General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



sty et

s ey

L 1A
—

r——

LMSC-HREC TR D951333

MANUFACTURING IN SPACE:
FLUID DYNAMICS NUMERICAL
ANALYSIS

February 1984

Contract NASW-3281 (Final Report)

(NASA-CR-175401) HMANUFACTURING IN SPACE: N84~ 19748

FLUID DYNAMICs NUMERICAL ANALYSIS Final

keport, Jan. 1983 - Jan. 1984 (Lockheed

Missiles and Space Co.) 38 p HC AO03/nF AQ1 Unclas
CSCL 20D G3/348 18702

Prepared for

NASA HEADQUARTERS
WASHINGTON, DC 20546

by
S. J. Robertson

<= rlockheed

Missiles & Space Company, Inc.
Huntsville Research & Engineering Center

4800 Bfodford Drive, Huntsville, AL 35807




LMSC~HREC TR D951333

FOREWORD

This document is the final report describing the results of effort by

personnel of Lockheed Missiles & Space Company, Inc., Huntsville Research &
Engineering Center, for the Nationmal Aeronautics and Space Administration
under Contract NASE-3281, "Fluid Dynamics Numerical Analysis.” The con-
tractual effort described in this document was performed during the year
from January 1983 to January 1984. The NASA Technical Director for this
contract is Dr, William Oran, NASA Headquarters, Washington, D.C.
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INTRODUCTION AND SUMMARY

The research program described in this final report is a continuation
of effort initiated in August 1979 to investigate natural convection in
various materials processing experiment configurations under microgravity
conditions simulating the orbiting Space Station environment. In the years
since this research program was initiated, a number of microgravity natural
convection problems have been investigated, including the upper limit on
Rayleigh number for linear (low Rayleigh number) theory to be valid, the
effect of container shape on convection velocities, and the effect of
changes in the microgravity vector (direction and magnitude) on convection
velocities, 1In addition, the develcpment of natural convection was simu~-
lated in the Lal/Kroes experiment. These results are described in annual

reports for this contract (Refs. 1 through 3).

The results described in this document are for the period from January
1983 to January 1984. During this period, the effort was concerned pri-
marily with numerically simulating thermocapillary convection in Dr. Robert
¥, Dressler's air-jet Marangoni flow suppressing technique. Dr, Dressler,
of George Washipgton University, is developing this technique under a sepa-
rate NASA coniract. In cooperation with Dr, Dressler, we performed numer-
ical simulations for flow under various conditions of fluid properties,
gravity, and temperature gradient. Results presented herein include com-
puter generated plots of streamlines, velocities, and temperatures through-
out the contained fluid flow, and plots of Marangoni flow velocities over

the free surface.
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DISCUSSION

Thermocapillary convection was simulated for flow in the idealized two-

imensional container illustrated in the following sketch, The contalner is
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Idealized Two-Dimensional Square Container
for Thermocapillary Flow Simulation

square~shaped with the interior dimensions 0.3 em x 0.3 em. The top and
bottom of the container are perfect thermal conductors held at constant tem-
peratures, with the top at a temperature, AT, greater than the bottom. One
side of the container is a perfect thermal insulator, and the other side is
open, so that the liquid surface on that side is free. For these numerical
simulations, we assume that the liquid free surface is always flat. We also
assume that there is no heat trdnsfer across tue liquid free surface. Where

gravity is present, the direction is always downward,

2
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QUALITY
A sirplified analysis was performed to develop closed form algebraic
equations approximuately relating fluid velocities witn the various experi~
mental parameters., This was done to provide initial estimates for selecting
experimental conditions to be numerically simulated. A brief descviption
of the development of these simplified equations is given in the appendix.

The maximum fluid veloecity, , at steady state is glveu by

vmax

T.. L
v = (L)

where Ty is the surface shear caused by surface tension gradient, L is the
length of the side of the square enclosure and u is viscosity. The surface . i

shear Tw is given by

d

——

&
3

- ~ AT ’
T, = = 9 (2)

o

'l\

~<

where do/dT is the surface tension temperature coefficient and AT is the

temperature difference across the free surface.

. e e wr

The equilibrium temperature distribution for the fluid-at-rest consists

of straight-line isotherms parallel to tne x axis. The distortion, Jy, in

e . s —re A

the isotherms due to fluid motion is given by

§X - 1 Vmax (3)
L ) 2 o
12 + 1

where O is the thermal diffusivity. The distortion 8y is the displacement
of the i = To isotherm from the y = 0.15 cm line at the free surface (see

sketch, next page).

Some type of silicone oil was originally intended for use in the

experimental program. Silicone oils are available in a wide range of

3
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viscosity grades, The salient properties of Dow Corning 200 fluid (Ref. 4)
are listed in Table 1, Trese listed properties are essentially the same
regardless of the viscosity grade. The surface tension temperature coeffi-

clent was provided by Dr. Dressler.

