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ABSTRACT:

The stability properties and bearing loads observed in turbomachinery are signi-
ficantly influenced by clearances (deadbands) in the load carriers which are
usually ball bearings. In this study we have looked at a generic model of a
turbopump, simplified to bring out these effects. This model demonstrates that
bearing deadbands which are of the same order of magnitude or larger than the
center-of-mass offset of a rotor due to mass imbalances cause significantly dif-
ferent dynamic behavior than would be expected of a linear, dynamical system.
This fundamentally nonlinear behavior yields altered stability characteristics
and altered bearing loading tendencies. It is shown that side forces can en-
hance system stability in the small, i.e. as long as the mass imbalance does not
exceed some threshhold value or as long as no large, impulsive disturbances
cause the motion to depart significantly from the region of stability. Limit
cycles are investigated in this report and techniques for determining these
limit cycles are developed. These limit cycles are the major source of bearing
loading and appear in both synchronous and nonsynchronous forms. The synchro-
nous limit cycles are driven by rotor imbalances. The nonsynchronous limit
cycles (also called subsynchronous whirls) are self-excited and are the sources
of instability. It is shown that such whirls are not necessarily unstable and
can in fact be observed as relatively low level oscillations. They do, however,
reveal the existence of an instability mechanism which may be waiting in the
wings to destroy a machine if the speed is significantly increased or if the
local stability conditions should cease to hold for some reason such as an im-
pulsive disturbance. In this study we have shown that the nonlinear character-
istics due to bearing deadbands have a significant effect on the dynamics of
turbomachinery and cannot be ignored as has routinely been done in past analysis
of such systems.
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1.0 INTRODUCTION

The problem of determining bearing loads and stability properties of rotating
machines such as the turbopumps used in high performance rocket engines like the
Space Shuttle Main Engine (SSME) is complex. Very high speeds are attained with
significant fluid flows. As a consequence, bearing loads are potentially high
with subsynchronous whirling likely. Typically, models used to analyze such
systems are very complicated and nearly impossible to use for gaining insight
into the basic phenomena involved. Linear models containing large numbers of
degrees of freedom have been developed and applied to the analysis with mixed
success. A significant nonlinearity is ignored by these models. The bearings
typically have clearances of the order of .0005"-.0025". Since these machines
are balanced to very high precision, the eccentricity of the rotor, i. e. the
distance between the rotor center of mass and its geometric axis is of the same
order or smaller in magnitude. Thus, bearing clearances or deadbands as they
are more typically called, significantly affect the dynamics of these systems
and must be taken into account. Taking this nonlinearity into account makes the
analysis of the dynamics much more difficult. It is very desirable to have a
simplified model of turbopump which retains the significant driving forces known
to be present but readily lends itself to analysis. Such a model is available
and is usually referred to as the Jeffcott model. We have modified this model
by adding deadband effects along with fluid seal forces as currently understood.
In addition, we have rewritten the equations of motion for the model in polar
coordinates. This formulation is more naturally suited to the symmetry of the
problem because the whirl orbits tend to be circular.

In addition to seal forces and deadbands, we have added a constant side force to
the model to account for the likely misalignments between bearings and seals and
also to account for hydrodynamic forces resulting from pumping fluids which may
not be perfectly balanced due to slight imperfections in the internal geometry
of the pump. The side force and deadband effects, working together, signifi-
cantly affect the stability properties of the system in an interesting way.
Stability may be enhanced under proper combinations but is only local stability
in that it is possible to drive the system into instability by impulsive distur-
bances or large rotor imbalances.

The Jeffcott rotor is closer to reality than it may appear to the casual obser-
ver. Periodic synchronous or nonsynchronous orbiting motions of the rotor,
referred to as whirls, are normally the motions of the system exhibited. Such
an orbital motion can be described by a planar model. Thus, values for the
effective mass, stiffness, deadband and seal coefficients can be found which
will approximate the behavior of the more complex models. While exact frequen-
cies of critical speeds and stability boundaries cannot be inferred from Jeff-
cott models, very good qualitative behavior can be investigated with these

~models and_refined by higher. fidelity_hybrid simulations.. For this_.reason,-we

consider the augmented Jeffcott model as the model of choice for developing an
understanding of rotor whirl phenomena.

1.1 FORCE MODELS

The forces acting inside a turbopump are due to several causes. First, the
fluid being pumped reacts upon the rotor with forces that are dependent upon
rotor position and velocity and can be represented by linear models for small
displacements [2]. The seals which prevent the high pressure fluid from leaking



away also generate forces on the rotor which can be modeled linearly. The
assumed form representing these forces is given by

Fceal = Csf = Ksr # Qg ug x r + Cquy x (1.1)

These forces have the potential to drive whirl instability. Second, the force
due to the mass eccentricity is a rotating force whose magnitude varies as the
square of the rotor speed and is directed toward the rotor center of mass. This
force is potentially destructive and must be minimized by stringent balancing of
turbopump rotors. The form of this force is as shown below:

Fa = -m W2 e _ (1.2)

Turbopump rotors are maintained in position by bearing forces. These bearing
forces are generated by a rather complex interaction involving bending forces
of the rotor shaft, the deformation of the bearing balls or rollers, the motion
and deformation of the bearing races, the bearing retainers, the bearing car-
riers etc. Detailed modeling of these interactions is the subject of numerous
complex analyses. For our purposes, we shall assume that the bearing itself
tends to act as a linear spring. However, clearances between bearing races and
carriers or shafts allow some small region of free motion of the rotor shaft
relative to 1its housing. For simplicity, we idealize the bearing balls or
rollers as a uniform annular ring separating the rotor shaft and housing. The
effective surface roughness of the contacting surfaces provides some initial low
stiffness values for the bearing system. As the surfaces come closer together
the apparent stiffness increases resulting in the force curve shown in Figure
1.1. This bearing force curve is further idealized for our analyses and can be
expressed by

Kg (r - g up) ri>g
Fg = - ] (1.3)
0 lzl<q

These forces represent the set of forces believed to be significant to the
determination of the dynamic characteristics of turbopump rotors. We shall now
proceed to consider the dynamic behavior of a system driven by these forces.
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Figure 1.1 Bearing Force Curve.



2.0 DESCRIPTION OF ANALYSIS METHODS
2.1 MODEL DESCRIPTION AND DERIVATION OF THE EQUATIONS OF MOTION

To investigate the effects of bearing deadbands on system stability and on bear-
ing loads, the Jeffcott rotor model [2] was chosen. Several additions to this
simple model have been made to include the effects of mechanisms present in a
turbopump that are not reflected in the basic model. The effects of a deadband
in the system are considered as. well as those of a side force, and seal forces.

Shown in Figure 2.1 is a diagram of the assumed geometry of the model used. The
vector r is the displacement of the rotor center from its equilibrium pos1t1on
(rotor at rest). The angle ¢ is the ang]e made by r with the y axis, (the
whirl angle). The imbalance in the rotor is represented by the vector ¢, the
magnitude of which is constant. ¢ is the shaft eccentricity, the displacement
of the shaft center of mass from the grometric center. The angular velocity of
the shaft is represented by w. This shaft speed is considered to be constant in
the analysis. The quantity g is the deadband present between the shaft and the
bearing. It is not shown in the figure.

Forces which must be considered in formulating the equations of motion for the
system include bearing forces, seal forces, imbalance forces and side forces.
The vector force diagram in Figure 2.2 indicates these forces and the directions
in which they act. The relative magnitudes of the vectors as drawn in the
diagram are not precise. The forces present in the system due to the seal arise
from the seal stiffness, Ks, the seal damping, Cg, the cross coupling stiffness,
Qs, and the cross coupling damping, Cq. The bear1ng forces result from the
bearing stiffness, Kg. Note the if the magnitude of r is less than the deadband,
then the bearing forces will be zero.

The equations of motion for the system are derived in both polar and cartesian
coordinates.  The unit vectors up, uy, and uy in Figure 2.1 indicate the
reference frame for the polar coordinate derivation. The cartesian reference
frame is indicated by the x, y, and z axes. Given below are the equations of
motion in polar coordinates followed by the system description in cartesian
coordinates. The only nonlinearity in the cartesian coordinate description is
due to the presence of the deadband.

The force in the system due to the bearing reaction with the rotor may be
expressed as

Kg (r -gup) r|>g
5 L) | £ ) 2.1)
0 lrl<q

with r = rup,

Forces due to the seals are expressed as

Fseal = -Cs r - K r + Qs ux x r + Cq ux (2.2)

l"o
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Figure 2.1 Assumed Geometry for Deriving
the Equations of Motion.
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Figure 2.2 Vector Force Diagram - Not to Scale.



where u, is the unit vector oriented axially along the shaft. The side force is
expressed as the variable Fg. The force equation for the system is:

mr+e) =1 Fi (2.3)
i

with JF; representing the forces due to seals, bearings, and side forces. The

imbalance acceleration g expressed as follows:

E=wxe

x (wxe) (2.4)
2

{€

1o

or
= -y

|
o

Equation 2.3 may now be written as

mf =] Fj+mu’ e (2.5)
i

Insertion of the expressions in Equations 2.2 and 2.3 and inclusion of the side
force term yields:

n = -Kp (C -qur) Ks £ - Csf ¢ Qs ux x £ #Qux x E+Fs +mu g (2.6)

The vector derivatives and cross products are:

Gp =4y (2.7)
Uy = b Up (2.8)
Ux x Up = U (2.9)
i = EEJ‘ + r¢_|__1¢ (2.10)
Eo= (F -2 up + (27 + r§)uy (2.11)
Equation 2.6 may, therefore, be expressed as:
F - gl r-g r r 0
“ = X8 ~Ks -Cs +Qg
2ré + r$ 0 0 ré r
-ré cosé ep
* CQ + Fg +m ot R (2.12)
r -sing €

(with the unit vectors up and uy implied), from which the following two dif-
ferential equations are obtained:
. -Ks Kg Cs ., C . Fs 2 2
rs=——(r-q) =—r =-— 7 ~-—Td +—C0Sd + rp° +uw
m m m m m

¢ cos (wt-¢) (2.13)



- —p +t— —-— sing - — + — sin (ot - ¢) (2.18)
m m r m r r

. Qs Cs. Cq r Fs 2r6 Wl
¢=—
m

The equations of motion in cartesian coordinates may be derived in a similar
manner. The bearing forces are:

-kg (| r] - 9)
Fgy = y for|r|>g (2.15)
! N -
-kg (| r]-9)
Fgy = B : ;1 z for|r|>g (2.16)
where
el =4y + 2. (2.17)

Again, if | r| < g, then Fg = 0. The seal forces are expressed as:
-Ksy - Csy - Qsz - qu (2.18)
Fgz = -Kgz - Csi + Qgy + CQ& (2.19)

Fsy

The force equations are:

m(y + 'S.) =§: Fyi + FS and m(.z. + é.) + z Fz*io (2'20)
i i

The y and z components of the imbalance term are:
ey = = w? € cos wt and €z = -w e sin wt (2.21)

Tﬁe two differential equations describing the system may now be formed.

. ke (|c|-9) Ks G , Q Cq, Fs ,
y = Yy —y-— y-—2z-—2+—+au%€coswt (2.22)
m|r| m m m m m
. ks (|r]-9) Ks G . Qs g . ,
z = 2 -— Z-— Z+—y+— y+ue sinot (2.23)
e om|e ] M Mmoo me

Because the side forces are assumed to act only in the y direction, no side
force term appears in the z equation.

2.2 SIMULATION OF THE SIMPLE ROTOR SYSTEM

Having derived the equations of motion for the system, solutions for the states
may be obtained by solving the resulting differential equations. This is accom-
plished by first casting the two second order differential equations into a form
easily solved by numerical integration. By mak1ng the following definitions for
r, , ¢, and ¢, the system may be written in the form of four first order dif-
ferential equations.



Let

PL=r P3 = ¢
] i (2.24)
P2 =r P4 = ¢
Then
B1 = p2 (2.25)
. -(Kg + Ks) Cs Cq Fs
ppg = —————— p] + Kgg - — P2 - — P} P4 + — COS P3 (2.26)
m m m m
+ wle cos (wt - p3) + p1 + pq’
B3 = pg (2.27)
., & G Cq P2 Fs wle 2 poPy4
P4 = — - — pg + - sin p3 + — sin (wt-p3) - (2.28)
m m m pp  mpy P1 P1

A similar procedure may be followed to express the cartesian coordinate
equations of motion in state variable form.

Let
q =y q3 = 2z
' ) (2.29)
q2 = ¥ q4 = 2
and | r| =Aa® + af
Then
d1 = q2 (2.30)
. ks (|r]-9) Ks Cs Qs Cq Fs
q2 = qQ - — Q9] -—q2 - — q3 - — g4 + —
m|.£| m m m m m
, (2.31)
+ we cos wt
43 = q4 (2.32)
=k (]|r]-9) Ks Cs Qs Cq .
qq = 93 -—Qq3 -—q +—q +— Q2 +we sinwt (2.33)
m|r| m m m m

The system is now amenable to solution by numerical methods. The method chosen
to solve for the various states of the system is a Runge-Kutta iterative method.
A simulation based on this method has been compiled and used extensively to exa-
mine the properties of the deadband rotor model. Basically, the simulation is



composed of a driver program for the integrations, and a subroutine containing
the four first order differential equations. Simulations for each of the coor-
dinate systems considered have been generated and compared for equivalent cases
with good agreement. Because the system lends itself so well to analysis in
polar coordinates, this version of the simulation is used most extensively.

To examine the character of the resulting whirl orbits we performed numerous
parameter studies using time and frequency plots to evaluate the behavior. The
frequency spectrum of the orbit indicates whether it is a synchronous or sub-
synchronous whirl.

Three different orbital types have been defined for a rotor system. These have
been given the names A-type, B-type, and C-type motion. Each may be charac-
terized by the shape of the orbit, its orientation with respect to the system
origin, and its frequency.[{3]

For A-type motion, the rotor has moved to an "equilibrium" position, other than
the rotor rest position, and the orbit is about this point. These orbits about
,the equilibrium point are typically small in radius compared to the deadband;
however, they may be rather large with respect to the deadband magnitude depend-
ing on the shaft spin rate and the imbalance present in the system. An A-type
orbit does not encircle the origin of the coordinate system (the rotor rest
position). The whirl orbit may be totally inside the deadband area, partially
within the deadband area, or totally outside the deadband, as indicated by the
sample plots of A-type whirl orbits shown in Figures 2.3 through 2.8. The run
identification number appearing on each plot will be explained shortly. These
numbers indicate the system parameter values used in a particular run. The solid
curve in the plot is representative of the motion of the center of the rotor
shaft with the dashed line representing the deadband. This convention is em-
ployed in all plots of shaft orbits presented in this report. The identification
code used to label each plot will be explained shortly. A-type whirl is typical-
ly at synchronous speed as indicated by the acompanying PSD plots shown with
each orbit plot. The power spectral density (PSD) plots have been rescaled be-
cause only relative magnitudes are important. In the PSD plots there are three
curves. This is because the PSD of the radius vector as well as its two compon-
ents has been performed. A-type whirls occur in a variety of shapes and sizes.

B-type motion is rather random with the rotor bouncing around inside the dead-
band area. This motion may resemble A-type or C-type, however the motion is not
strictly periodic. The major frequency component of this type of orbit is
generally nonsynchronous, with synchronous frequencies and multiples thereof
also present. Figures 2.9 through 2.11 indicate several B-type orbits shown
with their corresponding PSD plots. The orbits shown in Figures 2.3 and 2.12
have the. same run identification---number but appear different..from each- other
because the runs were executed with different shaft speeds.

C-type motion surrounds all or most of the deadband area and always encircles
the origin of the cocordinate system. This type of orbit may be at synchronous
or subsynchronous frequency, depending upon various system parameters. In most
cases considered in this study the frequency of the C-type orbits are half-
synchronous as are the cases presented in Figures 2.12 through 2.14. The PSD
plots for these C-type orbits accompany their plots.

10
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The procedure employed to study the various orbit types is to vary the shaft
speed, rotor imbalance, deadband, and side force magnitude and subsequently exe-
cute the simulation. The other parameters in the system are assumed to remain
constant and are listed in Table 2.1 below. A relevant note is that the
integration step size used in the simulation is 30 microseconds. System steady-
state is generally reached in somewhat less than 0.20 seconds, simulation time.

TABLE 2.1

VALUES OF CONSTANT SYSTEM PARAMETERS
PARAMETER DESCRIPTION VALUE
Kg Bearing Stiffness 10° 1bs/in
Ks Seal Stiffness 2.0 x 10° 1bs/in
Cs Seal Damping Coefficient 200 1bs-sec/in
Cq Cross Couple Damping 40 1bs-sec/in

Csw

Qs Cross Couple Stiffness —E— 1bs/in
m Rotor Mass 0.20422 1bs-sec?/in

In order to keep the number of simulation runs to a minimum, only two values of
shaft spin are considered. These are a rate of 2094.4 radians/second (333 Hz)
and 3141.59 radians/second (500 Hz). Also, two values of rotor imbalance are
used, 0.0001 and 0.0002 inches. Three side force values are used, 600, 800, and
1200 pounds in the positive y direction. Because the emphasis of the study is
on the effects of deadband, five deadband values are considered, 0.0005, 0.001,
0.0015, 0.002, and 0.0025 inches. The values of the system parameters in Table
2.1, those of the shaft spin, shaft eccentricity, side forces, and deadbands are
representative of those characteristic to the space shuttle high-pressure oxy-
gen turbopump. To simplify the run identification process, a numbering conven-
tion is used to indicate the deadband, imbalance, and side force values in each
case. The key to the numbering convention is given in Table 2.2. The results
of the orbital study simulation runs are tabulated in Tables 2.3 and 2.4. Note
that the frequency content of the orbits is also indicated. Only the two most
prominent frequencies are indicated.

