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FINAL REPORT
Center of Excellence for Applied Mathematical and

Statistical Research in Support of Developlent of
Multicrop Production Monitoring Capability

August 31,1983

Introduction

In this report we summarize the efforts undertaken by

the Center for Applied Mathematical and Statistical Research
at Southern Methodist University in support of the contract
NAS 9-16438 since January 31, 1983. For a discussion of the
progress made on this contract prior to January 31, 1983,
reference should be made to Final Report SR-63-04408. Our
recent efforts have dealt primarily with an evaluation of
current techniques for mixture modelkproportion estimation
along with investigation into alternative techniques.
Mixture modeling procedures currently utilized by NASA, e.g.
CLASSY, assume a mixture of normal components. In addition,
associated parameter estimation is accomplished using
maximum likelihood(ML) methods based on the normality
assumption since these ML estimators are optimal when the
normality assumption is valid. However, it is well Kknown
that ML estimation procedures are highly sensitive to
violations of the underlying assumptions. Recent

implementation of the mixture model has involved use of
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feature variables from the Badhwar profile model. In
particular, the feature variables currently in use are Tp -

time of peak greenness, G(T,) - peak greenness, and V - a

p)
measure of the length of the growing season. The normality
of these feature variables has lieen an issue of recent
concern.

Quir results and investigations can be grouped into four

major categories:

(1) Further results on the comparison of normal based MLE
and MDE (Cramér-von Mises distance) |
(2) Use of the Hellinger metric as an alternative to the
Cramér-von Mises distance used in calculating the MDE
(3) Investigation into the use of the Weibull as an
alternative to the normal for modeling component
distributions.
(4) Implementation of the estimation procedures on LANDSAT
data in an effort to:
(a) investigate the normality (or non-normality)
of the Badhwar feature variables.
(b) compare the performance of the MLE and MDE in a

"real data" situation.

The progress which has been made in these areas is discussed

in this report.



(1) Normal-based MDE vs MLE

One of our primary investigations has been the
comparison of normal based MD and ML estimation of the
mixture proportion for simulated two component mixture
models. We have‘' ccmpared the estimation procedures for
simulated mixtures of normal and of non-normal components.
Our investigations in this area were previously documented
in NASA technical report SR-62-04376, 1In that report we
showed ML procedures to be superior when the normal
component assumption is valid while MD procedures perform
better on the simulated mixtgres of components which
represent symmetric departures from normality. Mixtures of
t(4) components were examined in that report.

Our recent results have included more extensive
simulations in which double exponential and t(2) components
were examined. The double exponential.was chosen since it
has lighter tails than a t(4) yet heavier than a normal
distribution. Tests for goodness-of-fit usually have 1little
power in distinguishing normal and double exponential déta.
In addition, t(2) components were examined in order to
compare the estimation procedures in a héavier tailed
setting than the t(4). In fact, the t(2) distribution has

infinite variance, and not surprisingly, realizations often



have a few extreme observations. Our results show that in
both of these non-normal situations, the MDE provides better
proportion estimates than the MLE. This improvement is
particularly striking for the t(2) simulations as the MDE
seems to be relatively insensitive to a few extreme values.

In these simulations we have initiated the iterative
routines used to calculate the MDE and the MLE with starting
values obtained using @& somewhat ad-hoc quasi-clustering
technique. We have observed that in some situations,
particularly those with heavy overlap between component
distributions, the starting values perform better than both
the MLE and MDE, an interesting finding since the starting
value routine is easy to implement and is very fast since it
does not invo}ve iteration. ,

Asymptotic results have been obtained which establish
the strong consistency and asymptotic normality of ﬁhe MDE
in the mixture-of-normals setting. The form of the
asymptotic variance‘ of the MDE is available from these

results so that the asymptotic relative efficiencies (AREs)

of the MDE relative to the MLE can be found. We have

calculated these AREs for several parameter configurations.
These AREs are fairly comparable to the empirical finite
sample results. The following reports have been written
since January 31, 1983 concerning our work in this area.

Report [1] is included as Appendix A in this document.



[1) "Minimum Distance Estimation of Mixture Model
Parameters -  Asymptotic Results and Simulation
Comparisons with Maximum Likelihood" by Wayne A.
Woodward, William C. Parr, William R. Schucany, and
Henry L. Gray (SR-63~04427), June 1983,

[2] "A Comparison of Minimum Distance and Maximum
Likelihood Estimation of a Mixture Proportion" by
Wayne A, Woodward, William C. Parr, William R.
Schucany, and Hildegard Lindsey - submitted to
Jourpal of Lhe American Statistical
Association.

(2) Minimum Hellinger Distance Estimation

We have also investigated the use of the Hellinger
metric for calculating the MDE. In our previous work, the
Cramér-von Mises distance has been used exclusively for this
calculation. The minimum Hellinger distance estimator (MHDE)
is of interest to aerospace remote sensing since it has the
potential of providing robust proportion estimates under
deviations from normality while maintaining performance
comparable to the MLE when the underlying components
actually are normal. However, our initial implementations ot
this procedure have shown that although the results are

encouraging, the iterative procedure is highly sensitive to

RSN



starting values and is computationally more difficult than
the MDE based upon Cramér-von Mises distance. More
investigation is needed before the MHDE can be considered to
be a viable alternative for proportion estimation.

As a result of our investigations of the MHDE, the

following report has been written and is included here as
Appendix B.
(3] "Minimum Hellinger Distance Estimation of Mixture
Model Parameters" by Wayne A. Woodward and Paul W.
Eslinger (SR-63-04433), July 1983,

(3) Weibull Based MD Estimation

The MD and ML estimation procedures discussed in the

previous sections were both based upon a mixture of normal

components. Our results showed that although the MDE is more
robust to symmetric departures from component normality,
neither normal based procedure provided adequate results in
the presence of asymmetric departures. We have investigated
the use of the Weibull distribution as an alternative to the
normal since the Weibull can be symmetric or skewed (to the
right or to the 1left), and it therefore provides a very
flexible model. The density function for the three parameter

Weibull is given by
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o Y1 -
f(x) = % (533) e ) X 20 (1)
where >0 and v > 0, The mean ang variance are given

by 1
U =0 4+ Bl(= + 1)
Y (2)

2 _ a2(p,2 _ .21
of = g + 1) - 7T+ L)

The parameter y serves as a shape parameter. When y=3.6 the
Weibull is symmetric and in fact, dquite similar to the
normal distribution. The Weibull is skewed to the left or to
the right depending on whether y>3.6 or y<3.6 respectively.
The following technical report addresses the use,6 of the
Weibull in mixtur2 proportion estimation. It is included

here as Appendix C.

[4) "Proportion Estimation in Mixtures of Asymmetric
Distributions" - Wayne A. Woodward, Richard F. Gunst,
Hildegard Lindsey, and H.L. Gray.

(SR-63-04409), May 1983.

The x2(9) was used in the simulations in report (4] ¢to

assess the effect of component asymmetry. In that report,

the iterative procedures were started at "truth" rather than

at starting values obtained from the data. In Table 1 we

present the results of a recent and more extensive set of

(&



simulations than those quoted in [4]). In the new
simulations, starting values for Hyr oi , and p, i=1,2 were
obtained from the data as discussed in [(2]). The starting
values for By and oi were then converted to estimates of ¢,
and Bi using eguations (2) with 71-3.6, i=1,2. The starting
value estimate for p remains unchanged. The simulations
summarized in Table 1 are based on simulated mixtures of
normal components while those in Table 2 are based on
simulated mixtures of x(9) distributions. As in [4] we
examined overlaps, as defined in (2]}, of .10 and .03, and
mixing proportions of .25, .50, and .75. We have added the
case in which the variance of component 1 is twice that of
component 2. In this table we compare the MLE based on a
' mixture of normals model (MLEN), the MDE based on a mixture
of normals model (MDEN), and the MDE based on a mixture of
Weibulls model (MDEW).

The results here are similar to those shown in
SR-63-04409 in that the normal based procedures performed

better on the mixtures of normal components while the

Weibull based MDE was denerally superior on mixtures of

x2(9) components. Again, the starting value routine obtained
estimators which were competitive with and often better than
those estimators obtained through the iterative routines.

A few other comments are in order here. First, we
believe that if the asymmetry can be assumed to be in only

one direction (probably to the «right for the profile

g;ﬁaw*f“'x



Table 1. Comparison of Proportion Estimation Techniques
Simulated Mixtures of Normal Components
n = 200
number of repetitions = 100

2 2
oy =0,
Qverlap = ,10 Qverlap = ,03
P Bias MSE p Bias MSE
MLEN 27 .02 ,023 « 26 .0l .002
p=.25 MDEN .31 .06 .045 027 .02 +N05
g MDEW o33 008 .042 033 008 0015
Starts .30 .05 .009 «29 .04 .005
t’ILEN 050 000 .020 o49 -001 0002
=50 MDEN +50 .00 ,019 49 =01 .002
P =0 vEw 49 -.01 ,028 .49 =-,01 005
Starts 51 .0l 007 .50 .00 .005
ci = 20%
Overlap = .10 Overlap = .03
p  Bias  MSE p  Bias  MSE
MLEN c24 -col Qoll .24 -.01 0002
=.25 MDEN .31 .06 031 +25 .00 .005
P =% pEW .36 J11 .082 .25 .00 011
MLEN «49 -,01 012 .50 00 .002
=.50 MDEN <50 .00 ,016 .50 .00 .002
P =% MpEw .49 =01  .027 .50 .00  ,007
stal‘ts 041 -009 0015 045 -.05 .007
MLEN » 70 -.05 .025 .74 -,01 .002
p = 75 I’IDEN 064 -.ll 0057 .73 —002 5004
¢ }.{DE‘J 059 “"‘016 n057 t7l -'04 1009

Starts .59 -.16 +035 .66 -.09 .012



Table 2.