In order to permit reasonable accuracy in the experimental measure-
ments, the temperature difference AT across the fluid was required to be at
least 1 C and the free surface fluid velocity at least 1 mm/sec. The first
set of conditions that we considered was for AT = 5 C using 1000 centistoke
viscosecity fluid. The surface shegr, Tyr? for this temperature difference
was estimated from Eq., (2) to be about -1.0 dyne/cmz. The maximum fluid
free surface velocity Voax %8s then estimated from Eq. (1) to be about

~0.07 mm/sec (flowing downward), considerably less than the 1 mm/sec minimum

4
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in our experimental guidelines. The displacement of the isotherms was esti-
mated from Eq, f3) to be approximately 8 percent of the distance across the
free surface. This indicates that the temperatuve distribution across the

free surface should not be perturbed greatiy by the fluid motion,

We numerically simulated these conditions using a Navier-Stokes code
which included surface shear and gravity., The computations were made on the
CYBER 203 computer at NASA-Langley Research Center. The Prandtl number for
the 1000 centistoke oil is 8570, which is the ratio of the vorticity
diffusivity (kinematic viscosity) to the thermal diffusivity. This high
ratio of diffusivitiues indicates that the vorticity (velocity) field will be
diffused at a much higher rate than the temperature field., Thus, a quasi-
steady velocity field will be established loug before the equilibrium tem-
perature field is established. Since the temperature field affects the
velocity field through the surface shear boundary condition, the quasi-
steady velocity field slowly changes while the temperature field approacues
its steady state, This digparlty in the two diffusivities creates a difri-
culty in the numerical computations., The iategratioun time step, At, is

given by

b Ax '
pe = 5 G (4)

where Ax 1is the spacing distance between grid lines, o is thermal dif-
fusivity and v is vorticity diffusivity (kinematic viscosity). Thus, the
integration time step is limited by the larger of the two diffusivities., 1In
order to maintain stability, a very small time step is required for the
coupled vorricity and thermal diffusion problem compared to what would be
required for the thermal diffusion pr&blem alone. Thus for a fully coupled
solution, an extremely large number of integration time steps would be

required to reach the steady state solution,

This numerical difficulty was dealt witn by resorting to an alternating

coupled-uncovpled solution tecunique. A fuily coupled solution, using the

5
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small time step required for the coupled solution, was used to bring the

velocity field to a quasi~steady state condition, Then, holiing the veloc~-
ity field fixed, the temperature advection-diffusion equation was integrated
. at a much larger time step based on the thermal diffusivity. This procedure

£
: was alternated until convergence was achieved.

; The results of the numerical integration are shown graphically in Figs.
1 through 4., These figures present, respectively, streamlines, absolute

% veloclity contours, velocity vectors and temperature contours at steady

state. The maximum computed velocity is about 0.05 mm/sec compared to the

0.07 mm/sec estimated from Eq. (1). The mid-temperature contour is shown to

be distorted by about 4 percent of the distance across the free surface due

P o X e

to fluid motion, compared to the 8 percent predicted from Eq. (3).

The good agreement between the numerically computed results and esti-

mates cbtained by simple algebraic equations essentially verifies the accu-
racy of the computer program., Unfortunately, the computed velocities for

2” this first set of conditions (1000 centistoke viscosity grade oil and 5 C

t
S L ks bk T T

temperature difference) are well below the 1 mm/sec experimental guidelines.

Phusadil 3.4

Referring to Eq. (3), we find that, at the minimum desirable fluid
P velocity of 1 mm/sec, the degree of distortion in the temperature contours

i is unacceptably high (greater than 100 percent). The problem lies in the

I T L

éxtremely low thermal diffusivity of the silicone oil. At this point, we
have arrived at a dilemma. It appears that we cannot have acceptably nigh
fluid velocities without producing large distortions in the temperature
; field, using the silicone oil. If the silicone oil is used, then large dis-
l tortions in the temperature field will have to be accepted and dealt with in

the experimental program,

. i

I Several other sets of candidate experimental conditions were simulated

S‘ to determine what effect the various parameters will have on the flow

6
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velocities and temperature field., An extreme example is the case cf the 10
centistoke viscosity grade fluid and 5 C temperature difference. Computer
generated plots of streamlines, absolute velocity and temperature contours,
and velocity vectors are shown in Figs. j through 8, Note the large dis~
tortions exhibited in these results compared to the symmetry in the results
ghown in Figs. 1 through 4. The high fluid velocities in the 10 centistoke
oil resulted in large distortions in the temperature field, The distortions
in the temperature field produced increased temperature gradients toward the
downstream end of the free surface, which produced still higher surface
shears and, hence, higher velocities. The velocity near the downstream end
of the free surface, therefore, becomes much higher than the average across
the surface, apparently creating the vortex shown in the streamline plot in
Fig. 5, It would obviously be extremely difficult to accurately measure
velocities in this kind of distribution,

