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TRANSIENT CRATER MOTIONS: SATURATED SAND CENTRIFUGE EXPERIMENTS
Schmidt, R. %., Boeing Aerospace Company, M/S 13-20, Seattle, WA 98124

The kinematics of crater formation are being investigated using a quarter-space test bed
on a centrifuge. This technique (1) allows high-speed movie coverage of target deforma-
tions as seen in cross section through a 2-inch Pleiglas window along a diametrical
symmetry boundary. The data for the eight shots performed to date with the recently
installed Fastax II-100 rotating-prism camera are shown in the attached table. Two
objectives of these tests were to dynamically record the maximum depth of the transient
crater and to record its collapse. Preliminary interpretation of the film records for shot
307-QXE is shown in the attached figure. This shot was conducted in nearly-saturated
moderately-dense fine-grained Ottawa "Banding" sand.

For this target material, crater floor uplift ("collapse”) occurs on the same time scale as
the radial motion of the ejecta plume. Because of the impairment of the optical path due
to detonation products plating onto the window, the floor uplifting sequence could not be
resolved in some of the intermediate frames of the work print. It appears to be complete
by frame 21 and maybe earlier. At this time the ejecta plume is in the vicinity of the
final apparent crater radius and the crater profile is in agreement with the final appareit
crater measured after the shot with the profilometer. Crater volume displays power-law
growth until maximum transient depth occurs (frame 4). More interestingly crater radius
shows power-law growth all the way out to final crater radius (frame 21). Both time
exponents, interpreted with the assumption of a unique coupling parameter, 6& /(3+Q ) for
volume and 2a /(3+@) for radius, are in good agreement with a value of the gravity
exponent & equal to 0.65. This same value was determined for crater growth in water (2)
(3) and may be applicable for all non-porous geological targets.

As an expedient when determining the maximum charg- - = that would not spall or
puncture the window, the explcsive charges were built up .. ..., Dupont Deta-Sheet. This
is PETN with approximately 25% inert plastic filler, which is presumed to cause much of
the smoke and detonation debris products. Pure PETN is now under consideration for
future shots to improve resolution by reduction of smoke and opaque detonaticn products.
However, since the Deta-Sheet detonation products deposit on the window as it is exposed
to the transient crater, a permanent record of the envelope of maximum crater depth
versus range is formed. Preliminary comparisons of the detonation product profile with
the corresponding final apparent crater profile along with viewing the films indicate that
there was no significant difference in the transient crater phenomena over a variation of
approximately an order of magnitude in sand grain size. This observation needs further
examination when the original film records are digitized.

For seven of the eight shots, the water table was nominally at 1.05 cm below the original
ground zero. This was to correspond to the approximate scale of the 500-ton PRAIRIE
FLAT expl)osive crater in the field, which was modeled in the tangent-above shot 306-QXE
(see ref. 4).

(1) Schmidt, R. M. & Piekutowski, A. J. (1983) Lunar & Planetary Science XIV, p. 668.

(2) Schmidy, R, M. & Holsapple, K. A. (1982) Estimates of crater size for large-body
impact: Gravity-scaling resuits. Geol. Soc. of America SP 190, p. 93.

(3) Schmidt, R. M. (1983) Trans. Am. Geophys. U. (EOS) Vol. 64, No. 45, p. 747.

(4) Schmidt, R, M., Fragaszy, R. J. & Holsapple, K. A, (1981) Proc. of Seventh Int. Symp.
on Military Applications of Blast Simulation, Medicine Hat, Canada, p. 4.2-1.
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TRANSIENT CRATER MOTIONS: SATURATED SAND CENTRIFUGE EXPERIMENTS

Schmidt R. M.