MLEN
MDEN
MDEW
Starts

P =.25

MLEN
MDEN
MDEW
Starts

P =.50

MLEN
MDEN
MDEW
Starts

p =.75

MLEN
MIEN
MDEW
" Starts

MLEN
MDEN
MDEW
Starts

p =.50

MLEN

- *DEN
MDEW
Starts

p=.75

Comparison of Proportion Estimation Techniques

Simulated Mixtures of x2(9) Components

number of repetitions = 100

n = 200

Overlap = ,10

p  Bias  MSE
27 .02 .096
.34 .09 .106
«35 .10 ,049
.32 .07 .035
W26 =.24 062
029 —.21 0058
.42 -.08 0023
48  =-,02 007
48 =27 .080
.46 -029 .095
.55 =.20 .075
.67 =.08 .013
52

Qverlap = .10 1

; Bias MSE
016 "'009 .050
.28 .03 .069
37 .12 .062
«26 .01 .026
028 -.22 .053
.31 -019 .041
.45 -.05 .015
.41 -.09 .015
.46 -.29 .089
«50 -.25 .076
058 -.17 0049
.60 -.15 .030

= 20

NN

Qverlap = ,03

A

P Bfas MgE
017 -008 .007
.17 -,08 .008
.32 .06 011
27 .02 .003
Oz‘l -009 'Oll
042 --08 .009
.49 -.01 .005
.51 .01 .004
.65 =-.10 .013
.63 -.12 ,016
W71 -, 04 .006
066 -009 .013

Overlap = ,03
p  Bias  MSE
019 "006 0006
als _007 0008
.31 .06 .010
$25 .00 .003
.43 _007 0007
43 -.07 .007
<49 -.01 .003
W45 T =.05 .007
.65  -.10  .012
'64 "'.ll .016
069 -.06 n008
061 —?14 o023

10



variables under consideration), then the estimation results
shown in Tables 1 and 2 can be improved. Another interesting
finding was made during these simulations concerning the
3~-parameter Weibull. Although we only show summary results
in this report, parameter estimates for all 7 of the
parameters of the fitted mixture-of-Weibulls is printed out
by the simulation program for each sample generated. For
several samples a(<0) and g were very large’in absolute
value, sometimes greater than 1000. These parameter values
were associated with a Y smaller in magnitude than o and
B but substantially 1larger than 3.6. Although these
parameter values appear to be "very bad", plots of the
associated 3-parameter Weibull densities showed to be
consistent with the data with only ‘very small probability
being associated with the interval between a and 0. 1In
Figure 1 we show two 3-parameter Weibull densities, one
associated with parametersbq = ~1182, g = 1205, and vy = 324
while the other density has parameters o =0, B = 21.2,
y = 5.8. We see that the densities are very similar although
the parameter values differ dramatically. Thus, the
3-parameter Weibull seems to suffer from a "practical
non-identifiability" which may or may not be a éroblem in
our setting. If only proportion estimates are desired, then

this lack of "identifiability" of the component Weibulls may

not cause difficulties. It 1is clear that the component’

Weibull parameter estimates can be very misleading.

st o b e e oy . . B

11

R\ %
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(4) LANDSAT Data

The relative performance of the MDE and MLE has been
examined through extensive simulation investigations. These
investigations have been an important first step in
understanding the behavior of the estimators in controiled
normal and non-normal mixtures. It has been shown that lack
of component normality can severely degrade the performance
of the MLE. In fact, we have seen that mild non-normality
(double exponential) can cause the "optimal" MLE to perform
in a less than optimal manner. Another key concern involves
the symmetry of component distributions since our
simulations have shown that such skewnesé can have adverse
effects on normal based procedures. |

' The performance of the estimation schemes on LANDSAT
data 1is, of course, of ultimate importance. The key

questions which are of interest in this respect are:

(a) Are the feature variables from the Badhwar profile
model normal? If not, what type of non-normality is
encountered?

(b) How do the estimation procedures compare on this data?

In an attempt to provide answers to these questions, we

&

13
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have utilized data from the Fundamental Research Data Base.
This data base consists of eighteen segments on which ground
truth and the Badhwar feature variables are available for
each pixel. 1In cur investigations we identified the pure
pixels on each segment and related these back to their
ground truth labels., Our simulation investigations have been
based on mixtures of two univariate component distributions.
Therefore, the current interest concerns the ability of the
estimation procedures to estimate crop proportions in this
univariate, two component, real data setting. Accordingly,
we identified "pairs" of crops from these 18 segments for
which proportion estimation would be useful. That is, from a
given segment we identified two crops, Say corn and
soybeans, and considered the related pixels to constitute a
mixture population. In én attempt to further understand the
data for these mixture populations, histograms of the
component distributions and of the mixture distribution were
drawn for each of the three feature vafiables Tpr V, and
G(Tp). In Fiéures 2 -7 we displayythese histograms for the
corn and soybean pure pixels of Segment 1380, a 1978
Minnesota segment. Several observations can be made
concerning the histograms. First, there 1is clear visual
separation between corn and soybeans on the basis of G(Tp),
a small amount‘of separation on Tp, and no separation on V,
Notice that what appears to be a second peak in the mixture

model for V in Figure 5 appears as a "spurious" peak in the

14
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Figure 2. Histograms of T, for Corn and Soybean Component
Distributions based upon Pure Pixels from Segment 1380
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Figure 6. Histograms of G(T ) for Corn and Soybean Component
Distributions based on Pure Pixels from Segment 1380
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component distribution for soybeans (see Figure 4). This
leads to a second observation which is that the quality of
the data is very questionable. The peak in the soybean
component should be explained. Further, the figures indicate
that outliers are a major problem. For example, note should
be made of the extreme values for each profile, particularly
for soybean components. In order to correctly anelyze these
data, the outliers must be more fully understood. Outliers
could arise from several sources. Among these are
incorrectly specified ground truth readings, crops which
were plowed under after the ground truth readings were made,
and extreme values which result from instability of
parameter estimation %n the Badhwar model. Our examination
of all of the histograms reveals thLat outliers are in
general most prevalent for V. We do not at present
understand the outliers observed here, but their magnitude
is significant to warrant further investigation.

Although the mixtures displayed in Figures 3 and 7 are
bimodal, a general impression after examining all of the

histograms is that for many of the 'crop comparisons, the

mixture histograms are not bimodal for any of the profile

variables. This, of course, causes the usefulness of the
profile variables for separating crops to be questionned.
Based upon our examination of the data, we are able to make
some verybgeneral comments concerning the crop separation.

For the segments we observed, none of the three variables

21



produced histog:ams from which a separation was visible when
comparing:

grass vs. spring small grains

spring wheat vs. other spring small grains

spring wheat vs, spring barley

¢orn vs. trees

grass vs. pasture
In contrast, visual separatioé was present for the following
comparisons:

corn vs. soybeans (Tp and G(Tp))

cotton vs. spring small grains (7T and G(Tp))

p
sunflower vs. spring wheat (Tp and G(Tp))
pasture vs., alfalfa (G(Tp))
Of'course, multivariate examinations of +these variables
might detect separations which we are unable to observe in
the univariate setting.

We alsc examined the performance of the estimates

studied in the simulation studies on the LANDSAT data. In

order to do this we sampled from the mixture populations‘

described earlier. Specifically, éor selected "crop pair
populations" we selected 100 samples of size n=200,
obtaining the MDEN, MLEN, and MDEW for each sample. The
results of this "data simulation" were then summarized in
much the same way as were the simulations presented earlier.
In Table 3 we present the results for estimating the mixing

proportion based upon the corn-soybean mixture from Segment

22



1380. The ground truth proportion there is p=,43 (proportion
of pixels in the mixture which are corn). From the table we
see that the estimation results are very poor for all
estimation procedures. Examination of the histograms (see
Figures 2 - 7) reveals that the outliers discussed earlier
are probably the major cause for this poor performance. The
starting Yalue results deserve special attention., The
starting values are restricted to p=.1,.2,...,.9, and they
are selected in such a way that if fewer than 5% of the data
are "extreme" in either direction, then this has very little
effect on the starting values. With outliers as extreme and
as numerous as the ones in the present data, the starting
value routine often interprets the extreme 10% of the data
as constituting a component. Thus we see the extremely poor
starting value results in Table 3. 1In an effort to 'examine
the effect of the outliers on the results in Table 3 we
truncated the most extreme observations, and repeated the
simulations. In particular, all Tp observations below 60 and
above 150 were truncated, all VvV observations above 80 were
truncated, and éor G(Tp), 1ll observations below “10 and
above 120 were truncated. These truncations were performed
independently for each variable so that the ground truth
proportions differ from profile to profile. These ground
truth readings are given in Table 3. A truncation based on
all three criteria together might be of interest since, for

example, the spurious peak at about V=53 for the soybean

23



Table 3. Results of "Data Simulation" based on Corn and
Soybean Pure Pixels from Segment 1380
Sample Size = 200
Number of Replications = 100
Data Not Truncated
Ground Truth p = ,43 (Proportion Corn)
T v G(T

L) p ~ ~ ~ ~ (p) ~

P MSE p MSE p MSE
MDEN «59 .07 .64 .05 .03 .10
MLEN .83 17 W77 .13 .89 +23
MDEW .73 W15 .62 .08 .67 11
Starts .89 $22 .85 .18 «79 W15

Data Truncated
Ground Truth Ground Truth Ground Truth
p = .44 p = .43 P = .45

p MSE P MSE P MSE
MDEN 47 .04 .61 .04 .58 .03
MLEN .71 .09 .64 .06 A .05
MDEW «49 .09 «57 .05 54 .02
Starts .88 .20 .83 .16 .61 .03

24



data in Figure 4 may be associated with extreme values of
one of the other two variables, and thus these values of V
would be removed by such a joint truncation procedure., The
results of the simulations on truncated data are given in
Table 3. There it can be seen that the performance of the
estimators improves dramatically. However, it should be
noted that extreme observations seem to continue to have an
effect on the results. Notice that G(Tp) appears to be the
best single variable for separating corn and soybeans, in
which case MDEW results are superior. Simulations similar to
those reported hére were obtained for several crop-pair
mixtures. In general, although visible separation sometimes
existed between the two components, estimation results were
usually very poor because of the outliers.