~ TABLE 2.2

KEY TO THREE DIGIT RUN IDENTIFICATION CODE
First Digit Second Digit Third Digit
Deadband Imbalance Side Force
1 - 0.0005 1 - 0.0001 1 - 600
2 - 0.001 2 - 0.0002 2 - 800
3 - 0.0015 3 - 1000
4 - 0.002 4 - 1200
5 - 0.0025



TABLE 2.3

ORBITAL TYPES - SHAFT SPEED OF 2094.4 RADIANS/SECOND (333 HZ)

FREQUENCY
CONTENT(HZ)
RUN I.0, TYPE ORBIT 1° 2° COMMENTS
111 A 333 666 elliptical orbit outside deadband
211 A 333 - elliptical orbit outside deadband
311 A 333 665 elliptical orbit ~ 1/3 inside deadband
411 A 333 - elliptical orbit ~ 2/3 inside deadband
511 B 333 167 orbit within deadband
112 A 333 666 elongated elipse outside deadband
212 A 333 666 elongated elipse outside deadband
312 A 333 - elongated elipse outside deadband
412 A 333 - ellipse passing slightly inside deadband
512 A 333 666 ellipse ~ 1/2 inside deadband
114 A 333 666 ellipse outside deadband
214 A 333 666 ellipse outside deadband
314 A 333 ellipse outside deadband
414 A 333 - ellipse outside deadband
514 A 333 - ellipse outside deadband
121 A 333 666 large ellipse 1/5 inside deadband
221 A 333 666 elliptical orbit ~ 1/3 inside deadband
321 A 333 666 ellipse ~ /2 inside deadband
421 A 333 666 ellipse ~ 2/3 inside deadband
521 8 333 167 orbit totally inside deadband
122 A 333 167 large ellipse passing slightly within
deadband
222 A 333 666 large ellipse passing slightly within
deadband
322 A 333 666 ellipse ~ 1/4 inside deadband
422 A 333 666 ellipse ~ 1/3 inside deadband
522 A 333 666 ellipse ~ 1/2 inside deadband
124 A 333 666 ellipse totally outside deadband
224 A 333 666 ellipse totally outside deadband
344 A 333 666 ellipse totally outside deadband
424 A 333 666 ellipse almost touching deadband
524 A 333 666 ellipse passing slightly within deadband




TABLE 2.4

ORBITAL TYPES - SHAFT SPEED OF 3141.59 RADIANS/SECOND (500 HZ)

FREQUENCY
CONTENT (HZ)
RUN I.D. TYPE ORBIT 1° 2° COMMENTS
111 A 500 ellipse outside deadband
211 A 500 500 ellipise passing slightly inside deadband
311 8 250 500 orbit ~ 1/2 inside deadband
411 8 250 500 large orbit surrounding deadband
511 C 250 - circular orbit about deadband
112 A 500 - ellipse outside deadband
212 A 500 - ellipse outside deadband
312 A 500 - ellipse just touching deadband
412 8 250 500
512 B 250 500 orbit surrounds deadband
114 A 500 - ellipse outside deadband
214 A 500 - ellipse outside deadband
314 A 500 ellipse outside deadband
414 A 500 - ellipse outside deadband
514 A 500 - ellipse outside deadband
121 A 500 1000 large ellipse passing slightly into dead-
band
221 A 500 1000 large ellipse ~ 1/4 inside deadband
321 B8 250 500 overlaps most of deadband
421 c 250 500 encircles most of deadband
521 C 250 500 totally encircles deadband
122 A 500 1000 large ellipse outside deadband
222 A 500 1000 large ellipse passing slightly inside
band
322 A 500 - ellipse ~ 1/5 within deadband
422 B 250 500 encircles most of deadband
522 C 250 500 circular orbit encircling deadband
124 A 500 - ellipse outside deadband
224 A 500 - ellipse outside deadband
344 A 500 - ellipse outside deadband
424 A 500 - ellipse just touching deadband
524 B 250 500 totally surrounds deadband

37



The apparent trend is that with smaller deadbands, the orbits tend to be of type
A and at the synchronous frequency. As the deadband increases, the orbit tran-
sitions to a B-type motion with several frequencies present in the PSD. Finally,
at the larger deadband values, the orbit becomes type C at half synchrounous
frequency. This tendency is illustrated with the PSD plots shown in Figures 2.15
and 2.16. Figure 2.15 shows PSD plots for runs made with no side forces acting
in the system. As the deadband is increased from zero to 0.0025 inches, the
frequency content of the resulting orbit changes from synchronous only to a com-
bination of synchronous and halfsynchronous frequencies, with the half-
synchronous frequency dominating in magnitude. Figure 2.16 illustrates the
point further. These PSD plots were generated from runs made with 600 pounds of
side force acting on the system. Again, as the deadband is increased from zero
to 0.0025 inches, the frequency content of the resulting orbit changes from
synchronous to predominently half-synchronous as the orbit type changes from A
to C-type motion.

For the cases which were run with a shaft speed of 2094.4 radius/second, the
orbits tended to be A-type even for the larger deadbands. The presence of a
side force apparently suppresses a C-type whirl as can be seen by examining
table 4, specifically runs 114 through 514, The higher side force case showed
no B or C type motion for the smaller imbalance term. The effect of whirl
orbits on bearing loads will be discussed in some detail in a later section of
this report.

2.3 LIMIT CYCLE ANALYSIS

Examination of the whirl orbits presented in the plots in the previous section
indicate that for A and C-type orbits, the motion of the rotor is a limit cycle.
A1l four of the system states, r, F, ¢, and ¢ are periodic in time for the A-
type motion. For the case of C-type motion, this periodicity is also readily
apparent for three of the states; however, since the orbit encircles the origin,
the magnitude of the whirl angle, ¢, is always increasing.

To characterize the limit cycle motions present in the rotor system, an algo-
rithm has been developed which will converge to a set of initial conditions for
the four system states which, when input into the simulation, will cause the
system to immediately exhibit the limit cycle behavior. The algorithm has been
implemented in the form of a computer program. The methods it employs to find
these initial conditions are explained below.

The algorithm is based on the fact that the function for which the limit cycle
initial conditions are sought is periodic. That is, the orbit comes back around
to- the- same point once-each..cycle. --The-idea-is to determine _that. such a point
exists and the values of the system states which satisfy this condition.

Given the state equations which describe the system, a solution to the states
may be obtained through integration. The mathematical statement of the problem
is:

b= f (p.t) (2.34)
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the solution to which is

p(t) =pp +[L £ (p,r)de (2.35)
where p, is some initial state. It is desired to determine the p, such that
p(t) =pp fort =T (2.36)
2n
where T = - (2.37)
w

the period of the function. In other words, we wish to determine p; so that the
integral in Equation 2.34 is zero. The problem may be restated as

B(T) =po +g(p) - (2.38)
If g(p) can be driven to zero, then p(T) = p, . (2.39)
The function g(p) may be approximated to lst order by

3
g(p) =g (po) + = - 4p (2.39)
p Po

where Ap is some incremental change in the state vector p. This is the quantity
to be determined. It will be added to the original state vector. Because we
wish g(p) to be zero, Equation 2.39 is rewritten as

0=g(po) +1- (p - po) (2.40)
where

Ap =P - Pp (2.41)
and J is the Jacobian of g(p). The solution for ap is

ap = J3-1 (-g(po)) - (2.42)

The way the computer implementation of the algorithm works is that an initial
state vector py is input to the routine. Using the same integration scheme as
that used in the rotor model simulation, the value of the state vector at time
t = T is determined. The value of g(pg) is then determined by

9: (Eo) =_R (T) - Po - (2;43)

Numerically, the partial derivative of the function g (p) may be approximated by
3g g (poi +8ei) - g (poi)
Ipj §

(2.44)

m
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where 6§ is some very small increment in the ith state and ej is the unit vector
in the direction of the ith state. The Jacobian for 3.(é} may thus be deter-
mined using this approximation for the partial derivatives. Once this matrix is
formed, it is numerically inverted and multiplied by the negative of the viaue
of g (po) to obtain ap. At this point a new set of initial states is formed as

Bﬂnew = Poold * A.E. * (2'45)

The process is iterated until the values Ap and g (p) are within a specified
tolerance. Once this occurs, the resulting state values are the initial con-
ditions needed for the system to exhibit a limit cycle response.

Theoretically, if a limit cycle exists in the system, the algorithm described
above should easily converge to the desired initial conditions. However, as
with many numerical techniques, computational difficulties often arise. If the
Jacobian matrix ever becomes singular, then the numerical method used to find
the inverse does not work and the results from that point on are erroneous. To
avoid this situation, logic checks are written into the code to prevent the
Jacobian from becoming singular. Whenever this situation is detected, the state
vector is reset and the process is restarted with the new state vector as input.
It has been discovered that for this technique if the Jacobian continuously
becomes singular, even after resetting the initial state vector, then converg-
ence to the desired state will not be obtained and the algorithm is indeed
diverging, and there is no solution.

For orbits which are C-type, another modification to the algorithm is required.
Because the whirl angle, ¢, is not periodic but increasing with time, this
method left unmodified will not converge to a solution. To force ¢ to appear to
be periodic, the value 2r is subtracted from the ¢ component of the state vector
value at time t = T. This procedure will, in fact, allow the algorithm to con-
verge to a solution to the C-type orbit initial conditions.

The algorithm has been thoroughly evaluated and found to converge to both A and
C-type orbit initial conditions relatively quickly. Shown in Figure 2.17a is a
plot of the orbit obtained in run 521 with a shaft speed of 333 Hz including all
the transients. In Figure 2.17b is the plot of the resulting orbit obtained
when the initial conditions from the convergence algorithm are input into the
simulation. This demonstrates that, indeed, an initial state vector which imme-
diately produces the limit cycle response has been determined. The PSD of the
orbit 1is shown in Figure 2.17c. Another example of convergence to an A-type
limit cycle is presented in Figure 2.18. Again the plot in 2.18a is the orbit
including the transients when the rotor is started from the rest position. Fig-
.ures 2,18b and 2.18c are the limit cycle orbits and the PSD plot respectively.
The shaft speed for this case is 500 Hz.

Convergence to a C-type orbit is shown by the plots presented in Figure 2.19.
This orbit is at the half-synchronous frequency of 250 Hz. This also must be
taken into account when the convergence algorithm is used to determine an ini-
tial state vector because the procedure is quite sensitive to the period of the
signal. Obviously, if the orbital frequency is 250 Hz, corresponding to a
period of 0.004 seconds, if the period is input as 0.002, corresponding to an
orbital frequency of 500 Hz, the algorithm will not converge. The point may
seem trivial; however, its importance must be realized.
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Convergence to a synchronous C-type orbit is also obtained with the algorithm.
This type of orbit typically occurs when there is no side force present in the
system and the imbalance is driving the whirl. Figure 2.20a is the plot of the
orbit including the transients. Figure 2.20b is the resulting orbit when the
initial condition state vector obtained with the convergence algorithm is used
with the rotor simulation. Again, Figure 2.20c is the plot of the PSD. Given
below in Table 2.5 are the initial condition state vectors for the cases whose
plots are presented along with the number of iterations needed for the algorithm
to converge to these states.

TABLE 2.5
INITIAL CONDITION STATE VECTORS FOR THE EXAMPLES CITED
, . NO.OF
RUN r r 6 3 ITERATIONS
521  1.8299695 E-3 0.2991794 -2.263848  -271.5819 _ 31
524  2.3821953 E-3  -0.5019839 0.8767700  -275.0212 13
511  3.3850251 E-3 1.564779 -1.098406  1508.773 6
c6 2.3077310 E-4 3.2498761 E-7 5.165721  1256.725 3
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3.0 STABILITY ANALYSIS

An in-depth investigation into the stability properties of the simple rotor
system has been conducted. The stability analysis is performed in a stepwise
progression, beginning with a study of the system in its simplest form and gra-
dually increasing its complexity until all the parameters are included: Of par-
ticular interest 1is the frequency of instability. Therefore, stability
boundaries have been established with respect to frequency as the system parame-
ters are added and varied.

3.1 SIMPLE CASE

The simplest form of the rotor model from which meaningful information may be
extracted from its analysis is that in which the deadband, rotor eccentricity,
and side forces are all set equal to zero. From this analysis is obtained the
global stability boundary, a concept which is further developed in later sec-
tions of this document. The equations of motion, in polar coordinates, for the
a rotor model are

F 2 P e = —rd +rp (3.1)
m m m

. Qs CS . CQ r 2ré

fem = b t— = - — (3.2)
m m m r r

with the seal and bearing stiffnesses are lumped into K. The system described
is nonlinear, and, therefore must be linearized in order to determine stability.
Small perterbation analysis is employed to perform the linearization. The
following definitions are made:

r=or 4 b =85 + o
r=8r ) ¢ = 8% (3.3)
¥ o=6F

where rg and &o define an equilibrium point and the § quantities are the perter-
bation terms. The perterbation equations are

X Cs c

§F = —— (87 + rg) - — §F - — (8F + ro)(8h + ho) + (67 + ro)(8h + ¢o)°
. . . 3.4)

Qs Cs . cq sr 26F (66 + ¢0)

8§ = — - — (86 * bo) +— - (3.5)
m m m (6r + ro) (6r + ro)

By setting the perterbation terms to zero, the equilibrium points of the system
are determined. An equilibrium point is

ro =0 and b0 = — - (3.6)
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Equations 3.4 and 3.5 are expanded about using the above equilibrium point. Dis-
regarding all terms of order two or greater, the expressions describing the
system become

- . K Cq ., Cs
§r = (¢g° == - — ¢g) 6r - —&r (3.7)
m m m
and
Cq
Q= ( _ - 2 ¢O) sr. (3'8)

m

The characteristic equation is obtained using the Laplace transform and Equation
3.7. The equation is

2 CS K CQ . .
S+ — s +— + — ¢g - ¢g
m m m

2= (3.9)

The stability boundary is easily determined by simply finding the first fre-
quency at which a positive root to Equation 3.9 is obtained. Using the parame-
ters given in Section 2.2, the frequency of instability is 4848.10 radians per
second, or 771.6 Hertz.

The fluid angular velocity is approximately one-half that of the shaft. For the
turbopump seals, the following relationship exists:

. Qs w

_. (3.10)
Cs 2

-
o
[
1}

The natural frequency of the system is determined, assuming the shaft speed is
zero, from Equation 3.9 to be

K
wo = —— = 2424.05 (3.11)
m

for the values of K and m under consideration. Note that this is one half the
value of the instability frequency, as is expected. Results obtained with the
rotor simulation are in agreement with the results presented above. The plots
. _Figure 3.1-are indicative .of -the orbits obtained-for frequencies below 4848.10
radians per second with Figure 3.2 depicting the general result for frequencies
above the stability boundary. Plotted are the whirl orbit, the x and y compon-
ents of the orbit with time, the magnitude of the shaft displacement vector, r,
as a function of time, and the PSD of the x and y components along with that of
r, in the a, b, ¢ and d parts of the figures, respectively.

3.2 NONLINEAR CASE - DEADBAND

The next logical step in the stability study is to analyze the effect of adding
a deadband to the system. The general response of the simple system with a
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deadband present is to whirl with a C-type motion at sub-synchronous speed with

the whirl radius remaining constant.
system are, in polar coordinates,

The differential equations describing the

. _ K8 Ks Cs Cq
r = —(r-g) u(r-g) -— r-— r - —r¢ +rp
m m m m
e QS CS . CQ f: Zf.'&
$ T— - — ¢ ¢+ -
m m m r r
where
1 forr>g
u(r-g) =
0 forr<g

(3.12)

(3.13)

(3.14)

The equilibrium whirl orbit radius, ro and the whirl angular rate $o are now

determined.
and ¢ is constant,

able to determine rq and égq.

3.13, to be
Qs Cs .
0=— - —9p
m m
or
. Qs
bo = — .
Cs

Using expression 3.16 with Equation 3.12, ro is determined:

-(Kg + Ks)

0s———————or+—g -

m

Kg Cq Qs

052

m mCs

Solving for r, which is ry, we obtain

2
e K CsEg —

r
Cs?

fg =

2 (Kg + Kg) + Cq Qs Cs - Qs* m

In order for the system to be in equilibrium, f is equal to zero
Imposing these conditions on the above equations, we are
First, the value of $o is determined from Equation

(3.15)

(3.16)

(3.17)

We may now go to the simulation to compare these results with those of the
program. Again, the parameter values indicated in Table 2.1 are used for various
Keep in mind that no imbalance or side forces are under
consideration, only the presence of a deadband in the simple rotor system. A
table has been constructed which contains the comparison data for the analytical
The second and third columns in Table 3.1

values of deadband.

and numerical solutions to ry and ¢g.
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are the analytical and numerical values acquired, respectively. The remaining
two columns are values of ¢o for the five different values of deadband con-
sidered. The shaft spin rate for this set of runs is 3141.59 radians/second
(500 Hertz).

TABLE 3.1
COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS FOR ry AND ¢

DEADBAND ANALYTICAL NUMERICAL ANALYTICAL  NUMERICAL
VALUE ro (in) ro (in) ¢o (rad/sec) ¢q (rad/sec)
0.5 x 10-3 6.5881 x 10-4 6.5881 x 10-4 1570.795 1570.789
1.0 x 10-3 | 1.3176 x 10-3 | 1.3176 x 10-3 1570.795 1570.789
1.5 x 10-3 | 1.9764 x 10-3 | 1.9764 x 10-3 1670.795 1570.788
2.0 x 10-3 | 2.6353 x 10-3 | 2.6352 x 10-3 1570.795 1570.789
2.5 x 10-3 | 3.2941 x 10-3 | 3.2941 x 10-3 1670.795 1570.790

Examination of Table 3.1 reveals that there ‘is extremely good agreement between
the simulation and the theoretical results with regard to the equilibrium con-
ditions. For the sake of illustration, the plots in Figure 3.3 have been
included. The figures are numbered using the same convention as those in Figures
3.1 and 3.2. The majority of the orbital plots to follow in this document will
be presented in this format.

With the equilibrium conditions firmly established, the stability properties of
the system may now be assessed. Because we know the conditions of equilibrium,
a linear form of the system is studied to determine the stability properties
about ry and 4. Recall that when the rotor model is described in cartesian
coordinates, the only non-linearity is the deadband. However, the deadband
appears in the expression for r, and the system stability is to be examined
about rqy; therefore, the deadband need not be considered in the equations. It
is inherent in the analysis.

Equations 3.19 and 3.20 will be considered as describing the system in equilib-
rium and are presented below.

.. =(Kg + Ks) Cs . Qs € . - . . i
y D ——— y - __y - e~ 2 @ am— 2 (3.19)
m m m m
. -(Kg + Ks) Cs . Qs Cq
ZFe—— - —Z+ .y +-—S/ (3.20)
m m m m
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With the unit vectors ey and ey defined as indicated in Figure 3.4, the
following definitions are made for the perterbations.

y =6r Z =rqg 8¢
y =6&r z =66 (3.21)
y =6F z =6

Equations 3.19 and 3.20 become, therefore

. -(Kg + Ks) Cs Qs Cq .
§F = e - — 6F - —r06¢-—06¢ (3.22)
m m m m
. =(Kg + Ks) G . G Cq .
8 = e rp 8¢ - — 8¢ + — OF + — §F . (3.23)
m m m m

The approach taken to determine stability is to first cast the two differential
equations into a state variable form, with four differential equations
resulting. Using state variable analysis techniques, the system is expressed in
the form

x = [Alx (3.24)

where [A] is the system matrix. From such a formulation, the characteristic
equation is easily determined by taking the determinant of the matrix [sI - Al,
where s is the Laplace tranform variable, and [I] is the identity matrix. The
following state variables are assigned to the perterbations:

X] =6r X3 =8¢

* - (3025)
X2 =6r X4 = 6¢

The state variable formulation is
X] = x2
. K Cs st'o CQ
X2 = = —— x] - x2 - X3 - X4
m m m m

%3 = x4 ‘
. Qs CQ Kl'o Cs
X4 = X] + x2 - X3 - X4

m m m m (3.26)

where K = Kg + Kg. The resulting system matrix is
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Figure 3.4 Unit Vector Definition.
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B 0 1 0 0 |
K Cs Qsro Cq
i _l;l— i m ) m i m
[A] = 0 0 0 1 . (3.27)
Qs Cq Ko Cs
m m ) m i m

] -1 0 0
K Cs Qs o CQ
—— s +
m m m m
P(s) = det[sl - A]= 0 0 s -1 (3.28)
Qs CQ Kf‘o CS
- - s +
m m m m

or, performing the indicated operation,

2 2
2Cg Cs™ + Cy” + mK(rg + 1)
P(s) = &y 3 4 Q ' 0 §2
m m
(QsCq + CsK)(rg + 1) (Qs? + K)ro
+ . s + : - (3.29)
m m?