QUARTER=SPACE DATA TABLE

BXPLOSVE MATERAL CRATER n-GROUPS

Shot No. Grovily Moss Q Densty Type Demsity VvV r h h* m LA A .Y

- O (gom/g)(g/ec) - (o/ec) () (m) fem) fem) . - - - - -
J06-QXE= 399 130 385% 148 WBS' 206 232 864 208 - 210x107% 368 467 113 -
07-QXE 400 445 385 148 WBS 205 289 BB6 277 468 147x107° 134 685 214 362
J15-QNE™ 403 549 425° 145 WES 208 232 745 295 -~ 14107 871 837 213 -
3U-QXE 398 425 425 145 W8S 206 202 721 260 - 1.31x10° 984 567 205 -
326-QXE J98 414 425 145 WBS 206 212 775 240 - h3I0% 105 614 S0 -
J28-OXE 401 425 425 145 WFS? 211 193 741 217 364 131070 958 587 172 288
J29-QXE 100 404 425 145 WBS 208 392 976 325 655 327107 195 773 258 519
330-QXE 100 419 425 145 WFF 197 320 B804 348 590 329x10°% 150 625 271 459

» Moximum Transient Croter Depth
¥ WBS = ¥t Bonding Sand (212u4)
4 Green Deta-Shest (Type C)

SHOT 307-QXE

s Tangent Above — all others Tangent Below

2 WFS = Wet Flintshot Sand (8C0)

$ Red Deta=Shest (Type D)

oss Water Table = 0.70cm

3 WFF = Wet F-i40 Sand (1064)

TRANSIENT CRATER FORIMATION
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Cratering Flow Flelds: A General Form and ths Z Model
,Kevin Housen, Shock Physics and Appiisd Mechanics, MS 13~20, Boeing Aerospace, Seattle, WA, 98124,

The ncture of material motions is often fundamental in discussions of Impact-related processes.
An analytic'description of cratering flow fields, known as the Z model, was developed by Maxwell and Seifart
(1974). Although originally developed for near~surface explosions, it has also been used in calculations
of impact ejecta velocities, transient craters and melt generation (e.g., Schultz and Gauit, 1979; Croft,
1980; Grieve and Cintalo, 1981). 'While it reasonably, describes the flow field in some cases (e.g. Orphal
of.2, 1977), in others it does'not. A more genoral’ expression for flow valocity is developed hers which,
in certoin instances, reduces to o Z model.

Z_Model
" The 2 model was based on a series of numerical simulations of cratering events. Briefly, the rcdsal
velocity of material behind the outgoing shock wave was observed to vary as g power of the radial position
r. Discussions of the Z model often include a time dependent term so that

P AT : )

where A(t) describes the time dependence of the flow. After the passage of the shock, the material
density was found to be nearly constant. The observed incompressibility can be used with eq (1) to
determine the tongential velocity component (e.g. Maxwell, 1977):

i = (2-2) sin(v)/§1+cos{o)} [P))

where 9 i3 the angie measured from the diwnward axis (9=0 vertically down and ¥=m/2 glong the target
surface). Motz that material flows upward toword the surface when Z>2 (9>0) and downward away from
the surface when 7<2 (#<0). Radial flow occurs when Z=2,

Once A(t) is specified, eqs (1) and (2) determine, among other things, the temporal growth of the
crater (Maxwell, 1977). A case often adopted in the literature is that of steady flow,’where A is independent
of time. In this case, the radius, R (t) of the expanding crater is

R(t) = ¢ /7Y [3)

Measurements of crater growth in g variety of materials show that, indeed, crater radius grows as a power
of time (e.g. Schmidt, 1083,1984; Holsapple. 1984). However, for some materials, steady flow cannot
hold. For example impacts and explosions in water and wet sand targets (Schmidt, 1984) imply R grows
as t 98, corresponding to Z=1,8. But, as noted above, the flow field is rotational away from the surface
for Z<2. Consequently, a steady flow Z model connot apply to these cases.

Austin o¢ o/ (1980) have compared numerical simulations of impact in plasticene clay to predictions
based on the Z model. They found it necessary to modify the basic form of the Z model. The flow
center had to be located beneath the surface and both A and Z increased with time. In particular, Z
was somewhat less than 2 early on ond stecdily increased to values between 3 and 4, depending on
?. Austin ef o/ conziuded that the Z model "should only be applied with caution to impact cratering”.
A more general description of cratering flow fields is considered next.

implications of a_Coupling Parameter
The cratenng process can be conceptually divided into three phases: (1) an early—time phase, where

the impactor energy and momentum are coupled into the target; (2) an intermediate phase where coupling
has tcken place but the effects of gravity and target strength are small; (3) g !ate—time phase where
gravity and strength begin to slow the crater growth. Searches have been made for @ measure of “late
stage equivalence” whereby a single mecsure of the early—time coupling phase could be used to predict
the intermediote ond lata—stage behavior. - Holsapple (1981, 1984) has generalizad ond quantified this
idea by introducing ‘a “coupling parameter” which, subsequent to the early~time phase, conveys all information
cbout the impactor. * This concept has been used to constriict scaling laws for crater ejecta (Housen
ef o, 1983) and will now be used to mveshgote the naoture of cratering flow fields.