The symmetry of the component distributions is one of

our main interests. However, the outliers tend to diminish

our ability to examine skewness. Although many of the’

component distributions appeared to be nearly symmetric, we
have observed skewness to the right in several cases, see
for example the component distributions for V in Figure 4.
Many of the comments which are made here are based on
our examiﬁation of all of the histograms and "data
simulation” results which were obtained from our processing
of the segment data. Although these displays and ' results
cannot all be included here, we believe that the ones we

have presented are sufficient to provide an understanding of
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the data. The histograms and data simulation results have

been provided to Dr. Dick Heydorn at Johnson Space Center.

Summary

The results of our investigations have provided new
insight into the role of non-normality and the performance
of the MLE presently used for crop proportion estimation. In
addition we have examined several alternatives to the
normal-based MLE for estimating mixing proportions. We
believe, however, that further research is needed in this
area. In particular, the extension of the investigations to
situations in which more than two components are present
would be a natural next step. Further exéensions to the
multivariate case also seem to be of importance.

The MHDE appears to have some real potential as an
estimator due to its efficiency under normality. However,
much work is necessary before it can be determined whether
or not it is a viable alternative.

The role of symmetry of the component distributions and
the performance of the estimation procedures still requires
examination. In particular, if the asymmetry can be assumed
to be in only one direction (probably to the right) then we
believe that the estimation results shown in Table 2 can be

improved. The practical importance of the

T



"non~identifiability"” observed in the 3-parameter Weibull is
not yet fully understood. In addition, possible new
alternatives to the Weibull and normal component models
considered to date should be considered.

The simulation results concerning the performance of
the simple starting value routine we developed imply that
further research into its capabilities is warranted.

Finally, the examination of the estimation procedures
on LANDSAT data is only in its initial stages. The problem
with ouliers and how best to deal with them is a very
importaht question related to the implementation of these
techniques on LANDSAT data. Although Ehe MDE procedures
examined in our investigations are relatively insensitive to
outliers, the magnitude and quantity of outliers present in
the data we observed haé very deleterious effects on all

estimation procedures examined.
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Parameters = Asymptotic Results and
Simulation Comparisons with Maximum Likelihood
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MINIMUM DISTANCE ESTIMATION OF MIXTURE MODEL PARAMETERS -
ASYMPTOTIC RESULTS AND SIMULATION COMPARISONS
WITH MAXIMUM LIKELIHOOD

Wayne A. Woodward, William C. Parr,
William R. Schucany, and Henry L. Gray

l. Introduction

An important problem in aerospace remote sensing is the
estimation of the mixing proportions Py rPyrecerBy in the

mixture density

£(x) = plfl(x) + pzfz(x) + eee + p £ (x) '

where m is the number of components(crops) in the mixture
and for component i,fi(x) is a density. The variable of
interest, X, is some measurement such as the reflected
energy in four bands of the light spectrum as measured by
the LANDSAT satellite, certain linear combinations of these
veadings, or other derived "feature" variables.

Generally, parameter estimation in mixture model
applications has been accomplished by assuming that the
component distributions are normal and using maximum
likelihood (ML) techniques. In a recent report, Woodward, et.
al.(1982) have examined the use of minimum distance(MD)
estimation based on the Cramér-von Mises distance, as an

alternative to maximum likelihood. Both ML and MD estimation
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schemes in that paper were based upon the mixture of two
univariate normal distributions whose density function |is

given by

1 X'Nl>2 1 x~u2)2
£(x) = —2— e Z % + 1-p) e H % ’
/i o /7w o

where all 5 parameters Ki, 1, My, 93, and p are unknown. It
was also assumed that no training data are available, i.e.,
the only observations are from the mixture distribution, In
this setting, motivated by the crop example, p is the
parameter of paramount importance while location and scale
of the components are nuisance parameters. Woodward, et. al.
(1982) compare ML and MD estimation techniqués on simulated
mixtures of normal, t(4), and chi-square(9) densities with
varying amounts of separation. The results indicate that the
MDE is more :obuét than the MLE to symmetric departures from
component normality, while neither technique provides
satisfactory results when component distributions are
skewed.

In this report, we present further simulation results
comparing ML and MD estimation of the mixing proportion
based on a mixture-of-normals model, when 1in fact the
component distributions are not normal, yet represent
symmetric departures from normality. Unless otherwise
indicated, reference to the MDE in this report will involve
the use of Cramér-von HMises distance. We also present

asymptotic results which establish the strong consistency
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and asymptotic normality of MD estimators of the parameters
in the mixture-of-normals model, and finally |©provide
asymptotic relative efficiencies for comparing the MLE and

MDE in this setting,
2, Simulation Results

In this section we report the results of a lMonte Carlo
study designed to compare the ML and ND estimators based
upon a mixture~of-normals when the simulated component
distributions are normal and when they are non-normal. These
compa:isons are made under varying deggees of separation
between the two component distributions. All computations
University.

In these simulations, the mixing proportion, p, takes
on the values .25, .50, and .75. For a given mixture, the
component distributions differ from each other only in
location and scale. In particular, fl(x) is taken to be the
dénsity associated with a random variable X=aY while fz(x)
is the density for X=Y+b where a>0, b>»0. Thus, a is the
ratio of scale parameters for the densities £; and £, and
similarly, b is the difference in location parameters. The
randem variable Y in our simulations is either normal,
Student's t with 2 or 4 degrees of freedom, or double

exponential. In our simulations we use a=l1 and a= Y2while b
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is selected to provide the desired separation between the
component distributions. The number of modes of the mixture
density depends to a large extent on this separation between
the two component distributions. Although, for sufficient
separation, the mixture model has a characteristic bimodal
shape, the density may by unimodal when there 1is only
moderate separation between the components, and in this
case, parameter estimation is more difficult than it is 1in
the bimodal cases. For purposes of quantifying this
separation between the components, a measure of "overlap"
betweep two distributions was defined by Woodward et.
al. (1982),

For each set of parameter configurations, 500 samples
of size n=100 were generated from the corresponding mixture
diStribution. Simulations were based on the IMSL
multiplicative congruential uniform random number generator
GGUBS. Normal component observations were generated using
IMSL subroutine GGNPM which wuses the polar method, while
t(n) observations were based on the ratio of independent
chi-square and normal deviates, each obtained using IMSL
routines. Double exponential components were based on 1n(U)
where U is uniform(0,1), and randomly assigning either a
positive or negative sign. 1In all cases, observations from
thé.basic component distribution wunder investigation were
simulated and then assigned to either component 1 or

component 2 depending upon  whether an independent

1
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uniform(0,1) was less than or greater than p. The
observations were then scaled and shifted (with a and b) to
provide observations from the appropriate component.

For each sample simulated, both the MDE and MLE were
obtained. The iterative procedures discussed by Woodward et.
al, (1982) were implemented in such a way that acceptable
parameter estimates are obtained for each sample. For
example, if the iterative procedure fails to converge in the
specified number of iterations, the last value obtained in
the iteration is taken to be the estimate if this value is
"reasonable" according to preset criteria. In general, if
any of the following conditions existed at any step in the

iteration,

Q
F
v
<
!

Y, (= sample range)

Y

1
Yn
1 10

- Yn-Yl

M2 ? Yn + 10

-Yl

iteration is terminated and the corresponding estimate is
taken to be the starting value. This did not occur in any of
the 500 repititions, for most configurations, but did occur
a maximum of 7 times out of 500 for MD estimates of the
parameters of a mixture of  t(2) components., The extreme
obéervations which occasionally appear in samples from t(2)
mixtures, also forced a modification in the first step of

the MLE iteration to avoid a division by zero. Although both



estimation procedures provide estimates of all 5 of the
parameters, only the results for estimation of p will be
tabulated since the mixing proportion is the parameter of
primary interest, as previously mentioned. In addition, when
dealing with the non-normal mixtures, the remaining
parameter estimates often do not have a meaningful
interpretation.

In Table 1 we present summary results of the
simulations comparing the performance of the MLE and MDE for
mixtureé of normal components while in Table 2 we display
the results for the non-normal components. The results for
normal and t(4) components were previously given in Woodward
et. al,(1982)., Estimates ¢f the bias and MSE based upon the

simulations are given by:
~ 1 ;S ~

Bias = — (p,=-p)
Bg j=1 1%

and
n

wr =k 1o
i=l
where n, is the number of samples, and ;i denotes an
estimate of p for the ith sample. It should be noted that
nMSE is the quantity actually given in the tables since this
facilitates comparison with asymptotic variances in
Section 4. Since the MLE and MDE are both asymptotically
unbiased (this will be discussed for the MDE in the next

