwo additionalequations. Furthermore,the flowfields '-

consideredin the analysesreportedin Ref. l, while fundamentalto and under-

lying many of the structures found in scramjet flows, did not involve large

scale recirculation regions. Accordingly, the focus of the second year's

work shifted to an assessment of the performance of a variety of turbulence

models in low-speed and high-speed recirculating flows. This work, described

in Ref. 2, involved the application of several turbulence models to a variety

of recirculatingflows includingaxisyn1_etricand planar sudden-expansions. --

The turbulencemdoels studiedincludedthe basic two-equationmodel and the

algebraicstressmodel, in both cases with and withoutmodificationsto the

dissipationrate equationdesignedto enhancethe model'ssensitivityto

streamlinecurvature. Resultsof this work indicatedthat the algebraic

stressmodel was the most generallyapplicablein regionsof strongrecircula-

tion, and that the modificationto the dissipationrate equation,while impor-

tant in the region surroundingthe recirculationzone, had a deleterious

effect on the overalllevel of predictionsin the regiondownstreamof the

recirculation zone. On the other hand, the results described in Ref. 2 were

felt to be inconclusive, since only in planar subsonic recirculating flows
could clear model differences be discerned.

A further observation made in the course of carrying out the work des-

cribed in Ref. 2 was that in complex flowfields it is difficult to separate --

some aspectsof the turbulencemodelingproblemfrom the numericalproblems

inherentin differentcomputationalapproachesfor solvingthe governing



equationsdescribingthe flow. These aspectsincludethe treatmentof wall

_ boundaryconditions,the algorithmsused to generatethe finite-difference

form of the equations,and the algorithmsused to providethe finite-differ-

ence solutionof the governingequationsfor the particularturbulencemodel

chosen. While not an integralpart of the work plan for the program,several

such problemswere encounteredand were discussedin Ref. 2. Work in this

area continuedduringthe programdescribedin this document,with particu-

lar emphasison the minimizationof numericaldiffusionproblemsin turbulence

-- model assessment.

The work described in this report completes the assessment of turbulence

models for scramjetapplications. AxisynTnetricsubsonicrecirculatingflows

were consideredto completethe k-m model and ASM model comparisonsinitiated

_ in the prior program. Swirlingflows,while not themselvesof directinterest

in scramjetapplications,were found to be stringenttests of turbulence

modelingso that assessmentof the variousturbulencemodelswas extended

to these flowfields. Considerablecare was taken to minimizethe effects

of numericaldiffusionwhich, if not carefullyminimized,can all but swamp

-- differencesbetweenturbulencemodels. Furthereffortsto incorporate

higher-orderturbulencemodels in both the time-splitand time-unsplit

-- MacCormackpredictor-correctorschemeswere carriedout. These efforts

were unsuccessful: the introductionof stiff equationsrendersthe basic

_. solutionalgorithmunstable,and this result pointsup the need for turbu-

lence model developmentand numericalsolutionalgorithmdevelopmentto

proceedin parallel. Just as there is no completelygeneral turbulence

model, neitherdoes a generalnumericalsolutionalgorithmexist. Finally,

methodsof modelingscalar transportwhich do not invokethe Boussinesq

gradientdiffusionhypothesiswere investigated. Each of these areas is

describedin detail in this work.

Although,as noted above, no completelygeneralturbulencemodel

exists for scramjetapplications,the work describedin this report and in

- Refs. l and 2 indicatesthat the algebraicstress formulationis the method

of choice. This conclusionresultsfrom the greatergeneralityof the

approach,comparedwith the two-equationmodel, and from its ability,when

coupledwith appropriatenumericalresolution,to model detailsof the flow



such as counter-rotatingvortices in a sudden expansionrecirculation

region. In regionsof relativelysimple flow (i.e.,jets and shear layers)

the basic two-equationapproach remainsapplicable,and it is easily

arrangedto transitionfrom the ASM to the k-_ approachsince the turbulence

kineticenergy and dissipationrate equationsare fundamentalparts of the

ASM formulation. Finally,solutionof the equationfor transportof the

turbulentspeciesflux, in the same generalway as the ASM solutionproceeds,

appears to be a viablemethod for generalizingthese resultsto more complex

flows with speciesand energy transport. However,furthermodel development

work is required in the latter area, and such model developmentwork is

recommendedas an outgrowthof the work describedin this report.



2.0. ASSESSMENTOF TURBULENCEMODELSFORSCRAMJETAPPLICATIONS

Three major areas were addressed in this phase of the assessment of

_ turbulence models for scramjet applications carried out under this program.

These areas included assessment of models for subsonic, axisymmetric, swirling

and nonswirling recirculating flows and the development of the k-_ and the

algebraic stress model approaches for the prediction of supersonic recircu-

lating _ows. The k-_ model relates the Reynolds stresses to the mean rate

of strain through the definition of an isotropic turbulent viscosity, whereas

the more advanced algebraic stress model calculates the stresses from implicit

-- algebraic relationships containing the stresses themselves, the mean rate of

strain, and the turbulent kinetic energy and its dissipation rate. Modified

versions of the models employ a new dissipation rate equation whose production

term was mademore sensitive to streamwise curvature effects. A new non-

equilibrium wall-function treatment was also incorporated into each model.

These models are discussed in detail in Ref. 2. Swirling flows were investi-

gated because of the demands they place on models with respect to accurate

-- predictions of a wider variety of flowfield features than nonswirling flows

and their incorporation of multiple shear stress components. In the area of

_ supersonic recirculating _ows, problems of turbulence model application were

encountered which highlight the interaction between turbulence modeling and

numerical solution techniques.

The assessment of turbulence models for axisymmetric sudden expansion

_ flows reported in Ref. 2 was inconclusive since only one diameter ratio was

calculated using a relatively coarse grid. In this year's program a follow-up

study covering different diameter ratios and using a finer mesh was conducted

as the final step in the assessment of turbulence model_s in subsonic _ows.

Most computational studies to date fail to separate the effects of

numerics from the influence of turbulence models in assessing their results.

Current literature therefore abounds with discrepancies in the predictions of

flowfields with the same turbulence models but different numerical techniques.

A preliminary study was conducted to address this problem, considering the

-- following four areas:

- 5 -



I. Selectionof test cases

2. Determinationof the solutiondomain length
3. Determinationof convergencecriteria
4. Reductionof numericaldiffusionthroughgrid refinement.

2.1 SELECTIONOF TEST CASES

Surprisinly there are very few experimental (or numerical) studies of

mean and turbulence flowfields in axisymmetric sudden expansions. The only

applicable study that has detailed velocity and turbulence measurements is

the Chaturvedicase (Ref. 3). Back and Roschke (Ref.4) report reattachment

length measurementsin laminarand low Reynoldsnumber turbulentflows

(Re 44000 based on inlet diameter)for 2.6:1 diameterratio sudden expansions. --

Stu_essand Syed (Ref. 5) providesome centerlinevelocitydata, originally

obtainedby Lipsteinand describedin a GeneralElectricCo. corporatereport

only. These data are for diameterratiosof 1.6:l, 2.5:1 and 4:1. Finally,

heat and mass transfermeasurementsin axisymmetricsudden expansionsare

reportedin Refs. 6, 7, and 8. For this work, diameterratios of 1.33:1,2:1

and 3:1 were selectedas representativevalues of the range of diameter ratios

encounteredin practicaland researchorientedapplications. Comparisonswith --

experimentsare presentedfor the 2:1 diameterratio case.

2.2. DETERMINATIONOF THE SOLUTIONDOMAINLENGTH

Specification of the solution domain length is an important considera-
--4

tion in computational work. Too short a length causes the exit boundary

condition to affect the rest of the _owfield more strongly than is physically

realistic,and an excessivelylong solutiondomain results in poor resolution -

or a waste of grid points. Thus a study was conductedto determinea realis-

tic solutiondomain length for turbulentaxisymmetricsudden expansionflow

calculations. For this purposethe 2:1 diameterratio geometryof Chaturvedi

(Ref. 3) was chosen as the test case, using the k-_ turbulence model. This

grid refinement study consisted of increasing the length of the solution

domain while maintaining a fixed mesh spacing. More nodes were added in the

strean_vise direction to allow these increases -- a necessary step to exclude

effects due to changes in grid spacing. The value at which the reattachment

length,the flow parameterchosen to be tested,ceased to vary with further

increaseswas taken as the lower limit for the solutiondomain length. The

resultsof this study, presentedin Figure 2.1a, indicatea value of II step

heightsor more as the recommendedlength for the k-_ model predictions

of this geometry. A solutiondomain length of sixteen (16) step heights

- 6 -
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was adopted for subsequent computations to accommodate anticipated differences

in reattachment length predictions for the different turbulence models inves-

tigated. Resultsof a similarstudyfor the 1.33:1diameterratio,given

in Figure 2.]b, also confirmthese observationswith respectto solution

domain length.

2.3. DETERMINATIONOF CONVERGENCECRITERIA

In iterative codes the convergence criterion is a measure of the degree

to which a computed solution satisfies the finite-difference equations.

For the STEPfamily of programs (Ref. g) this criterion is the level of the

residual sources (SORMAX).A study was conducted, again using the k-_ turbu-

lence model, to determinea realisticconvergencecriterionfor the test cases --

consideredin this work. This study was carriedout by sequentiallydecreas-

ing the level of SORMAX until the change in the reattachmentlength,the

flow parametertested,was less than ] percentfor an order of magnitude

reductionin SORMAX. For all three area ratios,a satisfactoryconvergence
criterionwas determinedto be 0.001.