Suppose that, in the intermediate time regime, the radial velocity of materiai depends on the impactor
radius, velocity and density (a,'U and &) and the target density, p, in addition to the position coordinates
(r9) and the time t. The late time regime, where gravity or material strength qre important, is not considered
here. Using a coupling parameter, the radial velocity can be written as

" ORIGINAL PAGE 18
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gglGlNAL PAGE 9
Cratering Flow Fields, K. Housen POOR QUALITY

Fr=F(Cpr ot )

where | is an unspecified function and the coupling parameter, C, is @ scalar-valued function of a, U
and é: A dimensional analysis of (4) gives

U = (r/a)? 31 9, (r/a)? U/a } (8)

where ¥ is a1 unspecified function and, for convenience, the density ratio p,/8 is ossumed constant,
The exponent 8 is relcted to the dimensions of the coupling parometer and con be predicted from the
measured dependence of final crater size on initial conditions. in particular, 8 should be agbout 2.5 for
porous targets (e.g. dry sand) and. 1.B for nonporous torgets (e.9. water, saturated sand, metals).
“  In general, the time dependent 7 model as given in eq (1) is not consistent with a coupling parameter
because eq (i implies a pruduct of separate functions of r and t whereas eq (5) does not. However,
there is a special form of the Z model which is admitted by a' coupling parameter: the function A(t)
in eq (1) varies as a power of time. Consider the threv fdllowing cases, listed in order of decreasing
gensrality, '
1. If A(t) is assumed to vary as a power of t, say t7, then the Z model can be viewed as a "local
approximation” to a coupling parometer. That is, for @ small interval of time, the function in eq (5)
can be approximated locally (in log—log space) by F « §(r/a)"#=' Ut/al 7, 'where ¥ may vary with time.
Locally, the exponents are relcted by Z=g+y(8+1). Note, if 7 varies with time then so will Z (8 is
constant for o fixed material).

2. If ¥ has the special form of u power law, i.e.,’if ¥ is independent of time, then eq (5) reduces
to @ Z model (again, where A is proportional to t7).

3. In the specicl case of steady flow, the Z model corresponds to a coupling parometer with Z=g,

Case 1 may explcin, ot least qualitclively, the observations of Austin e/ o/ (1980) that both A and
Z (in eq 1) increcsed with time. If, for the case studied by Austin ef ¢/ $ was not a power low and
the /oca/ slope of ¥ (i.e., 7) started out near zero ond increased with time, then Z would start out near
1.8 ond would increase with time (note, B~1.8 is expected for their clay target). A coupling parameter
may explain the observations of Austin ef o/ But without specific knowledge of the time dependence
observed in their computed flow field it is difficult to perform a rigorous test.

Piekutowski's (1980) measurements of porticle velocities for a smali-scale explosion i dry sand
are shown below in the form consistent with eq (5). While there is some scatter due to measurement
error, the data for various "tracer particies” follow @ common trend. Hence, a coupling parameter scoles
these doto rather well. Piekutowski's reusits imply that $ is a decreasing function of time for dry sand,
while ¥ increaned with time in. the Austin ef of calculations. This raises the possibility that $ may differ
markedly for different matericls.

1 .

REFERENCES:  AustinM.G.,, ThomsendJ.M.,  Ruh|,S.F,,
Orphal,O.L, ond Schultz,P.H.(1980), Proc LPSC 11th,
2325-2345. Croft,SK.  (1980), Pmc LPSC 1ith
2347-2378. Grieve,RAF. and CintaloM.J. (1981), Proc