The stability boundary for the system may now be established via determination
of the first frequency at which the above equation has a positive root. Recall
that the values of both Cg and Qg are dependent upon the shaft angular velocity.
By varying these two parameters and examining the roots of the above equation,
the instability frequency is determined. It turns out that this frequency is
not dependent upon rg and has been determined to be: « = 5047.93 radians/sec
(803.4 Hertz).
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Apparently, the addition of the deadband enhances the local stability of the
system. That is, the stability of the system with regard to the equilibrium
conditions stated. Verification of the stability boundary may be achieved by
examination of the resulting orbits obtained when the simulation is executed for
shaft speed at or above 5047.93 radians/second. The orbit plotted in figure 3.5
is the result from the simulation executed with a shaft speed of 4800 radians/
second (76% Hertz). Program output indicates that an equilibrium radius of
8.355 x 10-° inches is approached with the value of ¢ being 2400.0 radians/sec-
ond. The system is stable. When the simulation is executed at a shaft speed of
5040 (802 Hertz), the system is still stable, approaching an equilibrium radius
of 0.23 inches, as indicated by the plot in Figure 3.6. Only the magnitude of
the radius vector is shown for this run. Even though the system is stable in
the analysis the bearing loads would obviously be intolerable for such a large
orbit radius. Instability results at a shaft spin rate of 5047.93 radians/sec-
ond, as predicted in the analysis. The resulting whirl orbit for this case is
plotted in Figure 3.7. The character of orbits generated at frequencies above
5047.93 radians per second is not unlike the one shown in Figure 3.8. The
program is executed with a shaft angular velocity of 5500 radians/second (875
Hertz) to produce these results.

It is interesting to note that when the stability analysis is performed for this
particular configuration in polar coordinates, the resulting characteristic
equation is third order, rather than fourth order. Briefly, we begin with
Equations 3.12 and 3.13 and use small perturbation analysis with the variable
assignments listed below.

r=6r+ry ¢ =8¢ + ot
F e o i =85 + o (3.30)
Fa=6i~0 $.=6$.

Note, however, that nowhere in equations 3.12 or 3.13 appears the variable 4.
Therefore the only state assignments necessary are the ones for &ér, 6 and &é.
The equilibrium conditions are obtained by setting the perturbations to zero,
with the results identical to the expressions for ¢o and ro given in equations
3.16 and 3.18, respectively. The perturbation equations are

. -(Kg + Kg) Cq . . Cs . . ¢ .
ér = - Q o + ¢°2 §r - sr + [2¢oro - 2 ro] S¢
m m m m
-Keg - (Kg-+ Ks)rq.-- Cqrodo .- :
+ “ + Fobo> (3.31)
m
. Qs - Cs ¢0 g . Cs . Qs - Cséo
§¢ = sr + ér - 8¢ + @— (3.32)
mro rom m m
Let
X] =6r
x2 = Gf.‘ (3.33)
x3 = 66
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The state equations are

X] = X2
. « 2 -
. -(Kg + Ks) - Cqobo + Mo Cs 2npory - Cqro
Xp = X] - — x2 + X3
m m m
(3.34)

. Qs - Cséo Cq Cs
X3 =  ————— X] # = X2 = — X3

m ry mro m

Following a procedure identical to that described in the above paragraphs, the
system matrix is formed from which we obtain the system characteristic equation,

denoted Pp(s).

, Xs , Cs> + C* - 2mpoCq + m(Kg + Ks + Cgho - Mho’)
Pp(s) = s +—s" + > s
m m
) ., (3.35)
. Cs [(Kg + Ks) + Cqbo - Mbo ]
2
m

The absence of the variable ¢ from the expressions in polar coordinates reduces
the system order to three. Subsequent examination of the characteristic equation
in 3.35 indicates the instability frequency is 5047.93, further verifying the
analysis done thus far.

3.3 NONLINEAR SYSTEM WITH IMBALANCE

The next step in the analysis is to consider the system with a deadband and an
imbalance force driving the whirl. As before, an equilibrium radius may be
determined. Figure 3.9 is the force diagram that is used to determine the value
of ro. The conditions for equilibrium are that the forces in the radial direc-
tion must sum to zero, as well as those in the tangential direction, leaving
only the shaft spin rate to drive a synchronous C-type whirl with constant
radius. The equations for the radial and tangential forces are given in
Equations 3.36 and 3.37, respectively.

(Kr - Kgg) + CQur -m mzer -mulr =0 (3.36)

Qsr - Csur + muZey = 0 N ' (3.37)
Note that K = Kg + Kg, Because

€Ep =€ COS uwt (3.38)
and .

€4 =¢ Sinwt, (3.39)
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[ =gr +£¢2 . (3040)
From Equation 3.36,

K+Cew) - 2 -
.. - C( Qm)zmwlr 89 (3.41)

Likewise, Equation 3.37 may be solved for ¢,

(QS - Csu.)r
co = - ) (3.42)
m

When Equations 3.41 and 3.42 are squared and inserted into Equation 3.40, a
quadratic in r is produced.

[(K+CQu =m uz)z + (Qs - Csu.)z]r2 -2Kpg [K + CQu ~m mzlr
2.2 2 24 (3.43)
+ [Kg“g" - e"mw ] =0

We make use of the quadratic formula at this point to acquire the roots to the
above equation.

Kgg (K + CQa - ma?) ¢ '\/ a'nte® [(K+ Cqu - ma?)? ¢ (Qs - )2 Rag? (0 - ce)?)
((kecq o -me®)? + (G - Csn)?)

f1,2"
(3.44)

In order for an equilibrium radius to exist, there must be a positive real solu-
tion for r. Close scrutiny of Equation 3.44, particularly the radical term,
along with some knowledge of the relative magnitudes of the parameters involved,
reveals that the solutions for r will always be real; however, they need not
always be positive. In the absence of deadband, except at zero frequency, there
is always a positive solution for r for any positive value of e. Shown in
Figure 3.10 is a plot of an orbit resulting from a simulation executed with a
Zero dead-band. Note from the PSD that this is a synchronous whirl.

However, for non-zero values of g, there are combinations of values of ¢ and ¢
for which there is no positive solution to ro. The relationship which must hold
- between € and g for an equilibrium radius to exist is - -

2
g m a
- £
€ Kg

. (3.45)

This relationship is dictated by Equation 3.44. As indicated earlier, the range
of values of interest in this study are from 0.5 mils to 2.5 mils for the dead-
band and from 0.1 to 0.2 mils for the rotor eccentricity. Therefore, the mini-
mum frequency at which an ry will exist is 3498.8 radians per second, a fre-
quency greater than the norma! operating speed of 3141.59 radians/second used in
most of the runs executed in our analysis. The curves shown in Figure 3.11
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indicate the equilibrium orbit radii as a function of frequency for the dead-
bands and imbalances indicated above. The whirl radii are much less than that
of the deadband; therefore, no bearing load results. The requencies at which
these exist, however, are much above the stability boundary.

For our studies, what happens with regard to the orbits seen when the simulation
is executed at the normal operating speed is that a variety of B and C-type mo-
tions are present. In many cases, subsynchronous C-type limit cycles are seen.
Figures 3.12 and 3.13 show B-type orbits with Figure 3.14 depicting a subsnych-
ronous C-type motion. The orbit in Figure 3.14 is not an equilibrium whirl, it
is a tiny bit offset from the center.

Analysis of the stability properties of this system is carried out in a manner
quite similar to that in the previous section. We wish to linearize about the
equilibrium radius and determine the stability boundary. Again, we chose to use
the cartesian coordinates formulation. Refer back to Figure 3.4 to refresh your
memory on the definitions of the unit vectors ey and ey. The differential
equations are

o -K cs QS c *

y=-y-—9-—z-—Qz+u,2ec05u.t (3.46)
m m m m

. K Cs, G c

Z= -2+ —24+ —y+ —9-9+u.2es1'nu.t (3.47)
m m m m

Inspection of the above reveals that the only difference between these differen-
tial equations and Equations 3.19 and 3.20 is the addition of the shaft eccen-
tricity term. No system state variable appears in this term, therefore it acts
only as a forcing function and has no effect on the characteristic equation for
the system. Hence, the stability properties of the rotor model with deadband
and imbalance are the same as those for the model with only deadband included.
That is, with regard to the stability boundary.

3.4 SIDE FORCE CONSIDERATIONS.

When a side force is included in the system analysis, we must rethink the way
the investigation is conducted. We cannot simply add the side force term into
the equations derived thus far because the behavior of the system changes. In
addition to that consideration, adding the side force term to the equations des-
__ cribing the model in Section 3.3 makes for a rather difficult time when analysis
is attempted. A look back at Equations 2.13 and 2.14 should make this assertion
obvious. Transcendental equations result when an effort is made to determine
the equilibrium conditions. The approach, therefore, will be to consider the
simple model and include the effects of deadband and side forces, temporarily

omitting the imbalance considerations.

Under the influence of a side force, the rotor shifts to a position of equilib-
rium, a single point rather than an orbit, that is, with no imbalance present.
The effect of an imbalance term, in general, is that the rotor whirls about the
new equilibrium point. The position of the equilibrium point is dependent upon
the magnitude of the side force, the deadband, and the stiffness coefficients.
The position of the equilibrium point, with respect to the deadband, determines
the type of orbit in which the rotor will whirl.
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Let's begin the analysis by examining the vector force diagram presented in
Figure 3.15. These vectors are not exactly to scale as far as the indicated
magnitudes are concerned. The two parameters defining the equilibrium point are
ro and ¢o. ro is the magnitude of the displacement of the rotor center from the
central position with ¢4 defining the angle made by ry with the horizontal axis.
If the rotor is stationary in the position defined by ry and ¢4, then the forces
in the radial and transverse directions must both sum to zero. Because they
have been balanced by the side force, force terms arising due to the spin of the
shaft have no influence on the equilibrium point. Two equations are written by
inspection from Figure 3.15,

Kg (ro - 9) + Ks rg = Fs cos ¢q (3.48)
QS Fo = Fs sin bo (3.49)
where Fg is used to denote the side force magnitude. If we define the variable
Fr to be the side force acting radially and F% to be the side force acting tan-

gentially, then the following expression may be used to combine Equations 3.48
and 3.49 and allow for direct solution of rg.

FeZ = F2 + F¢2 (3.50)
Hence,

[(Kg + Ks)ro - Kggl" + Qs” ro® = Fs? (3.51)
or,

[(Kg + Ks)? + Qs®Ire” - 2(Kg + Ks)Kgg ro + (Kg®d® - Fs’] = 0 . (3.52)

The solutions for ry are

(Kg + Kg)Kgg ¢ '\[FSZE(KB + Kg)2 + QSZ] - QSZ ng g2
Fo = _ 2 2
(Kg + Kg)™ + Qs

Close inspection of the term under the radical indicates that for a zero dead-
band, any positive value of Fg will yield a positive real solution for ro. The
presence of a deadband imposes another constraint on the conditions used in the
evaluation of rq. If the magnitude of the side force is insufficient to push
the rotor out to the deadband, that is, it cannot overcome the seal stiffness
forces, then the bearing stiffness plays no role in determining ro. The minimum
side force required to move the rotor out to the deadband can be easily obtained
by setting ro = g and Kg = 0 in Equation 3.51. That value of Fg, referred to
henceforth, as FgMqIN is

(3.53)

FSMIN = \/ (Ks® + Qs%)g® - (3.54)

For any value of side force less than FSMIN, the value of ro is the positive
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Figure 3.15 Force Diagram Used to Determine the Equilibrium Point.
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solution to Equation 3.53 with Kg set to zero. Therefore, any positive value of
side force will yield a positive real solution to r,, provided the conditions
outlined above regarding FgqN are adhered to.

The value of the angle ¢,may be acquired most easily from Equation 3.49 once the
value of ry has been computed. The equilibrium point is now completely defined.
To confirm that our equations defining the equilibrium point are correct, the
simulation is used with the results compared to the values of rqy and ¢,computed
using Equations 3.53 and 3.49. The comparisons are presented in Table 3.1. The
simulation has been executed using four different side force values for each of
the five deadband values under consideration. Notice that in some instances,
two positive solutions for r, exist, one located inside the deadband and one
outside. The system tends toward the equilibrium point outside the deadband.
This response is due to the fact that the side force is greater than Fgyiy and,
therefore, will displace the rotor to an equilibrium point outside the deadband.

TABLE 3.1
Comparison of Analytical & Numerical Equilibrium Point Values

ROOTS TO EQUATION 3.53  ANALYTICAL NUMERICAL  ANALYTICAL NUMERICAL
RUN#]| r1 (mils) | r2 (mils) ro (mils) ro (mils) ¢o(rad) $o(rad)
101 0.862744 -0.082863 0.8672744 0.8672744 0.468705 0.468705
102 1.026741 -0.246860 1.026741 1.026741 0.415011 0.415011
103 1.189615 -0.409734 1.189615 1.189615 0.383025 0.383025
104 1.351936 -0.572055 1.351936 1.351936 0.361776 0.361776
201 1.218376 0.341386 1.218376 1.218376 0.691820 0.691820
202 1.391641 0.168121 1.391641 1.391641 0.578174 0.578174
203 1.559762 0.0 1.559762 1.559762 0.512105 0.512104
204 1.725487 -0.164802 1.725487 1.725487 0.468704 0.468704
301 1.544214 0.795428 1.544214 1.544215 0.941681 0.941680
302 1.737397 0.602245 1.737397 1.737398 0.750868 0.750868
303 1.915547 0.424095 1.915547 1.915547 0.645736 0.645735
304 2.087461 0.252181 2.087461 2.087462 0.578174 0.578174
401 0.788707 -0.164802 * UNSTABLE CONFIGURATION
402 2.058953 1.060571 2.058953 2.058952 0.941681 0.941681
403 2.254956 0.864668 2.254856 2.254856 0.787205 0.787205
404 2.436752 0.682771 2.436752 2.436753 0.691820 0.691820
501 0.822743 -0.082867 * C-TYPE ORBIT
502 1.066741 -0.246860 * C-TYPE ORBIT
503 2.573691 1.325714 2.573691 2.573691 0.941680 0.941684
504 | _2.771480 -1..125925 2.771480 2.771480 0.811864 0.811864

* Indicates no equilibrium point outside the deadband.

501, and 502, no equilibrium points exist outside the
deadband because the side force is less than FsmiN. The simulation results for
cases 501 and 502 were C-type motions which are subsynchronous. This is
generally the type of behavior that is observed when r, is inside the deadband,
in the absence of imbalance forces. Case 401 is an unstable case, a point that

For case.numbersl 401,

' The numbering convention explained in the previous chapter is employed here.
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will be explained later. For illustrative purposes, the orbits for cases 501
and 502 are presented in figures 3.16 and 3.17, respectively. Figure 3.18 is a
plot of a typical system response as the rotor is displaced to its equilibrium
point from the rest position.

With the equilibrium points well in hand, we may now proceed. A slightly dif-
ferent approach is taken in the exploration of the stability properties of the

rotor model with a side force acting. Recall the vector equation which descri-
bes the system. It is repeated here, with the imbalance term omitted.

mt = -Kg(r - g) u (r - g) ep -Ksrep + Qsex x req - CsF + Cgex x (3.55)

We make the following definitions for r and ey,

r=rg+§ (3.56)
r=ry+8y (3.57)
er =&, *éer (3.58)

where ro is the equilibrium position vector, e is the unit vector in the
direction of ry, and § and 6er are the perturbations associated with r and ep,

respectively, The radial component of r with its perturbation is Equation 3.57.
Another way to express ep is

fo +§ To S To ro
g-r = = + - ———_2 . _6__ + se e (3.59)
|ro 8| |rol | o | | rol
which may also be expressed as:
6z
er =ep, * ep o (3.60)
Fo

We now examine the nonlinear deadband term in equation 3.55. In the small and
to a first order approximation,

-Kg (r -9) u(r-9)er= -Kg (rg - g +6y)(er, +
(3.61)
(ro - 9)
= -Kgroero + Kgger, - Kdyer, - KB —————— 828y
Fo
with 8y and §; having the same definition as in previous sections. It follows,

therefore, that in terms of the perturbation variables, the system may be
expressed in the following form:
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7 T
. y | Ks + Kg Q 8y
v -Q Ks + Kg (1 - go )
8§z 62z
[ 1 .77
- . (3.62)
-Cs Cs §z
| I N
Where g = — .

Fo

The effects of side forces are now inherent in the formulation. Stability may
be assessed through examination of equation 3.62. State assignments for the
perturbation variables are given below.

X1 =8y x3 =6z

X2 =5y X4 62 (3.63)

Rewriting 3.62 in state varible format yields the following differential
equations.

X] = X2
. K Cs Qs Cq
Xp = - —x - ———x2 - x3 - x4
m m m m
X3 = x4
i Qs Cq Ks + Kg (1 - go ) Cs
X4 = x] + x2 - x3 - X4 (3.64)
m m m m

The sum Kg + Kg has been replaced by K for simplicity's sake. The system matrix
is formed as before from which the characteristic equation is derived by solving
the determinant of [sI - A].
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s -1 0 0
K Cs Qs C
det [sI - A] = | — s + ¢
m m m m
0 0 S 1
Cs
-Qs -Cq Ks+Kg (1 - go) s +
_ m
m m m
(3.65)

The characteristic equation, P(s) is

2
4 2s Cs" +kn cq® + m{Ks+Kg(1- go )]+KCs+mCqQs
P(S) = § 4 s” + —_— S + > S
m m m

CqQs + Qs? + [Ks + Kg(1 - go )] Cs + Qs* + K [Ks + K(l - gg )

m2

(3.66)

The stability properties of the system may now be determined by examining the
roots of equation 3.66. The goal is to establish the stability boundary for the
system as a function of side force for various deadbands. That is, to determine
the frequency at which the system goes unstable as the side force is varied for
a given deadband. The initial attempts to establish the stability boundaries
were not successful due to an anomoly in the method used. The idea was to exa-
mine the Routh-Herwitz criteria. However, because this method is an iterative
procedure, numerical errors due to truncation and roundoff which are made early
in the process of generating the array tend to propogate and become greatly amp-
lified rather quickly. Misleading results are obtained. It turns out that at-
tempts to root the polynomial using numerical methods lead to erroneous results
“as well. Because the roots of the equations are complex with the values of the
imaginary parts quite near equal, computational difficulties arise when standard
rooting algorithms are used. Therefore, an analytical approach is used.