2.4 REDUCTIONOF NUMERICALDIFFUSIONTHROUGHGRIDREFINEMENT

It is a well-known fact that all upstream or hybrid-upstream* based

finite differencing techniques, although computational ly very stable, intro-

duce numerical diffusion into the formulation. Unless the effects of this

artificial viscosity are removed, the solution thus obtained does not satisfy

the governing partial differentia] equations and can be in serious error; The

source of this problem is the truncation error in the one-sided first differ-

ence used in upstream differencing

-u : -u - _ x---TAx + HO (I)AX i

or

"U : -U
_x i+½_ _x + HO (2)

Note that the leading-orderdiscretizationterm is equivalentto a physical

diffusionterm with an effectivediffusioncoefficientof
*Hybrid upstreamfinitedifferencingtechniques(currentlyused in many codes

including the STEP family) use upstream differencing forIPecelll>2and central
differencing for -2<Pecell<__2. Pecell is the cell Peclet number defined in
Eq. 4.

- 8 -



_ _ uAx (3)
?Numerical- - 2

This term is one explanationof the stabilityof upstreamdifferencingtech-

_ niques. By choosing(1) when u > 0 and (2) when u < O, the discretization

error terms are alwaysstabilizing. However,they also introducea numerical

diffusivitythat may dominatethe physicaldiffusionterms. The appropriate

parameteris the cell Pecletnumber,definedas the ratio of discretized

convectionterms to discretizeddiffusionterms

u#_x (4)
Pecell- F

where r is the effective(laminaror turbulent)diffusioncoefficient. This

_ parametercan also be interpretedas

9Numerical
Pecell = 2 (5)

-- F

Therefore,when Pecell = 2, numericaland physicaldiffusionare of the same

-- size. Computationally,if Pecell_ I the flow is diffusiondominatedand
the form of finitedifferencingused in the convection(firstderivative)

_ terms does not affectthe results. For JPecellI> 2, centraldifferencing
of the convectionterms becomespotentiallywiggly,and for convectiondomi-

_ nated flows (IPeceIll > 5), upstreamdifferencingcan producenumericaldiffu-

sivitiesthat can interferewith and completelydominatephysicaldiffusion
terms.

It is usuallyquite difficultto accuratelyquantifynumericalviscosity

effectsin multi-dimensionalflows. Nevertheless,a good estimateof the

magnitudeofthe numericaldiffusioncoefficientin two-dimensionalcases

can be obtainedfrom Ref. 10 as

_ URAxAysin2e

?Numerical 4(Aysin3e + AXCOS3e) (6)

where UR is the resultantvelocity,AX and Ay are the grid spacingsin the

_ x- and y-directions,respectively,and B is the angle (between0° and 900)

the velocityvectormakes with the x-direction. Severalkey observations



about the natureof numericaldiffusioncan be made in terms of this expres-
sion:

]. Numericaldiffusionvanisheswhen the streamlinesare perpendic-

ular to the mesh, i.e., when the flow is along one of the sets

of grid lines (e = 0° or 90°). On the other hand, numerical

diffusionincreaseswith streamlinecurvaturebecomingmost seri-

ous when the velocityvectormakes an angle of 450 with the grid
lines.

2. There is no numericaldiffusionwhen the gradientof the dependent

variablenormal to the directionof the flow is zero.

3. Numericaldiffusiongets largerwith increasingReynoldsnumber

and could becomeseriousin convectiondominatedflows.

4. Effectsof numericaldiffusioncan be removedby realigningthe

grid with the flow direction(reducing6), by changingthe size

of the mesh (reducing_x and by) or by using both techniques.

Recirculatingflows are especiallysusceptibleto numericaldiffusioneven

if the grid is alignedwith the primaryflow direction. The presenceof

large regionswith strong streamlinecurvature,such as in the reverseflow

zone, createslocal regionswhere numericaldiffusioneffectscan be substan-
tial.

Currenttechniquesfor the reductionof numericaldiffusioninvolve

the use of grid refinement(or grid-independency)studiesin which the number

of grid points to be used, to minimizethe effectsof numericaldiffusion,

is determinedseparatelyin each coordinatedirection. In this work grid-

independencywas determinedin the followingmanner. First, the number of

points in the r-direction(Nj)was fixed and the number in the x-direction

(NI)was increasedin incrementsfor a fixed-lengthcomputationdomain.

The same procedurewas then repeatedfor a fixed NI and variableNJ. The

flow parametertested as a functionof grid spacingwas the reattachment

lengthxR. The numberof mesh pointsfor grid-independentresultswas taken

as the value of NI and NJ where the reattachmentlengthcurve appearedto

approachan asymptoticlimit. A separategrid refinementstudy of this nature

- 10-



-- was conductedfor the 2:1 and 1.33:1diameterratios. Since the 3:] diameter

ratio expansionrepresentsa flow in which diffusiveeffectsare smaller

-- than in the lowerdiameterratio test cases, no separategrid refinement

study was conductedfor this case, and the grid determinedfor the 2:1 diam-

_ eter ratio geometrywas used in the definitivecalculationsof thisflow.

The resultsof this work are reviewedbelow.

2:1 DiameterRatio Grid RefinementStudy

The resultsof this study are presentedin Figure 2.2. For the x-direc-

tion, an asymptoticlimit for the reattachmentlengthwas achievedat values

of NI equal to 72 or greateras shown in Figure 2.2a. A slightlydifferent

behaviorwas observedin the r-directiongrid refinementstudy in Figure -

2.2b. The reattachmentlengthinitiallyincreaseswith the numberof cross-

- stream grid points,reachinga peak at an NJ of 28. The curve then monotoni-

cally decreasesapproachingan asymptoticlimit at valuesof NJ exceeding

52. This behavioris probablydue to the non-equilibriumwall-functiontreat-

ment that requiresy valuesof 40 to 100 for plausiblenear-wallresults.
. .

This range of valuesfor y Is approachedonly at the higherNJ valuesas

shown in Table 2.1.

TABLE 2.1. Variationof y+ Values

-- GRID SIZE

N._I Nj_J y+
22 22 250

22 24 218

22 28 181

22 32 161

22 36 144

- 22 42 125

22 52 I03

Comparison of velocityprofilesprovidesmore insightinto the effects

- of numericaldiffusion. Figure2.3 presentsthe axial velocityprofiles

+ kv½ YP where kv is the turbulentkineticenergyat the edge of the vis-Y =---T

_ cous sublayer,yp is the distanceof the node to the wall and _ is the ki-
nematicviscosity.

- 11 -
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at x/h locationsof 2 and 8, as predictedusing 22 by 22, 22 by 32, 22 by

42, and 22 by 52 node grids. The main differencesbetweenthe profilesare

in their behaviornear the wall, and acrossthe separatedshear layer towards

the centerline. Excludingthe coarsest22 by 22 mesh, the differencesbetween

the predictionsfor the remaininggrids are small. This is consistentwith

the reattachmentlengthcomputationsreportedin Figure 2.2b which also show

a relativelysmall variationof xR with the numberof cross-streamgrid points

for meshes finer than 22 by 32. Axial velocitypredictionscarriedout using

22 by 22, 32 by 22, 42 by 22, and 52 by 22 node grids are reportedin Figure

2.4 at x/h locationsof 2 and 8. The differencesbetweenthese velocity

profilesare more pronouncedthan those observedwith increasingnumberof

grid points in the radial directionsince the reattachmentlengthchanges

significantlywith the numberof streamwisegrid points,as shown in Figure
2.2a.

This study shows that practicallynumericaldiffusionfree and fully-

convergedresultscan be obtainedfor a 2:1 diameterratio axisymmetricsud-

den expansion,with the STEP code (Ref.g), by using a 72 by 52 node mesh

(uniformin each coordinatedirection)for a solution domain length

of 16 step heightsand a convergencecriterionof a residualsource level

of O.OOl. However,it is possibleto obtain acceptableresultsby using

a smallernumberof carefullynonuniformlydistributedgrid points,as demon-

stratedin Figure 2.1,where a nonuniform22 by 22 node mesh resultedin

reattachmentlengthpredictionsin excessof 8.8 step heights,reasonably

close to the ultimatevalue reachedin the grid refinementstudy just des-

cribed. Thus, the secondphase of this grid refinementwork involvedestab-

lishinga nonuniformgrid which minimizednumericaldiffusioneffectsthrough

comparisonwith the resultsobtainedusing the 72 by 52 node mesh determined

previously. Nonuniform22 by 22 and 59 by 43 node grids were devisedby

studyingmeasurementsand coarsemesh calculationsof the given geometry to

identifythe regionsof sharp gradients,and adjustinggrid spacingaccord-

ingly for efficientnode distribution. The baseline72 by 52 node mesh compu-

tationswere then matchedwith the predictionsobtainedusing these two non-

uniformgrids for both the standardand "modified"versionsof the k-_ and

the ASM models. The goals of this studywere to documentthe effectsof

numericaldiffusionin terms of reattachmentlength,velocity,turbulent

kineticenergy,and Reynoldsshear stresspredictions.

- 14 -
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Calculationsof this geometrywere carriedout for a solutiondomain

length of 16.471 step heights,with a residualsource convergencecriterion

of O.OOl. A sketch of the computationaldomain is shown in Figure 2.5.

For all three grids, the same inlet velocityprofileextractedfrom the

Chaturvedidata (Ref. 3) was used at x/h = -0.471 to start the computations,

and the inlet turbulentkineticenergy and dissipationrates were calculated

from this profileusing Prandtl'smixing length hypothesis.