section),nsM,SE/azis approximately x2(500). It is easy ¢to
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Table 1 - Simulation Results for Mixtures of Normal Components
Sample size =100
Number of Replications = 500
Overlap = .10 Overlap = .03
Ratio
of Scale MDE MDE
p Factors(a) Bias nMSE E Closer Bias nMSE E__Closer
MDE 0125 7a8° 055 038 0026 1009 049 -39
.25 1 MLE .052 4,26 .008 .539
Startd ,084 2.06 048 .782
MDE ,0l0 3.86 '83 oal .001 0420 ogl '46
.50 1 MLE .000 3.21 .000 .382
 MDE | .084 5,30 .42 .32 ,027 .956 .51 .38
002 2.25 .006 489
Starti-.004 .894 , 014 510
MDE .005 2,79 .86 .43 .008 441 .94 .45
50 Y2 ME [-.009 2,41 .009 416
Start {-.089 1,85 -.048 .866
MDE ||-.137 8.36 .58 .36 -,024 1.08 NY ANy
75 Y2 MLE  [-.086  4.87 -.002 470
Starti-.158 3.97 -,093 1.56
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Table 2, Simulation Results for Mixtures
o) Non-normal Components
Sample size = 100
Number of replications = 500
Double Exponential Components
Overlap = .10 Overlap = .03
Ratio
of Scale MDE MDE
p Factors(a) Bias nMSE E Closer Bias nMSE E Closer
MDE .|l .054 2,96 2.13 .66 .030 .545 1.18 .50
.25 1 MLE .091 6.31 .026 645
Start| .065  1.40 .078 1.04
MDE ,007 1.03 4.04 .69 -.001 .286 1.29 .54
.50 1 MLE .007 4,16 -,001 . 368
. Start | -.004 1.17 .000 AYA
MDE .102  4.42 1.40 .60 || .035 .775 1.07 .48
. .25 V2 MLE .034 6.17 .037 .832
Start| .01l .926 .050 .678
MDE .032 1.50 2.71 .68 ,003 .259 1,44 .58
.50 V2 MLE 073 4.06. .009 .372
Stare [|-.088 1.86 -,035 .570
MDE {-.037 2,20 2.9 .73 -,026 . 364 94 .44
.75 2 MLE [-.067  6.47 -.014 .323
Starei-.151 3.31 -.107 1.63
t(4) Components
YOE || L1054  6.18 1.19 .61 ~020 466  1.89 .49
.25 1 MLE .096 7.35 .029 .883
Start| .068 1.59 ,072 .998
*DE .004 1.82 3.07 .69 J ,000 .266 1.64 .53
.50 1 MLE 015  5.59 Il -.00s 436
Start| .006 1.21 -,001 496
— = —— - — - T
MDE ,098  5.20 .39 .53 .029 .605 1.61 .49
25 V2 MLE || .061  4.63 044 .976
i Start-.010 810 .036 654
" MDE .022 1.80 2.77 .67 ,001 .300 1.85 .55
50 Y2 ME || .028  4.99 .010 .554
Start{-.072 1.52 -, 046 778
MDE [~.058 3.68 2.13 .65 -.016 .361  1.57 .50
75 V2 MLE ||-.076  7.84 -.012 .567 .
Startl-.137 3.07 : -.108 1.75
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Table 2 -~ Continued OF POO& QUALITY
t(2) Components
Overlap = .10 Overlap = .03
Ratio
of Scale MDE MDE
p Factors(a) Bias nMSE E Closer Bias nMSE E Closer
MDE 076 3,42 4,30 .80 024 L3208 In.32 .65
.25 1 MLE 199 14,7 .083 3,18
Startll .067 1,85 _ .096 1.37
MDE -,001 1.34 9,03 .92 =,005 0264 9.24 .63
.50 1 MLE .024 12.1 -.009 2,44 .
Starth-.004 1.39 . -,002 .364
, MDE 118 4,92 2,26 .69 .031 452 7.70 .69
25 V2 MLE | .169 11,1 .106  3.48
Startjl .006 1.18 071 .962
- MDE 016 1.52 7.76 ,39 -,001 + 243 8.27 .68
50 2 MLE 028 11.8 ,029 2.01
MDE ~,059 2.99 5.79 .85 -,022 . 300 11.40 ,63
75 Y2 MLE {-.186  17.3 -.045  3.42
Startii=, 137 3.37 -,122 1.96
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show then, that the approximate standard error of a tabled
nMSE is (.0632)(nM§E). In addition, we als¢v provide the
ratio

MSE (MLE)
MSE (MDE)

E =

as an empirical relative efficiency measure.

In order to take advantage of the paired nature of our
ML and MD estimates, we counted the pruvportion of samples
for which §D is closer to p than is QL,where §D and ;L
denote the MD and ML estimates respectively. We present this
proportion in the tables under the heading "MDE Closer".
This provides an estimate of P{IED-p|<l;L-p|} . The
standard error _of the binomial propertions shown in the
tables is no greater than j L;%%é;il = ,022,
’ Analyzing the results, and as can be seen by
inspection, we find that the estimated Bias and MSE
associated with the MLE were generally smaller than those
for the MDE when the components were actually normally
distributed. This relationshi?v between the estimators held
for both overlaps. The MLE and MDE were quite similar at
P=.5 while for p=.25 and p=.75 the superiority of the MLE is
more pronounced. o

For the mixtures of non-nermal components, the
relationship between MDE and MLE is reversed in that the MDE

generally has the smaller estimated Bias and MSE, especially
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for t(2) mixtures. The superiority of the MDE is due in part
to the heavy tails in these components. The MLE often
interpreted an extreme observation as being the only sample
value from one of the populations with all remaining
observations belonging to the cther. Due to the well kncwn
singularities associated with a zero variance estimate for a
component distribution, Day(l969), we were concerned that
the observed behavior of the MLE was due to the fact that
the variances were not constrained away from  zero.
However,simulation results in which egual variances were
assumed (which removes the singularity) and also those that
used a penalized MLE suggested by Redner(l1980) were very
similar to those quoted here.

A surprising result which was previously noted by
Woodward et. al.(1982) is that the starting values obtained
using the procedure outlined in Section 3 produced
estimators that were competitive with both the MLE and MDE.
For both the normal and non-normal mixtures, the MéEs
associated with the starting values were generally >lower
than those for the MDE and MLE when overlap=.10. However,
when overlap=.03, the starting value estimates were
generally poorer than those for the MDE and MLE, except for

the t(2) mixtures ror which the MLEs were the poorest.




3. Asymptotic Distribution Theory for Minimum
Cramé€r-von Mises Distance Estimation

LS e
e b 1 F

2~vmptotic theory for minimum Cramer-von Mises distance
estimators for location parameters can be found in Parr and
Schucany(1980), and for the general one parameter case in
Parr and de Wet(1981). Bolthausen(l1977) gives résults for
the mutiparameter case, but with conditions which are so
strict as to rule out scale parameters for unbounded random
variables (see his condition III). The purpose of the
results in this section is to extend this previous work to
cover multiparameter situations including, among others, the
Aproblem of normal.. mixtures.

Assume that at stage n we observe real-valued Xj.,
X5s.0.,X 1id from a distribution with cdf G and let G
denote the wusual empirical distribution function. Let
éh-{Fe:eeegRFL the projection model, be a family of
continuous distribution functions and assume that GEJ,
i.e., G=Ebo for some 9066 . Further, assume that there

exists an open set ACO with SoeA . Also consider the

following continuity(C) and differentiability(D) conditions:

(c) 1f enee, n=12,..., then

lim ? (Fy (x) - F, (x))2dF, (x) = 0
-0 an e0 eO

n+>e

implies lim &8_ = ¢_.,
P nte B Y
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k

(D) There exists a function n: (0,1) = R” such that

P, (x)=F, (x) = (8=8_)'n(F, (x))]| =o(|[8-8,]])
sup  Fgx)-Fg 0" Fe o!

as ||e-8,|| » 0, where |1+]] is the usual Euclidean
. x 1,
norm on R°, and [ ni(u)du < » for i = 1,2,...,k where
0
n'(u) = (nl(u), "2(“)""'”k(u))°

Notes:

1) Condition C is satisfied if, for instance, Fo(x) is
continuous in 8 at 6,, pointwise in x (use dominated
convergence), It can be interpreted as requiring that 8
"continuously parametrize 3".

2) If condition C is not satisfied, then this implies
-ws<u)§><m|5‘a (x)-Feo(x)l can be arbitrarily small without having 6
approache0 . In such a case, the seaych for any c¢onsistent
estimator seems hopeless. In particular, in such a
situation, any consistent estimating functional must be
discontinuous with respect to the sup-norm, and hence highly

nonrobust.

3) Condition D |is weakei/ghan (implied by) quadratic

¥

mean différentiability of £f5 - the canonical regularity
condition for asymptotic normality of the maximum likelihood

estimator (see LeCam (1970)(a?d Pollard (1980)).
aFe X
4) Usually, n; ()= —gg— and condition B simply
x-Fe (u)
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states the uniform valiaity of the first order Taylor
approximation to Fy(x). If k=1 and ® is a location
parameter, a sufficient condition to imply D) is that Fy
possess a uniformly continuous density.

Before continuing define the kxk symmetric matrices A

and B by

A= {aij} , B= (bij}

with a,. =

i n-hﬂnjhndu

1l
j é i
1l 1
and b,. =/ [ {min(u,v)-uv}n,(u)n,(v)dudv
i35 & i j

and assume A to be of full rank. We c¢an now state and
outline the proof of the following' strong consistency and

asymptotic normality results.

Theorem l: Let %1 be a minimum distance estimator of 8 for
all n=1l, 2, ... . Then, if condition C holds,sn'*eo with

probability one.

Proof: Clearly,f(Gn-Fe )zdFe + 0 with probability one,
0 ., O
and hence also inf [ (Gn-Fe)zdFe + 0 with probability one.
8e0 '
Now,

SgPII(Gn-Fe)ZdFe - [(F-Fg)2ar,| < 4 sup]Gn(t)-Feo(t)[ + 0

-l <o
with probability one. Hence,
L]

2 2
J(F, -F, )°&F, = [(F, -F, )°dF, =+ 0
8, &, 8 8.7 8, %
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with probability one, and strong consistency of en follows

from the assumption.

Theorem 2: Assume conditions C and D and that A is of full

rank. Then, if fe(x) is continuous in & at §, for every x,

< 1.,.=1

/no (8 -8,) =»N(Q, ATTBATT).

Proof. (Sketched)
Set

.
-

2 -
Then we have

2
K, (8) = nf(Gn-Feo-(Feo+£//a Feo)) dpee

; 2
* nf(Gy=Fg = (Fg te/vm~Fo 1) 3UFe tr//meFe )

- 1 : 2
= op(1> + é (U (&) - E'n(t) - R (t))"at,

uniformly in § for £'£+< C, for any C < «, where

sup |R

0<t<l ‘ 1

for g'g < C. Here, U (t) = /n(G (Fy (t))~-t)., 0 < ¢t < 1,
0

n(t)] + 0 with probability one, alsc uniformly in §
By an extension of the argument of Pyke (1970, p. 29-30) to
the present context, we obtain that the limiting law of the
random variable minimizing Kn(a) over £ is also that of the
value minimizing

(f)l(em - E'n(t)) at,

where B is a Brownian bridge. The result then follows

immediately.