.
e ©°.11 Rew p LPSC 12th, 1607~1621. ‘Holsapple.K.A. (1981), EQS, 52,
N o 3 949. Holsapple,K.A. (1954) Abstroct, this volume.
) o 3 : Houser KR, SchmidtRM. and HolsappleXA  (1983),
- g 3 37 JGR, .88, 2485-2499. Naxwell,D. ond Seifert,K.(1974),
NO001H 4 3 770 8 Report DNA 3828F. Maxwell,D.(1877) In Impagct and
1) W b 3 =8 73 &8 Explosion Crqtering, 1009~1024. Orphal D.L.(1977)In
2 3 e 23 impact and Explosion Cratering, S07-917. Piekutowski
¢ 3 17 el AJ(1980) - Proc  LPSC  1ith, 21292144,
10~ e o . Schmidt,R.M.(1983) -€0S, 8¢, 747.  Schmidt,R.M.(1984)
10 ¢.01 0.1 10 ppstract, this volume. SchultzPH. and GaultD.E

(r/a)' Ut/a, B=2.5 (1979), JGR, B4, 7€69-7687.
Scaled porticle~valocity mecsurements o . . ’
for dry sand (Plekutowski, 1980).
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ON CRATER DYNAMICS: COMPARISONS OF RESULTS FOR
DIFFERENT TARGET AND IMPACTOR CONDITIONS

K. A. Holsapple, University of Washington FS-10
Seattle, WA 98195

A fundamental question of impact cratering mechanics is how the impactor and target
conditions and material properties affect the crater. This question must be answered in
order that known results can be extrapolated with confidence to new and different cases.

Recent studies have uncovered a surprising simiplicity in a large number of cratering
problems. This simplicity is a consequence of a separatirn of the early from the
intermediate and late-time mechanics, with a single scalar-valued "couplin% parameter"
depending on impactor radius a, velocity U and mass density §, asC« aU¥ §Y , being
the sole measure of the impactor for all of the intermediate to 'ate-time processes.
Previous applications to final crater geometry (1,2), to ejecta blankets (3) and to crater
formation time (4) have been reported.

Here the entire dynamical history ot crater growth is considered. Fig. | shows the crater
depth d versus time t for a wide variety of experimental and calculated craters in non-
porous targets (5-10), as well as new results for impacts into aluminum. The targe:

include metals, rock, clay and water and the impactors range over a variety of marteriais
with the mass densities from 0.01 to 8 gm/cm3. The impact velocities rangs from 2.5 to
100 km/sec. The results span many decades in size and time.

Each of these growth curves shows at least some aspects of a generic crater depth versus
time curve as sketched in Fig. 2, showing three identifiable regimes. In the very early
time, the flow is one-dimensional and there is no dépandence on impactor vadius. The
crater growth proceeds simply as d = vt where v is the initial target particle velocity
determined by U and the impedances of the two materials.

As the flow wecomes two-dimensional, the impactor radius becomes an important
parameter. However, after a very short transition time, the sole remaining measure of
the impactor is the value of the coupling parameter C given above. The exponents L and
V are found to be 4 =0.58 and v =0.66 for all ?f ths cases shown, arnd the crater growth
can be shown tc be governed by the law d & t #/{1+¥),

Finally, in the late-stages, the growth is inhibited by either material strength Y (in the
case of small craters) or by gravity g (in the case of large craters; Pgd >> Y ) and the
scaling of the maximum crater size is governed by the results reported previously.

These results imply that, in each regime, a different scaling exists that should relate all
crater histories. Figures 3, 4, and 5 illustrate this fact showing respectively, the early,
intermediate and late-time scaling. In each case, the variety of curves do indeed
superimpose in the applicable regime.
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ON CRATER DYNAMICS OF POOR QUALITY
K. A. Holsapple

1. Hoiscpple,K.A.(1981) Coupiing porcmeters in cralering {absiract). in EDS 62, p.949.'

2. Holsopple,K.A.(1983) On the exisience ond implications of coupling poramaeters In crelering mechanics
(ckstract). In Luncr and Planefary Science XIV,pp.318-320.

3. Heusen,X.R..Schmidt,R.M. Holsapple,K.A.(1982)).  Geoohvs. Res. 8223(B3), pp.2485~2499.

4, Schmidt,R.M.(1981) Scaiing croter Hime of formailon (abstrect), In £0S §2,No45,.p944.

5, Dienes,J.X.Weish,d.M.(1970) In High Velecily Impact Phenomena., od. by R.Kinslow, Academic Press, New
York, pp4S=104. :

6. Gauit,0.E..Scnnet,C.P.(1981) In Geolegical Imolicaticns of !mpaets of Large Asteroids and Comets on the Earth,
od.by LT.Silver and P.H.Schultz.