ReattachmentLength Predictions

In Table 2.2 the reattachmentlength predictionsobtained using the

22 by 22 and 59 by 43 node grids with the 72 by 52 node baselineresultsfor

all four models are compared. These resultsindicatethat the reattachment

length predictionswith the 22 by 22 grid do indeedsuffer from numerical

diffusion. The reattachmentlength increasesby 16.9%, 16.2%, 14.7%, and

5.0%, respectively,for the k-_, "modified"k-_, algebraicstressand

"modified"algebraicstressmodels when the grid is furtherrefinedto the

baseline 72 by 52 mesh. The relativelysmall change in the "modified"

algebraicstress model predictionsmay be explainedin terms of two counter-

acting phenomena. The fine grid reducesnumericaldiffusionso that the

computed separatedshear layer spreadsless rapidlywhich in turn produces

a larger recirculationregion. On the other hand, the better resolution

providedby the fine mesh enhances the sensitivityof the model to the

secondarystrainscreatedby the curvatureof the flowfield. Thus, the net

result is a smallerincrease in the reattachmentlength than that observed

for the other models. Predictionsmade with the 59 by 43 node are in excel-

lent agreementwith the baselineresultsindicatinga good node distribution

within the mesh. The danger associatedwith not separatingthe effectsof

numericsfrom the performanceof turbulencemodels is especiallyapparent

for this case. Note that the numericallydiffusive22 by 22 grid predictions

seem to agree very favorablywith the experiment,givinga false impression

of the predictivecapabilityof the models at this diameterratio.

Velocity,TurbulentKineticEnergy and ReynoldsShear Stress Predictions

The effectsof grid refinementon the velocity,turbulentkineticenergy

and Reynoldsshear stress predictionsare discussedbelow. The resultsare
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TABLE 2.3. ReattachmentLength Predictions

MODEL GRID REATTACHMENTLENGTH IN STEP HEIGHTS

k-_ 72 x 52 9.53

59 x 43 9.57

22 x 22 8.15

M. k-_ 72 x 52 9.62 -

59 x 43 9.68

22 x 22 8.28 --

ASM 72 x 52 9..30 --

59 x 43 9.34

22 x 22 8.11

M. ASM 72 x 52 10.22

59 x 43 10.21 --

22 x 22 9.73

Data, Ref. 3 9.4 + 1"

* The uncertaintyin the Chaturvedi2:1 diameter ratio reattchment
lengthmeasurementsis estimatedto be _ I step height.

- 18 -



presentedat an x/h locationof 5 for the 22 by 22, 59 by 43 and 72 by 52

-- node grids.

Figures2.6 and 2.7 presentthe U, k and uv predictionsfor the k-_

-- and "modified"k-_ models,respectively. Similarresultsare reportedin

Figures2.8 and 2.9, respectively,for the standardand "modified"versions

_ of the algebraicstressmodel. The followingconclusionscan be drawn on

the effectsof numericaldiffusionin the Chaturvedipredictionsfrom these

results:

I. The qualitativeeffectsof numericaldiffusionare the same for

-- all models. Quantitatively,the "modified"algebraicstress

model predictionsappearto be the least sensitiveto grid refine-

- ment. However,this may be the result of the two counteracting

phenomenadiscussedin the precedingsection.

2. The agreementbetweenthe baselineresultsand the 59 by 43 grid

predictionsis excellentfor all variablesand models.

3. The differencesbetweenthe 22 by 22 grid resultsand the baseline

-- predictionsare significant,and these shouldbe viewed in con-

junctionwith the reattachmentlengthcomputations.

-- a. The main effect of numericaldiffusionis a more rapid

predictedrate of spreadfor the separatedshear layer,

-- and consequentlya shorterreattachmentlength.

b. These effectscan be seen in the progressivelyfasterrate

- of decay of the centerlinevelocity. Also higherlevels

of kineticenergy and shear stressare predicted,indicating

_ a shorteryet more intenserecirculationzone.

c, A subsequentdrop in the levelsof these quantities,typical

_ for the recoveryregion,signalsreattachmentof the separ-

ated shear layer and beginningof the relaxationregime.

Summary

_ The resultsof this study showedthat the nonuniform59 by 43 node

grid does indeedmatch the baselinepredictionsextremelywell and can be

- 19 -
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used in definitive numerical diffusion free predictions of the Chaturvedi

geometry at substantial savings (_40%) over the 72 by 52 node baseline grid.
The nonuniform 22 by 22 node grid suffers from the effects of numerical diffu-

sion, and thus, grids of this coarseness should be used mainly in preliminary

computations or to establish qualitative flow trends. In addition, this

study confirmed the role of the reattachment length as a sensitive index

of the degree of numerical diffusion in both the k-_ and algebraic stress

model predictions. Hence, parametric studies of reattachment lengths as

a function of grid spacing are sufficient in constructing nonuniform grids

to minimize numerical diffusion. This important observation was used in

the subsequent studies.

1.33:1 Diameter Ratio Grid Refinement Study

The computational domain length and convergence criteria for this geom-

etry were established as 16 step heights and SORMAX: 0.001, respectively,

based on the 2:1 diameter ratio results already discussed. The flow geometry

and solution domain are shown in Figure 2.10. The grid refinement work pro-

ceeded in the same manner as that already described: the number of points

in the r-direction (NJ) was first fixed, and the number in the x-direction

(NI) was increased in installments for the fixed length computational domain

until further changes in predicted recirculation zone length no longer

occurred. The same procedure was then repeated for a fixed NI and variable

NJ. The number of mesh points for grid independent results would have been

taken as the value of NI and NJ where the reattachment length curve appeared

to approach an asymptotic limit. However, within the NI (22-78) and NJ

(22-82) values studied, this limit was not reached. Therefore, as shown in

Figure 2.11 the reattachment length curves were extrapolated to their

asymptotic limits using the reported xR values. These results showed that
a mesh of at least 108 by 130 nodes of uniform spacing was needed to obtain

grid independent predictions of this geometry.

The next step was to devise and test nonuniform grids employing fewer,

but nonuniformly distributed grid points against the reattachment length

predictions reported in Figure 2.11. Nonuniform meshes of 22, 32, 42, 52,

- 24 -
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-- and 64 nodes in the streamwisedirectioncoupledwith 22 uniformly-spaced

nodes in the radialdirectionwere matchedagainstthe asymptoticreattachment

-- lengthpredictionsin Figure 2.]l(a). A similarstudy,Figure 2.11(b),was

also conductedusing 22, 32, 42, 52, and 52 nonuniformly-spacednodes in

_ the radial directionand 22 nodes with constantspacingin the streamwise

direction. These tests producedthe 64 by 62 nonuniformgrid that was used

in the definitivenumericaldiffusionfree calculationsof this geometry

with the k-m, "modified"k-€, ASM, and "modified"ASM models.

This work again emphasizesthe need for grid refinementand related

studiesbeforemodel evaluationsare undertaken. The differencein the reat-

tachmentlengthpredictionsalone variesby as much as 1.2 step heightsbe-

- tween the finest (62 by 22) and the coarsest (22 by 22) grids tested. It

is interestingto note that nonuniformgrids simply shift the reattachment

-- lengthcurve to highervaluesat a given value of NI or NJ. The variation

of reattachmentlengthwith grid spacingis remarkablysmooth in both coordi-

_ hate directionsand by and large displays the desiredbehavior.

3:1 DiameterRatio Grid RefinementStudy

Since this diameterratio representsnumericallya less diffusive

flow than the 2:1 diameterratio case, the 59 by 43 node grid determined

for the 2:1 diameterratio expansionwas a|so used for this diameterratio.

The computationdomain lengthand convergencecriteriawere again taken as

-- 16 step heights,and O.OOl,respectively. The flow geometryand the solution

domainare shown in Figure 2.12.

Summary

- This phase of the work involveda parametricstudy to assessthe effects

of numericson the accuracyof flowfieldpredictions. Solutiondomain length,

_ convergencecriteriaand numericaldiffusionwere all considered. A study

of this nature is essentialin most computationalwork to separatethe effects

of numericsfrom the influenceof analyticalmodels in assessingthe predic-

tions. The resultsof the presentstudy,which providedthe solutiondomain

length,convergencecriteriaand the mesh size to be used in the definitive

test case calculations,are summarizedin Table 2.3.
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TABLE 2.3. Summaryof Results.

SOLUTION

_ DIamETER GRID DOF_IN CONVERGENCE

RATIO SIZE LENGTH, CRITERIA

Step Height

1.33:1 64 by 62 16 0.001

2:1 59 by 43 16 0.001

3:1 59 by 41 16 O.OOI

It was also shown that the reattachmentlengthis indeed a sensitiveindex

of the degreeof numericaldiffusionfor both k-_ and algebraicstressmodel

predictions.

2.5 ASSESSMENTOF MODELSFOR AXISYMMETRICSUDDEN EXPANSIONFLOWS AT DIFFER-

_ ENT DIAMETERRATIOS

This phase of the study includedthe definitivepredictionof the

-- 1.33:1,2:1, and 3:1 diameterratio cases with the standardand the "modified"

versionsof the k-_ and the algebraicstressmodels for the computationdomain

_ length,convergencecriteriaand the mesh size specifiedin Section2.1.l.

Assessmentof model performanceand the effectsof diameterratio on sudden

expansionflow predictionsare discussednext in terms of reattachmentlength,

mean velocityand Reynoldsstresscalculations.