We next tried 50 centistoke oil with a temperature difference of 2 C.
These results are shown in Figs. 9, 1C, and 11, The streamlines are shown
in Fig. 9 to be much less distorted than in the 10 centistoke oil. The max-
imum velocity shown in Fig. 10 is about L mm/sec, which corresponds well
with our experimental guidelines, Here again, however, the higher veloc-
ities are concentrated near the downstream end of the free surface, and the
average velocities over the free surface are much lower, This is indicated

also in the temperature distribution shown in Fig. 11,

As discussed earlier, the distortions in the velocit ' and temperature
fields are due to the extremely low thermal diffusivity of the silicone oil.
In order to provide an indication of the behavior of a higher thermal dif-
fusivity fluid, we increased the thermal diffusivity of the 50 centistoke
fluid by a factor of 20 and recomputed. The results are shown in Figs., 12
through 15. Note that the streamlines shown in Fig. 12 and velocity fields
shown in Figs. 13 and 14 are nearly symmetrical. Also, the amount of dis-
tortion in the temperature contours is shown to be greatly reduced as com-

pared to the normal thermal diffusivity silicone oil.

7
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The next set of test conditions that we simulated was for tne b0 centi~
stoke fluid witn a temperuture difference of 0.5 C. We anticipated that
this would produce velocities well below the experimental guidelines, und
the temperature difference was also somewhat lower than desired from the
experimental standpoint., The idea behind performing these simulations wus
to observe the amount of velocity and temperature field distortion for
silicone oil at the extveme low end of the range of conceivably acceptuble
velocities, The results are shown in Figs. 16 through 1Y, The maximum
velocity was found to be about 0.1 mm/sec, an order of magnitude below the
experimental guidelines. fThe streamlines are shown in Flg. 16 to be
slightly distorted. The velocity field is shown in Figs. 17 and 18 to |
increase continuously to a maximum at the downstream end of the free sur-
face, The temperature field is shown in Fig. 19 to be considerably dis~
torted even at the small fluild vweiocities observed for this case.

.Y ®ETTI y

The final set of test conditions that we numerically simulated was for

20 centistoke oil with a temperature difference of 5 C, We anticipated that

P T~ e T g | oA whap o ¢

~ § these conditions would result in acceptably high fluid velocities, but would
ﬁ display unacceptably high distortions in the temperature and velocity
" g' fields. These results are shown in Figs. 20 through 23 for zero gravity and
: in Figs. 24 through 27 with a downward di.ected gravitational force of 1 g
imposed. The effect of gravity appears to be negligible. Note the severe
» distortion in the streamline, velocity and temperature fields, Surface
velocities are essentially the same for both gravity conditions and are
i plotted in Fig. 28 as one curve. The surface velocities are shown to be
relatively uniform at about 1 mm/sec over a large portion of the free sur-
ig face. An extreme value of about 5 mm/sec is reached in a sharp peak near

the downstream end.

Again, as an indication of what might be expected from a higher thermal
diffusivity fluid, we increased the thermal diffusivity by a factor of 100,

and repeated the computations for the 20 centistoke fluid with 5 C tempera-

ture difference, Computer generated plots are shown in Figs, 29 through 32,

8
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These plots all show very little distortions in the velocity and temperaturc
fields, fThe plot of surface velocity in Fig. 33 shows a smooth parabolic-
like curve with a maximum velocity of about 2 mm/sec in the center of the
free surface., Increasing the thermal diffusivity by a factor of 100 places
it in the range of liquid metals, e,g., melted tin.

9
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CONCLUSIONS

The thermocapillary convection experimental configuration was success-
fully numerically simulated over a wide range of possible test conditions.
Some difficulty arose as a result of the extremely low thermal diffusivity
of the silicone oil. Fa.st, the wide disparity between the vorticity and
thermal diffusion rates resulted in extremely long convergence times in the
numerical simulation. This difficulty was overcome by the use of alterna-
ting coupled and uncoupled numerical integrations of the mass, momentum and
energy conservation equations, Second, the low thermal diffusivity was
shown to result in undesirable distortions in the velocity and temperature
fields. If these undesirable distortions are determined to be unacceptable,
a higher thermal diffusivity fluid will be required.

