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FOREWORD
w

This document is the final report describing the results of effort by

personnel. of Lockheed Missiles &Space Company, Inc., Huntsville Research

Engineering Center, for the National aeronautics and Space Administration

under Contract NAS8-3281, "fluid Dynamics Numerical Analysis." The con-

tractual effort described in this document was performed during the year
s

from January 1983 to January 1984. The NASA Technical Director for this
tl	

contract is Dr. William Oran, NASA Headquarters, Washington, D.C.
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INTRODUCTION AND SUMMARY

h

The research program described in this final report is a continuation

of effort initiated in August 1979 to investigate natural convection in

various materials processing experiment configurations under microgravity

conditions simulating the orbiting Space Station environment. 	 In the years

since this research program was initiated, a number of microgravity natural

convection problems have been investigated, including the upper limit on

Rayleigh number for linear (low Rayleigh number) theory to be valid, the

effect of container shape on convection velocities, and the effect of
y

." changes in the microgravity vector (direction and magnitude) on convection m

velocities.	 In addition, the development of natural convection was simu-

lated in the Lal/Kroes experiment. 	 These results are described in annual
reports for this contract (Refs. 1 through 3).

4

i
The results described in this document are for the period from January

1983 to January 1984.	 During this period, the effort was concerned pri-

marily with numerically simulating thermocapillary convection in Dr. Robert

R. Dressler's air-jet Marangoni flow suppress{.ng technique. 	 Dr. Dressler,

of George Washington University, is developing this technique under a sepa-

rate NASA contract,	 In cooperation with Dr. Dressler, we performed numer-
ical simulations for flow under various conditions of fluid properties, i

gravity, and temperature gradient. 	 Results presented herein include com-

puter generated plots of streamlines, velocities, and temperatures through-

out the contained fluid flow, and plots of Marangoni flow velocities over

the free surface.

1 xp
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Thermocapillary convection was simulated for flow in the idealized two--

dimensional container illustrated in the following sketch. The container is

Uquid

rrc
iurfnre

•avity

Conduc torCo	
----^

nduc
t
tor 
i

Idealized Two-Dimensional Square Container
for Thermocapillary Flow Simulation

square-shaped with the interior dimensions 0.3 cm x 0.3 em. The top and

bottom of the container are perfect thermal conductors held at constant tem-

peratures, with the top at a temperature, AT, greater than the bottom. One

side of the container is a perfect thermal insulator, and the other side is

open, so that the liquid surface on that side is free. For these numerical

simulations, we assume that the liquid free surface is always flat. We also

assume that there is no heat transfer across ttie liquid free surface. Where

gravity is present, the direction is always downward.

M 2
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ORIGINAL PACE I3
OF POOR QUALITY

A simplified analysis was performed to develop closed form algebraic

equations approximately relating fluid velocities with the various experi-

mental parametars. This wau done to provide initial estimates for selecting

experimental conditions to be numerically uimulated.	 A brief description

of the development of these simplified equations is given in the appendix.

Aie maximum fluid velocity, 
v 
mix , at steady state is given by

T
v	

w 
L	 (1)

max	 4p

.P
9

h g

b	
^.

e.

s

=	 ^ u

where 1 w is the surface shear caused by surface tension gradient, L is the

length of ttte side of the square enclosure and p is viscosity. The surface

shear 
T  is given by

da dT = AT

	

Tw - dT dy - L	
l2)

where da/dT is the surfac3 tension temperature coefficient and AT is the

temperature difference across the free surface.

The equilibrium temperature distribution for the fluid-at-rest consists

of straight-line isotherms parallel to tae x axis. The distortion, $y, in

the isotherms due to fluid motion is given by

	

6y 	 1	 vmax L

	

L	 1L +
	 a

where a is the thermal diffusivity. The distortion Sy is the displacement

of the	 To isotherm from the y = 0.15 cm line ac the free surface (see

sketch, next page).

Some type of silicone oil was originally intended for use in the

experimental program. Silicone oils are available in a wide range of

3
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viscosity grades. The salient properties of Dow Corning 200 fluid (Ref. 4)

are listed in Table 1. These listed properties are essentially the same

regardless of the viscosity grade. The surface tension temperature coeffi-

cient was provided by Dr. Dressler.

In order to permit reasonable accuracy in the experimental measure-

ments, the temperature difference AT across the fluid was required to be at

least 1 C and the free surface fluid velocity at least 1 mm/sec. The first

set of conditions that we considered was for AT = 5 C using 1000 centistoke

viscoscity fluid. The surface shear, Tw , for this temperature difference

was estimated from Eq. (2) to be about: -1.0 dyne/cm 2 . The maximum fluid

free surface velocity vmax was then estimated from Eq. (1) to be about

-0.07 mm/sec (flowing downward), considerably less than the 1 ram/sec minimum

A	 -

t

4
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in our experimental guidelines.	 The displacement of the isotherms was esti-

mated from Eq.	 !3) to be approximately 8 percent of the distance: across the

free surface.	 This indicates that the temperature distribution across the

free surface should not be perturbed greatly by the fluid motion.

