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TRANSIENT CRATER MOTIONS: SATURATED SAND CENTRIFUGE EXPERIMENTS

Schmidt, R. &L, Boeing Aerospace Company, M /S 13-20, Seattle, WA 98124

The kinematics of crater formation are being investigated using a quarter-space test bed
on a centrifuge. This technique (1) allows high-speed movie coverage of target deforma-
tions as seen In cross section through a 2-Inch Pletiglas window along a diametrical
symmetry boundary. The data for the eight shots performed to date with the recently
Installed Fastax 1I-100 rotating -prism camera are shown in the attached table. Two
objectives of these tests were to dynamically record the maximum depth of the transient
crater and to record Its collapse. Preliminary Interpretation of the film records for shot
307-QXE is shown in the attached figure. This shot was conducted in nearly -saturated
moderately -dense fine-grained Ottawa "Banding" sand.

For this target material, crater floor uplift ( "collapse") occurs on the same time scale as
the radial motion of the ejecta plume. Because of the impairment of the optical path due
to detonation products plating onto the window, the floor uplifting sequence could not be
resolved in some of the Intermediate frames of the work print. It appears to be complete
by frame 21 and maybe earlier.	 At this time the ejects plume is in the vicinity of the
final apparent crater radius and the crater profile is in agreement with the final apparent
crater measured after the shot with the profilometer. 	 Crater volume displays power-law
growth until maximum transient depth occurs ( frame 4). Move interestingly crater radius
shows power-law growth all the way out to final crater radius (frame 21).	 Both time
exponents, interpreted with the assumption of a unique coupling parameter, 6Q /(3 +Ct ) for
volume and 2c& /( 3+0) for radius, are in good agreement with a value of the gravity
exponent Ct equal to 0.63. This same value was determined for crater growth in water (2)
(3) and may be applicable for all non-porous geological targets.

As an expedient when determining the maximum charg-	 * that would not $pall or
puncture the window, the explosive charges were built u 	 _^ Dupont Deta-Sheet.	 ThisP	 P	 8	 P	 P r
is PETN with approximately 25% inert plastic filler, which is presumed to cause much of
the smoke and detonation debris products. 	 Pure PETN is now under consideration for
future shots to improve resolution by reduction of smoke and opaque detonation products.
However, since the Deta-Sheet detonation products deposit on the window as it is exposed
to the transient crater, a permanent record of the envelope of maximum crater depth
versus range is formed. Preliminary comparisons of the detonation product profile with t
the corresponding final apparent crater profile along with viewing the films indicate that
there was no significant difference in the transient crater phenomena over a variation of
approximately an order of magnitude in sand grain size. 	 This observation needs further
examination when the original film records are digitized. y

m
For seven of the eight shots, the water table was nominally at 1.03 cm below the original
ground zero.	 This was to correspond to the approximate scale of the 500-con PRAIRIE
FLAT explosive crater in the field, which was modeled in the tangent-above shot 306-QXE
(see ref. 4).

(1)	 Schmidt, R. M. do Piekutowski, A. J. (1983) Lunar do Planetary Science XIV, p. 668.
(2)	 Schmidt, R„ M. & Holsapple, K. A. (1982) Estimates of crater size for large-body

impact: Gravity-scaling results. Geol. Soc. of America SP 190, p. 93.
(3)	 Schmidt, R. M. (1983) Trans. Am. Geophys. U. (EOS) Vol. 64, No. 45, p. 747.
(4)	 Schmidt, R„ M., Fragaszy, R. J. & Holsapple, K. A. (1981) Proc. of Seventh Int. Symp.

on Milit ary Applications of Blast Simulation, Medicine Hat, Canada, p. 4.2-1. f
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TRANSIENT CRATER MOTIONS: SATURATED SAND CENTRIFUGE EXPERIMENTS

Schmidt R. M.