Inspection of the form of the system matrix reveals that it may be rewritten in
the form presented here. The term Cq has been omitted to simplify the analysis.
This is justified because of the relative magnitude of this parameter; it is
small compared to the others. 1Its ommission has no apparent effect on the ana-
lysis.
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, s Ks + Kg Qs
s° o+ S + ———— :
m m m
P(s) = det
= Qs , s Ks + Kg (1 - go)
s< + s +
m m m

(3.67)
We make the following definitions:
Ks + KB
= K+4 (3.68)
m
Ks + Kg (1- go)
= K -A. (3-69)
m
The solutions for K and A are easily determined to be
Ks + Kg Kgg
K= ——— - (3.70)
m 2mr g
KBg
A = ——— (3.71)
Zml‘o

Using the expressions in equations 3.68 and 3.69 the characteristic equation
determinant becomes

2 CS Q
s + s +K+aA —_—
m m
- Q 2 CS
—_— T + s + K -A
m m

(3.72)
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with the resulting characteristic equation

Cs Cs
P(s) = [ s* + s +K+a] [s?+ s +K-a]+ (3.73)
m m .
or
2 2
CS QS CS QS
P(s) = [s2 + s+ K+ a%- ] [2 + —— s + K - a? - ]
2
m m m m
(3.74)

We now have the characteristic equation neatly expressed as the product of two
quadratics in s. Extracting the roots is now a simple matter. The expressions
are readily rooted and the stability boundaries determined via numerical meth-
ods. A computer program has been generated whose function is to compute the
equilibrium position as a function of the deadband and side force. This value
is then used with the other parameters to determine the roots of the character-
istic equation. The real parts of the roots are examined. The value of shaft
spin rate that first produces a positive real part of a root is declared to be
the stability boundary. This process is iterated for values of side force up to
4000 pounds for each deadband considered. The deadbands used are 0.0, 0.5, 1.0,
1.5, 2.0, and 2.5 mils.

The stability boundaries established are plotted in figure 3.19. Several inter-
esting facts are observed when this figure is examined. The stability boundary
for a deadband of zero is a constant 4848 radians/second, the dashed curve in
Figure 3.19. This is the same stability boundary established for the simple
form of the system examined in section 3.1. This frequency is considered to be
the global stability boundary. That is, the system is globally unstable when
run at frequencies higher than this value. Local stability, or stability in
the small, may be ehnanced by other factors.

Let's take a moment to examine what's going on within the system at various
points along the stability boundaries. For our system, when the side force
magnitude is insufficient to push the rotor out to the deadband, i.e. the side
force is less than Fgqry, then the stability boundary is constant at 1979.2
radians per second. This frequency is apparently independent of the size of the
deadband. What does depend on the deadband is the side force value required to
get the rotor out to the deadband. The larger deadbands require larger side
forces. o
At that point, the stability boundary begins to increase significantly to a
maximum. Along this portion of the curve, the instability frequency is that one
at which the applied side force is just equal to FgMiN, and the equilibrium
point, r,, is equal to the magnitude of the deadband. The maximum frequency of
instabil?ty is the one where the side force is of sufficient magnitude to just
push the rotor center slightly outside of the deadband area. This frequency is
approximately 6200 radians/second. At this point, the instability curve begins
a decay, and asymptotically approaches the global stability boundary. On this
portion of the curve, the values of side force are such that the equilibrium
point is always outside the deadband.
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Recall that case 401 was referred to in Table 3.1 as being unstable. This case
is executed at a frequency of 3141.59 radians/second with a side force of 600
pounds, and a deadband of 2.0 mils. Examination of the stability boundary plot
for this value of deadband clearly indicates that this case is outside the boun-
dary.

Notice, in Figure 3.19, that all five of the non-zero deadband stability curves
are very similar in their general character. The maxima appear at approximately
the same spin frequency as do their minima. We have shown that these curves do,
indeed, collapse into a single curve when the system is nondimensionalized. To
accomplish this, the units of displacement, force, and time are modified in such
a way that the system parameters become unitless. The following table sum-
marizes the way in which the various units are expressed.

Table 3.2
NONDIMENSIONALIZATION
STANDARD NONDIMENSIONALIZED NEW UNIT
SYSTEM UNIT SYSTEM DESCIPTION
inches displacement g deadband
pounds force Ksg seal stiffness x g
m
seconds time —_— system natural
Ks + KB frequency

Figure 3.20 is a plot of the stability boundary for the normalized system. With
this curve and the given conversion factors, one may determine the stability
boundary for any deadband value.

Validation and sensitivity studies have been conducted on the established stabi-
lity boundaries. Four test points were chosen in different positions along the
curves. These test points are marked on Figure 3.19. The points were chosen in
such a way that each portion of the curves may be examined.

Test point one is selected on the 0.5 mil deadband curve on the portion which is
decaying from the maximum. The frequency considered is 5536 radians/second

(881.1 Hz) and the side force value is 460 pounds. Test point two is chosen on
the 1.0 mil deadband curve in the segment where the curve is near the global
stability boundary. The spin frequency at this point is 4774.6 radians/second
(760 Hz) with a side force of 3450 pounds. The third test point is picked at a
peak value, that of the 1.5 mil deadband curve. The shaft spin rate is 6219.7
radians/second (990 Hz) with a side force value of 980 pounds. The fourth and
final test point is located on the 2.5 mil deadband boundary on that part of the
curve where the side force just equals FgqiN and the equilibrium point is on the
deadband. The frequency at this point is 2896.6 radians/second (461 Hz) with a
side force of 880 pounds acting.
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Verification of the boundaries is performed by executing the simulation with the
initial conditions at the four points described being the equilibrium points
with no additional forces acting, other that those defined above. In all four
cases, the result of the program execution is that the rotor center remains at
the equilibrium point and is stable.

To determine their sensitivity to disturbances, two experiments are performed at
the test points. First, the shaft spin frequency 1is increased, leaving all
other parameters unchanged, until the system goes unstable. Second, imbalance
is introduced, leaving the frequency unchanged. Tabulated below in table 3.3
are the summarized results of the study.

TABLE 3.3. Stability Boundary Sensitivity Study
TEST PONT NUMBER
SENSITIVE
PARAMETER 1 2 3

Equilibrium Point Stable Stable Stable Stable

1% t Shaft Speed Unstable Unstable Very Stable
Unstable

3%t Shaft Speed Unstable Unstable Very Stable
Unstable

5%% Shaft Speed Very Very Very Unstable

Unstable Unstable Unstable

e = 0.01 mils Stable Stable Very Stable
Unstable

e = 0.05 mils Unstable Stable Very Stable
Unstable

e = 0.10 mils Unstable Stable _Very Stable
Unstable

e = 0.20 mils Unstable Stable Very Stable
Unstable

€= g Unstable Unstable Very Stable
Unstable
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The point most sensitive to any disturbance is point three at the peak of the
boundary. One may think of the system stability as a ball perched atop a steep
hill, it's right easy to roll off. As indicated in Table 3.3, the slightest
disturbance at this point results in unstable behavior. The point least sen-
sitive to disturbances is number four. I haven't come up with a suitable ana-
logy for this one. An imbalance equivalent to the magnitude of the deadband
does not produce an instability. A frequency increase of 5% is required to eli-
cit an unstable response. Points one and two proved to quite sensitive to fre-
quency increases, while not quite as sensitive to the addition of rotor eccen-
tricity. For all cases, if the initial condition vector is set such tht any
non-zero value of F or ¢ is input, the system is immediately unstable.

Several interesting orbits resulted from the verification study. Plotted in Fig-
ure 3.21 is an orbit characteristic of the ones obtained when an imbalance is
added to test point two. Figure 3.22 is a plot of an unstable orbit caused by
the 5% increase in frequency for point four. Finally, Figure 3.23 shows the
strange orbit obtained by setting ¢ = g for test point four. This is a stable
orbit.
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4.0 BEARING LOADS CONSIDERATIONS

One of the major points of the study is to determine the effects of the system
parameters on bearing loads. If these loads become too large, the effects are
detrimental. Initially, we will look at this matter using a system with no side
forces present, but with a rotor imbalance. We will then take into consideration
the added effects of a side force present in the system.

Recall that for the parameters describing our rotor model, no equilibrium orbits
exist in the frequency range of interest, that is, in the vicinity of 500 Hertz,
when no side force is praesent. One may wish to refer back te section 3.3.
Therefore, combinations of deadbands and offsets which produce equilibrium
orbits are used to examine the effects of rotor eccentricity and deadband on
bearing loads.

Plotted in Figure 4.1 are the bearing loads which result when the rotor eccen-
tricity is 0.1 mils. The deadband range is from 0.0 to 0.2 mils. The general
behavior is that the smaller deadband produces the largest bearing load.” This
makes sense because the seal forces must be overcome before there is any inter-
action between the rotor and the bearings. The more distance between the rotor
and the bearing there is, the more effect the seal forces have.

Figure 4,2 is a plot of the bearing loads with a rotor imbalance of 0.2 mils.
The bearing forces are twice the magnitude of those just examined. the range of
deadbands are from zero to 0.4 mils. The non-existance phenomenon for the
equilibrium orbit is clearly seen in these two plots by the way some of the cur-
ves suddenly drop off to zero, or suddenly appear.

When the deadbands and imbalances defined in chapter 2 are used, with zero side
force, the bearing loads are as plotted in Figure 4.3. As the frequency in-
creases, the rotor displacements grow and the bearing loads become quite large.
Figure 4.3 is an enlargement of 4.3 to facilitate the examination of the zero
deadband curve. The peak of the bearing load curve for this case occurs at the
system natural frequency, as would be expected.

Bearing load analysis is performed for two side force values. A value of side
force is chosen so that it is always greater than FsmiN for any of the five
deadbands considered up to a frequency of 5000 radians per second. Figure 4.4
is a plot of the bearing loads for the deadbands of 0.5 to 2.5 mils for the side
force of 1350 pounds. The maximum bearing loads occur at the system natural
frequency of approximately 2424 radians/second, the smallest deadband producing
the largest load. The load curves are plotted only up to a shaft spin frequency
of 4000 radians because the system becomes unstable for frequencies higher than
that. The presence of the rotor eccentricity of 0.2 mils is responsible for the
unstable behavior. - S - .- — -

A similar family of curves is produced when the side force is increased to twice
that of the “minimum" side force, or, 2700 pounds. The plots of these bearing
loads are given in Figure 4.5. The same general behavior~ is exhibited as
before. Instability occurs somewhat sooner, at 3400 radians/second. The loads
are much greater, as well.
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The curves presented were generated using the simulation to determine the maxi-
mum rotor displacement, after steady-state is achieved. Having this value, it
is a simple matter to compute the bearing load. Equation 4.1 is used.

BFmMax = Kg(rmax - 9) . (4.1)
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5.0 SOFTWARE DEVELOPED FOR THE STUDY

In the course of investigating the effects of the deadband on stability, a
number of computer programs have been developed to aid in the analysis. This
section will outline the software developed with the program listings included
at the end of the section.

Two versions of the simple rotor model simulation have been written, one in
polar coordinates and one in Cartesian coordinates. Each main program is an
integration loop driver which calls a subroutine containing the equations of
motion describing the system. The program POLRNG.FOR is the polar coordinates
main driver program, with the associated subroutine contained in POLAR.FOR.
PRECDB.FOR is the Cartesian coordinate driver program with the equations of
motion contained in the subroutine whose program name is PREC.FOR. The power
spectral densities are computed from data files which is constructed by the
above mentioned routines using the programs PSD.FOR and PFFT.FOR. The
Cooley-Tukey method for performing the Fast Fourier Transform is used.

The convergence algorithm is the next listing. The name of the main program is
PIPC.FOR. Two of the five associated subroutines, a Runge-Kutta integration
routine and the associated equations of motion are contained in the program
PRK4.FOR. The remaining three, a matrix inversion routine, a matrix times a
vector routine, and a matrix write routine are included in the program
PMTRX.FOR. PIPC.FOR is the algorithm used for determining the initial con-
ditions for C-type motion. It is 1identical to the program used for A-type
motion, except that the value 2r is not subtracted from the third state vector,
Y(3) in the program. The lines in which this computation is performed are pre-
ceeded with a right arrow (--->).

Several programs were composed to aid in the analysis of the stability of the
system. The major functions of these programs are to compute equilibrium points
and radii, to root resulting polynomials, and to generate the coefficients of
various characteristic equations. The program PQUAD.FOR is used in the analysis
of the system in which the deadband, side forces, and rotor eccentricity are all
zero. This program computes the roots of the characteristic equation. The
programs PQ4.FOR and PQC.FOR are used for analysis of the system which has only
a deadband. PQ4 computes the equilibrium radius along with the coefficients of
the system characteristic equation. Once the coefficients are determined, stan-
dard routine algorithms are used to obtain the stability boundaries. PQC com-
putes the coefficients of the third order system characteristic equation. The
routines PREP.FOR and PREPBF.FOR were generated to compute the equilibrium
radius as a function of frequency and the resulting bearing force, respectively,
__for the system in which the deadband and the rotor_ eccentricity are not zero.

The program PSRO.FOR is used to determine the equilibrium point for a system in
which the deadband and sideforces are non-zero. PSROOT.FOR is used to determine
the stability boundaries by rooting the characteristic equation which has been
cast into the form of two quadratic equations for the non-zero side force
system. PNROOT.FOR 1is used to establish the stability boundary for the non-
dimensionalized system.

For each program listed, a header is included to define the program function.
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C FILE NAME: POLRNG.FOR 28-APR-83 APW

c
C
c

gceeeccccccccececceeececceccccccccceccecceccccecccccccccccccccccccccccccccccc

(g}

¢
c
c
c
C
C
c
c
¢
¢
c

ccc
¢
ccc

ccc
ccc

POLAR COORDINATES VERSION

RUNGE-KUTTA INTEGRATION LOOP DRIVER.

THIS PROGRAM ASSUMES THE DERIVATIVE FUNCTION YPR(T,Y) IS
DEFINED EXTERNALLY BY A SUBROUTINE CALLED YPR. THE DATA
IS ASSUMED TO BE PASSED THROUGH THE CALL STATEMENT IN THE
FORM CALL YPR(N,T,Y,YD); WHERE N IS THE DIMENSION OF THE
STATE VECTOR, T IS THE INDEPENDENT VARIABLE (TIME), Y IS
THE STATE VECTOR AND YD IS THE DERIVATIVE OF THE STATE
VECTOR. INPUTS TO THE PROGRAM ARE FROM THE TERMINAL OR
A COMMAND FILE. )

CCCCCCCCCCCCCCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeeeeee
DIMENSION Y(40),YD(40),YDO(40),YD1(40),YD2(40),YD3(40),TEMP(40)

COMMON /NONLIN/ YNL2,YNL4,FB,FS,CB,SB,CS2,CS4,QS
COMMON / PASS / RM,BK,SK,CS,G,EP,OMEGA,FSIDE,RSIDE,PHSIDE,CQ

INITIALIZE SIMULATION FROM COMMAND FILE INPUT

TYPE *,'INPUT THE INTEGRATION START AND STOP TIMES.'

ACCEPT *,T,TSTOP

TYPE *,'INPUT THE TIME STEP AND NUMBER OF STEPS PER OUTPUT.'
ACCEPT *,H,NPR

IPR=NPR

TYPE *,'INPUT THE DIMENSION OF THE STATE VECTOR Y.'

ACCEPT *,N

TYPE *,'INPUT THE INITIAL STATE VECTOR.'

ACCEPT *,(Y(I),I=1,N)

SSME ROTOR MODEL INITIALIZATION OF PARAMETERS

TYPE *,'Enter the FFT data recording start time:'
ACCEPT *,TFFT
TYPE *,'Enter values for the following quantities on separate’
TYPE *,'lines: RM, BK, SK, CS, G, EP, OMEGA, FSIDE,& CQ'
ACCEPT *,RM
ACCEPT *,BK
ACCEPT *,SK
ACCEPT *,CS
ACCEPT *,G
ACCEPT *,EP
ACCEPT *,0MEGA
ACCEPT *,FSIDE
ACCEPT *,CQ
QS = (CS*OMEGA)/(2.0*RM)
FSIDE = FSIDE/RM
HO6=H/6.
HO2=H/2.
ICOUNT = 0.
pBY = G
DBZ = 0.
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DBR = G

TREC = TSTOP - .005

IF(H.EQ.0)G0 TO 9999

DIV = AINT((TSTOP - T)/(H*FLOAT(NPR))) + 2.