It can be shown that the mixture of normals model satisfies the
conditions of both Theorem 1 and Theorem 2.
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4 Asymptotic Relative Efficiencies

Theorem 2 of the previous section indicates that for

the mixture-of-normals model, we have

/(8 -8, <, N(Q.A’lm'l) /

where § = (ul,0§,u2,0§,p ) and 8, is the vector of
corresponding MD estimators using Cramér-von Mises distance.

Likewise, it is well known that
; ~ - _1
/n s eo)gv N(Q, I T(8,))

where gL is the MLE of 8; and I(8,)is Fisher's information
matrix. We will employ.the usual terminology and refer to
Af%yfd'auiI(eo) as asymptotic wvariance - covariance matrices
and to their diagonal elements as asymptotic variances of
the corresponding estimators. 1In this section we will
present computed asymptotic variances for the MDE of p,
which is denoted by ;b,and compare these with the asymptotic
variances associated with the MLE, denoted by QL'

The components of the matrix A were evaluated using the

expression -

[ &tagjagtaax

where Fe(x) and fe(x) denote the distribution function and

density function respectively for the mixture, 9i,is the ith



component of 6, and

aFe(X)
§;(x) = et

i

This integral was evaluated using IMSL subroutine DCADRE
which employs Romberg extrapolation to perform numerical
integration of an integral over a finite interval. In our

implementation, we used DCADRE to evaluate the integral

L
[EACEATERTLY

U

where L=m;n(-1061+ul,-1002+u2) and U=max(10cl+ul,1002+uﬁ
with maximum allowable . absoclute error specified as
1.0 X 10°Y5 and relative error of 1.0 X 10°?. The double

integral

o o

[ J {E‘e(min(x,y)-Fe(x)Fe(y)}Ei(x)sj(y)fe(x)fe(y)dxdy

-0 -®

involved in calculating the elements of the matrix B is
approximated by using IMSL subroutine DBLIN to perform a
Romberg integration of the integral

U

U
f f {Fg(min(x,y) =Fg (x)Fq(y) &, (x) &, (y) £ () £q (y) dxdy
L L

with maximum allowable absolute errror specified as
1.0 x 1070 .

The calculation of the information matrix £for the

s et
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mixture-of-normals model is discussed by Behboodian(l1472).

We have followed Behboodian's procedure and used
Gauss—-Bermite quadrature to approximate the integrals
involved. Using 48-point quadrature we obtain good agreement
with Behboodian's tabled results.

In Table 3 we display the asymptotic variances for ED
and ﬁx‘along with asymptotic relative efficiency (ARE)
calculated as

~

asymptotic variance py,
asymptotic variance Pp .

These values are calculated for each of the parameter
configurations employed in Table 1 for the normal mixtures.
As in Table 1, the asymptotic results indicate that the MDE
compares more favorably with the MLE when p=.5 while its

relative performance is not as good for p=.25 or p=.75.

R T < e 7

LT T KT



Table 3 - Asymptotic Relative Efficiencies

Overlap = ,10

Overlap = ,03

19

Ratio
of Scale Asymptotic Asymptotic
p Factors(a) Variance ARE Variance ARE
MDE 13.60 W42 471 .69
(7.80)* (.55) (1.09) (.49)
.25 1 MLE 5.67 .323
MDE 4,54 .65 .398 .89
(3.86) (.83) (,420) (.91)
.50 1 MLE 2.95 .+ 355
(3.21) (.382)
—— .
MDE 18.77 .32 511 .65
.25 2 MLE 5.96 .330
(2.25) (.489)
MDE 3.49 .68 .395 .89
(2.79) (.86) (.441) (,94)
.50 /2 MLE 2.39 .353
(2.41) (.416)
MDE 5.51 .58 420 .73
(8.36) (.58) (1.08) (.44)
.75 2 MLE 3.18 . 305
(4.87) (.470)

*Associated Monte Carlo resulcs from Table 1 are given in parentheses.

SN ST
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5. Concluding Remarks

We believe that the results of this paper provide
further evidence that the use of the MDE should |be
considered in crop proportion estimation procedures
developed by NASA. Our results, again, and more conclusively
than before, indicate that the MDE is indeed more robust
than the MLE in the sense that it is less sensitive to
symmetric departures from the underlying assumption of
normality of component distributions,

Woodward et. al. (1983) have investigated basing the MD
estimation procedure on a mixture of Weibull components in
order to allow for posSible asymmetry in the component
distributions. Their results indicate that this approach
provides a viable alternative to the normal-based procedures
discussed here. Research is also proceeding on the case c¢f
multiple (>2) components in the mixture.

The results of Segtion 4 indicate that the MDE does not
perform as well as would be hoped when the data actually do
arise from a mixture-of-normals model. We are currentlf
examining the use of the Hellinger metric in this regard due
the results of Beran(l977) concerning the full 'asymptotic
relative efficiency of minimum Hellinger distance

estimators.
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MINIMUM HBELLINGER DISTANCE ESTIMATION
OF MIXTURZ MODEL PARAMETERS

Wayne A. Woodward and Paul W. Eslinger

l. Introduction

Recent reports by Woodward et. al. (1982,1983) have
considered minimum distance estimation(MCVMDE), based on
Cramér-von Mises distance, as an alternative to maximum
likelihood (ML) for estimating the parameters of the
mixture-of-normals model. Their results indicate that the
MCVMDE is more robust to departures from the assumption of
normal components than is maximum likelihood. In particular,
they have shown that if mixture-of-normal based MCVMD and ML
procedures are used to estimate the parameters of a mixture
of symmetric (but non-normal) distributions such as double
exponential, t(4), or t(2), then the HNCVMDE produces
superior proportion estimates. However, their results also
show that when the component distributions actually are
normal, the MLE is superior.

Intuitively, robust procedures are those which are
insensitive to small deviations from the assumptions.
Typically, robust procedures obtain this robustness at the
expense of not being optimal at the true model. In fact,

Bickel(1978) describes robustness as "paying a price in



terms of efficiency at the (true) model in terms of
reasonaoly good maximum M.S.E. over the neighborhood." The
behavior of the MCVMDE described above is a good example of
this trade-off. However, Beran(l1977) has suggested the use
of the minimum Hellinger distance(MHD) estimator which has
certain robustness properties and is asymptotically
efficient at the true model. Its applicability to aerospace
remote sensing is of interest since it has the potential of
providing robust proportion estimates under deviations from
normality_while maintaining performance comparable to the
MLE when the underlying components actually are normal. In
this report we will briefly examine the use of the MHDE for

estimating the parameters of the mixture-of-normals model.

2. The Minimum Hellinger Distance Estimator

Let xl, x2, coey xn denote a random sample from some
unknown distribution and let Y,;, Y,,...,Y, denote the
corresponding order statistics. Further, Let Fg5 = {Fg:6¢€0}
be a family of distributions, called the projection family
or projection model, depending on the (possibly vector
valued) parameter 6. A minimum distance estimate of 6 is a
value 8 which minimizes the distance between the data
distribution (whose model is unknown) and the projection

model. In particular, the MCVMDE minimizes the Cramér-von



Mises distance between the empirical distribution function
and Fe, For more discussion, the reader is referred to
Woodward, et.al,(1982).

Héllingez distance between two absolutely continuous
distributions is defined to be llfk-g%ll'where f and g are

the corresponding densities and ||.|| denotes the usual L2

norm, i.e.

|1£/2-1/2) ) = (f(£1/2.g1/2) 205172 (2.1)

where integration is with respect to Lebesgue measure on the
real line. Let ¥ denote the set of all absolutely continuous
probability functions with respect to Lebesgue measure on
the real line, and for our purposes, let Fg5 = {Fg:0c0}, the
projection family, be a parametrized subset of ¥. The MHD
estimator gHof p is defined as a value of 6 which minimizes
llfg-aﬁll where $n is a suitable nonparametric density
estimator. It should be noted that minimizing Ilfg-aﬁll is

equivalent to maximizing

[£5/%gL 2ax (2.2)

and we will utilire this form for computational convenience.

Beran(1977) and-sStather(1982) have provided theoretical
results establishing the consisténcy, asymptotic normality,
asymptotic full efficiency, and robustness of the MHDE.
However, their results only briefly discuss the

computational aspects of implementing the MHDE and provide

Y

')




only limited empirical evidence concerring its robustness.
In this report we investigate the usefulness of the MHDE for
estimating the parameters of the mixture-of-normals model.

In the mixture-of-normals setting, fe becomes
£o(x) = —EB— 5 4 —1=p) 2770, (2.3)
V2T o) V2T o,

wheree (pl,gl,pz,oz,p) .In the next section we present the
results of a simulation study in which the MHDE is
calculated using the projection model in (2.3). In these
calculations; we have employed Newton's method to maximize

(2.2), which produces the iterative algorithm

A ~ e - 4
eI-(!m+l) = 8 (m) _ U’ —— g 1’1/ dx] j‘ = 9n éx (2.4)

wheree(“ndenotes the estimate of 6 obtained on the mth step,

ande( )denotes the starting value, (A(O) {0),u§0),0§0),p(0)).

If any step produces estimates chl or oz‘whlchare less than

zero, then we use a scaled step "half-way" to zero.

In the implementation the density estimator used is

n X=X,
(x) = L Y ow(—)

NChSh i=1 nn

*1/2

based on the Epanechnikov kernel w(x)~.75(1-x2) for |[x[1,

(0
with the scale statistic s, set to Ol)whenpﬁo)> 5 and 0(0)

when p(0)< 5. For a discussion of density estimators see Tapia

and Thompson(1978). The value for ¢, is given by the
.271
expression cnfz.lsn . These values of ¢, are optimal for

use with a normal projection model and are used here for

LA 1T



convenience., Although further investigation into ¢, Vvalues
which are optimal for use with the projection model of (2.3)
is needed, we believe that the ¢, values utilized are
sufficient for the purpose here. thn the projection model
in (2.3) is used. it follows that ﬁ—f-g’dxxn (2.4) is a 5x1
vector while L_gazggdx in (2.4) is a 5x5 matrix, the elements
of which are integrals to be evaluated at each step of the
iterative procedure. In the Appendix we sh%y the zp?rtial
derivatives involved in the calculation of Eié andaf'8 . We

a6 )
98
have chosen to evaluate the numerical integrals using the

trapezoidal rule over a grid of 100 steps equally spaced

between Y. ~-c s and Y +cn

1 i.e. the range of support of

n’
gn-

3. Simulation Results
In this section we report the results of simulations
designed to provide empirical evidence concerning the
effectiveness of the MHDE using a mixture-of-normals
projection model when the component distributions in the

simulated samples are normal and when they are non-normal.