-- ReattachmentLengthPredictions

The reattachmentlengthpredictionsfor the differentdiameterratios

-- investigatedare shown in Table 2.4 and Figure 2.13. Here the "primary"

recirculationzone is thatwhich forms downstreamof the step along the outer

-- wall of the suddenexpansion;the "secondary"recirculationzone is a counter-
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TABLE 2.4. ReattachmentLength Predictions

DIAMETER REATTACIIMENTLENGTIISIN STEP HEIGHTS
RATIO

PRIMARYRECIRCULATIONZONE SECONDARYRECIRCULATIONZONE

KEM M.KEM ASM M.ASM MEASUREMENTS KEM M.KEM ASM M.ASM

1.33:1 7.40 7.60 7.73 8.82 0.19 0.18 0.55 0.51

2:1 9.57 9.68 9.34 10.21 9.4 _+I 0 0 0.44 0.41

, 3:1 8.61 8.66 8.20 8.37 0 0 0 0

o

I

I l I I I I 1 I ] I ) I I ) I l ) I 1
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rotatingeddy which, with some turbulencemodels, is predictedto exist in

the corner betweenthe step and the outer wall. The physicalpresenceof

this eddy is somewhatcontroversial;howevercertainindirectevidencepoints

to its existence. Note from the tabulateddata and Figure 2.13 that all

models predictthe existenceof a counterrotatingeddy at small diameter

ratios and that the predictionsindicatethat the size of the eddy decreases

as the sudden-expansiondiameterratio increases. Predictionof the location

and size of the counterrotatingeddy is a functionof both turbulencemodel

and grid resolution,providingagain evidenceof the need for fine grid reso-

lutionin predictionof the detailsof turbulentreactingflows.

Note from Figure 2.13 the existenceof a maximumin recirculationzone

length (in step heights)as a functionof diameterratio. This is somewhat

misleading,since step heightalso increaseswith diameterratio, as h = (D-d)/2.

In fact, the absolutelength of the recirculationzone continuesto increase

as diameterratio (or step height) increases,as shown in Figure 2.14. A data

correlationobtained by Drewry (Ref. ll) from a varietyof sourcesis also

shown on Figure 2.14, and the predictionsof all of the turbulencemodels

examinedare in reasonablygood agreementwith this correlation.

Severalinferencescan be drawn from this comparisonof reattachment

length predictions. First, comparedwith the differencesobserved as a

functionof grid spacingwith a single turbulencemodel, the differencesin

zone length predictionbetweendifferenceturbulencemodels in this sudden

expansionflowfieldare nearly negligible. Only at the lowest diameterratio,

where pressuregradienteffectson the mixing processare smallest,do signif-

icant differencesin resultsof the differentmodels become evident,and

in this case it is only the modifiedalgebraicstressmodel which provides

significantlydifferentresults. The differencein resultszone length

betweenthe modified ASM and other turbulencemodels is consistentwith the

resultsfor planar separatedflows describedin Ref. 2; however,it must be

noted that at a diameter ratio of 2.0, where the Chaturvedidata (Ref. 3)

is available,the recirculationzone length experimentallymeasureddoes

not agree with the modifiedASM result (Table2.4). It might also be

noted that the computationalresults (and Chaturvedi'sdata) are not fully

in agreementwith the correlationband shown in Figure 2.14 and, indeed,
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the computedresultsindicatethat the linearrelationshipbetweenrecircula-

tion zone length and step height obtainedby Drewrymay not, in fact, exist.

Velocityand Shear Stress ProfileComparisons,DiameterRatio = 2.0

Figure 2.15 presentsa comparisonof the axial velocity profilesas

predictedby the four turbulencemodels and Chaturvedi'sexperimentaldata

(Ref. 3) at x/h values of 2, 4, 6, 8, and 12. Up to an x/h of 8, there are

no significantdifferencesbetweenthe profilesas predictedby the four

models. In fact, referringto the resultsshown in Section2.1.1, the differ-

ences observed throughoutthe flow are much smallerthan differencesinduced

by grid refinement. At the final two stations,the standardand "modified"

versionsof the ASM predict largercenterlinevelocitieswhich correspond

to a slower rate of spread of the separatedshear layer toward the center-

line. This behavior is more pronouncedfor the modifiedASI,I,consistentwith

the largerrecirculationzone this model predicts.

Agreementbetweenthe measurementsand the predictionsis generally

acceptablebut by no means perfectin the recirculationand near-centerline

regions. Across the separatedshear layer, predictionsconsistentlyfall short

of the data indicatinga more slowlydevelopingshear layer. KEH and "modified"

KEM displaybetteragreementwith the measurementsnear and downstreamof the

reattachmentpoint. All models seem to do equallywell furtherupstream.

Predictedand measuredprofilesof the axial Reynoldsstress component

are presentedin Figure 2.16 for x/h values of 2, 4, 6, 8, and 12. All four

models compute similarUxU/ profilesalong the duct which only differ in mag-

nitude. Up to an x/h of 8, the KEM, "modified"KEM and ASM predictionsare

hardly distinguishable. In this region the "modified"ASM predictionsshow

the most rapid decreasein shear stress level. Beyond x/h = 8, the KEM and

modified KEM predictionsof shear stress decay rate increaseand eventually

these models predictlower shear stress levels than both the modified and

standardASM. The behaviorof the measured stress profilesis successfully

predictedby all models. The computedstress levels howeverare generally

higher,except at the first station,than the measuredvalues. In the

recirculationregion the "modified"ASM shows the better agreementwith the

data. Furtherdownstream,KEM and "modified"KEM predictionsappear to be

more successfulin this respect.
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-- Velocityand Shear Stress ProfileComparisons,DiameterRatio : 1.33

At this diameterratio, effectsof pressureforces can be expectedto

-- be smallerthan at a diameterratio of 2.0 relative to the detailsof the

turbulentmixing process,so that more substantialdifferencesbetweentur-

-- bulencemodel resultsthan was evident in the diameterratio 2.0 calculation

may be expected.

- The axial velocityprofilespredictedby the four turbulencemodels

consideredin this work in the 1.33 diameterratio case are shown in Figure

_ 2.17 for x/h valuesof 2, 4, 6, 8, lO, and 14. There are no experimental

data availablefor this diameter ratio. Within the recirculationregion,

excludingthe immediatevicinityof the reattachmentpoint, there appears

to be no significantdifferencesbetweenthe profilesas predictedby the

four models. Beyond the recirculationregion,the standardand "modified"

-- versionsof the ASM predictslightlylarger centerlinevelocitieswhich

correspondto a slower rate of spreadof the separatedshear layer toward

-- the centerline. This behavioris more pronouncedfor the "modified"ASM

consistentwith the larger recirculationzone this model predicts.

-- Similarly,small differencesin model predictionsare observedwhen the

axial Reynoldsshear stress componentuxur Is examined,Figure2.18. All

_ four models predictsimilarUxU---_-profilesalong the duct which only differ in

magnitude. In the recirculationregion,up to an x/h of 4, the higheststress

levelsare predictedby the KEM models. Here, the "modified"ASM predicts

approximately 15% lower peak stress l_vels. Furtherdownstream,the stress

levels begin to decay. In this region,the standardand "modified"KEM

-- models experiencea more rapid decay,and eventuallypredictstress levels

lower than both the "modified"and standardASM. These resultsare also

- consistent with the U-_r predictionsfor the 2:1 diameterratio.

Resultsfor the diameterratio 3.0 case are completelyconsistentwith

-- those alreadydiscussedfor diameter ratiosof 1.33 and 2.0 and are not
presentedherein.
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Summary

The results of this assessment can be summarized as follows:

I, The mean velocity and turbulence field predictions do not change
significantly with different turbulence models.

2. In these pressure dominated flows, simple k-_ model predic-

tions appear to be comparable to the more sophisticated ASM
computations.

3. At the lower diameterratio, predictionsseem to be more sensi-

tive to modeling effects; however pressure forces still dominate

the flowfield. The influence of these pressure forces can be

appreciated by comparing the axisymmetric and planar reattach-

ment length predictions at the same effective expansion ratio.

4. Performanceof the "modified"ASM is consistentin both axisym- --

metric and planar suddenexpansionflows. This model is, how-

ever, more sensitiveto grid refinementin low diameterratio

axisymmetricflows. An increasein reattachmentlength of 15%

is observed in axisymmetric flows over the standard version of

the model as compared with a 28% increase in planar backward-

facing step flows of the same expansion ratio.
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__ 3.0. ASSESSMENTOF TURBULENCEMODELSFOR SUBSONICSWIRLINGFLOWS

The resultsof comparisonsof turbulencemodel predictionsin axisym-

metric suddenexpansiondo not producea clear-cutchoice among the turbu-

-- fencemodels tested. This is partiallydue to the dominationof the flow-

field by the pressureforces,which reducesthe sensitivityof the calcula-

-- tions to the turbulencemodels used, and partiallyto the lackof detailed

experimentaldata for model evaluation. A more stringenttest of model per-

_ formanceis the calculationof swirlingaxisymmetricsuddenexpansionflows

where the swirl-inducedflow anisotropycombinedwith the pressureforces

generatedby swirl createa more complicatedflowfieldfor turbulencemodel

assessment. While detailedexperimentaldata are again lacking,and swirl

flows are not of great interestin scramjetapplications,assessmentof mode]

-- performancein highlyswirlingflows can providesome informationon model

behaviorwhich can be of use in selectinga generally-usefulmodel for scram-

_ jet applications. Thus modificationsto the governingequationsand the tur-

bulencemodels for swirlingflows were derivedand implementedin the STEP

_ codes. Fine grid calculationsof a swirlingflow of the constantangle type

for a given swirl numberwere then carriedout using the k-mand algebraic

stressmodels. The selectionof the k-m and algebraicstressmodels for

this study is significantin that the algebraicstressmodel representsthe

only generalpurposeturbulencemodel outsidea full Reynoldsstressclosure

-- (wherea differentialtransportequationhas to be solved for each stress

component)that does no___ttuse an isotropicturbulenceviscosityconcept.