We numerically simulated these conditions using a Navier-Stokes code

which included surface shear and gravity.	 The computations were made on the

CYBER 203 computer at NASA-Langley Research Center. 	 The Prandtl number for

the 1000 centistoke oil is 8570, which is the ratio of the vorticity
a

diffusivity (kinematic viscosity) to the thermal diffusivity.	 This high

ratio of diffusiviti^;!s indicates that the vorticity (velocity) field will be_ r;
diffused at a much higher rate than the temperature field.	 Thus, a quasi.-

steady velocity field will be established long before the equilibrium tem--

;'	 y perature field is established.	 Since the temperature field affects the =

velocity field through the surface shear boundary condition, the quasi-

steady velocity field slowly changes while the temperature field approaches

its steady state.	 Luis disparity in the two diffusivities creates a difti-

r
culty in the numerical computations.	 The integration time step, At, is

given by
e

2
^

At-	 2 (aAx	
(4) "{

where Ax is the spacing distance between grid lines, o, is thermal dif-

fusivity and V is vorticity diffusivity (kinematic viscosity).	 Thus, the

integration time step is limited by the larger of the two diffusivities.	 In

. order to maintain stability, a very small time step is required for the

coupled vorticity and thermal diffusion problem compared to what would be

required for the thermal diffusion problem alone. 	 Thus for a fully coupled

solution, av extremely large number of integration time steps would be

required to reach the steady state solution.

This numerical difficulty was dealt with by resorting to an alternating

coupled-uncoupled solution technique. A fully coupled solution, using the

5
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small time step required for the coupled solution, was used to bring the

velocity field to a quasi-steady state condition. 	 Then, holling the veloc-

ity field fixed, the temperature advection -diffusion equation was integrated

at a much larger time step based on the thermal diffusivity. This procedure

was alternated until convergence was achieved.

The results of the numerical integration are shown graphically in Rigs.

1 through 4.	 These figures present, respectively, streamlines, absolute

„ velocity contours, velocity vectors and temperature contours at steady

state.	 The maximum computed velocity is about 0 . 05 mm /sec compared to the

0.07 mm/sec estimated from Eq. 	 (1).	 The mid-temperature contour is shown to

be distorted by about 4 percent of the distance across the free surface due

to fluid motion, compared to the 8 percent predicted from Eq. 	 (3).

Theood agreement between the numerical) 	 cofn8	 g^	 Y	 uteri results and esti-P 'i4

V
mates obtained by simple algebraic equations essentially verifies the accu-

racy of the computer program.	 Unfortunately, the computed velocities for s

this first set of conditions (1000 centistoke viscosity grade oil and 5 C

temperature difference) are well below the 1 mm /sec experimental guidelines.

Referring to Eq.	 (3), we find that, at the minimum desirable fluid

^

velocity of 1 mm/sec, the degree of distortion in the temperature contoursi
is unacceptably high (greater than 100 percent). 	 The problem lies in the

A

r extremely low thermal diffusivity of the silicone oil.	 At this point, we

have arrived at a dilemma.	 It appears that we cannot have acceptably high

' fluid velocities without producing large distortions in the temperature
r

field, using the silicone oil.	 If the silicone oil is used, then large dis-

tortions in the temperature field will have to be accepted and dealt with in

the experimental program.

Several other sets of candidate experimental conditions were simulated

to determine what effect the various parameters will have on the flow

m.	 6
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velocities and temperature field. An extreme example is the case cf the 10

centistoke viscosity grade fluid and 5 C temperature difference. Computer

generated plots of streamlines, absolute velocity and temperature contours,

and velocity vecto-s are shown in Figs.	 through S. Note the large dis-

tortions exhibited in these results compared to the symmetry in the results

ghown in Figs. 1 through 4. The high fluid velocities in the 10 centistoke

oil resulted in large distortions in the temperature field. The distortions

in the temperature; field produced increased temperature gradients toward the

downstream end of the free surface, which produced still higher surface

shears and, hence, higher velocities. The velocity near the downstream end

of the free surface, therefore, becomes mush higher than the average across

the surface, apparently creating the vortex shown in the streamline plot in

Fig. 5. It would obviously be extremely difficult to accurately measure

velocities in this kind of distribution.

We next tried 50 centistoke oil with a temperature difference of 2 C.