QUARTER-SPACE DATA TABLE

EXPLOSIVE MATERIAL	 CRITTER n-CROUPS

Shot No. Gravity Moss	 0	 Density Type	 Density	 V	 r	 h	 hr' *_
wv	 ffi nw	 x+t

-	 (C)	 (9m) (OK	(9/a) -	 (9/4)	 (CO) (a^) (CIS) (cm) - -	 - -	 -

306-CXE` 3961	 13.0	 38.5+ 1.48 WM I 	206	 232	 8.64 208	 - 2100e, 36.8	 4.67 1.13	 -

307-OXE	 400	 4.45	 38.5	 1.48 WMS	 206	 289	 8.86	 2.77	 4.68 1.47x10-3 134	 6.85 2.14	 3.62

319-OXE- 403	 5.49	 42.55 1.45 WM 	 205	 M2	 7.45 295	 - 1.4500 87.1	 5.37 2.13	 -

324-OXE	 398	 4.23	 425	 1.45 WBS	 206	 202	 7,21	 2.60	 - 11.3100-3 98.4	 5.67 2.05	 -

326-QXE	 398	 4,14	 425	 1.45 WBS	 2.06	 212	 7.75	 2.40	 - 1,3000"5 105	 5.14 1.90	 -

328-QXE	 401	 4.25	 42.5	 1.45 WFS2 	2.11	 193	 7.41	 2.17	 3.64 1.3200'5 95.8	 5.87 1.72	 2,88

329-QXE	 103	 4.14	 425	 1.45 WBS	 2.06	 39.2	 9.76	 3.25	 6.55 3.2700-4 195	 7.73 2.58	 5.19

330-OXE	 100	 4.19	 425	 1.45 WFF3 	1.97	 320	 8.04	 3.49	 5.90 3.2900-6 150	 625 2.71	 4.59

► Maximum Transient Crater Depth ++ Tangent Above - all others Tangent Below	 +++ Water Table = 0.70cm
I WBS - Wet Banding Sand (2121s) 2 WFS = Wet Frntshot Sand (800µ) 3 *T = Wet F-40 Sand (106µ)
4 Green Dot*-Sheet (Type C) 5 Red Data-Sheet (Type D)
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Cratering Flow Fields: A General Form and the Z Model
Kevin Housen, Shock Physics and Applied Mechanics, MS 13 -20, Boeing Aerospace, Seattle, WA, 98124.

The nature of material motions is often fundamental in discussions of impact —related processes,
An onalytic'description of cratering Flow fields, known as the Z model, was developed by Maxwell and Seifert
(1974). Although originally developed for near—surface explosions, it has also been used in calculations
of impact ejects velocities, transient craters and melt generation (e.g., Schultz and Gault, '1979; Croft,
1980; Grieva and Cintala, 1981). While it reasonably, describes the flow field in some cases (e.g. Orphol
et. at 1977).'in others it does'not. A more genorol' expression ' for flow velocity is developed hen which,
In certain instances, reduces to , a Z model.

Z Model
The Z model was based on a series of numerical simulations of cratering events. Briefly, the radial

velocity of material behind ,the outgoing shock wave was observed to vary as a power of the radial position
r. Discussions of the Z model often include a time dependent term so that

A(t) r-z'	 (1)
where A(t) describes the. time dependence of the flow. After the passage of the shock, the material
density was found to be nearly constant. The observed incompressibility can be used with eq (1) to
determine the tangential velocity component (e.g. Maxwell, 1977):

rd	 (Z-2) sin(4)/j1 +cos(,0)( 	 (2)
where d is the ongie measured from the downward axis (0-0 vertically down and 4-ir/2 along the target
surface). Mot!4 that material flows upward toward the surface when Z>2 (00) and downward away from
the surface when '<2 (0<0). Radial flow occurs when Z-2.

Once A(t) is specified, sqs (1) and (2) determine, among other things, the temporal growth of the
crater (Maxwell, 1977). A case often adopted in the literature is that of steady flow, , where A is independent
of time. In this case, the radius, Rc(t) of the expanding crater is

Rc(t) 
4c 

t
	

(3)

Measurements of crater growth in a variety of materials show that, indeed, crater radius grows as a power

	

of time (e.g. Schmidt, 1983,1984; Holsapple, 1984). However, for some materials, steady flow cannot 	 h
hold. For example impacts and explosions in water and wet sand targets (Schmidt, 1984) imply R grows
as t 0-'34, corresponding to Z-1.8. But, as noted above, the flow field is rotational away from the surface
for Z<2. Consequently. a steady flow Z model cannot apply to these cases.