10
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Table 1 PROPERTIES OF SILICONE OIL

Density, p
Thermal Conductivity, k
Specific Heat, C

Volumetric Coefficient of
Thermal Expansion, (7

Surface Tension, g

Surface Tension Temperature
Coefficient, do/dT

Kinematic Viscosity, v

0.971 gm/cm3
0.00038 cal/cm-sec-C
0.335 cal/gm-C

0.00096/C

21.2 dyne/cm

-0.058 dyne/cm~C

Available in Wide Range
of Viscosity Grades
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Appendix

SIMPLIFIED ANALYTICAL MODEL
FOR ESTIMATING MARANGONI
CONVECTION IN SQUARE ENCLOSURES
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Appendix

We assume simple algebraic forms for the velocity components:

u = U(x) sin(2m X—:EE/—z) (A.1)
v = V(x) cos (T X—ZEELE) (A.2)

These equations provide tlie general circulatory flow pattern that we expect
from intuition., The conservation of momentum in the y direction is ex-

pressed by the following differential equation:

9 - 2 (ov? =
oW (puv - 1) + 57 (pv™ + p) 0 (A.3)

After dropping insignificant terms, substituting T= ) 9v/9x, and using the
form of v given by Eq. (A.2), this becomes:

2
u .a__‘zicos('n' .Z_;EZ.%) = P (A.Q)

ox L 9y

Integrating this equation with respect to x along y = L/2, with the

boundary conditions, v = 0 at x = 0 and Ty = M 9v/9x at x = L, yields:

v =~{Tw—-g-§-(r,-32‘-)}x (A.5)

A-1.
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This equation automatically satisfies furce balances on the overall system
in the y~direction, but Lt contains the unknown ap/dy. This 1is removed by

satisfying a mass balance along y = L/2:

/ vdx| = 0 (A.6)
o y=L/2
This results in
o . 3 y
Yy T Tw (a.7)

Combining Eqs. (A.2), (A.5), and (A.7) results in the expression for the

v-component of velocity:

W 3 x _ X y ~ L/2
v = (-2—':‘-: l) 7 cos(T N T ) (A.S)

with the maximum v-component velocity, being at the free surface (x

Vnax’
= L) and given by

v = (A.9)

Note that, for Ty > 0, v is negative for x < 2/3 L, positive for x >
2/3 L and, of course, zero at x = 2/3 L. The general flow, therefore,
obviously is counterclockwise around the point x = 2/3 L and y = L/2. Mass

conservation requires that:

(A.10)

-
<
[N
¥
[
[
e
[=9
<
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We assume U(x) in Eq. (A.l) to be of the form

2
U = AL -3 D (A.11)

This provides an extreme value for v at x = 2/3 L and zeros at x = 0 and L.
Carrying out the integrations in Eq. (A.10) yields

el (A.12)

Combining Eqs. (A.l), (A.ll), and (A.1l2) yields the expression for the

u~-component of velocity:

T L 2 :

- = TV g - E X y-L/2 :
~ u T (1 L) (L) sin(2m T ) (A.13)

with the maximum u-component velocity, U being at x = 2/3 L and |

y = -% (1 i_%) and given by |

e T L
m w _ AT .
Ynax T Z7 "u = 27 Vmax (A.14)

{ The temperature field may be represented by

T(x,y) = T(y) + T'(x,y) (A.15)

where T is the temperature field for the fluid at rest and T' is the per-
turbation due to fluid motion,

The fluid-at-rest temperature distribution is giveu by

T = T, + -4% (y - L/2) (A.16)

Q A-3
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where T, is the mid-point or average fluid temperature and AT is the tem-

perature difference across the fluid,

We assume T' to be of the form

2
- S 2xy o x" 1 y - L/2
T' = B[(l 3 L) (L) 6] COS(ﬂ L )

(A.17)

This provides for the proper boundary conditions 9T'/9x = 0 at x = 0 and L,

and T' = 0 at y = 0 and L, It also results in

L L
J/f J/f T'dx dy = 0
o o

(A.18)

This maintains the original average fluid temperature To’ We find the

factor B by requiring the satisfaction of the advection-diffusion equation

at the free surface mid-point (x = L and y = L/2):

2 2
T aT o°T 9°T
vtV “‘5;‘2‘*?>

After inserting the values of u, v and the T derivatives at x =
L/2, we find

. v L
B = - 1 max AT

2(1 + n2/12) ©

The expression for the temperature field then becomes

A-4
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L and y =

(A.20)
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2
T, L
1 W
Ro-p- ot

8(1 + 1°/12) Mo

T = T +

€ L35 & L) o L2

(A.21)

By setting the temperature T in Eq. (A,21) equal to the fluid-at-rest mid-

point temperature Tos the displacement, 6y = y - L/2, of the mid~isotherm

at the free surface (x = L) is found to be:

2
&y .1l
L 4h(12 + T2y Mo
_ 1 Viax [
12 + 72 a

A=5

LOCKHEED~HUNTSVILLE RESEARCH & ENGINEERING CENTER
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