3.1. GOVERNINGEQUATIONSAND TURBULENCEMODEL FORMULATIONSFOR SWIRLING
FLOWS

The governingequationsof motion for turbulentaxisymmetricswirling
flows are

Conservation of Mass

B--_ _ + (rV) : 0 (1)r Br
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x-Momentum

P a--_U+PU_t Bx_U+ PV ar3-'UU_ aP +____ax Dx [2u axD--u-u"2/3u_. p_2] _

[{ }]1 _ r U DU + av - pu_" (2a)
+ F Br

r-Momentum

[ ]pDV + pU _v + pVDv _ o - -- um + . p_
Bt _x Dr r _r Dx \_r

+ _I Dr_ Jr{ 2u _r_'-VV-2/3u@- p_2 }]

r -
o-Momentum

p @W + pU DW + pVDW + p _ u-- - pG-_
Bt _x Br r Dx Dx

Dr @r _ - P_ (2c)

(__ @U + I_ _ (rV)
Bx r Br

where U, V, W are the axial, radial and tangentialcomponentsof the

mean velocity,P is the pressure,p and U are the fluid densityand dynam-

ic viscosity,respectively,and _, T2,_2,uv, uw, vw are the Reynoldsstresses.

This set of equations,however, is not "closed"due to the appearanceof the

Reynoldsstress tensor uiuj which introducessix additionalunknownsto raise

the total numberof variablesin the four equationsto ten (Ui, P, uiuj).
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The k-m and the algebraicstressmodels are used in this context to

- expressuiuj in terms of known or calculablevariablesto "close"these
equations.

k-_ Model

-- The k-_ model achievesclosure by relatingthe Reynoldsstresses

to the mean strainrate throughthe Boussinesqapproximation

The effective(turbulentor eddy) viscosityappearingabove,ut, is
definedin terms of a characteristic length and velocity. If this length

-- is taken as the turbulencelength scale, k3/2/_,and the velocityas k½, _t
can be expressedas

ut _ c pk_ (4)

where k is the turbulencekineticenergy,s is the dissipationrate and c is
U

a constantof proportionality.The Reynoldsstressesare then definedas

. p _2 = 2ut _U_ 2/3_k (5)
Bx

_ p Tz : 2Ut @V_ 2/3_k (6)
Br

P _= = 2Ut _r " 2/3pk (7)

_ _: (:'°:)-- puv ut + (8)

- puw = utn (9)
_x

-- - pv--_= ut r ! (_) (10)3r

_ for swirlingaxisymmetricflows. Note that the same singlevalue of ut
appears in all of the Reynoldsstress relationships: this is the isotropic
viscosityassumption.
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AlgebraicStress Model

A completesecond-orderclosureof the Reynolds-averagedgoverning

equations would require the solution of a transport equation for

each of the stress components. Even for two-dimensionalflows this can

be a formidabletask, since, in additionto the mean flow equations(equa-

tions (1) and (2)), eight other transportequations(for u, v, w, uv, uw,

vw-_,k, and _) need to be solved. Under the assumptionthat the convection

and diffusionof each Reynoldsstress componentcan be relatedto the con-

vectionand diffusionof turbulentkineticenergy,however,the stress

transportequationscan be reducedto a set of implicitalgebraicexpres-

sions for the stressesin terms of the mean strainrate, turbulentkinetic

energy,dissipationrate, and the stressesthemselves. The equation for

the algebraicstressmodel for a swirlingflow, includingthe near-wall
correctionterms are

uiuj (p__) Pij - _ _ij_ q_ij,1 *ij,2 *ij,1 _ij,2

where

p : -uiuk @Ui
_xk, the productionrate of kineticenergy

( _UJ + UjUk" _) ' the prOductiOnrate Of individual _Pij = - UiUk _xk
Reynolds stresses

/ \

= moOe eO
of fluctuatingquantitiesto the pressure-straincorrelation

_ij,2 : "C2(Pij - 2/3 _ij P)' the modeled form of the contribution of mean _
strain effects to the pressure-strain correlation

J \

@ij,1 : C_ z/klUkUm nknm 6ij- 3/2 UkU--_ nkni - 3/2 _ nknj) f (_T) '

wall correctionto q_ij,l
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/

_,2=c_Cokra.2nknm_i_-312oik,2nkoj-3J2_jk,2nkn_>f(_Iniri},
wall correctionto ¢ij,2

f is the lengthscale function.

Equation(11) is the versionof the algebraicstressmodel used in this study.

The detailsof the derivationand the underlyingassumptionsfor the model are

discussedin Ref. 2.

For axisymmetricswirlingflows the algebraicstressmodel representa-

tion of the Reynoldsstressesbecome

-- _ p_-2= F[(2 + 4alx + alr)(eu + 2/3) _UT_+ 3a2x (eu+ 2/3)

- -(I + 2alx + 2alr)(ev + 2/3)_V _ 1.Sa2r(ev + 2/3)

. V
_ - (1+ 2alx alr)(ew+ 2/3)

(12)

_ . _-(_•_°_x+_O_r)(ev)_T_
C_._O_x_}le_)_-a _-_

- 11 + 2alx- alp) (evw>(_#-_)] - 2/3ok

_ova=_[-(_+_°_x+_a_r)(eu+_'_)__°-__a_(e._,_)
+(.2 + alx + 4alr) (ev + 2/3)_V_ _-+ 3a2r lev + 2/3)

V
-<I - alx + 2alr ) (ew + 2/3> _-

-- (13)

-(I + 2alx + 2alr) (euv) _U +_-_ (2 + alx + 4alr)(euv> _VTT

-(1- alx + 2alr) (euw) _WT_

-(1- alx + 2alr)(evw)( BWDr W)]_r 2/3pk
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-ow_=F[-(l. 2Oixalr)(eo.2J3)_0- _ -l._leu,213)a2x
-(i- aix. 2alr)(ev. 213I_--_-II_(ev. 213)a2rDr

V
+(2 + alx + alr ) (e w + 2/3 ) _-

.LI + 2alx + alr)(euv ) _U (I + 2alr) f: _V (14) __ - " alx _uvl_-x

TT

+{2 + alx + alr) (evw)( _W WI] - 2/3pkDr r

-pu-_= 1,[1.5 (I + 1 5alx + 1 5alr) (eu + 2/3)_)V• . _'_

+ 1.5 (I+ l.Salx + l.Salr ) (ev + 2/3)_U (15)

- 1.5 (1+ 1.5alx + 1.5alr) {euv)_ + 2.25 (a2x + a2r) (euv)]

E-ou_=r 1.5(i.i _alx)(o.213)_w" T_

+ 1.5 (i + l.Salx ) (euv)(SW W)Dr r
(16)

+ 1.5 (I + 1.Salx) (e) (_Uuw_ . v). _-_Ca_x)leuw)
_]

-pv_: I'[1.5 (! + l.Salr ) (ev + 2/3)(_r W- _)

" _T

+1.5(z+_5azr)(euw)_ (17)• _

+ 1.5 (I+ 1.Salr ) (evw) (_r + rV-) + 2.25 (a2r) (evw)]
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where

I"1 - 213 >,kl_ [' - 213 pAk2/_

_ (I - c2) I ((c I - i) + PI_)

azx _ c2c_ _x/ (1 - c2) air _ c2c _ _r/(l - c2)

a2x _ c I _/k _x/(l - c2) a2r z c_ _/k _r/(l - c2)

-- k3121_.
fx _ - k3/2/_

K/a3/2x fr - K/a3/2r

cI, c2, c{, and c_ are constants defined in Table 2.6, K is the yon Karman
constant (0.4187) and "a" is the near-wall value of -u-v'/k (generally taken

as 0.25).

TABLE 3.1 RecommendedValues for Turbulence Model Constants

K = 0.4187 ck = 0.22

c : 0.09 c_3 = 0.36 (c 2 - c l)

(_k = 1.00 cI = 1.8

= - )cI/2 c2 = 0.6o" k2/(c_2 c_i" u-

c : 1.44 ci : 0.5=-I

-- c2 1.92 c_ = 0.3
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k and _ Transport Equations

Both the k-_ eddy viscosity and the algebraic stress model require

evaluation of the turbulent kinetic energy and its dissipation rate to define

turbulent time and length scales. The high Reynolds number forms of the k and

transport equations used in this study are

_k 8k _k _ _ Dk + Io _ + pU _+ pV _ - pP - p_ + _ r _r (rD k ) (18)x r

8_ 8_ _ - P - c _) + _-_D + I _ (rD) (19)
p _-_+ pU _-_+ pV _ - p _/k (c i _a _x F_'-r- -r

where

k-_ Model

ut ) _kOk : + -- (20) -
x _ U _x

Dk : + -- (21)
r 7kk u 8r

D_x 7 + _ 8x (22)

ut ) _D_r : 7 + U 8_ (23)

- -- \ _r ' _-_1

_W_2
+ (r _ (W)) 2 +(_-_1 ] - 2/3 k [ _)U___+FV + ____Vr] (24)

_k and _ are turbulent Prandtl numbers for k and _ respectively. These are

defined in Table 2.6 with model constants c_ and1 C_2"
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Algebraic Stress Model

: ck _- _-_ + u-v"_-_ + u _-_ (25)

- : Ck _ a--r _-_ + u _-_ (26)

;D_x C__ _- u _x _-_ + U _ (27)

D : c _- _-'_- _ + _ _ (28)

_ _- _+v_+ +_ +r _

BW
_ +_+_ [r _-_- (rW-)]}. (29)

ck and c 3 are model constants given in Table 2.5.