GO TO 9991
9999  DIV=1.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeee
9991  OPEN (UNIT=1,TYPE='NEW')

OPEN (UNIT=2,TYPE='NEW')

OPEN (UNIT=3,TYPE='NEW')

OPEN (UNIT=4,TYPE='NEW')

CALL HORIZ(16,4)

Q1 = Y(1)*COS(Y(3))

Q2 = Y(1)*SIN(Y(3))

ccc
C WRITE INITIAL TIME AND STATES TO PLOT FILES.
ccc
WRITE (2,11) T, Y(1) Y(3),Q1,Q2,08Y,0BZ
ICOUNT = ICOUNT +
ccc
C TOP OF INTEGRATION LOOP.
ccc
1 CONTINUE
CALL YPR(N,T,Y,YDO)
T=T+H02

DO 1000 I=1,N
1000  TEMP(I)=Y(I)+H02*YDO(I)
CALL YPR(N,T,TEMP,YD1)
DO 1010 I=1,N
1010 TEMP(I)=Y(I)+H02*YD1(I)
CALL YPR(N,T,TEMP,YD2)
T=T+H02
D0 1020 I=1,N
1020  TEMP(I)=Y(I)+H*YD2(I)
CALL YPR(N,T,TEMP,YD3)
DO 1030 I=1,N
1030 Y(I)=Y(I)+HO6*(YDO(I)+YD3(1)+2*(YD1(1)+YD2(I)))
Q1 = Y(1)*COS(Y(3))

= Y(1)*SIN(Y(3))
ccc
C WRITE Y(1) TO DATA FILE FOR USE IN FFT ROUTINE.
cce

IF (T.LT.TFFT) GOTO 1041
WRITE(1,10) ¥(1),Q1,Q2
KOUNT=KOUNT+1
CC (TREC ADDED 14-NOV-83)
C WRITE THE FOUR STATES TO A DATA FILE ONCE THE THING HAS
C SETTLED DOWN.
cc
1041  IF (T.LT.TREC) GO TO 1040
WRITE(4,*)T,Y(1),Y(2),Y(3),Y(4),Y03(2),YD3(4)
cce
c TEST WHETHER RESULTS ARE TO BE OUTPUT.
cce
1040  IPR=IPR-1
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IF (IPR.GT.0) GOTO 1
IPR=NPR
ccc
C THE SUBROUTINE DEAD COMPUTES FOR PLOTTING A CIRCLE OF RADIUS EQUAL TO
C THE DEADBAND.
ccc
CALL DEAD(DBY,DBZ,DBR,ICOUNT,DIV)
WRITE (2,11) T,Y(1),Y(3),Q1,Q2,0BY,DBZ
ICOUNT = ICOUNT + 1
[F (T.LT.TSTOP) GOTO 1

ICOL = 10

WRITE(3,12)
WRITE(3,13)
WRITE(3,13)
WRITE(3,13)
WRITE(3,13)
WRITE(3,13)
WRITE(3,13)
WRITE(3,13)
WRITE(3,13)
WRITE(3,13)

ICOL, ICOUNT
‘TIME®
IRI
‘PHI'
IYI

IZI
'DBY!
‘DBZ'
'FSIDE'
'RSIDE’
‘PHSIDE’

WRITE(3,13)
FORMAT(7E11.4)

FORMAT(215)

FORMAT(A8)

CLOSE (UNIT=1)

CLOSE (UNIT=2)

CLOSE (UNIT=3)

CALL HORIZ(10,4)

CLOSE (UNIT=4)

TYPE*, '#PTS. IN DATA FILE:*,KOUNT
END

SUBROUTINE DEAD(Y,Z,R,M,DIV)
ANGLE = (6.283185308/DIV)*FLOAT(M)
Y = R*COS(ANGLE)

Z = R*SIN(ANGLE)

RETURN

END

11
13

SUBROUTINE HORIZ(I,N)
IF ( I .EQ. 10 ) GOTO 100
IF ( I .EQ. 16 ) GOTO 130
FORMAT(10A1)

WRITE(N,10) 27,91,49,119
GOTO 200

WRITE(N,10) 27,91,52,119
GOTO 200

CONTINUE

RETURN

END

10
100

130
200
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file name: POLAR.FOR 26-APR-83 APYW

o
C
c
C The equations given below describe the SIMPLE SSME deadband rotor model...
c
C POLAR COORDINATES VERSION
c

SUBROUTINE YPR(N,T,Y,YD)

DIMENSION Y(4),YD(4)

COMMON /NONLIN/ YNLZ2,YNL4,FB,FS,C8,SB,CS2,CS4,QS

COMMON / PASS / RM,BK,SK,CS,G,EP,OMEGA,FSIDE,RSIDE,PHSIDE,CQ

C
C Enter the equations here
C
IF (Y(1).GT.G) GO TO 100
FB = 0.
GO TO 200
100 FB = - BK*(Y(1) - G)/RM

200 FS = - SK*Y(1)/RM
YNL2 = Y(1)*(Y(4)**2)
YNL4 = - (2.0%Y(2)*Y(4))/Y(1)
CB = EP*(OMEGA**2)*COS(OMEGA*T - Y(3))
SB = ((OMEGA**2)*EP*SIN(OMEGA*T - Y(3)))/Y(1)
RSIDE = FSIDE*COS(Y(3))
PHSIDE = -(FSIDE*SIN(Y(3)))/Y(1)

€S2 = - (CS*Y(2))/RM
CS4 = - (CS*Y(4))/RM

CQ2 = - (CQ*Y(1)*Y(4))/RM

CQ4 =  (CQ*Y(2))/(RM*Y(1))

YD(1) = Y(2)

YD(2) = FB + FS + CS2 + CQ2 + YNL2 + CB + RSIDE
YD(3) = Y(4)

YD(4) = CS4 + CQ4 + QS + YNL4 + SB + PHSIDE
RETURN

END
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OO0

FILE NAME: PRECDB.FOR 28-APR-83 APW

RECTANGULAR COORDINATES VERSION

- B D D D D Y D D D P D D P D D LS D D P D D W D P S D D D D YD D D A D D R G D R R D W D D R D D W - = - > w -

RUNGE-KUTTA INTEGRATION LOOP DRIVER.

THIS PROGRAM ASSUMES THE DERIVATIVE FUNCTION YPR(T,Y) IS
DEFINED EXTERNALLY BY A SUBROUTINE CALLED YPR, THE DATA
IS ASSUMED TO BE PASSED THROUGH THE CALL STATEMENT IN THE
FORM CALL YPR(N,T,Y,YD); WHERE N IS THE DIMENSION OF THE
STATE VECTOR, T IS THE INDEPENDENT VARIABLE (TIME), Y IS
THE STATE VECTOR AND YD IS THE DERIVATIVE OF THE STATE
VECTOR. INPUTS TO THE PROGRAM ARE FROM THE TERMINAL OR
A COMMAND FILE. ’

DIMENSION Y(40),YD(40),YDO(40),YD1(40),YD2(40),YD3(40),TEMP(40)
COMMON / PASS / RM,BK,SK,CS,G,EP,OMEGA,FSIDE

TYPE *,'INPUT THE INTEGRATION START AND STOP TIMES.'

ACCEPT *,T,TSTOP

" TYPE *,'INPUT THE TIME STEP AND NUMBER OF STEPS PER QUTPUT.'

ACCEPT *,H,NPR
TYPE *,'INPUT THE DIMENSION OF THE STATE VECTOR Y.'

ACCEPT *,N
TYPE *,'INPUT THE INITIAL STATE VECTOR.'

ACCEPT *,(Y(I),I=1,N)

This section added for SSME model for initialization of parameters

TYPE *,'Enter plot start time:'

ACCEPT *,TPLOT

TYPE *,'Enter values for the following quantities on separate'
TYPE *,'lines: RM, BK, SK, CS, G, EP, OMEGA, & FSIDE'
ACCEPT *,RM

ACCEPT *,BK

ACCEPT *,SK

ACCEPT *,CS

ACCEPT *,G

ACCEPT *,EP

ACCEPT *,0MEGA

ACCEPT *,FSIDE

HO6=H/6. .
HO2=H/2.

YMAX=0.

YMIN=0.

ICOUNT = 0.

DBY = G

DBZ = 0.

DBR = G

cccceecccecccccecccccccccccccccccccecccceccecccccccccccccccccccccccccccccc

OPEN (UNIT=1,TYPE='NEW')
OPEN (UNIT=2,TYPE='NEW')
OPEN (UNIT=3,TYPE='NEW')
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WRITE INITIAL TIME AND STATE.

OO

IF(TPLOT.GT.0.0) GO TO 1
WRITE (2,11) T,Y(1),Y(3),DBY,DBZ
ICOUNT = ICOUNT + 1
10 FORMAT(3(E15.8))
11 FORMAT (6E11.4)
IPR=NPR

TOP OF INTEGRATION LOOP.

OO0

CONTINUE
CALL YPR(N,T,Y,YDO)
T=T+H02
DO 1000 I=1,N
1000  TEMP(I)=Y(I)+H02*YDO(I)
CALL YPR(N,T,TEMP,YD1)
D0 1010 I=1,N
1010  TEMP(I)=Y(I)+H02*YD1(I)
CALL YPR(N,T,TEMP,YD2)
T=T+H02
DO 1020 I=1,N
1020  TEMP(I)=Y(I)+H*YD2(I)
CALL YPR(N,T,TEMP,YD3)
DO 1030 I=1,N
1030  Y(I)=Y(I)+HO6*(YDO(I)+YD3(I)+2*(YD1(I)+YD2(1)))
RAD = SQRT(Y(1)**2 + Y(3)**2)
IF (T.LT.TPLOT) GO TO 1040
WRITE(1,10)RAD, v(1) Y(3)
KOUNT = KOUNT +

¢
c TEST WHETHER RESULTS ARE TO BE OUTPUT.
c
1

040 IPR=IPR-1
IF (IPR.GT.0) GOTO 1
IPR=NPR

C THE SUBROUTINE DEAD COMPUTES FOR PLOTTING A CIRCLE OF RADIUS EQUAL TO
C THE DEADBAND.

IF (T.LT.TPLOT) GO TO 1

CALL DEAD(DBY,DBZ,DBR,ICOUNT)
WRITE (2,11) T,Y(1),¥(3),DBY,DBZ,RAD
ICOUNT = ICOUNT + 1

If (T.LT.TSTOP) GOTO 1

ICOL = 6

WRITE(3,12) ICOL,ICOUNT
WRITE(3,13) 'TIME'
WRITE(3,13) 'Q1"

WRITE(3,13) 'Q3"

WRITE(3,13) ‘DBY'
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WRITE(3,13) 'DBZ'

WRITE(3,13) 'RAD'

FORMAT(215)

FORMAT(A8)

CLOSE (UNIT=1)

CLOSE (UNIT=2)

CLOSE (UNIT=3)

TYPE*,'# OF POINTS IN DATA FILE: ,KOUNT
END

SUBROUTINE DEAD(Y,Z,R,M)

ANGLE = (6.283185308/502.0)*FLOAT(M)
= R*COS(ANGLE)

Z = R*SIN(ANGLE)

RETURN

END
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C file name: PREC.FOR 26-APR-83 APW
c
g The equations given below describe the SIMPLE SSME deadband rotor model...
C CARTESIAN COORDINATES
C
SUBROUTINE YPR(N,T,Y,YD)
DIMENSION Y(4),YD(4)
COMMON / PASS / RM,BK,SK,CS,G,EP,OMEGA,FSIDE
C
C Enter the equations here
C
100 RMAG = SQRT(Y(1)**2 + Y(3)**2)

QS = (CS*OMEGA)/2.0

FB = (BK*(RMAG - G))/(RM*RMAG)

FS = SK/RM

IF (RMAG.LT.G) FB = 0.

YO(1) = Y(2)

YD(2) = -FB*Y(1) - FS*Y(1) - (CS*Y(2))/RM - (QS*Y(3))/RM +
.EP*(OMEGA**2)*COS(OMEGA*T) + FSIDE/RM

YD(3) = Y(4)

YD(4) = -FB*Y(3) - FS*Y(3) - (CS*Y(4))/RM + (QS*Y(1))/RM +
. (OMEGA**2) *EP*SIN(OMEGA*T)

RETURN

END
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COOOOOO

110
120

130
140

160

170

180
150

100

FILE NAME: PSD.FOR 29-SEP-83 APW

FUNCTION: USES THE FFT ROUTINE TO COMPUTE THE PSD FOR THE WHIRL
OF THE SIMPLE JEFFCOT ROTOR MODEL.

DIMENSION DUMMY(4096),F(1200),Y(1200),Q1(1200),Q2(1200)
TYPE*,' INPUT NO. OF DATA POINTS AND SAMPLING PERIOD:'
ACCEPT* ,NN,SP
FRINK = 1.0/(FLOAT(NN)*SP)
N = NN/2
OPEN(UNIT=1,TYPE='0LD')
OPEN(UNIT=2,TYPE="'NEW*)
D0 100 I = 1,3
ICOUNT = 0
FR =0
GO T0(110,120,130)1
READ(1,31) (DUMMY(J),J=1,NN)
G0 TO 140
READ(1,32) (DUMMY(J),J=1,NN)
GO TO 140
READ(1,33) (DUMMY(J),J=1,NN)
REWIND 1
CALL FOURL(DUMMY,N,1)
DO 150 K = 1,N,2
DUMP = 2.0%*SQRT(DUMMY(K)**2 + DUMMY(K+1)**2)
ICOUNT = ICOUNT + 1
GO T0(160,170,180)1
Y(ICOUNT) = DUMP

F(ICOUNT) = FR
FR = FR + FRINK
GO TO 150
Q1(ICOUNT) = DUMP
GO TO 150
Q2(ICOUNT) = DUMP
CONTINUE

CONTINUE
WRITE(2,11) (F(I),Y(1),Q1(1),Q2(1),I=1,ICOUNT)
CLOSE(UNIT=1)

CLOSE(UNIT=2)

OPEN(UNIT=3,TYPE="NEW"')

IC = 4

WRITE(3,12)IC, ICOUNT

WRITE(3,13) 'FREQ(HZ)'

WRITE(3,13) ‘POWERY"

WRITE(3,13) 'POWERQ1’

WRITE(3,13) ‘POWERQ2

CLOSE(UNIT=3)

FORMAT(E15.8)

FORMAT(15X,E15.8)

FORMAT(30X,E15.8)

FORMAT(4E11.4)

FORMAT(215)

FORMAT(A8)

END
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cccccc

C FILE NAME: PFFT.FOR

o

C AUTHOR: ANGIE WISEMAN

C

C FUNCTION: COMPUTES THE FAST-FOURIER TRANSFORM USING THE COOLEY-TUKEY
C ALGORITHM.

¢

C INPUTS: DATA(I) I = A POWER OF 2 (i.e. 2**]12)

c NN NN = I/2

c ISIGN = 1 FOR FFT; = -1 FOR [FFT]**-1
¢cccce

SUBROUTINE FOURL (DATA,NN,ISIGN)

DIMENSION DATA(5000)

INK=1

N=2*NN

J=1

D0 50 I=1,N,2
IF (I-J) 10,20,20

10 TEMPR=DATA(J)

TEMPI=DATA(J+INK)
DATA(J)=DATA(I)
DATA(J+INK)=DATA( I+INK)
DATA(I)=TEMPR
DATA( I+INK)=TEMPI

20 M=N/2
30 IF (J-M) 50,50,40
40 J=J-M

M=M/2 -

IF (M-2) 50,30,30
50 J=J+M

MMAX=2

60 IF (MMAX-N) 70,100,100
70 [STEP=2*MMAX

THETA=6.283185307/FLOAT( ISIGN*MMAX)

SINTH=SIN(THETA/2.0)

WSTPR=-2,0*SINTH*SINTH

WSTPI=SIN(THETA)

WR=1.0

WI=0.0

DO 90 M=1,MMAX,2

DO 80 I=M,N,ISTEP

J=IMMAX ,
TEMPR=WR*DATA(J)-WI*DATA(J+INK)
TEMPI=WR*DATA(J+INK)+WI*DATA(J)
DATA(J)=DATA(1)-TEMPR
DATA(J+INK)=DATA( I+INK)-TEMPI
DATA{ I)=DATA(1)+TEMPR

80 DATA({ I+INK)=DATA( I+INK)+TEMPI
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR

90 WI=WI*WSTPR+TEMPR*WSTP I +WI

MMAX=ISTEP

GO TO 60
100 RETURN

END
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C FILE NAME: PIPC.FOR 19-SEP-83 APW
c
C POLAR COORDINATES VERSION FOR C TYPE MOTION
c
cccceeccccceecccecccececcccceccceccceccccecccccccccccccccccecccccccccccccccccce
c
c THIS PROGRAM SOLVES THE D.E.'S FOR THE SIMPLE ROTOR MODEL
c AND ITERATES TO DETERMINE THE BOUNDARY CONDITIONS NECESSARY
c FOR A PERIODIC SOLUTION TO THE EQUATIONS TO EXIST.
c
cccceccecceccccceccccccccceccccceccccccccecceccccccccecccccccccccccccccccccce
c
PROGRAM PIPC
DIMENSION Y(4),YTOL(4),Y0(4),60(4),61(4),GD(4,4),DELY(4)
DIMENSION YOG(4),YDIFF(4),YH(4),YB(4),Y0I(4)-
COMMON / PASS / RM,BK,SK,CS,G,EP,OMEGA,FSIDE,RSIDE,PHSIDE,CQ,QS
ccc
c ACCEPT INPUT DATA FROM COMMAND FILE PITTER.COM:
ccc
TYPE *,'INPUT THE INTEGRATION START AND STOP TIMES.'
ACCEPT *,TSTART,TSTOP
TYPE *,'INPUT THE TIME STEP AND NUMBER OF STEPS PER OUTPUT.'
ACCEPT *,H,NPR
IPR=NPR
TYPE *,'INPUT THE DIMENSION OF THE STATE VECTOR Y.'
ACCEPT *,N
TYPE *,'INPUT THE INITIAL STATE VECTOR.'
ACCEPT *,(Y(I),I=1,N)
DO21I-=1,N
2 YOI(I) = Y(I)
TYPE *,'INPUT THE VALUE OF DELTA:'
ACCEPT *,DELTA
TYPE *,'Enter values for the following quantities on separate'
TYPE *,'l1ines: RM, BK, SK, CS, G, EP, OMEGA, FSIDE,& CQ'
ACCEPT *,RM
ACCEPT *,BK
ACCEPT *,SK
ACCEPT *,CS
ACCEPT *,G
ACCEPT *,EP
ACCEPT *,0MEGA
ACCEPT *,FSIDE
ACCEPT *,CQ
ccc
C COMPLETE THE INITIALIZATION
ccc
QS = (CS*OMEGA)/(2.0*RM)
FSIDE = FSIDE/RM
HO6=H/6.
HO2=H/2.
T = TSTART
OPEN (UNIT=1,TYPE='NEW')
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WRITE (1,*) 'Y(0)=',(Y(I),I=1,N)
WRITE (1,%) "eommomooodme o e

& ......................... [}

cce
C
C  HERE WE GOu.evureenn. TOP OF LOOP ......... e eteeerenaeeeerrnaaee
C
c INITIALIZE YO
cce
1 CONTINUE

DO 100 K=1,N
100 YO(K) = Y(K)
cce
C  INTEGRATE TO FIND Y(T)
cce

110 CALL RUNK(N,T,Y,HO02,H06,H)
IF (T.LT.TSTOP) GO TO 110
- = => Y(3) = Y(3) - 6.283185308

c COMPUTE G(YO) AND CHECK FOR CONVERGENCE

DO 200 L = 1,N
200 GO(L) = Y(L) - YO(L)

GMAG = SQRT(GO(1)**2 + GO(2)**2 + GO(3)**2 + GO(4)**2)

D0 410 J = 1,N

YDIFF(J) = ABS(GO(J))
410 YTOL(J) = ABS(0.01*Y0(J))

WRITE(1,*)'YDIF:', (YDIFF(I),I=1,N)

WRITE(1,*)'YTOL:',(YTOL(I),I=1,N)