	

Austin et a/(1980) have compared numerical simulations of impact in plosticene clay to predictions	 r
based on the Z model. They found it necessary to modify the basic form of the Z model. The flow
center had to be located beneath the surface and both A and Z increased with time. In particular, Z

a was somewhat less than 2 early on and steadily increased 'to values between 3 and 4, depending on
-0. Austin et a/ concluded that the Z model "should only be applied with caution to impact cratering".
A more general description of cratering flow fields is considered next.

a
Implications of a Coupling Parameter

The cratering process can be conceptually divided into three phases: (1) an early—time phase, where
the impactor energy and momentum are coupled into the target; (2) an intermediate phase where coupling

	

has taken place but the effects of gravity and target strength are small; (3) a late—time phase where 	 i
gravity and strength begin to slow the crater growth. Searches hav" been made for a measure of "late
stage equivalence" whereby a single measure of the early—time coupling phase could be used to predict
the intermediate and late—stage behavior. - Holsapple (19111, 1984) has generalized and quantified this

	

idea by introducing 'a "coupling parameter" which, subsequent to the early-time phase, conveys all information 	 I
about the impactor., This concept has been used to construct scaling laws for crater ejecto (Housen
et a/, 198'3) and will now be used to investigate the nature of cratering flow fields.

	

Suppose that, in the intermediate time regime, the radial velocity of materiai depends on the impactor	 x
radius, velocity and density (a,' U and d) and the target density, p, in addition to the position coordinates
(r,,f) and the time t. The late time regime, where gravity or material strength ore important, is not considered
here. Using a coupling porometer, the radial velocity can be written as



Ut/a , R=2.5
Scaled porticle-velocity 'measurements
for dry sand (Piekutowski, 1980).

0. 1 	'" now	 C41 
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i - F( C, P• r, 01; t)	 (4)
where F - is an unspecified function and the coupling parameter, C, is a scalar-volued function of a, U
and d; A dimensional- analysis of (4) gives

r/U - (r/a)-o $1 * (17
y
0-

0- t ut/a	
(5)

Where ! is ca unspecified function and, for convenience, the density ratio ' p,/4 is misumed constant.
The exponent d is related to the dimensions of the coupling parameter and can be predicted from the
measured dependence of final crater size on initial conditions. In particular, a should be about 2.5 for
porous targets (e.g. dry sand) and. 1.8 for nonporous targets (e.g. water, saturated sand, metals).

In general, the time dependent T model as giv len in eq (1) is not consistent with a coupling parameter
because eq (i implies a product of separate functions of r ind t whereas eq (5) does not. However,
there is a special form of the Z model which is admitted by a' coupling parameter,, the function A(t)
in eq ('1) varies as a power of. time. Consider the thret) fdllowing cases, listed iri order of decreasing
generality.

1. If A(t) is assumed to vary as a power of t, say t 7, then the Z model can be viewed as a "local
approximation" to a coupling parameter. That is, for a small interval of time, the function in eq (5)
can be approximated locally (in log-log space) by 3 ac f (r/o)-R- 1 Ut/a( 7,'where y may vary with time.
Locally, the exponents are related by Z-14+7(#+1). Note, if y varies with time then so will Z (0 is
constant for a fixed material).
2. if t has the special form of u power low, Ls.,'if y is independent of time, then eq (5) reduces
to a Z model (again, where A is proportional to t 7).
3. In the special case of steady flow, the Z model corresponds to a coupling parameter with Z-P.

Case 1 may explain, at least qualit.-Svely, the observations of Austin et o/(1980) that both A and
Z (in eq 1) increased with time. If, for the ca ge studied by Austin et a/, g was not a power law and
the /oca/ slope of 3 (i.e., y) started out near zero and increased with time, then Z would start out near
1.8 and would increase with time (note, P_1,8 is expected for their clay target). A coupling parameter
may explain the observations of Austin et a/. But without specific knowledge of the time dependence
observed in their computed flow field it is difficult to perform a rigorous test.