Wall Function Treatment

Most turbulence modelsincluding the present versions of the algebraic

stress and k-m models are devices for high Reynolds number flows. However,

in the vicinity of solid boundaries where the velocities are small, the low

Reynolds number effects previously neglected become significant and should be

- accounted for. This can be accomplished either by solving the low Reynolds

number form of the transport equations or by developing wall functions that

_ introducethese effectsinto the existinghigh Reynoldsnumbermodels.

Chieng and Launder (Ref. 12) found that the first option requiredvast amounts

of computertime due to the slow convergencecharacteristicsof the low

Reynoldsnumbermodels. On the other hand a new wall functiontreatmentpro-

posed by the same authorswas shown to incorporatethese effectswith prac-

-- ticallyno increasein computingtime. An expandedversionof this treatment
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is used in the present study. Details of this approach are given in Ref. 3.

3.2 MODELASSESSMENTIN SUBSONICSWIRLINGFLOWS

Model assessment for swirling flow computations was carried out through

fine grid calculations of a constant angle swirl flow at a swirl number of 2.

Swirling flows are usually characterized by defining a swirl number which is

the ratio of the axial flux of tangentialmomentum to the axial flux of axial

momentum times the inlet radius.The definitionof the swirl number is then

GxRi (30)

where

G_ = (Wr) pU 2_r dr

Ri (Uo) U 2_r dr P 2_r drGx =

U : Axial velocity component

W = Tangential velocity component

R = Inner radius (hubbed swirlers)

R. : Inlet radius
1

p : Local density

P = Local static pressure

A number of flow phenomenaare relatedto and affectedby the presence of

strong swirling in combustorflows. These phenomenaare complexlyinter-

related and can have profound effects on performance parameters such as

combustion efficiency, pressure losses, flammability limits, combustion flow
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_ stability, and nozzle thrust losses. While a swirl number of 2 is extremely
high from the standpoint of practical combustor flows, assessment of turbu-

lence models in high swirl number non-reacting swirling flows provides a use-

ful step in developing turbulence modeling for complex flows, for at high

swirl numbers the differences between models are maximized. This suggests

-- the utility of experiments run at swirl numbers that would otherwise be of

little interest from a propulsion system standpoint.

-- Two-equation (k-_) model and algebraic stress model calculations were

carried out for a uniform density flow in a 2:1 diameter ratio sudden expan-

-- sion with and without swirl. The computational domain and flow parameters

for these calculations were as shown in Figure 2.19: inlet swirl was of the

constant-angle type. No separate grid-refinement tests were conducted for

these calculations; however, based on the criteria given in Section 2.1.1,

these results should not be significantly affected by numerical diffusion.

The effects of swirl on the overall flowfield at this swirl number

is demonstrated by the streamfunction plots given in Figures 2.20 and 2.21.

The formation of a large centerline recirculation zone and the enhanced radial

mixing shown are both direct consequences of the axial momentumdeficit crea-

-- ted by the non-zero tangential component of the mean velocity. Significant

differences between the k-m and the algebraic stress models appear only in

-- the swirling flow calculations. This supports the hypothesis noted earlier

that the two models would show a different sensitivity to flow anisotropy,

induced, in this case, by swirl. While detailed experimental data does not

exist for this configuration, experiments such as those discussed in Ref. 13

indicate very large centerline recirculation regions at high swirl numbers,

indirectly supporting the ASMprediction of the swirling flow. It might also

be noted that a large recirculation region along the centerline such as seen

- in Figure 2.21 would be unstable to small disturbances (and thus would be

subject to axial position fluctuations) (Ref. 13). Note further that near

-- the wall the predicted flowfields are very similar, so that measurements of,

for example, static pressure distribution would not necessarily reflect the

_ large centerline differences between these flows. Thus detailed measurements

within the flowfield will be required to provide data with which to directly
test the models.
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FIGURE 3.1. ComputationDomain and Flow Parameter.

Swirl severity parameteris the ratio of the maximumtangentialvelocity
componentto the maximumaxial velocitycomponent.
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The axial velocityprofilesshown by Figure 3.4 comparethe swirl and

the no swirl cases for the two models. The k-_ model predictionsindicatea

large (4.68 step heightslong) irregularlyshapedcenterlinerecirculation

region shown in Figue 3.2 that extendswell into the inlet and appears to

signal an eventualbreakdownon the existing vortexat higher swirl inten-

- sities. The algebraicstressmodel calculationson the other hand show an

actual breakdownof the centerlinerecirculationregion into three discrete

_ vortices-- two small eddies appear in the inlet and a large primaryeddy

(5.37 step heightslong) is positionedroughly0.76 step heightdownstream

of the expansionplane (Figure3.3). The tangentialvelocity profilespre-

sented in Figure3.5 show the same qualitativebehaviorfor both models,

however,the magnitudeof the velocitiesare significantlylower for the

-- algebraicstressmodel. The turbulentkineticenery distributionsplotted

in Figure3.6 also show roughlythe same behaviorfor both models;here,

-- however,the algebraicstressmodel predictssignificantlyhigher levelsof

turbulenceintensityalong the combustoraxis. The Reynoldsshear stress

_ profilesgiven in Figure 3.7 appear quite similarwith the k-_ model, pre-

dictingslightlyhigher stresslevels in the near-fieldflow and the algebraic

stressmodel furtherdownstream. These predictionsare consistentwith the

flow patterndepicted in Figures3.2 and 3.3.

-- Summary

The computationsjust describedshow that significantdifferencesbe-

- tween the k-_ and ASM models exist in flows in which anisotropicviscosity

effectscan be expected. For flows in which there is only one major shear

-- stress component,such as the conventionalsuddenexpansionin regionsaway

from the recirculationzone the additionalcomplexityinvolvedin the ASM

_ formulationmay not be warranted. Note, however,that even in simplerflows

there are regionsin which secondaryshear stresscomponentsmay be nonnegli-

gible. Just such a region is the near-cornerregion,and it will be recalled

that in this region the ASM formulationindicatesa larger secondaryeddy

than does the k-_ approach.
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4.0. ASSESSMENTOFTURBULENCEMODELSFORSUPERSONIC
- REClRCULATINGFLOWS

Previousefforts (Ref. 2) to incorporatethe k-_ model in to the

_ TWODLEcode of J.P. Drummond(Ref. 14) for supersonic recirculating flow

calculations were hindered by numerical stability problems. Eventually,

_ a scheme was devisedthat appearedto be stable but requiredvery small

time steps due to the explicitnatureof the technique. In addition,the

fact that the k and _ transportequationswere solved in the physicalco-

- ordinatesintroducedinaccuraciesfor irregulargeometries. Two options

were available: modify this scheme so that the k and € equationsare

- solved implicityand simultaneouslyinthe transformedcoordinates,or

implementthe k-_ model in a new implicitversionof the TWODLE code (Ref.

_ 14) thatdoes not use time-splitfinitedifferencing. The secondoption

was investigatedas part of this year's work.

4.1. GOVERNINGEQUATIONSANDWALLFUNCTIONS

-- Mean Flow and TurbulenceEquations

The mean flow and turbulencemodel equationsfor the k-_ model can be

written as followsfor two-dimensionalellipticplanar flows:

Conservation of Mass

x-Momentum

a_ pU + _ pU2 +_7 pUV
_ (32)

: - _+ _-_ UT _- 2/3UT _+_ " 2/30k + _-_ T Ty +
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y-Momentum

_t _-_ pUV + _y pV2
(33)

: " _-_ _--_ UT Ty + _-x/.j _y _'y " 2/3_T _ + _-y - 2/3pk _

k TransportEquation

__9__k+_
_t _-_ pUk + _y pVk

(34)

TransportEquation

_D_ + _ _ pV_pU +

(3s)

: c O _P - c + _" _€ Ut ?_

where

U = streamwisemean velocitycomponent

V = transversemean velocity

P = pressure

k = turbulencekineticenergy

: turbulencekineticenergydissipationrate

p = density

= dynamic viscosity ut { [[BU,2 (BV)_ (BU BV,2P = productionrate of k, -_- 2 \_-x-/+ Tx + Ty + _x/

2 (_U + _V_21 2/3k (_LU _V
]
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_ UT : Ut + U (totalviscosity)

k2
ut = c p T (turbulentviscosity)

- _k and _ are the Prandtlnumbersfor k and _, respectively,and c i,

c 2 and c are constants.