WRITE(1,*)*

WRITE(1,*)'GMAG:',GMAG

WRITE(1,*)*

1F( (GMAG.GT.GMAGL) .AND. ( IZERO.EQ.1)) GO TO 500

GMAGL = GMAG

IZERO = O

IF(GMAG.GT.1.E-2) GO TO 400

IF (YDIFF(1).GT.YTOL(1)) 60 TO 400

IF (YDIFF(3).LT.YTOL(3)) NNN = 1

IF(NNN.EQ.1)GO TO 300

cce
C  COMPUTE THE JACOBIAN OF G(Y)---> J = (G(YO + DEL) - G(Y0))/DEL
cce
400 DO 2000 JI = 1,N
DL = DELTA*YQ(JI)
If (DL.GT.DELTA) DEL
IF (DELTA.GT.DL) DEL
YHOLD = YO(JI)
YOG(JI) = YO(JI) + DEL
D0 210 M = I,N
IF (M.EQ.JI) GO TO 210
YOG(M) = YO(M)
210 Y(M) = YOG(M)
T = TSTART

uon
p=4
2

DELTA
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220 CALL RUNK(N,T,Y,H02,H06,H)
IF (T.LT.TSTOP) GO TO 220
- - => Y(3) = Y(3) - 6.283185308
DO 230 J = 1,N
G1(J) = Y(J) - YOG(J)
GD(J,d1) = (G1(J) - GO(J))/DEL
IF(GD(J,JI).NE.O.) GO TO 230
IZERO = 1
10X = JI
IF(IDX.NE.4) IDX = O
230 CONTINUE
YO(JI) = YHOLD
2000  CONTINUE

cce
C . -1
C  COMPUTE THE VALUE OF DELY---> DELY = [J] * -G(YO)
C
C INVERT THE JACOBIAN MATRIX:
cce
WRITE(1,*) 'THE JACOBIAN:"
CALL MRITE(GD,N,N,0,7)
CALL MRITE(GD,N,N,0,1)
CALL MINV(GD,N,1.E-21,DET,NPIV)
WRITE(1,*)"' INVERSE JACOBIAN:'
CALL MRITE(GD,N,N,0,1)
cce

C IF THE PIVOT VALUE IS LESS THAN E, WHAT RETURNS FROM MINV IS GARBAGE.
C USE THE FOLLOWING TO COMPUTE A DELTA & TRY AGAIN.

cce
IF (NPIV.GE.3) GO TO 330
IF (NPIV.EQ.0) GO TO 241
DO 247 L = 1,N

247 DELY(L) = DELTA*100.0%*YO(L)
GO TO 242

241 DO 240 K = 1,N
240 GO(K) = -GO(K)

cec
c PERFORM VECTOR MATRIX PRODUCT:
cce
CALL MVMU(GD,GO,DELY,N,N)
cce
C  COMPUTE NEW VALUE OF THE VECTOR Y AND REPEAT
cce
242 DO 250 M = 1,N
Y(M) = YO(M) + DELY(M)
250 YB(M) = Y(M)
IF(Y(1).LT.0.)Y(1)=Y0I(1)
WRITE(}.*)'DELY(I)=",(DELY(I),I=1,N)
WRITE(1,*)' °
WRITE(1,*) 'Y(I)=*,(Y(I),I=1,N)
WRITE(1,*)* '
T = TSTART

ITTER = ITTER +1
IF (ITTER.LE.20) GO TO 1
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500

510

300

310

330
320

GO TO 310

IZERO = 0

WRITE(1,*)'AT 500, RESETTING Y TO ICS EXCEPT FOR IDX COMPONENT'
CHG = YB(IDX)*0.20

D0 510 LL = 1,N

Y(LL) = YOI(LL)

Y(IDX) = CHG

WRITE(1,*)'NEW Y:',(Y(I),I=1,N)

ITTER = ITTER + 1

GO TO 1

WRITE(1,*)'TOLERANCE MET, ITERATIONS:',ITTER

WRITE(1,*)'FINAL Y(I)=',(YO(I),I=1,N)

GO TO 320

WRITE(1,*)'MAX NO. OF ITTERATIONS EXCEEDED; GMAG =',GMAG

GO TO 320 :

WRITE(1,*)'PIVOT VALUE LESS THAN E THREE TIMES, PROGRAM STOPPED.'
CLOSE (UNIT=1)

STOP

END
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ccceeecccccccccceccccccccceccececccceccceccccccccccccccccccccccccccccccceccce
FILE NAME: PRK4.FOR 15-NOV-83 "~ APW

THIS FILE CONTAINS A RUNGE-KUTTA INTEGRATION ROUTINE WHICH
ACCOMPANIES THE MAIN PROGRAM IN PIP.FOR AND PIPC.FOR

cccceccccececccecccccecccccecccecceeccccccccccccccecccccccccccccccccccccce
SUBROUTINE LISTING:

RUNK (A RUNGE-KUTTA INTEGRATION ROUTINE) @A
YPR (CONTAINS THE SYSTEM STATE EQUATIONS) @s

ccceccecccccccecccecccecceccccececcecccceccccccecccccccccccccccccccccccccce

RUNGE-KUTTA INTEGRATION LOOP DRIVER. '

THIS PROGRAM ASSUMES THE DERIVATIVE FUNCTION YPR(T,Y) IS

DEFINED EXTERNALLY BY A SUBROUTINE CALLED YPR. THE DATA

[S ASSUMED TQO BE PASSED THROUGH THE CALL STATEMENT IN THE

FORM CALL YPR(N,T,Y,YD); WHERE N IS THE DIMENSION OF THE

STATE VECTOR, T IS THE INDEPENDENT VARIABLE (TIME), Y IS

THE STATE VECTOR AND YD IS THE DERIVATIVE OF THE STATE

VECTOR. INPUTS TO THE PROGRAM ARE FROM THE TERMINAL OR

A COMMAND FILE.
ccceececceccecceecceccceccccccccccccceccccccccccccccceccccccccccccceccccccce
CeA

OO0 OO0

SUBROUTINE RUNK(N,T,Y,H02,H06,H)
DIMENSION Y(4),YD(4),YDO(4),YD1(4),YD2(4),YD3(4),TEMP(4)
CALL YPR(N,T,Y,YDO)
T=T+H02
DO 1000 I=1,N
1000  TEMP(I)=Y(I)+H02*YDO(I)
CALL YPR(N,T,TEMP,YD1)
DO 1010 I=1,N
1010  TEMP(I)=Y(I)+H02*YD1(I)
CALL YPR(N,T,TEMP,YD2)
T=T+H02
D0 1020 I=1,N
1020  TEMP(I)=Y(I)+H*YD2(I)
CALL YPR(N,T,TEMP,YD3)
00 1030 I=1,N
1030 Y(I)=Y(I)+HO6*(YDO(1)+YD3(I)+2*(YD1(1)+YD2(I)))
RETURN
END ] , .

ccc
C The equations given below describe the SIMPLE SSME deadband rotor model...
ces

SUBROUTINE YPR(N,T,Y,YD)

DIMENSION Y(4),YD(4)

COMMON / PASS / RM,BK,SK,CS,G,EP,OMEGA,FSIDE,RSIDE,PHSIDE,CQ,QS

FB = - BK*(Y(1) - G)/RM

FS = - SK*Y(1)/RM

YNL2 = Y(1)*(Y(4)**2)
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YNL4 = - (2.0%Y(2)*Y(4))/Y(1)
CB = EP*(OMEGA**2)*COS(OMEGA*T - Y(3))

= ((OMEGA**2)*EP*SIN(OMEGA*T - Y(3)))/Y(1)
RSIDE = FSIDE*COS(Y(3))
PHSIDE = -(FSIDE*SIN(Y(3)))/Y(1)

CS2 = - (CS*Y(2))/RM
CS4 = - (CS*Y(4))/RM

CQ2 = - (CQ*Y(1)*Y(4))/RM
CQ4 = (CQ*Y(Z))/(RM*Y(I))
IF (Y(1).LT.G) FB = 0.

YD(1) = Y(2)

YD(2) = FB + FS + CS2 + CQ2 + YNL2 + CB + RSIDE
Y0(3) = Y(4)

YD(4) = CS4 + CQ4 + QS + YNL4 + SB + PHSIDE
RETURN

END
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cccceccececcccecccceccceccecccecceccececccccccccccecccccccccccccccccccccccccccc

OQOOOOODOOOOOOOOOO

@
—

O o

11

13

14

FILE NAME: PMTRX.FOR 15-NOV-83 APY

THIS FILE CONTAINS THE MATRIX SUBROUTINES WHICH ACCOMPANY
THE MAIN PROGRAM IN PIP.FOR AND PIPC.FOR

cccccccccecceccccccccecccccccccccccccccceccccccccccccecccccccccccccccc

SUBROUTINE LISTING:

MINV (A MATRIX INVERSE ROUTINE) 01
MVMU (MULTIPLIES A MATRIX AND A VECTOR) @2
MRITE (WRITES THE MATRIX) @3

SUBROUTINE MINV(A,N,E,DET,NPIV)
DIMENSION A(N,N),IROW(50),JCOL(50),J0RD(50),Y(50)
M=N

IF (N.LE.50) GOTO 5

TYPE *,'DIMENSION OF MATRIX > 50.°
RETURN

DET=1

DO 18 K=1,N

KM1=K-1

PIVOT=0.0

DO 11 I=1,N

DO 11 J=1,N

IF (K.EQ.1) GOTO 9

DO 8 ISCAN=1,KM1

DO 8 JSCAN=1,KM1

IF (I1.EQ.IROW(ISCAN)) GOTO 11

IF (J.EQ.JCOL(JSCAN)) GOTO Il
CONTINUE

IF (ABS(A(I,Jd)).LE.ABS(PIVOT)) GOTO 11
PIVOT=A(I,Jd)

IROW(K)=1

JCOL(K)=d

CONTINUE

IF (ABS(PIVOT).GT.E) GOTO 13
NPIV = NPIV + 1

NPL = NPIV

TYPE*, 'PIVOT VALUE LESS THAN E.'
RETURN

TROWK=IROW(K)

JCOLK=JCOL(K)

DET=DET*PIVOT

IF (NPIV.EQ.NPL) NPIV = 0

D0 14 J=1,M

A IROWK,J)=A( IROWK,J)/PIVOT

A( IROWK,JCOLK)=1./PIVOT

D0 18 I=1,N

ATJCK=A(I,JCOLK)

IF (I.EQ.IROWK) GOTO 18
A(I,JCOLK)=-AIJCK/PIVOT
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00 17 J=1,M

17 IF (J.NE.JCOLK) A(I,d)=A(I,Jd)-AIJCK*A{IROWK,J)
18 CONTINUE
D0 20 I=1,N

IROWI=IROW(1I)
JCOLI=JCOL(1)
JORD ( IROWI ) =JCOLI

20 CONTINUE
INTCK = 0
NM1=N-1
D0 22 I=1,NMI
1P1=1+1
00 22 J=IP1,N
IF (JORD(J).GE.JORD(I)) GOTO 22
JTEMP = JORD(J)
JORD(J)=JORD(I)
JORD(I)=JTEMP
INTCH = INTCH + 1

22 CONTINUE

IF (INTCH/2*2.NE.INTCH) DET=-DET
26 D0 28 J=1,N

DO 27 I=1,N

IROWI=IROW(I)
JCOLI=JCOL(I)

27 Y(JCOLI)=A( IROWI,J)
DO 28 I=1,N
28 A(I,d)=Y(I)
00 30 I=1,N
DO 29 J=1,N
IROWJ=IROW(J)
JCOLJ=JCOL(J)
29 Y(IROWJ)=A(1,JC0LJ)
00 30 J=1,N
30 A(1,Jd)=Y(J)
RETURN
END
ccce2
C  MVMU MULTIPLIES A MATRIX BY A VECTOR
C
C kkkkhdk T(M) = A(M,N) * U(N) wrksedx
ccc

SUBROUTINE MVMU ( A, U, T, M, N)
DIMENSION U ( N ), T( M), A (M N )
L =1 . . L
20051 if (.not.( I .le. M)) goto 20053
T(1)=0
20052 I =1+1
goto 20051
20053 continue
I =1
20054 if (.not.( I .le. M)) goto 20056
continue
J =1
20057 if (.not.( J .le. N)) goto 20059
T(I)=A(L,d)*U(J)+T(1)
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20058

20059
20055

20056

ccces

c

J=J+1
goto 20057
continue
I=1+1
goto 20054
continue
RETURN

END

C MRITE WRITES A MATRIX OF UP TO 30 X 30 IN REASSEMBLABLE FORM

¢
ccc

ccC
11

130

SUBROUTINE MRITE(MAT,M,N,LFORM,IX)

REAL*4 MAT(M,N)
IF (N.GT.10) GOTO 11
DO 1 II=1,N

I=11

IF (LFORM.EQ.1) WRITE (IX,201)
IF (LFORM.NE.1) WRITE (IX,200)

WRITE (IX,208)
GOTO 140
IF ( N.GT.20 ) GOTO 110
D0 2 II=1,N
I=11

IF (LFORM.EQ.1) WRITE (IX,201)
IF (LFORM.NE.1) WRITE (IX,200)

WRITE (IX,208)
D0 3 II=1,N
I=I1

IF (LFORM.EQ.1) WRITE (IX,201)
IF (LFORM.NE.1) WRITE (IX,200)

GOTO 140

IF ( N.GT.30 ) GOTO 130
DO 4 II=1,N

I=11

IF (LFORM.EQ.1) WRITE (IX,201)
IF (LFORM.NE.1) WRITE (IX,200)

WRITE (IX,208)
00 5 II=1,N
I=I1

[F (LFORM.EQ.1) WRITE (IX,201)

IF (LFORM.NE.1) WRITE (IX,200)

WRITE (IX,208)
D0 6 II=1,N
I=11

IF (LFORM.EQ.1) WRITE (IX,201)
IF (LFORM.NE.1) WRITE (IX,200)

WRITE (IX,208)
GOTO 140
IF (N.GT.30) WRITE (IX,300)
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140 CONTINUE
200 FORMAT (10E13.5)
201 FORMAT (10F12.5)
CC 208 FORMAT (' END OF LIST')
300 FORMAT (' ARRAY DIMENSION >30')
RETURN
END
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ceceeececcccececcececccceeecccccececceecccccecececececccececcececcecceccccece

OO0

10

20

100

FILE NAME: PQUAD.FOR 17-NOV-83 APW

FUNCTION: COMPUTES THE COEF'S OF THE SECOND ORDER
CHARACTERISTIC EQUATION FOR THE ROTOR SYSTEM
AND DETERMINES THE ROOTS THEREOF.
FS=G=EP=0

cccceececceccecccccccccecccccccccccccecccccecceccccccccccccccccccccccccccccce

PROGRAM PQUAD
DATA RM,CS,CQ,TK,QS,QSMAX/.20422,200.,40.,1.2E6,484810.,484824./
OPEN(UNIT=1,TYPE='NEW' ,NAME="'PQUAD.DAT')

C1 = CS/RM
WRITE(1,*)'FOR ALL CASES, C1 = ',Cl

WRITEil,*)‘ '

C2 = (TK*(CS**2) + CQ*(CS**2) - (QS**2)*RM)/((CS**2)*RM)

TYPE*,'QS,C1, & C2:',QS,C1,C2
WRITE(1,*)'QS:',QS,'C2:",C2
WRITE(1,*)*  °

R1 = -Cl/2.

RAD = C1**2 - 4,0%C2
IF(RAD.GT.0.) GO TO 10

RAD = - RAD
RR1 = R1

RR2 = R1

RI1 = SQRT(RAD)/2.0

RI2 = -RIl

GO TO 20

RI1 = Q.

RI2 = 0.

RR1 = R1 + (SQRT(RAD))/2.0
RR2 = R1 - (SQRT(RAD})/2.0

WRITE(1,*)'ROOT1:',RR1,RI1
WRITE(1,*)'ROOT2: ' ,RR2,RI2

WRITE(1,*)'

WRITE(1,*)*

QS = QS + .5

1F(QS.GT.QSMAX)GO TO 100

GO TO 1 '

TYPE*,'QSMAX EXCEEDED, PROGRAM STOPPED'
WRITE(1,*)'QSMAX EXCEEDED, PROGRAM STOPPED'
CLOSE(UNIT=1)

~STOP

END
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cccccececccceccecccccceccccccccceccceccccccccceccceccccccccccccecccecccccecccce

OOOOOOOOOOOO

ccc

FILE NAME: PQ4.FOR  18-NOV-83 APW
FUNCTION: COMPUTES THE EQUILIBRIUM WHIRL ORBIT RADIUS, THEN

COMPUTES THE CEOFFICIENTS OF THE CHARACTERISTIC EQUATION
FOR THE ROTOR SYSTEM WITH G NOT EQUAL TO ZERO, SIDE
FORCES AND ROTOR ECCENTRICITY ARE ZERO.
(FOURTH ORDER LINEARIZED MODEL)

EP=FS =0

ccceececccceecccceccecccccccccccccccccccccecccccccccecccccccccccccccccccce

DIMENSION G(5)

IMPLICIT REAL*8(A-H,0-Z)
OPEN(UNIT=1,TYPE="'NEW' ,NAME='PQ4.DAT')
CALL HORIZ(16,1)

TYPE*,' INPUT QSMIN,QSMAX,QSINC:*
ACCEPT*,QSMIN,QSMAX,QSINC

BK = 1.006

SK = 2.005

CS = 200.000
CQ = 40.00

RM = 0.2042200
G(1) = 0.5D-3
G(2) = 1.00-3
G(3) = 1.5D-3
G(4) = 2.0D-3
G(5) = 2.5D-3
PI = 3.141592654
QS = QSMIN

OM = QS/100.

C COMPUTE THE COEFFICENTS A3,A2,A1,AQ
C THE C.E. HAS THE FORM: X**4 + A3*X**3 + A2%X**2 + Al*X + AO

ccc

1
ccc

D0 1000 I = 1,5
J=1
TK = BK + SK
TYPE 21,J,G(1)
WRITE(1,21)J,6(1)
TYPE 20,QS

WRITE(1,20) @S

C COMPUTE THE RADIUS OF THE WHIRL ORBIT

ccc

RO = (BK*(CS**2)*G(1))/((CS**2)*TK + CQ*QS*CS - {QS**2)*RM)
TYPE*, 'RO: ' ,RO

WRITE(1,*)'RO:",RO

A3 = (2.0%*CS)/RM

A2 = ((CS**2)+(CQ**2))/(RM**2) + (TK*(RO + 1.0))/RM
Al = ({(QS*CQ + CS*TK)}*R0 + (QS*CQ + CS*TK))/(RM**2)
AO = (RO*(QS**2 + TK**2))/(Ri**2)

WRITE(1,*)"
WRITE(1,*)'A3',A3,'A2:",A2,'Al:" AL, AO: ' ,AO
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200

1000
20
21

10
100

130
200

QS = QS + QSINC
OM = QS/100.