Piekutowski's (1980) measurements of particle velocities for a small-scale explosion in dry sand
are shown below in the form consistent with eq (5). While there is some scatter due to measurement
error, the data for various "tracer particles" follow a common trend. Hence, a coupling parameter scales
these data rather well. Piekutowski's reuslts imply that V is a decreasing function of time for dry sand,
while 3 Increased with time in the Austin et o/ calculations. Phis raises the possibility that .7 m,ay differ
markedly for different materials.

M
4	 4

'	 A

M"
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ON CRATER DYNAMICS: COMPARISONS OF RESULTS FOR
DIFFERENT TARGET AND IMPACTOR CONDITIONS

K. A. Holsapple, University of Washington FS-10
Seattle, WA 98193

A fundamental question of impact cratering mechanics is how the Impactor and target
conditions and material properties affect the crater. This question must be answered in
order that known results ran be extrapolated with confidence to new and different cases.

Recent studies have uncovered a surprising simplicity in a large number of cratering
problems. This simplicity is a consequence of a separation of the early from the
intermediate and late=time mechanics, with a single scalar -valued "couplin parameter"
depending on impactor radius a, velocity U and mass density d, as C ac a U% dV , being
the sole measure of the impactor for all of the intermediate to 'ate -time processes.
Previous applications to final crater geometry (1,2), to ejects blankets ( 3) and to crater
formation time (4) have been reported.

t

Here the entire dynamical history of crater growth is considered. Fig. 1 shows the crater
depth d versus time t for a wide variety of experimental and calculated craters in non-
porous targets (5-10) 9 as well as new results for impacts into aluminum. The targets
include metals, rock, clay and water and the impactors range over a variety of materials
with the mass densities from 0.01 to 8 gm /cm 3. The impact velocities range from 2.3 to
100 km /sec. The results span many decades in size and time.

Each of these growth curves shows at least some aspects os a generic crater depth versus
time curve as sketched in Fig. 2, showing three identifiable regimes. 	 In the very early
time, the flow is one-dimensional and there is no dependence on impactor eadlus.	 The
crater growth proceeds simply as d = vt where v Is the initial target particle velocity ►
determined by U and the impedances of the two materials.

As the flow uecomes two-dimensional, the impactor radius becomes an important
parameter.	 However, after a very short transition time, the sole remaining measure of
the impactor is the value of the coupling parameter C given above. The exponents U and
V are found to be p = 0.38 and v = 0 . 66 for all o9f the cases shown, and the crater growth

can be shown tc. be governed by the law d cc t N^(1 +u ;

Finally, in the late-stages, the growth is inhibited by either material strength Y (in the
case of small craters) or by gravity g (in the case of large craters; Pgd >> Y ) and the
scaling of the maximum crater size is governed by the results reported previously.

E

These results imply that, in each regime, a different scaling exists that should relate all
crater histories.	 Figures :3, 4, and 5 illustrate this fact showing respectively, the early,
intermediate and late -time scaling.	 In each case, the variety of curves do indeed
superimpose in the applicable regime.
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ON CRATER DYNAMICS	 OF POOR QUALITY

K. A. Holsapple

1, Holsopple,K.A.(1981) Coupling parameters in cratering (abstract), In M 62. p.949.
2. Holsopple ,K.A.(0113) On the existanes and implications of coupling parameters in cratering mechanics
(abstract). In Luncr and Piaretary Science XIW, pp.319-320.
3. Housen.K.R..Schmidt,R.M.,Hoisappie,K.A.(1982)1_ Geachvs. Res. jj(M pp.2485-2499.
4. Schmidt,R.M.(1981) Scaling crater time of formation (abstract). 	

,
 In EOS 62.4o45 ,p944.

5. Disnes,J.K1.Watsh,J.M.(1970) In High Velocity Impaet Phenomena., ed. by R.Kinslow, Academic Press, New
York, pp4S-104.
6. In Geological Imalicaticns of Imoacts of Lao a Asteroids and Comets on the Earth.
ed.by V.."Ner and P.H.Schultz.
7. iCneks,J.H.,(1961) Observations of crater formation in ductile matrriair. In Proceedings of the 5th Symposium
On Hypervelocity Imooet,vol.i, part 2, pp339-370.

d.	 O'Kesfe,J.D.,Ahrens,T.J.(1982) Cometary and
Meteorite Swarm Impacts on Planetary Surfaces. J.
Geoohvs. Res.