7. Kineke,J.H.,(1961) Observaiions of croter formation in ductile materiair. In Proceedings of the Sth Symposium

On Hvpervelecity Impact,vol.1, part 2, pp339-370.

8. 0'Kesfe,J.D., Ahrens,T.J.(1982) Cometary and

ot —Various Crater Growth Curves Meteorite Swarm Impasts on Planatary Surfcces. J.
_'"""—'"—"'""""""'—;,.- Geophvs.  Res.
10} / 3.  OrphalD.L,  EordenW.F,  Lerson,SA.
10 Shuitz,P.H.(1980) Impact Melt Generaticn «nd
[ Trensport. In Proc.  11th Lunar gnd Plonetars
L _ Science Conf., pp.2309-2323.
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FEASIBILITY OF DETERMINING IMPACT CONDITIONS FROM TOTAL CRATER MELT
Michael D. Bjorkman, The Boeing Company, Seattle, WA 98124

In the past, authors have used parameters such as kinetic energy or momentum to scale
crater volume and total melt volume (sum of that in crater and ejecta) produced by
impact. The converse procedure; determining impact characteristics from, for example,
the crater volume, will not determine impactor radius, a, and velocity, U, individually, but
only as a product of powers of a and U. Recently, Grieve and Cintala (1) proposed to
solve crater volume and total meit volume relations simultaneously to determine a and U
individually Zor a terrestial crater. Their analysis pointed out that published total melt
volume scalir3g relations varied from energy scaling (2) to momentum scaling (3), with no
indication of the domain of applicability. The coupling parameter notion, described
below, has the potential to unify the melt scaling relations and identify which materials
neariy energy scale and which momentum scale,

The author examined the scaling of depth of melted planetary material along the axis of
impact and showed (4) that a coupling parameter of the form C =a U*§Y ,1s 0.58, V=
0.66, which governs crater depth in nonporous rnaterials like rocks and metals, also
governs meit depth. The parameter § is impactor density. This result necessarily follows
from the fact that C determines soufces which produce equivalent flow fields at
intermediate and late times (5).

If the source variables a, U and § only enter the scaling of melt depth Dy, via C, then,
Dp, = £(C, p, Em), where p is the planet density and Eq, is the specific energy of the
Hugoniot state from which isentropic release ends at the | atm point on the liquidus.
Dimensional analysis results in Dm/a « (U2/Em)™2 (&/p)¥. Figure 1 is a plot of melt
depths calculated with hydrocodes (2,6,7). If the above scaling relation holds, then the
curve should be horizontal. Figure | shows that C does govern the melt depth for
vZ/Em 2 8 (where v is the particle velocity at impact).

A similar analysis was performed for total meit volume (2,6-8) but did not demonstrate
the coupling parameter governs meit volume, Figure 2 shows the data are not horizontal,
and appear to be closer to energy scaling, W = 0.67. Perhaps crater and meit volume
scale differently, however, this is cifficult to understand, because they both stem from
the same flow field, which has beern shown to scale with M = 0.58 (9). The different
scaling for the melt depth and melt volume is being looked into, 2ad is suspected to resuit
from free-surface effects.

The meit depth @nd melt volume scaling relations are both significantly diiferent from
momentum scaling, W = 0.33, however. The momentum scaling result (3) for total meit
volume was obtained from an analytic model which prohibited ejection of material from
the crater. This prevents multiplication of the downwards directed momentum and thus
precludes any result other than momentum scaling. Momentum scaling of crater volume
has been observed only for porous materials; it is therefore possible that the scaling
relation from ref (3) applies to porous materials only.

If the present approach is correct, then it is not possible to distinguish the effects of the
impactor radius and its velocity U separately using late time phenomena like total crater
melt, crater dimensions or phase transitions in rocks below the crater. Only material
from near the impact would retain information about a and U separately. Search for this
material is complicated by ejection to great distances. Even if crater melt volume does
scale with energy, W = 0.67 and crater volume with M = 0.58, the difference is not great
encugh to allow one to determine a and U separately to any useful accuracy.
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FEASIBILITY OF QEI;_RM!NING IMPACT CONDITIONS FROM TOTAL CRATER MELT

Michael D. Bjorkman
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