In addition, we have made our comparisons under two levels

of separation between the component distributions.
In these simulations, we have used parameter

configurations previously considered by Woodward, et. al.

TIPS 3. F ¢ e e v e




(1983). In particular, we use mixing proportions .25, .50,
and .75 and "overlaps" &as defined by Woodward, et. al.(1982)
of .03 and .10. Again, as in the previous work, we consider
cases in which the ratio of the standard deviations of
component 1 to component 2 is 1 and when it is /2, In these
simulations we have simulated mixtures with normal and t(4)
components. For each set of configurations, 500 samples of
size n=100 were generated from the corresponding mixture
distribution. Simulations were performed on the CDC 760
computer. Starting values were obtained as discussed by
Woodward, et. al.(1982) with the exception that starting
values for the component standard deviations, oy and To s
utilized in this study are smaller than those used in the
previous reports Woodward, et. al.(1982,1983))by a factor of
Spproximately l.2. For each sample simulated, the MCVMDE,
MHDE, and MLE for all 5 parameters were obtained. However,
only the results for the estimation of p are tabled since
the mixing proportion is the parameter of interest.

In Table 1 we present the results for simulated
mixtures of normal components, while in Table 2 we show the
ﬁesults for simulated mixtures of t(4) components.
Simulation based estimates of the bias and MSE associated

with the various estimators are given by

P 1 l’zls ~
Bias = = (p.=-p)
fgi=1 *
and ng
MSE = = Y (1; -p) 2
ng i

i=1

[ &

e Tl e ot t
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where ng denotes the number of samples and P; denotes an
estimate of p for the ith sample. As in the earlier reports,
nMéb is given in the table where n is the &ize of each

individual sample (in our case 100). We provide the ratios

N
A _ MSE(MLE)
Ecyy =—%
MSE (MCVMDE)
and A
2 _  MSE(MLE)
Ey = =
MSE (MHDE)

as empirical measures of the relative efficiencies of the
MCVMDE and MHDE respectively with the MLE. An approximate
standard error of a tabled nMSE is (.0632)(nﬁ§£).

The results in Tables 1 and 2 illustrate the
characteristics of the MHDE shown theoretically by
Beran(l1977) and Stather(1982). 1In particular, for the
simulated mixtures of normal components in Table 1, the MSEs
for the MHDE were comparable (in most instances) to those
for the MLE and smaller than those for the MCVMDE. This
béhavior can also be seen by noting that EH is close to 1

for most configurations while E:CV is consistently less than

M
l. However, in Table 2, for simulated mixtures of t(4)
components, EH was greater than 1 in all but one case. In
addition, the'robustness shown by the MHDE was in most cases
comparable to that for the MCVMDE as evidenced by similar
values of EH and §CVM- As noted in the previous reports, see
Woodward, et. al.(1982,1983), the starting value routine

provided good estimates, which in fact were competitive with

those given by ML, MCVM, and MHD techniques.




A few further comments are in order. First, although
the computational aspects of the MHDE are complex, we found
the computer time required for the MHDE to be similar to
that for the other two estimators. The Newton-Raphson
procedure used to calculate the MHDE is quadratically
convergent. This usually resulted in convergence within 10
steps for the MHDE. The MCVMDE also usually converged within
10 iterations while the MLE required more, especially for
the .10 overlap, in which case more than 50 steps were often
required. However, the MLE is computationally much simpler
at each step. For a discussion of the computational
procedures used to calculate the MLE and MCVMDE, see
Woodward et. al,.(1982,1983).

The number in parentheses after the MHDE results in the
table is the number of times (out of 500) that the MHDE
actually converged. When convergence was not obtained for
any of the estimators, the estimate was taken to be the
starting value. For the MCVMDE and MLE, convergence was
aimost always obtained. However, it can be seen that the
failure of the MHDE to converge was a common occurrence. Of
course, the results in the tables for the MHD must be viewed
accordingly, i.e. approximately 20% of the "MHD" estimates
used in the bias and MSE calculations are acéually starting
values. In some instances, this may improve the performance
of the MHDE,

A related observation is that the MHDE seems to be

10
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quite sensitive to starting values. For example, in the
tables, we see that the poorest results for the MHDE are
obtained when p=.75 and the ratio of standard deviations
between components is v2. It should be noted that this 1is
also the situation in which the starting values are the
pobrest. While the other two estimators do not seem to be
overly afifected by these poor starts, the MHD is quite
sensitive. As noted earlier, the starting values for o, and
o, used here are smaller than the intuitively appealing ones
proposed earlier by Woodward, et. al., (1982,1983). Although
we do not understand why, the use of these smaller starting
values improves the performance of the MHDE (and has very
little effect on the MLE and MCVMDE).

In related investigations of the MHDE, we have examined
its performance on the estimation of phe location and scale
parameters of a univariate normal projection model. In this
setting we have also seen an extreme sensitivity to starting
values. In Table 3a we display an array of starting values
for u and ¢ of a univariate normal projection w:odel. Samples
of size n=40 were simulated from a normal distribution with
p=0 and o=1l. In Table 3b we provide an associated array
displaying the number of times out of 1000 such samples that
the iterative routines for the MHDE converged when using the
corresponding starting values in the array of Table 3a. The
sensitivity of the MHDE to poor starting values is very

evident. It should be noted that using the "good" starting

11
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Table 3} - Effect of Starting Value on
MHD Estimators

of 4 and o from 1000 Simulated
N(0,1) Samples of Size n = 40

(a)
Starting Values
(u (o) , (o) )

g
/Q-l.k) (-1,/%)  (-1,1) (-1,y2)  (-1,2)
| (-15,%) (-35,/%) (<¥,1) (-%,/2) (-%,2)
(0,%) (0,/%) (0,1) (0,/2) (0,2)
(s,%) (5,Y%) (5,1) (5,/2) (’5,2)
(1,%) (1,/%) (1,1) (1,/2) (1,2)

(b)

Number of Times (out of 1000) that
MHDE Converged Using Starting
Values from Table 3a

62 43 59 458 284
210 420 867 866 233
834 993 999 876 179
196 415 843 866 224

71 49 60 463 265



’

~

valuesLﬁo)-nmdian and S(O)Bmedianﬂlxi-a(o)|)/.6745, obtained
from thedata for each sample, resulted in convergence of the

MHDE for all 1000 of the samples. In contrast to the results
of Table Bb; the MCVMDE converged 1000 times out of 1000 for
each set of starting values in Table 3a, while of course, in
this situation the ML estimators X and §%= :—‘g(xi-?)zexist in

i=l
closed form.

4. Concluding Remarks

In this report we have briefly c¢onsidered the use of
the MHDE for estimating the parameters of the mixture of
normals model. The MHDE was of interest originally due to
its theoretical roQustness and asymptotic full efficiency.
Our empirical results indicate that these properties do hold
in the mixture setting, at least to some degree. We have
shown that the MHDE requires computation times which are
similar to those for the other techniques although it is
more difficult to calculate. Further research is in progress
concerning the use of density estimators other than the
Epanechnikov kernel density estimator. Preliminary results
indicate that MHD estimates based upon the histogram density
estimator (Tapia and Thompson(l978)) require substantially
less computer time than those based on the Epanechnikov

kernel, and they have only slightly higher MSEs.

13

i ey




The major problem concerning the use of the MHDE
appears to be with its extreme sensitivity to starting
values. It is our opinion that, although, these convergence
problems 4¢ould be somewhat alleviated with further
"fine~tuning" of the iterative algorithm, the implementation

of the MHDE into segment 1level proportion estimation
procedures would be difficult.
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PROPORTION ESTIMATION IN MIXTURES
OF ASYMMETRIC DISTRIBUTIONS

Wayne A. Woodward, Richard F. Gunst,
Hildegard Lindsey, and H. L. Gray

Center for Applied Mathematical and Statistical Research
Southern Methodist University

1. Intreduction

A standard approach .to the estimation of crop
proportions in agricultural remote sensing has been to

estimate the proportions PyrPyreiBy in the mizture density

£(x) = plfl(x3 +Pyf (R) 4 L.+ pmfm(x) ii.1)
where m is the number of components(crops) in the mixture
and fi(x) is the density associated with component i. The

usual procedure for estimating the parameters in the mixture

model of (l.l) has been to:

(a) assume that the component distributions are normal

(b) use maximum likelihood estimation.

i The variable X has wusually been taken to be the
reflected energy in the four LANDSAT bands or some linear
combination of these such as greenness or brightness. Recent
efforts have focused on the use of certain derived features
from growth models such as Imax and tma as variables in the

x
mixture model. Studies have indicated thdt there is often a




St

substantial asymmetry in the distributions of these features
for a given crop. Woodward et. al.(1982) have shown that
asymmetry in the component distributions can cause a
substantial bias in the proportion estimators when the
mixture of normals model is assumed. As an example, in
Figure 1 we display the mixture density associated with the

mixture of two distributions. Examination of the figure

" reveals that if the component distributions are assumed to

be symmetric, then we must conclude that pl<p2 and that the
component to the right has larger variance. Actually, in
this mixture P, =P, and the distribution to the 1left is a
x%S) while the component to the right is a "shifted" x2(9),
i.e. its left truncation point is at x=10 instead of x=0. It
can be seen that a bias will be introduced in estimating
mixing proportions in this' mixture if the component
distributions are assummed to be symmetric, which of course
is the case when the components are assumed to be normal.