S.	 Orphal,D.L,	 @arden.W.F.,	 Lcrson,S.A..
Shuitz,P.H.(1980) Impact Melt Gensratlun and
Transport. In Proc.	 f lth Lurar •and Plenetnnv

Science Cont.. pp.2309-2323.
10. Austin,M.G., Thomssn,J.AL, Ruhl,S.F., Orphol,0.L,
Shuitz,P.H.(1980) Calcuiational investigation of impact
cratering dynamics: naterial motlons during the crater
growth period. In Proe.11 th Lunar and Plenetarr
Snitnce Conf. ,pp.2325-2345.
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FEASIBILITY OF DETERMINING IMPACT CONDITIONS FROM TOTAL CRATER MELT

Michael D. Bjorkrnan, The Boeing Company, Seattle, WA 99124

t In the past, authors have used parameters such as kinetic energy or momentum to scale
crater volume and total melt volume (sum of that In crater and ejects) produced by
impact. The converse procedure; determining Impact characteristics from, for example,
the crater volume, will not determine impactor radius, a, and velocity, U, individually, but
only as a product of powers of a and U. Recently, Grieve and Cintala (1) proposed to
solve crater volume and total melt volume relations simultaneously to determine a and U
individually for a terrestial crater. Their analysis pointed out that published total melt
volume scaling relations varied from energy scaling (2) to momentum scaling (3)9 with no
Indication of the domain of applicability. The coupling parameter notion, described
below, has the potential to unify the melt scaling relations and Identify which materials
nearly energy scale and which momentum scale.

The author examined the scaling of depth of melted planetary material along the axis of
impact and shoved (4) that a coupling parameter of the form C : a U 1 6" , N s 0.38, V s
0.66, which governs crater depth in nonporous rr Aterials like rocks and metals, also
governs melt depth. The parameter 6 is impactor density. This result necessarily follows
from the fact that C determines scufces which produce equivalent flow fields at
intermediate and late times (5).

If the source variables a, , U and 6 only enter the scaling of melt depth Dm via C, then,
Dm = VC, p , Em), where p is the planet density and Em is the specific energy of the
Hugoniot state from which isentropic release ends at the 1 atm point on the liquidus.
Dimensional analysis results in Dm/a. ao (U 2/Em) P/2 (ft)". Figure 1 is a plot of melt
depths calculated with hydrocodes (2,6,7). If the above scaling relation holds, then the
curve should be horizontal. Figure 1 shows that C does govern the melt depth 'for
v2/Em ? 8 (where v is the particle velocity at impact).

A similar analysis was performed for total melt volume (2,6-8) but did not demonstrate
the coupling parameter governs melt volume. Figure 2 shows the data are not horizontal,
and appear to be closer to energy scaling, 11 = 0.67. Perhaps crater and melt volume
scale differently, however, this is c fficult to understand, because they both stem from
the same flow field, which has beer, shown to scale with 4 = 0.58 (9). The different
scaling for the melt depth and melt volume is being looked into . ^d is suspected to result
from free-surface effects.

The melt depth and melt volume scaling relations are both significantly different from
momentum scaling, p = 0.33, however. The momentum scaling result (3) for total melt
volume was obtained from an analytic model which prohibited ejection of material from
the crater. This prevents multiplication of the downwards directed momentum and thus
precludes any result other than momentum scaling. Momentum scaling of crater volume
has been observed only for porous materials; it is therefore possible that the scaling
relation from ref (3) applies to porous materials only.

If the present approach is correct, then it is not possible to distinguish the effects of the
Impactor radius and its velocity U separately using late time phenomena like total crater
melt, crater dimensions or phase transitions in rocks below the crater. Only material
from near the impact would retain information about a and U separately. Search for this
material is complicated by ejection to great distances. Even if crater melt volume does
scale with energy, h 0.67 and crater volume with >1 = 0.38, the difference is not great
enough to allow one to determine a and U separately to any useful accuracy.
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Figure 1. Scaled melt depths.
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