These results are shown in Figs. 9, 10, and 11. The streamlines are shown

in Fig. 9 to be much less distorted than in the 10 centistoke oil. The max-

imum velocity shown in Fig. 10 is about 1 mm/sec, which corresponds well

with our experimental guidelines. Here again, however, the higher veloc-

ities are concentrated near the downstream end of the free surface, and the

average velocities over the free surface are much lower. This is indicated

also in the temperature distribution shown in Fig. 11.

As discussed earlier, the distortions in the velocit,;t and temperature

fields are due to the extremely low thermal diffusivity of the silicone oil.

In order to provide an indication of the behavior of a higher thermal dif-

fusivity fluid, we increased the thermal diffusivity of the 50 centistoke

fluid by a factor of 20 and recomputed. The results are shown in Figs. 12

through 15. Note that the streamlines shown in Fig. 12 and velocity fields

shown in Figs. 13 and 14 are nearly symmetrical. Also, the amount of dis-

tortion in the temperature contours is shown to be greatly reduced as com-

pared to the normal thermal diffusivity silicone oil.

sh

7

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

3



Y'

• ^a

i

LDISC-11REL TR D951333

The next set of teat conditions that we simulated was for the a0 cet ► ti-

stolce fluid witn a temperature difference of 0.5 C. We anticipated that

this would produce velocities well below the experimental guidelines, and

the temperature difference was also somewhat lower than desired from the

experimental standpoint. The idea behind, performing these simulations was

to observe the amount of velocity and temperature field distortion for

silicone oil at the extreme low end of the range of conceivably acceptable

velocities. The results are shown in Figs. 16 through 19. The maximum

velocity was found to be about 0.1 mm/sec, art order of magnitude below the

experimental. guidelines. The streamlines are shown in Fig. 16 to be

slightly distorted. The velocity field is shown in Figs. 17 and 18 to

increase continuously to a maximum at the downstream end of the free sur-

face. The temperature field is shown in Fig. 19 to be considerably dis-

torted even at the small fluid veelocities observed for this case.

The final set of test conditions that we numerically simulated was for

20 centistoke oil with a temperature difference of ^ C. We anticipated that

these conditions would result in acceptably high fluiO velocities, but would

display unacceptably high distortions in the temperature and velocity

fields. These results are shown in Figs. 20 through 23 for zero gravity and

in Figs. 24 through 27 with a downward diLected gravitational force of 1 g

imposed. The effect of gravity appears to be negligible. Note the severe

distortion in the streamline, velocity and temperature fields. Surface

velocities are essentially the same for both gravity conditions and are

plotted in Fig. 28 as one curve. The surface velocities are shown to be

relatively uniform at about 1 mm/sec over a large portion of the free sur-

face. An extreme value of about 5 mm/sec is reached in a sharp peak near

the downstream end.

Again,'as an indication of what miSht be expected from a higher thermal

diffusivity fluid, we increased the thermal diffusivity by a factor of 100,

and repeated the computations for the 20 centistoke fluid with 5 C tempera-

ture difference. Computer generated plots are shown in Figs. 29 through 32.

8
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These plots all show very little distortions 
in 

the velocity and temperature

fields. The plot of surface velocity in Fig. 33 snows a smooth parabolic-

like curve with a maximum velocity of about 2 mm/sec in the center of the

free surface. Increasing the thermal diffusivity by a factor of 100 places

it in the range of liquid metals, e.g., melted tin.

9
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CONCLUSIONS

ti

The thermocapill.ary convection experimental configuration was success-

fully numerically simulated over a wide range of possible test conditions.

Some difficulty arose as a result of the extremely low thermal diffusivity

of the silicone oil. Fx.zot, the wide disparity between the vorticity and

thermal diffusion rates resulted in extremely long convergence times in the

numerical simulation. This difficulty was overcome by the use of alterna-

tina coupled and uncoupled numerical integrations of the mass, momentum and

energy conservation equations. Second, the low thermal diffusivity was

shown to result in undesirable distortions in the velocity and temperature

fields. If these undesirable distortions are determined to be unacceptable,

a higher thp rmal diffusivity fluid will be required.

i

r.
	 10
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Table 1 PROPERTIES OF SILICONE OIL

Density, p	 0.971 gm/cm3

Thermal Conductivity, k	 0,00038  cal/cm-sec-C

Specific Heat, C	 0.335 cal/gm-C

Volumetric Coefficient of 	 0.00096/C
Thermal Expansion, OT

Surface Tension, a	 21.2 dyne/cm

Surface Tension Temperature	 -0.058 dyne/cm-C
Coefficient, da/dT

Kinematic Viscosity, V	 Available in Wide Range
of Viscosity Grades
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Appendix

SIMPLIFIED ANALYTICAL MODEL
FOR ESTIMATING MARANGONI

CONVECTION IN SQUARE ENCLOSURES
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Appendix