In this paper we will discuss techniques for estimating
the crop proportions in the presence of asymmetric component
distributions. In particular the estimation procedures we
will propose assume that the underlying component
distributions belong to some family of distributions whose
members can be either symmetric or skewed depending on
parameter configurations. At the present time, the Weibull
distribution is being examined concerning its usefulness in
this area. The effectiveness of this technique will be

examined through simulations.
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FIGURE 1

A Mixture Density
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2. The Weibull Distribution

The Weibull distribution is named after the Swedish
physicist Waloddi Weibull who wused it to represent the
distribution of the breaking strength of materials
(Weibull(1939)). The distribution has been widely used in
recent years in the fields of reliability and quality
control. Its popularity is largely due to the flexibility
which it introduces into the model due to the fact that it
can be used to describe distributions which are symmetric or
skewed in either direction. For these reasons we have chosen
to investigate its applicability to estimation in mixtures

of asymmetric components. The three-parameter Weibull

density can be expressed as '
£(x) -g- (5-3—0‘-) e 8, x > a (2.1)
B, vy>0

We will use the notation XviW(a,b,c) to indicate that the
random variable X has a three-parameter Weibull distribution
with parameters a=a, B=b, and y=c. The parameter « locates
the left truncation point and 8 serves as a scale parameter
while Y determines the shape of the distribution. 1In
Figure 2 we show Weibull densities for a fixed ¢ and B and a
randge of values for Y. ?rom the figure it is clear that the

shape can vary dramatically as Y changes. In Figure 3 the
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FIGURE 2

Weibull Densities with a = 0, g = 1,
and Various Values for vy
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fact that the Weibull density can be skewed to the left as
>

well as to the right is more clearly demonstrated. For

Y=3,60232 aprroximately, the standardized skewness parameter

Bl' ;§7§, whete My is the ith central moment, is zero
indicating symmetry. If Y<3.60232 then the Weibull is skewed
to the right, while if v>3.60232 it is skewed to the 1left.
The Weibull distribution is unimodal, and if Y>1 the mode

occurs at

Xp = o + B(lﬁl)l/Y
Otherwise, when 0<y<l, the mode occurs at K =0

Dubey (1967) has studied the Weibull distribution when
y=3,60232 and has concluded that it is very similar to the
normal, In particular, Dubey has shown that

sup|F, (v) - FY(V)| (2.3)
-3<v<3
where F, denotes the cumulative distribution function of the
random variable 2VN(0,1) and Y is the standardized variate
Y= (X-y)/0 where yu and c®are the mean and variance of Ehe
Weibull variate X.

It should be noted that the Weibull distribution is
often given in the literature in two parameter form in which
% is assumed to be known (and wusually 0). However, unless
otherwise specified, reference to the Weibull distribution
in this report, we will be to the three-parameter form
specified by (2.1).

The cumulative distribution function corresponding to



the three-parameter Weibull is given by the closed form

expression
- (X5%yY
Fx(x) = l-e (2.4)

wnile the noncentral moments are given by

v % r rek.k. /k
u, kzo(k)a B r(; +1) (2.5)

From (2.5) it can be seen that
H=a + BP(% + 1)
o = Bzfrk% +1) - r2($ T (2.6)

The first three moments of the Weibull distribution
determine the values of &, B, and Y. The method of moment
estimators can be obtained using these relationships, but
unfortunately the estimators do not exist in a closed form.
The log=-likelihood function for &a random sample of n

observations from the Weibull distribution is
n n
; \ 1 Y
#n(L) = niny =ny&n8 + (y=1) ] &n(x -a) - = Do(xg=a) (2.7)
i 1l

i= Bli=

Differentiating 1n(L) yields the following likelihood

equations

n n

~tr-1) § (xgma) 7t L] (xma) YT a0 (2.8)

g¥i=1 *

i=1l ,
1 8 Y l/y

B = [=3 (x.-a)Y] (2.9)
n X, =0 X,=a Y -1

v = (] Bady— 10t - 103 | (2.20)
im1
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Let &, g ¢ and ; denote the estimators obtained frgm EPQ
simultaneous solution of equations (2.8) to (2.10). If 0<al¥,,
where Y; denotes the ith order statistic, thes€ estimators
are the maximum 1likelihood(ML) estimators for the three
Weibull parameters. However, due to the restriction x>a in
(2.1), if a>¥, . then the MLE of a is taken to be ¥, and
B and ¢ are estimated from (2.9) and (2.10). As in the case
of method of moment estimators, the ML estimators do not
have a closed form expression. For a general review of the
literature on Weibull parameter estimation see Johnson and

Kotz (1970).

3, Mixtures of Weibull Distributions

In order to examine the feasibility of wusing the
Weibull as a model for the component distributions in the
mixture model of (l.l), we will investigate the estimation
of the parameters in the mixture of two Weibull

distributions. This mixture density is given in (3.1)
K=y ¥ X=tt, Y,
1.7 Ya.=1 2, 2
- e | ctien—— l -
t =r e © MR P P A

where the 7 parameters p, oy Bl, Yy %y By and v, are
assumed to be unknown.

Previous research in this area includes that of
Kao(1959), who proposed a graphical procedure for estimating
the parameters in (3.1) when one of the location parameters

is assumed to be known and equal to zero. The estimation of
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the 6 remaining parameters is accomplished using a graphical
procedure whose applicability to our problem seems to be
limited although some of his estimation rules could be
automated. Rider(l196l1) and Falls(1970) p:opbse estimating
the parameters of a mixture of two-parameter Weibulls using
the method of moments. Falls' procedure involves estimating
the mixing proportion p using a graphical procedure similar
to that of Kao.

Maximum likelihood estimation of the @parameters of
(3.1) has been discussed by Looney and Bargmann(l1982). The
likelihood equations obtained by differentiating the
log-likelihood function ln(L) |

n
n(L) =121[2n[pfl(xi) + (1-p)£,(x,) 1}

with respect to each of the 7 parameters yields the

likelihood equations

n 1 Yy D Y=l
(v5=1) § £(3]%)(x,=a) "= =L § £(3|x,) (x,~a) I =0,3i=2,2
375 AN M g¥is ~ 7T
j7i=1 (3.2,
n . n 1/v .
\CT , Yy,
Bj-{[Z (x;=a) f(;lxi)]/izlf(jixi)} , 3=1,2 (3.3)
i=] n
BT s R s FR Y T T RS e FEUP R E Y
3T A T ey ' j i1 i '
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p = Eﬁzlf(lixi) (3.5)
where £(i[x) = p,f,(x)/£(x) with £;(x) denoting the ith
component density and £(x) the mixture density. Solving this
set of equations for the maximum likelihood estimators is
difficult due largely to equations (3.2) which are not in

fixed point form. Looney and Bargmann(l1982) suggested a



procedure in which the shape parameters Y; and Y, are fixed

independently at each of the values

3 3 % % 3 1L 3 2,3, 4, 8

and, for each of the (;i';é) pairs, ¥“preliminary"” maximum
likelihood estimates of the remaining 5 parameters are
found. A search procedure results in selecting the (;1,;2)
pair for which 1ln(L) is maximized. With ;1.and ;2 fixed at
these values, maximum likelihood estimation for the
remaining 5 parameters is then carried through to
convergence. The Looney and Bargmann procedure for solving
the system of equations (3.2) = (3.5) seems overly
restrictive with respect to the selection of possible values
of the shape parameter, while expansion of the search
procedure to allow for more shape parameter values would
probably be prohibitive because of time constraints.
However, solution of these likelihood equations directly
appears to us to be quite intractable. For these reasons, we
have investigated the use of minimum  distance(MD)
estimation, first introduced by Wolfowitz (1957), for
eStimating the 7 parameters in the mixture of Weibulls model
given in (3.1). Woodward et. al.(1982) have recently studied
the use of MD estimation in the mixture of normals model.
These authors showed that MD estimation was easy to
implement in that setting, and that MD estimators showed to
bé superior to ML estimators under departures from component

normality. Since our use of Weibull components is due to the
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flexibility which it introduces into the model rather than
underlying theoretical justifications, we definitely need an
estimatioﬁ Qrocedure which is robust to departuvres from
assumptions.

The minimum distance estimator of the parameter B8
(possibly vector valued) is defined to be that value of 8
which minimizes the distance between H; and F, where
H-{Hazésﬂ} denotes a family of distributions depending on 6
and En denotes the empirical distribution function, i.e,
Fn(x)=k/n where k is the number of observations less than or
equal to x. The family of distribution; H is referred to as
the projection model, where in this case
8=(progsrByryyray By ¥y and Hg(x) is the distribution
function associated with a mixture of two Weibull components
given by X-a, 71 X=-0
! =%2,72

-(—E——) -(—g—-)
He(x) = pl[l-e 1 ] + (l-p) [1l=~e 2 ]

Note that in contrast to the situation in which the
projection model is taken to be the mixture of two normalé,
He(x) in (3.6) has a closed form expression. The choice of
distance function to be used to measure the distance between
two distributions is a topic of current interest in the
field of MD estimation. Woodward et. al.(1982) wused the

Cramér-von Mises distance, Wz, given by

w2 = [16, (x)=G, (x) 124G, (x) (3.7)

where G1 and G2 are two distribution functions, and we have

. (3.6)

1l

O
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chosen to use this distance measure in the current study.
The distance between a distribution function Hy and the
empirical distribution function Fn' which is needed for

calculation of the MD estimator, is given by the simplified

expression
n
2 l i-.5 2
We = g5= + ) [Hg(Y,) = ====21%, (3.8)
i=1

where Y; denotes the ith order statistic. Since Hg(X) exists in

closed form, the MDE in this case is easily obtained by
using nonlinear least squares techniques to minimize (3.8).
We have performed this minimization with IMSL subroutine

ZXSSQ which uses Marquardt's(1963) procedure.