FollowingRef. 12 these equationscan be put in TWODLE form by definingthe
_, 7, _ and _ vectors as

B_ + B_ + _ R (36)_ _t _x _y

where

t °pU

: _ pV

-- ! pkp_

!

pU

-- I pUU + _x

: pUV + Txy

P pUK + Dkx
pU +

O_x

pUV + ryx

-- G : pVV + _y

pVk + Dky
pV +

-- D_y

- l°
0

o(P- _)

p_/k(c P - c _)
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and

: 8U
_x P + 2/3UTD - 2aTe+ 2/3pk

•x_: _x='_t(_--_._)8Y

_V
_y = P + 2/3UTD- 2uT _-_+ 2/3pk

= ),,Dkx - 7kk + u 8--_

: (ut ) 8_ -D_x - _ + u a_

: ut u) 8k°ky - ( _ + 87

D_y = - _ + la _Sy

k2
;t : PCu T

UT : ;at+ _

£ = -- 2 + + ,Ty 8"x-Ip £_I \_I + " _ D2

C
= U

_k 3/2 Ckl

K2
1/2

< (ca - c_)c u

SU 8V
D : _--_+_'_ compressibleflows

0 incompressibleflows
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Currently recommendedvalues for the constants are

c : 0.09
U

ck : 0.22I

c : 1.44

c : 1.92
gz

K = O.4187

-- become
with thesevalues_k and _

f
_ c_k : 1.0

: 1.217

Wall Functions

The near-walllow Reynoldsnumbereffectsare incorporatedto the k-m

model using the non-equilibriumwall functionsof Chieng and Launder (Ref. 12).
#i-

However, since TWODLE uses nodal valuesrather than controlvolume averages,

-- some changeswere made in implementingthese wall functions. A typicalnear

wall region is shown in Figure4.1. Here it is assumedthat node w is at

-- the wall, and w + 1 is in the fully turbulentregion

Yw+l kv½
_ > 20 (37)

where Yw+l is the distance from node w + 1 to the wall and kv is the turbulent
kinetic energy at the edge of the viscous-sublayer. The level of k is obtainedv

by extrapolating the line through kw+I and kw+2 to Y:Yv' hence

_k actually becomes 0.614, however a value of I is more commonin the
literature. There are no significant differences in the predictions
obtained with these two values.

-- #_ Chieng and Launder wall functions use near-wall cell integration to cal-
culate mean production and dissipation rates for those cells.
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kv : kw+l + Yw+l - Yv (kw+2 - kw+I) (38)Yw+2- Yw+1

The thickness of the viscous sublayer, Yv' and the mean flow velocity at that
location, U , were then calculated fromV

Yv : _ Rev/kv½ (39)

and

Uv : Rev (Tw/P)/kv ½. (40) --

Re t
v is assumed to be 20, and the wall shear stress Tw is given by -

r w K 0 Uw+1 v / In E (41) --

* K Rev/Rev.* ½ and E : e The production rate of k at w+lwhere K : 0.4187 cu _
is then calculated as

Uw+I - U 2Pw+1 : ut (42) -

w+l \Yw+l Yv

and the near-wall dissipation rates are expressed, following Spalding (Ref. 15) -

and Pope and Whitelaw (Ref. 16), respectively, as

3121c ,_w+1 : kw+l _Jw+1 (43)

and

k
.. V

Sw 2 _ _ • (44)
Yv

t Yvkv½
The universal viscous sublayer thickness constant,
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4.2 MODEL IHPLEMENTATIONAND TEST CALCULATIONS

Model Implementation

The k-_ model and the associatedwall functionsdiscussedin Section

2.3.1 were implementedinto the solutionprocedureof the code in such a

-- way as to set up a sequentialcalculationof the velocityand turbulence

fields. In this scheme,the densityand velocityfieldsare obtained

-- first. The turbulentkineticenergyequationis solved next in the same

way as for the velocityfield. Then the dissipationrate equationis in-

_ tegrated,using the latestdensity,velocityand turbulentkineticenergy

fields. Finally,the turbulentviscosityis updatedand the sourceand

sink terms for the k and _ equationsare calculated. This scheme intro-

duces three additionalsubroutinesto the code:

-- I. MUKEM: Calculatesthe turbulentviscosityfrom its

definition, ut -=c p k2/__

2. PRODK: Calculatesthe productionrate of turbulent

kineticenergy,

3. SOURCE: Calculatesthe source-sinkterms for the k

_ and _ transportequations,p(P-_) and

(c z _), respectively.p _Ik P - cca

The solutionprocedurethus becomes

CALL INTEG (ISS=I) Solve for velocityand density fields

CALL INTEG (ISS=2) Solve for k field

CALL INTEG (ISS=3) Solve for _ field

-- CALL MUKEM Calculateut
CALL PRODK CalculateP

-- CALL SOURCE Calculatep(P-_) and p _/k (c IP - c_z_)

Advancethe time and repeat.
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FIGURE4.1. TypicalNear-WallRegion.
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There are, of course,many variationswithinany given schemethat

-- can be tried to improvestabilityand/or numericalefficiency. This parti-

cular schemewas chosenfor its proven stabilitycharacteristicsin ellip-

- tic flow calculationswith other computationaltechniques. The flow chart

of the TWODLE code with the k-_ model is given in Figure 4.2.

Test Calculations

_ Initialtestingentailedassessingthe compatibilityand the logic

of the changesto the code with and withoutthe k-_ model. The first step

was to reproduce,with one of the existingalgebraicviscositymodels,pre-

vious predictionsof the Mach 5 100 compressioncorner test case. Upon

completionof this task, detailedassessmentsof the k-_ model in this

-- applicationwere to be undertaken.Preliminarycalculationsof the rlach5 100

compressioncorner test case with this model showed severe stabilityprob-

-- lems. To track down the cause of the problem,it was decided to simplify

the flow geometryfurther,to a Mach 5 flow betweentwo parallelplates,

_ and specifyinga uniformgrid by bypassingthe coordinatetransformation.

This geometryrepresentspossiblythe simplestinternalflow test case

that still containsthe featuresneeded to evaluate the k-_ model. The

use of a uniformgrid eliminatesany potentialproblemsdue to coordinate

transformationand also simplifiesthe computationof the source-sinkterms.

-- Calculationsof this geometrywere done in stagesto isolateand identify

the source of the stabilityproblems. The k and _ transportequationscan

_ be writtenin the followinggeneralform

_ ao_._@cat+ pu aa-_x+ pV _By = D@ + S@ (45)

I II III IV

where dp - k or

-- _ _ _ I(ut + _k _ ut _k

_ D@ -

+
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k2
- _t = c p --

t

Numerically,the transient,I, convective,II, and diffusivetransport,

III, terms are stabilizingin nature,whereas the source terms, IV,

especiallywhen stiff, can cause stabilityproblems. The first step in

-- the investigationwas to set the sourceterms identicallyto zero and

carry out the calculationswith only the transient,and convectiveand

diffusivetransportterms activated. These calculationsproducedstable

resultsfor this initial/boundaryvalue problem. The next step involved

predictionswith the completetransportequationsfor k and t except that

the productionterm,P, in the source terms was set to zero. These re-

sults also proved to be stable. The final testwas calculationswith the

completek and _ transportequations. These calculations,however,experi-

enced stabilityproblemsalmost in_nediately,leadingto negativek and t

- values and to eventualcollapseof the solutionscheme within 120 time

steps. This clearlyshows the adverseeffectsof the stiff sourceterms

-- on the solutionscheme. Changes in the wall boundarytreatments,and vari-

ations in the relativeorder of calculationsof the source termswithin the

_ solutionscheme failed to improvethe outcome.
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These results,combinedwith previousexperience,indicatesevere

stabilityproblemsin the solutionof source-dominated(stiff)transport

equationswith both time-splitand time-unsplitMacCormackpredictor-

correctoralgorithms. This is a seriousproblemsince most advanced tur-

bulence (k-_and higher-orderclosureschemes)and combustionkinetics

models inherentlycontainstiff partialdifferentialequations. The ef-

forts in this respectdescribedin this report were directed to investi-

gate and devise stable implementationtechniquesfor the k-_ model and its

boundaryconditionswithin the given solutionscheme of the code. In other

words, the goal was to tailor the model to fit the code. These efforts

have failed due the inabilityof the solutionalgorithmto negotiate,in

any directway, the effectsof the stiff source terms in the k and _ (or

in any other source dominated)transportequations. Other researchers

have a_so encountered similar stability problems with MacCormack

predictor-correctortype block solutionalgorithms. These findingssup-

port the resultsdescribedin Ref. 2, in which a compromisescheme that

solves for the mean flow and the densityfieldswith the MacCormacktech-

nique, and then evaluatesthe k and _ equationsexplicitlywas recommended.

Overall, this study raises two fundamentalquestions. One is the apparent

lack of versatilityof this widely used computationaltechniquewhich seems

to be severlyrestrictedin its applicabilityto advancedturbulentfluid

flow analysis. The second questionis the relativemerits of the current

practiceof separatingthe developmentof physicalmodels from research

in numericalanalysisas opposed to a unifiedapproach that closelycoordi-

nates developmentsin computationaltechniqueswith the advancesin physi-

cal models to ensurecompatibilityin their eventualapplicationto scien-

tific and engineeringproblems.
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5.0. ASSESSMENTOF MODELS FOR TURBULE_TSCALARTRAFISPORT

Transportof a scalarmean quantityC (heat,species,etc) is described

- by the equation

_ _oC + PUi _C @ (,f @___C_C_ _)_t aTi: _x-T_×i puic (46)

-- where Ui is the mean flow velocity,p is the density,Y is a moleculartrans-

port coefficient,and uic is the scalar flux correlationwhich is the turbu-

_ lent scalar transportcounterpartof the uiuj correlationof the momentum
equations. Closureof the above equationrequireseither solutionof a

transportequationfor u.-'-corthe modeling of this quantity in terms of-- 1

known or calculablevariables.

-- 5.1. CLOSUREOF THE SCALAR TRANSPORTEQUATION

A transportequationfor the scalarflux u-_ can be derivedby multi-

- plying the equationfor the instantaneousvalue of the scalarC (=C+c)by

Ui and adding it to the xi-componentof the Navier-Stokesequationsmulti-

- plied by c. Upon ensembleaveraging,the resultsmay be expressedas

_ -
-- I. II. Ill.

Convective Generationof the Generationby
Transport combinedactionof buoyantforces

_ mean velocityand
mean scalargradi-
ents.

. (y+v)ac aui + E__ac
_ axj axj p axj

IV. V.
_ Dissipation Pressure-scalar-gradient

correlation
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(uiujc +  ij)
VI.