We assume simple algebraic forms for the velocity components:

u	 U(x) sin(27r y -
L L/2)	

(A,1)

v = V(x) cos(7r y -LL/2
/2)	

(A.2)

These equations provide the general circulatory flow pattern that we expect

from intuition. The conservation of momentum in the y direction is ex-

pressed by the following differential equation:

x (Puv - T) + a. (Pv2 + p ) = 0	 (A.3)

After dropping insignificant terms, substituting T= U Dv/ax, and using the

form of v given by Eq. (A.2), this becomes:

u

 a
22	

cos(7r y -LL/2) = 8	 (A.4)
x 

Integrating this equation with respect to x along y = L /2, with the

boundary conditions, v = 0 at x = 0 and Tw = u Dv/@x at x = L, yields:

V =	 {'r	
8y (L
	 2 )} x	 (A.5)

A-1.
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This equation automatically satisfies force balances on the overall system

In Lilt! y-direction,	 but it contains the unknown Dp/;3y.	 This is removed by

w satisfying a mass balance along y - L/2:
t

L

v dx	 =	 0 (A.6)

y-L/2o

This results in

ap	
3 

T2L
(A.7)

Ty	 w

Combining Eqs.	 (A.2),(A.5), and (A.7) results in the expression for the

"+	 ± v-component of velocity:

ti
T	

L
w 
	 ( 3 x- 1) x 

cos(7 
y- L

12 )v-
(A.8)

2u	 2 L	 L	 L
w

A^

k

with the maximum v-component velocity, vmax 	
being at the free surface (x

{
= L) and given by

Tw L

vmax	 411
(A.9)

i
Note that, for T  > 0, v is negative for x < 2/3 L, positive for x >

	

?	 2/3 L and, of course, zero at x = 2/3 L. The general flow, therefore,

obviously is counterclockwise around the point x 2/3 L and y = L/2. Mass 	 j

conservation requires that:

}

L	 L

v dx	 -	 J u dy	 (A.10)
_	 =2/3 L	 y-L/2	

1/2 L	
x-2/3 L

i

	

1	 :

x

r. (	 A-2
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We assume U(x) in Eq. (A.1) to be of the form

2

U - A(1 - L) (X)	 (A.11)

This provides an extreme value for v at x - 2/3 L and zeros at x = 0 and L.

Carrying out the integrations in Eq. (A.10) yields

T L
A	

-- 4 U	
(A.12)

Combining Eqs. (A.1), (A.11), and (A.12) yields the expression for the

u-component of velocity:

Tr 
T 

L	 2	 y-L/2
U = -	 u (1 - ) (L) sin(2ff	 L	 )	 (A.13)

with the maximum u-component velocity, umax , being at x = 2/3 L and

y = 2 (1 + 2) and given by

T L

umax - 27	 U	 27 vmax	
(.A.14)

The temperature field may be represented by

	

T(x,y) = T(y) + T'(x,y)	 (A.15)

where T is the temperature field for the fluid at rest and T' is the per-

turbation due to fluid motion.

The fluid-at-rest temperature distribution is given by

a
i

1

T = To + AL (y - L/2)
	

(A.16)

A-3
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where To is the mid-point or average fluid temperature and AT is the tem-

perature difference across the fluid.

We assume T' to be of the form

2
T' = B[(1 - ^ L) (

L
) - ^1 cos('T y LL/Z)	 (A.17)

This provides for the proper boundary conditions DT'/ax = 0 at x = 0 and L,

and T' = 0 at y = 0 and L. It also results in

f

L fL
 T' dx dy = 0
	

(A. 18)

0	 0

This maintains the original average fluid temperature T o . We find the

factor B by requiring the satisfaction of the advection-diffusion equation

at the free surface mid-point (x = L and y = L/2):

aT	 aT	 a2T	 a2Tu
ax

+ v ay = a ( ax2 + ay2)

After inserting the values of u, v and the T derivatives at x = 'L and y =

L/2, we find

B	
_	 1	 vmax L

QT
2(1 + fr2/12)	 a

The expression for the temperature field then becomes

(A.19)

(A.20)

A-4
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T L2
T . T 4. T (y - L )	 ^ ^._. W AT

o	 L	 z	
8(1 + 7x2/12) 

Ila

2
x [( 1 —	 L)  (L) — T j cos(7T Y	

I. )	 (A.21)

Py setting the temperature T in Eq. (A.21) equal to the fluid-at-rest mid-

point temperature T o , the displacement, dy = y - L/2, of the mid-isotherm

at the free surface (x 	 L) is found to he:

,2
Sy	 1	 ^w L

L	 4(12 + 7T2) 
pa

(A.22)

1	 ymax L

12 + 7r2

e	 t

i

i

r
:f

A-5
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