IF (QS.GT.QSMAX) GO TO 200

GO TO 1

TYPE*, 'QSMAX EXCEEDED, G INCREMENTED'
TYPE*,'

WRITE(1,*)'QSMAX EXCEEDED, G INCREMENTED'
wRITEgl,*)‘ '

WRITE(1,*)'

QS = QSMIN

FORMAT('QS:',E15.8)
FORMAT('G(*,I1,'):',F15.6)

CALL HORIZ(10,1)

CLOSE(UNIT=1)

END

SUBROUTINE HORIZ(I,N)

IF ( I .EQ. 10 ) GOTO 100
IF ( I .EQ. 16 ) GOTO 130
FORMAT ( 10A1)

WRITE(N,10) 27,91,49,119

GOTO 200

WRITE(N,10) 27,91,52,119

GOTO 200

CONTINUE

RETURN

END
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cceeeccecceccceecccceccceccccceccceccecccccceccececcccececccccccccccccccccccccce

C

C FILE NAME: PQC.FOR  16-NOV-83 APW

¢

C FUNCTION: COMPUTES THE CEOFFICIENTS OF THE CHARACTERISTIC EQUATION
c FOR THE ROTOR SYSTEM WITH G NOT EQUAL TO ZERO, SIDE

c FORCES AND ROTOR ECCENTRICITY ARE ZERO.

c (THIRD ORDER SYSTEM)

c EP =FS =0

c
ccceeececcecccceccceeccececccccccceecceccccccecccceccccecceccecccceccccccce
c

DATA BK,SK,CS,CQ,RM/1.0E6,2.0E5,200. ,40.,0.20422/
DATA QS,QSMAX/504792.1000,504792.2000/
DATA PI/3.141592654/
OPEN(UNIT=1,TYPE="'NEW' ,NAME='PQROOT.DAT')
cce
C COMPUTE THE COEFFICENTS P,Q,R .
C THE C.E. HAS THE FORM: Y**3 + P*Yy**2 + Q*Y + R = 0
cce
1 TYPE 20,QS
WRITE(1,20) QS
P = (2.0%CS)/RM
TK = BK + SK
PHIO = QS/CS
Q=(CS**24CQ**2+RM* ( TK+CQ*PHIO-RM*PHIQ**2-2, *PHIO*CQ) ) /RM**2
R=(CS*(TK + CQ*PHIO - RM*PHIO**2))/RM**2
QS = QS + 10.
WRITE(1,10) P,Q,R
TYPE 10,P,Q,R
IF (QS.GT.QSMAX) GO TO 200
GO TO 1
200 TYPE*, 'QSMAX EXCEEDED'
WRITE(1,*)'QSMAX EXCEEDED'

10 FORMAT(2X,'P,Q,R:",3(2X,F15.6))
20 FORMAT(2X,'QS:",F15.6)

CLOSE (UNIT=1)

STOP

END
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ccceeecececceeccceccccecceccccccccceecccccececcccccccccccccccccccccceccccccccce
FILE NAME: PREP.FOR 14-DEC-83 APY

FUNCTION: COMPUTES THE COEF'S OF THE SECOND ORDER EQUATION
USED TO DETERMINE THE EQUILIBRIUM RADIUS OF THE
ROTOR FOR THE CASES WHERE EP AND G ARE NOT ZERQO WITH
WITH FS ZERO. THE QUADRATIC IS THEN SOLVED TO DETER-
MINE THE RADIUS. FOR PLOTTING!!
FS =0

ccccceecccecceccccecceccecccceccccccceccccceccccccccccceccccccecccccccccecccccce

OO0

PROGRAM PREP
DIMENSION GG(9),0MP(1000),RMG(1000,9)
BK

= 1.0E6
SK = 2.0E5
TK = BK + SK
CS = 200.
cQ = 40.
RM = 0.20422

TYPE*, 'CHOOSE A SPECIFIC DEADBAND & OFFSET---'
TYPE*,* INPUT NUMBER OF DEADBANDS (UP TO 9)°
ACCEPT* , NN
TYPE*,' INPUT DEADBAND VALUES'
ACCEPT*, (GG(M) ,M=1,NN)
TYPE*, ' INPUT THE OFFSET VALUE °
ACCEPT* ,EP
200 TYPE *,'INPUT QSMIN & QSMAX,QSINC:'
ACCEPT* ,QSMIN, QSMAX ,QSINC
QS = QSMIN
DO 1000 I = 1,NN
6G(1)

(BK + SK + CQ*OM - RM*QM**2)
(QS - CS*OM)

G
J =1
1 OM = QS/100.
A
B

AA = A**2 + B**2
BB = G*(RM*A*(QM**2) - B**2)
C=( EP**Z)*(RM**Z)*(0M**4)*(A**2+B**2) - (BK**Z)*(G**Z)*(B**Z)
IF (C.GE.0) GO TO 35
RADIUS = 0.
GO TO 50
35 ~RO9T1 =-G + (BB--+ SQRT(C)-)/AA-- - - -
ROOT2 = G + (BB - SQRT(C))/AA
IF((ROOT1.GE.0.).OR.(ROOT2.GE.0.))GO TO 30
RADIUS = 0.
GO TO 50
30 IF((ROOT1.GT.0.) .AND.(ROOT1.GT.ROOT2) )RADIUS
IF((ROOT2.GT.0.) .AND. (ROOT2.GT.ROOT1))RADIUS
cc RMG(J,I) = RADIUS - G
RMG(J,1) = RADIUS
50 IF(RMG(J,I).LT.0.) RMG(J,I) = 0.
OMP(J) = OM
J=J+1
QS = QS + QSINC

ROOT1
ROOT2
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100
1000

22
33
44
55
66
77
88
99

111
9999

IF(QS.GT.QSMAX)GO TO 100

GO TO 1

QS = QSMIN

CONTINUE

ICOUNT = J - 1

OPEN(UNIT=1,TYPE='NEW' ,NAME="PREP1.DAT')

Kk= NN + 1

G0 TO (22,22,33,44,55,66,77,88,99,111),KK
WRITE(1,2)(OMP(L),(RMG(L,K),K=1,NN),L=1,ICOUNT)
GO TO 9999
WRITE(1,3)(OMP(L),(RMG(L,K),K=1,NN),L=1, ICOUNT)
GO TO 9999
WRITE(1,4)(OMP(L),(RMG(L,K),K=1,NN),L=1, ICOUNT)
GO TO 9999

WRITE(1,5) (OMP(L),(RMG(L,K),K=1,NN),L=1, ICOUNT)
GO TO 9999 '
WRITE(1,6)(OMP(L), (RMG(L,K),K=1,NN),L=1, ICOUNT)
GO TO 9999
WRITE(1,7)(OMP(L),(RMG(L,K),K=1,NN),L=1, ICOUNT)
GO TO 9999
WRITE(1,8)(OMP(L),(RMG(L,K),K=1,NN),L=1, ICOUNT)
GO TO 9999
WRITE(1,9)(OMP(L),(RMG(L,K),K=1,NN),L=1, ICOUNT)
GO TO 9999
WRITE(1,10)(OMP(L),(RMG(L,K),K=1,NN),L=1, ICOUNT)
CLOSE(UNIT=1)

OPEN(UNIT=2,TYPE="NEW* ,NAME="PREP2.DAT")

ICOL = KK

WRITE(2,11)ICOL, ICOUNT

WRITE(2,12) ' OMEGA'

WRITE(2,12)'G1"

WRITE(2,12)'G2"

WRITE(2,12)'G3"

WRITE(2,12)'G4"

WRITE(2,12)'G5"

WRITE(2,12)'G6"

WRITE(2,12)'G7"

WRITE(2,12)'G8"

WRITE(2,12)'G9"

CLOSE(UNIT=2)

FORMAT(2E11.4)

FORMAT(3E11.4)

FORMAT(4E11.4)

FORMAT(5E11.4)

FORMAT(6E11.4)

FORMAT(7E11.4)

FORMAT(8E11.4)

FORMAT(9E11.4)

FORMAT(10E11.4)

FORMAT(215)

FORMAT (A8)

STOP

END
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FILE NAME: PREPBF.FOR 14-DEC-83 APW

FUNCTION: COMPUTES THE COEF'S OF THE SECOND ORDER EQUATION
USED TO DETERMINE THE EQUILIBRIUM RADIUS OF THE
ROTOR FOR THE CASES WHERE EP AND G ARE NOT ZERO WITH
WITH FS ZERO. THEN COMPUTES THE RADIUS AND THE
RESULTING BEARING FORCE. FOR PLOTTING!
FS =0

ccccccccceccccccccccccccccccccccccccccccccccccccccccccccccccceccccccccccec

OOOOOOOOOOOOOOO

PROGRAM PREP
DIMENSION GG(9),0MP(1000),BF(1000,9)

BK = 1.0E6
SK = 2.0E5
TK = BK + SK
CS = 200.

CQ = 40.

RM = 0.20422

TYPE*,'CHOOSE A SPECIFIC DEADBAND & OFFSET---'
TYPE*,' INPUT NUMBER OF DEADBANDS (UP TO 9)'
ACCEPT*,NN
TYPE*, ' INPUT DEADBAND VALUES'
ACCEPT*,(GG(M) ,M=1,NN)
TYPE*,' INPUT THE OFFSET VALUE '
ACCEPT*,EP
200 TYPE *,'INPUT QSMIN & QSMAX,QSINC:'
ACCEPT*,QSMIN,QSMAX,QSINC
QS = QSMIN
DO 1000 I = 1,NN
G = GG(I)
J =1
1 OM = QS/100.
A = (BK + SK + CQ*OM - RM*QM**2)
B = (QS - CS*QOM)
AA = A**2 + B¥*2
BB = G*(RM*A*((OM**2) - B**2)
C=(EP**2)* (RM**2)* (OM**4 ) * (A**24B**2) - (BK**2)*(G**2)*(B**2)
IF (C.GE.Q) GO TO 35

-

RADIUS = 0.
GO TO 50
235 ROOTL = G + (BB + SQRT(C))/AA

ROOT2 = G + (BB - SQRT(C))/AA
IF((ROOT1.GE.0.).OR. (ROOT2.GE.0.))GO TO 30
RADIUS = 0.
GO TO 50
30 IF((ROOT1.GT.0.).AND. (ROOT1.GT.ROOT2))RADIUS
IF( (ROOT2.GT.0.).AND. (ROOT2.GT.ROOT1) )RADIUS
50 RMG = RADIUS - G
RTY = RMG
IF(RMG.LT.0.) RMG = 0.
BF(J,1) = BK*RMG
BTY = BF(J,I1)

ROOT1
ROOT2
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100
1000

22
33
44
55
66
77
88
99

111
9999

OMP(J) = OM

QS = QS + QSINC

IF(QS.GT.QSMAX)GO TO 100

J=J+1

GO T0 1

QS = QSMIN

CONTINUE

ICOUNT = J

OPEN(UNIT=1,TYPE="'NEW' ,NAME="'PREP1.DAT')

KK= NN + 1

GO TO (22,22,33,44,55,66,77,88,99,111),KK
WRITE(1,2)(OMP(L),(BF(L,K),K=1,NN),L=1,ICOUNT)
GO TO 9999
WRITE(1,3)(OMP(L),(BF(L,K),K=1,NN),L=1,ICOUNT)
GO TO 9999
WRITE(1,4)(OMP(L),(BF(L,K),K=1,NN),L=1,ICOUNT)
GO TO 9999
WRITE(1,5)(OMP(L),(BF(L,K),K=1,NN),L=1,ICOUNT)
GO TO 9999

WRITE(1,6) (OMP(L),(BF(L,K),K=1,NN),L=1,ICOUNT)
GO TO 9999
WRITE(1,7)(OMP(L),(BF(L,K),K=1,NN),L=1,ICOUNT)
GO TO 9999
WRITE(1,8)(OMP(L),(BF(L,K),K=1,NN),L=1,ICOUNT)
GO TO 9999
WRITE(1,9)(OMP(L),(BF(L,K),K=1,NN),L=1,1COUNT)
GO TO 9999
WRITE(1,10)(OMP(L),(BF({L,K),K=1,NN),L=1,ICOUNT)
CLOSE(UNIT=1)

OPEN(UNIT=2,TYPE="NEW' ,NAME="'PREP2.DAT')

ICOL = KK

WRITE(2,11)ICOL, ICOUNT

WRITE(2,12) 'OMEGA*

WRITE(2,12)'Gl'

WRITE(2,12)'G2"

WRITE(2,12)'G3'

WRITE(2,12)'G4’

WRITE(2,12)'G5"'

WRITE(2,12)'G6"

WRITE(2,12)'G7'

WRITE(2,12)'G8'

WRITE(2,12)'GY"

CLOSE(UNIT=2)

FORMAT(2E11.4)

FORMAT(3E11.4)

FORMAT(4E11.4)

FORMAT(5E11.4)

FORMAT(6E11.4)

FORMAT(7E11.4)

FORMAT(8E11.4)

FORMAT(9E11.4)

FORMAT(10E11.4)

FORMAT(215)

FORMAT(A8)

STOP

END
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OO0

300

700

FILE NAME: PSRO.FOR 22-NOV-83 APW

FUNCTION: COMPUTES RO FOR VARIOUS SIDE FORCES, FREQUENCIES,
AND DEADBANDS.

ccceccecceecccecccecccceccccceccceccceccccecccecccccceccccccceccccccccccee

PROGRAM PSRO
DIMENSION G(6),GI(6),JDB(6)
DATA GI /0.5€-3,1.0E-3,1.5€-3,2.0€-3,2.5€-3,0.0/

BKI = 1.0E6
SK = 2.0E5
CSI = 200.
CQ = 40.

RM = 0.20422
BK = BKI

CS = CSI

TYPE*, ' INPUT THE NUMBER OF DEADBAND VALUES TO BE CONSIDERED,'
TYPE*,'ONE TO SIX:'

ACCEPT*,NDB

IF(NDB.LT.6) 60 TO 2

DO 300 L = 1,6

G(L) = GI(L)

G0 T0 3

TYPE*, ' INPUT THE SPECIFIC DEADBANDS DESIRED:®
TYPE*,'(1).5E-3,(2)1.E~3,(3)1.5E-3,(4)2.E-3,(5)2.5E-3,(6)0.0"
ACCEPT*, (JOB(K),K=1,NDB)

DO 700 I = 1,NDB

JI = JDB(1)

G(I) = GI(JI)

TYPE*, ' INPUT FSI,FSMAX, & FSINC:'

ACCEPT*,FSI,FSMAX,FSINC

TYPE *,'INPUT QSMIN,QSMAX, & QSINCI:'
ACCEPT*,QSMIN,QSMAX,QSINCI

QS = QSMIN

FS = FSI

QSINC = QSINCI

OPEN(UNIT=1,TYPE='NEW' ,NAME='PSRO.DAT')

CALL HORIZ(16,1)

DO 1000 K = 1,NDB

WRITE(1,*)'G:',G(K),"  FS:',FS

WRITE(1l,*)' ' _. . .

FSMIN = SQRT((SK**2 + QS**2)*G(K)**2)

IF(FS.LT.FSMIN) BK = 0.

OM = QS/100.

IF(QS.EQ.0.) CS = 0.

(BK + SK)**2 + QS**2

BK + SK)*BK*G(K)

SK*Q¥A - (SHROABKA*2*G(K)**2

B/A + SQRT(C)/A
B

=
= F
/A - SQRT(C)/A

(R1*QS)/FS

A
B
¢
R
R
S
S (R2*QS)/FS

1 =
2 =
TH1
TH2
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ARGl = STH1/(SQRT(1.0 - STH1**2))
ARG2 = STH2/(SQRT(1.0 - STH2**2))
TH1 = ATAN(ARG1)
TH2 = ATAN(ARG2)
WRITE(1,*)'OM:*,0M,* FS:',FS,' FSMIN:',FSMIN
WRITE(1,*)' RI1:',R1,'  R2:',R2
WRITE(1,*)' TH1:',TH1,' TH2:',TH2
WRITE(1,*)"
BK = BKI
GO TO 40
40 QS = QS + QSINC
IF(QS.GT.0.) CS = CSI
IF(QS.GT.QSMAX) GO TO 100
GO TO 1
100 IF(FS.GE.FSMAX) GO TO 400
FS = FS + FSINC
QS = QSMIN
QSINC = QSINCI
GO TO 4
400 FS = FSI
QS = QSMIN
QSINC = QSINCI
1000  CONTINUE
TYPE*, ' FINISHED'
CALL HORIZ(10,1)
CLOSE(UNIT=1)
STOP
END

SUBROUTINE HORIZ(I,N)
IF ( I .EQ. 10 ) GOTO 100
IF ( I .EQ. 16 ) GOTO 130
10 FORMAT(10A1)
100 WRITE(N,10) 27,91,49,119
GOTO 200
130 WRITE(N,10) 27,91,52,119
GOTO 200
200 CONTINUE
RETURN
END

183



cccceceeccccecccceccccccceccceccececceccccccecccceccccccccccccccecccccccccecccc

OO OOOOOOOOO

300

701

FILE NAME: PSROOT.FOR 08-DEC-83 APW

FUNCTION: COMPUTES RO FOR VARIOUS SIDE FORCES, FREQUENCIES,
AND DEADBANDS. THE VALUE OF RO IS THEN USED TO
DETERMINE THE ROOTS OF THE CHARACTERISTIC EQUATION
WHICH HAS BEEN CAST IN THE FORM OF A PRODUCT OF
TWO SECOND ORDER EQUATIONS IN 'S°'.

cccccecccccecccccccceccccccceccceccceccccccccccccccceccccccccccccccccccccccc

PROGRAM PSROOT
DIMENSION G(6),GI(6),JDB(6)
DATA GI /0.5E-3,1.0E-3,1.5E-3,2.0€-3,2.5E-3,0.0/

BKI = 1.0E6
SK = 2.0E5
CSI = 200.
CQ = 40.

RM = 0.20422
BK = BKI

CS = CSI

TYPE*, ' INPUT THE NUMBER OF DEADBAND VALUES TO BE CONSIDERED,'
TYPE*, 'ONE TO SIX:'

ACCEPT*,NDB

IF(NDB.LT.6) GO TO 2

DO 300 L = 1,6

G(L) = GI(L)

G0 TO 3

TYPE*, ' INPUT THE SPECIFIC DEADBANDS DESIRED:'
TYPE*,'(1).5E-3,(2)1.E-3,(3)1.5E-3, (4)2.E-3,(5)2.5E-3,(6)0.0"
ACCEPT*, (JDB(K) ,K=1,NDB)

DO 701 I = 1,NDB

JI = JD8(1)

G(I) = GI(JI)

TYPE*, ' INPUT FSI,FSMAX, & FSINC:'

ACCEPT*,FSI,FSMAX,FSINC

TYPE *,' INPUT QSMIN,QSMAX, & QSINCI:'
ACCEPT*,QSMIN, QSMAX, QSINCI

TYPE*, ' INPUT A "1" FOR OUTPUT TO BE PLOTTED.'