4. Simulation Results

In Section 3 we discussed the problem of estimation in
the mixture of Weibulls model. From that discussion it
appears that the minimum distance techniques are preferable
for estimating the parameters in a mixture of three
parameter Weibulls, especially in terms of computational
convenience. In this section we will discuss the results I
an initial computer simulation which was designed for use in
evaluating the numerical capabilities of this method. All
computations were performed on the CDC 6600 at Southern
Methodist University. In this section we will evaluate the
performance of the MD estimation procedures discussed. Since
the usual procedure is to assume that the components are

normal, we will compare the Weibull based MDEs with the

12




normal based procedures. We have generated samples from
mixtures of normal components and mixtures of x2 (9)
components. Obviously, we would expect the normal based
procedures to perform better than Weibull based procedures
when the mixture really is a mixture of normal components.
However, if the Weibull techniques are to be useful, then
they must give reasonable results in this situation since
the normal assumption does appear to be a reasonable
assumption in some cases. Since the Weibull with y=3.6 is
very nearly normal, there is reason to believe that Weibull
procedures will perform well in this situation. We have not
simulated samples from mixtures of Weibull distributions,
but we plan to consider this in the future. Of course, as
mentioned in the previous section, we are most interested in
the performance of the Weikull based procedures when the
underlying components from which we sample are not
necessarily Weibulls, but are realistic representatives of
the types c¢f component distributions we see in practice.

Our simulation results are based on 200 samples of size
n¥200 from mixtures of normal and of x2(9) components. In
each mixture, the variance associated with the two
components are equal. In fact, the two component
distributions differ from each other only by a location
shift. We have simulated £rom mixtures having mixing
proportions of .25, .50, and .75, and with varying degrees
of separation between the two component distributions.

Overlap as defined by Woodward et.al.(1982) is a

13



quantification of this separation. It is defined as the the
probability of misclassification using the rule:

Classify an observation x as:
population 1 if x < Xo
population 2 if x 2 x,

where without loss of generality, populaticn 1 is assumed to
be centered to the left of population, and where x, is the

unique point between u, and u, such that

pfl(xc) = (l-p)fz(xc>.

We have based our current study on "overlaps" of .03 and
«10. In FPigure 4 we display the mixture densities associated
with normal components. For each mixture, the scaled
components pfl(x) and (l-p)fz(x) are also shown. Note that
the densities for p=.75 are not displayed here. Since 0y=0,r
it follows that fp(x)=fl'3ul+u2-x) where £P(x) denotes the
mixture density associated with a mixing proportion of h.
Thus the shapes of the densities at p=.75 can be inferred
from those at p=.25. Likewise, parameter estimation for
P=.75 is not included in the results of the simulations for
the mixtures of normals. In Figure 5 we display the mixture
dénsities associated with the mixtures of x2(9) components.

Note that although we refer to a mixture of x2(9)

14
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FIGURE 4
Mixture Densities with Normal Components

(a) p = .25, Overlap = .10 (b) p = .25, Overlap = .03
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(c) p = .50, Qverlap = 10 : (d) p = .50, Gverlap = .03
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distributions here, they are actually "shifted" chi-squares,
i.e. the left truncation points are different from zero.

For each of the simulated samples, three sets of
parameter estimates were obtained:

(1) ML estimates based on mixture of normals model (MLEN)

(2) MD estimates based on mixture of normals model (MDEN)

(3) MD estimates based on mixture of Weibulls model (MDEW)
Although the MLEN and MDEN provide estimates of all 5 of the
parameters of the mixture of normals model, and the MNDEW
produces estimates for all 7 parameters in the mixture of
Weibulls model, only the results for the estimation of p
will be shown. The mixing proportion is the parameter of
primary intefest, and when dealing with the "hrong-model"
situations, the remaining parameter estimates often do not
have a meaningful interpretation. For purposes of aiding in
the discussions which follow, we will call a component model
from which we actually simulated, a "simulation component
model", while a component model which is assumed under a
pérticular es&imat;on procedure  will be cailed an
"estimation component model". Thus, a "wrong-model"
situation is one in which the simulation component models
are not the same as the estimation component models.

In the "correct-model” situations, i.e. using the MLEN
or MDEN to estimate the parameters of a simulated mixture of
normal components, the true parameter values are used as
starting values for the iterative estimation procedures. In

all of the other cases, there is not a "true" set of

17
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parameters. For starting values, we have used the "true"
mixing pFoportion, and then estimated the parameters of each
component separately using a method of moments procedure,
Consider a situation in which the estimation components are
normal. We obtain starting valves for each component by
equating the first and second moments of the corresponding
simulation anq estimation components and using these to
obtain u; and &i for the normal estimation component. When
the estimation components are Weibull, we have taken the
approach of setting the stcarting value for Y aty =3.6 for
each component. Then the first ¢two moments of the
corresponding simulation and estimation compcnents are
equated to yield starting value estimates for the other two
parameters. We believe that this provides a "neutral” start.

If the final ‘estimates reflect the finding of substantial

skewness for one or both of the component Weibulls, this -

will be because of the data and not because of "skewed"
starting values.

The normal component models were generated withu, =7.5,
c§=o§=l, and Ho positioned so that the desired overlap is
obtained. As mentioned previously, both components in the
chi-square mixtures were "shifted" chi-squares. 1In our
simulations, the left truncation point for population 1 was
always taken to be 7.5, and for population 2 it wa; located
so that the desired overlap was obtained. In the MLEN and
MDEN procedures, the natural constraints c§>0 ,c§>o, and

0<p<l were imposed. Similarly, for the MDEW, the natural

18
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constraints Bl>o, Y120 B220r Y520 and 0<p<l were imposed
along with the constraints «,>0 and a,>0 which are
reasonable constraints on the left-truncation point which
would be imposed due to physical considerations, etc.

In Table 1 we display the results of the simulations.
For a given simulation model and estimation procedure, we

will obtain an estimate ; of p, defined by

1n5*

A= T‘-S i’:lpi
where p; is the estimate of p for the ith sample, and ng is
the number of samples. Then based upon the simulations,

estimates of the bias 2ud MSE are given by:

n‘:l
bias = % | (p;=p) = p - P
S i.a,\,?,l
g ”
MSE = %& ) (pi-p)z.
s 1]
i=1

Upon viewing the results, it can be se°n that the MDEW
was compeﬁitive when (he component models were actually
normally distributed, and it produced the best overall
results for the chi-square mixtures. Of particular interest
is the chi-square mixture where p=.5 and overlap=.10. This
is the mixture displayed in Figure 5c and also in Figure 1l
(except for location shift). When symmetric components are
assumed (as with the MLEN and MDEN), a bias does occur in
the estimation of p as discussed in Section 1. This behavior
has been noted previously by Woodward, et.al.(1982). We  see
from the table that the MDEW performs substantially better

19
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Table 1 - Simulation Results

Comparing Normal Based with
Weibull Based Estimation Procedures

Sample size = 200
Number of repititions = 200

Mixture of Normals

Overlap = .10 Overlap = ,03
; Bias MSE ; Bias MSE
MLEN .27 ,02 .022 .25 ,00 .022
p=.25 MDEN 37 .12 .074 +26 .01 .004
MDEW .34 .09 044 «30 .05 .011
MLEN «50 .00 014 «50 .00 ,002
p = .5 MDEN .49 =-.01 023 W47 -.03 .002
MDEW .48 =,02 .019 .51 .01 .004

Mixture of x2(9)

Overlap = .10 Overldp = .03
' o Bias _ MSE 0 Bias _ MSE
MLEN .24 -.01 .061 .18 -.07 .006
p=.25 MDEN o4l .16 .098 17 -.08 .008
MDEW .50 «25 122 29 ~.04 .007
MLEN .27 -.23 .064 W45 -.05 011
p=.50 MDEN .26 -.24 .061 o4l -,09 .010
MDEW .42 -.08  .024 .50 .00 .004
MLEN «50 -.25 .070 «65 -,10 .013
p=,75 MDEN .48 -.27 .085 64 -.11 016
MDEW .62 -,13 .032 o 71 .04 .005
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than either of these normal based procedures on the basis of
both bias and MSE. In Figqure 6 we display histograms of the
200 estimates of p obtained from the three estimation
procedures for the chi-square mixture shown in Figure 5c¢. It
can be s8seen there, that the normal based procedures
consistently estimated p to be substantially 1less than .5
while the estimates based on Weibull components were in
general closer to the true vaue p=.5.

The one case in which the Weibull based estimates were
not best, was when p=,25 with overlap=.10. This mixture is
displayed in Figure 5a where it is obvious that estimation
should be difficult since there is no distinct contribution
due to component 1 in the mixture. Indeed, all procedures
yield poor estimates as measurwd by the high MSEs. In Figure
7, we display histograms of the p values obtained from the
three estimation procedures for this set of parameter
configurations. There it can be seen that the Weibull
procedure certainly gave the poorest results, with estimates
being spread nearly uniformly between 0 and 1. However, the
normal based procedures also had difficulty as is reflected
in the histograms. In fact, there appears to be a tendency
for the %i values to be very 1low (approximately .10).
However, p is very close to .25 for the MLEN since several
of the Ei values were spread out uniformly between 0 and 1,
which increased the estimate of p to near .25. However, the
large MSE shown in the table for this caae'zeflects this

lack of accuracy.
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5. Concluding Remarks

Results in this report and in the report by Woodward,
et.al.(1982) indicate that the normal based procedures
perform poorly in the presence of a mixture of asymmetric
distributions, In this paper we have suggested the mixture
of Weibulls model as an alternative to the mixture of
normals model in this situation. Results indicate that
minimum distance estimation of the parameters of a mixture
of Weibulls is a viable alternative to the normal-based
techniques currently in use.

Before this procedure could be recommended and
implemented, further research 1is needed. r;r example, the
problem of how to obtain starting values for the parameters
of mixtures of possibly aéymmetric components has not been
:ésolved. Also, the Weibull based procedures should be
applied to LANDSAT data in order to examine their
performance on the types of asymmetry which will be
encountered in practice. The fact that an additional
parameter has been introduced into the model for each
component has caused the estimation procedures to be slower
than for the normal based procedures. Further investigation
concerning the practical aspects of actually implementing

the procedures is needed.
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