Diffusion Transport

(47)

This equation is valid for incompressible flows and where gradients in C

are small enough for Y'/Y and _'/M to be entirely unimportant (Y' and M'

being the fluctuating parts of Y and u) and for p'/p to be significant

only in the gravitational term. The first and the second terms in this

equation are exact and require no modeling. The buoyant generation term,
III, is conveniently modified as follows

T gi : - _ -c'gi (48)

where the dimensionless coefficient _ is defined as*

- _C IP p

The dissipation term, IV, is zero in isotropic turbulence and is negli-

gible in non-isotropic turbulence provided that the turbulence Reynolds

number is high. The pressure-scalar-gradient correlation, V, is the

counterpartof the pressure-straincorrelationin the stress equations.

With direct dissipationnegligible,this providesthe mechanismwhich limits

the growth of fluxes. Finally,term VI denotes the rate of spatial trans-

port of uic due to velocityand pressurefluctuations. This level of clo-

sure correspondsto a full Reynolds stressformulationfor momentum trans-

port and requiresmodeling of the pressure-scalar-gradientcorrelation,V,

and spatialtransport,IV, terms. Modelingof these terms are discussedin

some detail in Refs. 17 and 18.

If C stands for temperature and the fluid is an ideal gas, sis unity.
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Solutionof transportequationsfor scalarflux componentsis both

conceptuallypossibleand economicallyfeasiblefor most flowfields. Simi-

lar levelsof closurehoweveralso exist and are widely used in computa-
-- tionalwork. These are discussednext.

_ 5.2. ALGEBRAICSTRESS MODELS FOR SCALAR TRANSPORT

These schemes,the counterpartof the hydrodynamicalgebraicstress

_ models,employ algebraicstressmodelingrather than a completedifferen-

tial closureof equation (47). These models for the scalar fluxes,given

_ herefor the temperaturefield,generallyhave the followingform (Ref. 18)

k BT ' k a

- u--7': _T _-UiUk _Tk - _T _ "iT (49)

where sT -I

- _T -- [ +½ (P/s - I) +½k/s--(PT/ST- 1)]ClT T'=

I

_ - C2T

PiT _kT, ___L+ =gi -- Bxk -T-T '2_ productionrate of u---if'

= _ _T

PT - - 2 UkT' _xk _ productionrate of T '2

sT : 2T ( T'l T'l -2
_ - \_Xk/ I@Xk/ _ dissipationrate of T'

- This form of the model requiressolutionof transportequationsfor

T'2 and sT which can be derived in a similarfashionto the k and _ equa-

_ tions (Ref. I). Furthersimplificationshoweverare possibleby relating

sT to s, k and T '2 by

2
sT = --- s/k T'2 (50)

cT'
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and approximatingT'2, when the dissipationand productionrates of T'_

are nearly in balance,as

T, 2 k 7' _T
: - CT' _ k _Tk (51)

The recommended values for the model constants c I , c2 and cT' are 3.2,
0.50, and 1.6, respectively. This model, first p_opos_d 7 years ago, has

yet to be tested in recirculating flows. Free shear flow predictions with

this model (Ref. 18) however, exhibit the correct behavior of progressive

collapse for horizontal buoyant mixing layers and surface jets as the mean

Richardsonnumber increases,and also show reasonablygood agreementwith

publishedturbulentwake and plane jet thermaldata. These models are yet

to be applied to recirculatingflow calculations. Furthermodel develop-

ment, refinementand testingis needed to explorethe full potentialof
this level of closure.

5.3. GRADIENTDIFFUSIONMODELS

These simplermodels relate the scalar fluxes to the hydrodynamic

turbulencepropertiesand the mean scalar gradient

= T _x. (52)
J

or in terms of an effective turbulent Prandtl number, Gt

_t _C

- : Gt i (53)

where _t _ cu k2/_" This is the scalar-transportmodel that nearly all

practicalcalculationschemeshave adoptedto date. Experimentssuggest

Gt is approximatelytwo-thirdsin many free shear flows but is some 50%

higher in the vicinityof a wall. The biggestdrawbackof this model is

that it is based, like the k-_ model, on an isotropicturbulenttransport

coefficientconceptand thus is theoreticallylimitedto free shear flow

and some boundary layer calculations.
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6_0 SUMM_RY: TURBULENCEMODELSFORSCRAMJETFLOWFIELDS

The overall objective of the work described in Refs. I and 2 and in

- this report has been to establish appropriate turbulence models to use in

computations of scramjet flowfields. These combustors involve three-dimen-

_ sional reacting flows with embeddedrecirculation regions, and the fuel-air

mixing rate is critical to the overall performance of the combustor. Thus

to be usable in design evaluation and data interpretation, turbulence models

must be reasonably accurate over a broad range of conditions.

Based on the work reported in Refs. I and 2 and in this report the

recommended turbulence modeling approach for use in scramjet calculations

is the algebraic Reynolds stress model. In regions of strong streamline

curvature, this model should be used with the dissipation equation modifica-

tion described in Ref. 2which were designed to improve the sensitivity of

-- the model to these effects. The algebraic Reynolds stress approach is par-

ticularly valuable where multiple stress components are important, such as

in three-dimensional flows, since the basic two-equation k-_ model involves

an assumption of effective viscosity isotropy that is not borne out by ex-

perimental results. Where only a single stress component is non-negligible,

the two-equation approach provides good results, Since the algebraic Rey-

nolds stress formulation involves the solution of the turbulent kinetic

energy and dissipation rate equations, it is easily arranged to allow the

algebraic stress formulations to relax to a two-equation model as the dif-

- ferent stress components become negligible in a given calculation.

This work has also indicated the extreme importance of considering the

interaction of the turbulence model and the numerical solution procedure as

key parts of the development of scramjet combustor models. The interaction

_ takes two forms: compatibility of the turbulence model and the solution

procedure, and the interaction of the model-predicted diffusion with that

generated artificially by the solution procedure itself. Compatibility

issues arise because the models recommendedin this study involves the solu-

tion of source-dominated, "stiff" transport equations. The numerical solu-

tion procedure must be able to accept stiff equations to be compatible with
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these models. Numerical diffusion is a feature of most numerical solution

procedures and under some circumstances it can dominate the diffusion pre- k

dicted by the turbulence model. This must be avoided by careful attention

to grid size and location. Finally, establishment of the proper initial

and wall boundary conditions is critical to proper use of turbulence models.

This has been emphasized throughout this work, and the techniques reported

herein and in Refs. I and 2 for establishing initial and boundary conditions

are recommended for future scramjet modeling work.
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7.0. CONCLUSIONSANDRECOMMENDATIONS

The conclusions reached as a result of the work outlined in this

_ report can be summarized as follows:

7.1. SUBSONICAXISYMMETRICRECIRCULATINGFLOWS

I. For diameter ratios of 2:1 and 3:1, in axisymmetric flows,

_ mean velocity and turbulence field predictions do not

change significantly with different turbulence models.

This can be ascribed to the dominance of pressure forces

over turbulence diffusion in these flowfields.

2. Axisymmetric sudden expansion flowfield predictions are

especially sensitive to grid refinement. The numerical

diffusion inherent in a coarse grid can produce effects

-- on the predicted overall mixing process which are larger

than those produced by variations in turbulence models.

-- 3. The algebraic stress model produces results in axisymme-

tric flows at low diameter ratios (where pressure effects

-- are reduced) which are consistent with its performance in

planar backward-facing step flows. Thus the ASMwith modi-

_ fications introduced to increase the model's sensitivity

to streamline curvature can be recommended in regions

where strong recirculations exist, and the unmodified ASM

in other regions.

-- 7.2. SUBSONICSWIRLINGFLOWS

i. Although of little direct interest in scramjet applications,

-- swirling flows at large swirl numbers are stringent tests

of modeling: large differences between k-€ model and ASM

-- model predictions are evident. This is due to the strong

anisotropy of the stress components in swirling flows, which
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is not adequately accounted for by the effective viscosity

assumptions inherent in the k-_model.

2. Comparison of model predictions with experimental results

for strongly swirling flow could provide the means to fur-

ther develop and improve the ASMmodel. Appropriate exper-

imental data is not now available. The ability of the ASM

to handle strongly nonisotropic flowfields is of potential

value in the modeling of 3D flows in scramjet combustors,

even in the absence of swirl.

7.3 SUPERSONICRECIRCULATINGFLOWS

I. Efforts, described in this report, to devise stable tech-

niques for the implementation of the k-_ model and its

boundary conditions in both the time-split and time-unsplit

MacCormack predictor-corrector algorithms were unsuccessful.

This result is apparently caused by the inability of the

solution algorithm to negotiate, in any direct way, the

effects of stiff source terms in the k and _ transport

equations.

2. A more detailed study is needed to identify the required

changes in the MacCormacksolution scheme that will elimi-

nate the drawbacks identified in this work. The present

work raises fundamental questions with respect to the merits

of separating the development of physical flowfield models

from research in numerical analysis. Coordination is re-

quired to ensure that numerical schemes and physical models

are ultimately compatible.

7.4. MODELINGOF TURBULENTSCALARTRANSPORT

i. Solution of the transport equations for scalar flux compo-

nents is both conceptually possible and economically feasi-

ble. Schemes that employ the algebraic stress closure

rather than a complete differential closure are appealing
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in terms of consistency with the level of closure chosen

- for the hydrodynamic field.

2. Further work is required to assess the potential of alge-

braic scalar flux modeling in more complicated flowfields

such as recirculating sudden-expansion flows.
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