ACCEPT*, IPLOT
QS = QSMIN
FS = FSI

QSINC = QSINCI .
OPEN(UNIT=1,TYPE="'NEW')
IF(IPLOT.NE.1) GO TO 5
OPEN(UNIT=2,TYPE="'NEW')
OPEN(UNIT=3,TYPE="NEW')

CALL HORIZ(16,1)

DO 1000 K = 1,NDB
WRITE(1,*)'G:',G(K),"  FS:',FS
WRITE(1,*)'

FSMIN = SQRT((SK**2 + QS**2)*G(K)**2)
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IF(FSMIN.GT.FS) BK=0.

= QS

/100.

IF(QS EQ.0.) CS = 0.

(BK + SK)**2 + QS**2

(BK + SK)*BK*G(K)

FS**2%A - QS**2*BK¥**2%G(K)**2
B/A + SQRT(C)/A
B/A - SQRT(C)/A

B:
C =
R1 =
R2 =
ccC
C COMPUTE THE
cce
C

C DETERMINE RO
cce
IF(BK.E
IF(R1.G
IF(R2.G
G0 TO 5
520 IF(R1.G

IF(R2.GT.0.) RO

ccc

C COMPUTE DELTA -- IF

ccc
540 DELTA =

ccc

ROCTS OF THE CHARACTERISTIC EQUATION

Q.0

E.G
40
T.O.)

) GO
E.G(K))R
(K)IR

DELTA IS COMPLEX, RO IS COMPLEX

(BK*G(K))/(2.0*RM*RO)
RK = (SK+BK)/RM - DELTA

C COMPUTE THE DELTA-Q RADICAL

ccc

RAD = DELTA**2 - (QS**2/RM**2)
IF(RAD.LT.0.)G0 TO 530

DQREAL =

DQIMAG =

GO TO 5

530 DQIMAG =

550 XKRP

>
Fad
-~
=2
nouw

XKIN
REALP =

- XR: = 0.
XI1

50

SQRT(RAD)

SQRT(ABS (RAD))
0

(RK + DQREAL)*4.0
DQIMAG*4.0
(RK - DQREAL)*4.0

-XKIP

(CS**2/RM**2) - XKRP
REALN = (CS**2/RM**2) - XKRN
IF(XKIP.NE.O.) GO TO 560
IF(REALP.GE.0) GO TO 561

GO TO 562

561 XR1
XI1 = ©

SQRT(ABS (REALP))
SQRT(REALP)

562 IF(REALN.GE.O) GO TO 563

XR2 = 0.
XI12 = SQRT(ABS(REALN))
GO TO 5
563 XR2 = SQRT(REALN)
X12 = 0.
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GO TO 565

560 SQMP = SQRT(SQRT(REALP**2 + XKIP**2))/2.0
SQMN = SQRT(SQRT{REALN**2 + XKIN**2))/2.0
SQMPT = (ATAN2(XKIP,REALP))/2.0
SQMNT = (ATAN2(XKIN,REALN))/2.0

XR1 = SQMP*COS(SQMPT)
XI1 = SQMP*SIN(SQMPT)
XR2 = SQMN*COS (SQMNT)
XI2 = SQMN*SIN(SQMNT)

565 RTIR = - CS/(2.0*RM) + XR1
RT1I = XI1
RT2R = - CS/(2.0*RM) - XR1
RT2I = -XI1
RT3R = - CS/(2.0*RM) + XR2
RT3I = XI2
RT4R = - CS/(2.0*RM) - XR2
RT4I = -XI2

IF(RTIR.GT.0) GO TO 700
IF(RT2R.GT.0) GO TO 700
IF(RT3R.GT.0) GO TO 700
IF(RT4R.GT.0) GO TO 700
GO TO 710

700 QS = QS - QSINC
QSINC = QSINC/10.

710 IF(QSINC.LT.0.1)G0 TO 720
QS = QS + QSINC
BK = BKI
IF(QS.GT.0.) CS = CSI
IF(QS.GT.QSMAX) GO TO 100

GO TO 1

720 QS = QS + QSINC*10.
OMI = Q5/100.
IF(IPLOT.EQ.1) WRITE(2,999)FS,OMI
ICOUNT = ICOUNT + 1
WRITE(1,*)'OM:',0M," FS:',FS,' FSMIN:*,FSMIN
WRITE(1,*)' R1:',R1,RI1,'  R2:',R2,RI2
WRITE(1,*)'
WRITE(1,*)" RO:',RO
WRITE(1,*)'
WRITE(1,*)'ROOT1:',RTIR,RT1I
WRITE(1,*)'ROOT2: ' ,RT2R,RT2I
WRITE(1,*) 'RO0T3: * ,RT3R,RT3I
WRITE(1,*)'ROOT4: ' ,RT4R,RTAI
WRITE(1,*)*
WRITE(1.%)" INSTABILITY FREQUENCY:',OMI
WRITE(1,*) ' eemecmmmemcmmcemeeccmee—eeeeeemeecmme————e————————
BK = BKI

100 IF(FS.GE.FSMAX) GO TO 400
IF(QS.LT.QSMAX) GO TO 199
WRITE(1,*)'NO INSTABILITY FOUND'
WRITE(2,999)FS,OM
ICOUNT = ICOUNT + 1

199 FS = FS + FSINC

QS = QSMIN
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400

1000

999
998
997

9000

10
100

130
200

QSINC = QSINCI
G0 T0 4

FS = FSI

QS = QSMIN

QSINC = QSINCI
CONTINUE
IF(IPLOT.NE.1)GO TO 9000
ICOL = 2
WRITE(3,998) ICOL, ICOUNT
WRITE(3,997) 'FSIDE"
WRITE(3,997)'OMI"
FORMAT(2€11.4)
FORMAT(215)
FORMAT(A8)
CLOSE (UNIT=2)
CLOSE(UNIT=3)
TYPE*, 'FINISHED"
CALL HORIZ(10,1)
CLOSE (UNIT=1)
STOP
END

SUBROUTINE HORIZ(I,N)

IF ( I .EQ. 10 ) GOTO 100
IF ( I .EQ. 16 ) GOTO 130
FORMAT(10A1)

WRITE(N,10) 27,91,49,119
GOTO 200

WRITE(N,10) 27,91,52,119
GOTO 200

CONTINUE

RETURN

END
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ccceecccececccccccccececccececccceccccccccccccccccccccccccccccccceccccccccccccc
FILE NAME: PNROOT.FOR 13-DEC-83 APW
NONDIMENSIONALIZED VERSION OF PSROOT.FOR
FUNCTION: COMPUTES RO FOR VARIOUS SIDE FORCES, FREQUENCIES,
AND DEADBANDS. THE VALUE OF RO IS THEN USED TO
DETERMINE THE ROOTS OF THE CHARACTERISTIC EQUATION
WHICH HAS BEEN CAST IN THE FORM OF A PRODUCT OF
TWO SECOND ORDER EQUATIONS IN 'S‘.

cccececccccecccccceccccecccccccececccecccccccccccccccccccccccecccceccccccccce

OOOOOOOOOOOOOOO

PROGRAM PSROOT
DIMENSION G(6),GI(6),J0B(6)
DATA GI /0.5E-3,1.0€-3,1.5E-3,2.0E-3,2.56-3,0.0/
BKI = 1.0E6
SKI = 2.0ES
CSI = 200.
QI = 40.
RMI = 0.20422
TYPE*, ' INPUT THE NUMBER OF DEADBAND VALUES TO BE CONSIDERED,'
TYPE*,'ONE TO SIX:'
ACCEPT*,NDB
IF(NDB.LT.6) GO TO 2
D0 300 L = 1,6
300 G(L) = GI(L)
GO TO 3
2 TYPE*, ' INPUT THE SPECIFIC DEADBANDS DESIRED:'
TYPE*,'(1).5€-3,(2)1.E-3,(3)1.5E-3,(4)2.E-3,(5)2.5E-3,(6)0.0"
ACCEPT*, (JDB(K),K=1,NDB)
DO 701 I = 1,NDB
JI = JDB(I)
701 G(I) = GI(JI)
3 TYPE*, INPUT FSI,FSMAX, & FSINC:'
ACCEPT*,FSI,FSMA,FSIN
TYPE *,' INPUT QSMIN,QSMAX, & QSINCI:'
ACCEPT*,QSMIN, QSMAX,QSINCI
TYPE*,'INPUT A “1" FOR OUTPUT TO BE PLOTTED.'
ACCEPT*, IPLOT

nwu uan

ccc

C NONDIMENSIONALIZE SYSTEM PARAMETERS

ccc
TC
BK
SK
cs
cQ
RM
BKIG
CSIG
QSMIN = QSMIN/SKI
QSMAX = QSMAX/SKI
QSINCI = QSINCI/SKI

SQRT(RMI/(SKI+BKI))
BKI/SKI

SKI/SKI
CSI/(SKI*TC)
CQI/SKI
RMI/(SKI*(TC**2))
BK

cS

LI LD LR | I O ]

"on
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QSINC = QSINCI
88 = .10/SKI

cc OPEN(UNIT=1,TYPE="'NEW")
IF(IPLOT.NE.1) GO TO 5
OPEN(UNIT=2,TYPE="NEW")
OPEN(UNIT=3,TYPE='NEW')

5 CALL HORIZ(16,1)
DO 1000 K = 1,NDB
FS = FSI/(SKI*G(K))
FSMAX = FSMA/(SKI*G(K))
FSINC = FSIN/(SKI*G(K))

cca WRITE(1,*)'G:',G(K),"  FS:',FS

cc WRITE(1,*)'
4 CONTINUE
1 FSMIN = SQRT(SK**2 + (S**2)

IF(FSMIN.GT.FS) BK=0.

OM = QS*SKI*TC/100.

IF(QS.EQ.0.) CS = O.
= (BK + SK)**2 + QS**2

= (

= FS**2*A - (S**2*BKA*2

B/A + SQRT(C)/A

B/A - SQRT(C)/A

1 =
2 =
CccC

C COMPUTE THE ROOTS OF THE CHARACTERISTIC EQUATION

CCC

c

C OETERMINE RQ

cce
IF(BK.EQ.0) GO TO 520
IF(R1.GE.1.0)R0 = R1
IF(R2.GE.1.0)R0 = R2
G0 TO 540

520 IF(R1.GT.0.) RO = Rl
IF(R2.GT.0.) RO = R2

cce
C  COMPUTE DELTA -- IF DELTA IS COMPLEX, RK IS COMPLEX
cce
540 DELTA = BK/(2.0%RM*RO)
RK = (SK+BK)/RM - DELTA
cce
C COMPUTE THE DELTA-Q RADICAL
cce
- RAD =-DELTA**2 ~ (QS**2/RM**2)
IF(RAD.LT.0.)G0 TO 530
DQREAL = SQRT(RAD)
DQIMAG = O.
GO TO 550
530 DQIMAG = SQRT(ABS(RAD))
0

(RK + DQREAL)*4.0
DQIMAG*4.0

(RK - DQREAL)*4.0
-XKIP

550 XKRP

>

ra

)

==
wouwounwon

189



561
562

563

560

565

700
710

720

cc
cc

cc
cc

REALP = (CS**2/RM**2) - XKRP
REALN = (CS**2/RM**2) - XKRN
IF(XKIP.NE.O.) GO TO 560
IF(REALP.GE.0) GO TO 561

XR1 = 0.
XI1 = SQRT(ABS(REALP))
GO TO 562

XR1 = SQRT(REALP)

XI1 = 0.

IF(REALN.GE.0) GO TO 563
XR2 = 0.

XI2 = SQRT(ABS(REALN))
GO TO 565

XR2 = SQRT(REALN)

XI2 = 0.

GO TO 565

65
SQMP = SQRT(SQRT(REALP**2 + XKIP**2))/2.0
=S

SQMN = SQRT(SQRT(REALN**2 + XKIN**2))/2.0
SQMPT = (ATAN2(XKIP,REALP))/2.0
SQMNT = (ATAN2(XKIN,REALN))/2.0
XR1 = SQMP*COS(SQMPT)

XI1 = SQMP*SIN(SQMPT)

XR2 = SQMN*COS(SQMNT)

XI2 = SQMN*SIN(SQMNT)

RTIR = - CS/(2.0*RM) + XR1

RT1I = XI1

RT2R = - CS/(2.0*RM) - XR1

RT2I = -XI1

RT3R = - CS/(2.0*RM) + XR2

RT3I = XI2

RT4R = - CS/(2.0*RM) - XR2

RT4I = -XI2

IF(RTIR.GT.0) GO TO 700
IF(RT2R.GT.0) GO TO 700
IF(RT3R.GT.0) GO TO 700
IF(RT4R.GT.0) GO TO 700
GO TO 710
QS = QS - QSINC
QSINC = QSINC/10.
IF(QSINC.LT.BB)GO TO 720
QS = Q5 + QSINC
BK = BKIG
1F(QS.GT.0.) CS = CSIG
IF(QS.GT.QSMAX) GO TO 100

GO TO 1
QS = QS + QSINC*10.
OMI = QS*SKI*TC/100.0
IF(IPLOT.EQ.1) WRITE(2,999)FS,OMI
ICOUNT = ICOUNT + 1
WRITE(1,*)'OM:*,0M," FS:',FS,' FSMIN:' FSMIN
WRITE(1,*)' R1:',R1,RI1,*  R2:',R2,RI2
WRITE(1,*)*
WRITE(1,*)" RO:',RO
WRITE(1,*)'
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cc WRITE(1,*)'ROOT1:',RTIR,RT1I

cc WRITE(1,*)'ROOT2: ' ,RT2R,RT2I
cC WRITE(1,*)'ROOT3: " ,RT3R,RT3I
cC WRITE(1,*)'ROOT4: " ,RT4R,RT4I
cc WRITE(1,*)'
cc WRITE(1,*)' INSTABILITY FREQUENCY:',OMI
cc WRITE(1,%) ' wmmmmmmommmmmeeemeecccmecmmcmmcmcmaacoccammoonae
BK = BKIG :
100 IF(FS.GE.FSMAX) GO TO 400
IF(QS.LT.QSMAX) GO TO 199
cc WRITE(1,*)*NO INSTABILITY FOUND'
WRITE(2,999)FS,OM
ICOUNT = ICOUNT + 1
199 FS = FS + FSINC
QS = QSMIN
QSINC = QSINCI
GO TO 4

400 QS = QSMIN
QSINC = QSINCI

1000 CONTINUE
IF(IPLOT.NE.1)GO TO 9000
ICOL = 2
WRITE(3,998) ICOL, ICOUNT
WRITE(3,997) 'FSIDE"
WRITE(3,997)'OMI"

999 FORMAT(2E11.4)

998 FORMAT (215)

997 FORMAT (A8)
CLOSE (UNIT=2)
CLOSE (UNIT=3)

9000  TYPE*,'FINISHED'
STOP
END

SUBROUTINE HORIZ(I,N)
IF ( I .EQ. 10 ) GOTO 100
IF ( I .EQ. 16 ) GOTO 130
10  FORMAT(10A1)
100 WRITE(N,10) 27,91,49,119
GOTO 200
130 WRITE(N,10) 27,91,52,119
GOTO 200
200 CONTINUE
_RETURN
END
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6.0 Conclusions:

In the previous sections we have discussed in detail the modeling and analysis
efforts under this study. It is now time to review and summarize our results.

1. Observed 3 motion types called A, B, C;

A - Periodic but dues not enclose origin, may include higher harmonics;
B - Nonperiodic;
C - Periodic enclosing origin, Synchronous or nonsynchronous;

2. Limit Cycle Algorithm developed and employed, both A & C types observed.
3. Deadband does not affect stability-in-the-large.

4. Stability-in-the-small are affected (enhanced) by deadband and sideforce.
5. Bearing loads are largest for C-type motion.

6. Side force acting in concert with deadband effects may either increase or
decrease bearing loads.

7. Bearing loads in a stable pump are determined primarily by rotor imbalance
and side forces.

These results are quite significant in our understanding of the effects of
bearing deadbands. Harmonics of snychronous and nonsynchronous oscillations
have been observed. This is clearly a nonlinear effect. Stable limit cycle
whirls have been observed occurring at synchronous and nonsynchronous rotor
speeds in our results.

The 1limit cycle algorithm that we have developed can be generalized to more
complex turbopump models with more degrees of freedom. It will be useful for
loads analysis with nonlinear forces for rotor dynamics and other applications.
It is capable of converging to periodic motions (solutions) which generally
result in the highest load-producing conditions.

Since stability-in-the-large is ultimately determined by behavior at extremely
large amplitudes of motion, deadband effects become negligible. Thus, linear
models remain adequate for analysis of global stability properties. Stability-
in-the-small is significantly altered by the nonlinear effects of deadbands. We
have shown that sideforces can significantly enhance stability provided imba-
_lance offsets and/or impulsive disturbances _do not cause significant displace-
ment from the equilibrium position of the rotor.

Bearing loads have been shown to be significantly modified by deadband effects.
Critical speeds are altered. Loads may increase or decrease. The shape of the
critical response curve is altered with higher loading at lower frequencies due
to the deadband.
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These results have been obtained using a relatively simple 2 degree-of-greedom
model. This may lead one to believe the results are not applicable to real
machines. This is not the case, however, and indeed one can argue and demon-
strate with more sophisticated models that these effects are real. Since rotor
responses are most often periodic, such motions can be described adequately by
an effective mass responding to effective stiffnesses and deadbands, i.e., a
2-dimensional model. Thus, our results are at least qualitatively valid for the
description of turbo-pump motions.

Future work to be done in this area includes the generalization of our limit
cycle algorithm to higher dimensional models including more nonlinearities. The
thrust of this work would be to verify the results demonstrated for the Jeffcott
model and explore the ways in which the additional degrees of freedom shift cri-
tical speeds around.

Additional work remaining to be done in this area involves the development of a
simple test rotor whose dynamics would be adequately described by the Jeffcott
model. Such a test rotor would allow accurate investigation of a number of
rotordynamic phenomena. It would serve as an experimental tool for the refine-
ment of our models of bearing forces including deadband effects. Once these
forces become well understood, the test rotor could be used to explore and
define more precisely such whirl driving mechanisms as fluid seals, impeller/
diffuser coupling, rubbing between rotor and housing and rotor internal fric-
tion. The experimental research rotor would greatly improve theoretical
understanding of rotordynamic forces and consequently whirl phenomena.

This has been extremely interesting and enjoyable work. We have appreciated the
opportunity to contribute to the analytical state-of-the-art in this area.
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