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FINAL REPORT

Center of Excellence for Applied Mathematical and
Statistical Research in Support of Development of

Multicrop Production Monitoring Capability

August 31,1983

Introduction

In this report we summarize the efforts undertaken by

the Center. for Applied Mathematical and Statistical Research

at Southern Methodist University in support of the contract

NAS 9-16438 since January 31, 1983. For a discussion of the

progress made on this contract prior to January 31, 1983,

reference should be made to Final Report SR-63-04408. Our

recent efforts have dealt primarily with an evaluation of

current techniques for mixture model proportion estimation

along with investigation into alternative techniques.

Mixture modeling procedures currently utilized by NASA, e.g.

CLASSY, assume a mixture of normal components. In addition,

associated parameter estimation 	 is accomplished using

maximum likelihood(ML) methods based on the 	 normality

r' assumption since these ML estimators are optimal when the

normality assumption is valid. However, it is well known

that ML estimation procedures are highly sensitive to

violations	 of the	 underlying assumptions.	 Recent

implementation of the mixture model has involved use of

ti
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feature variables from the Badhwar profile model. 	 In

particular, the feature variables currently in use are T  -

time of peak greenness, G(Tp) - peak greenness, and o	 a

measure of the length of the growing season. The normality
M

of these feature variables has been an issue of recent

concern.

Aui. results and investigations can be grouped into four

major categories:

(1) Further results on the comparison of normal based MLE
rt

and MDE (Cramer-von Mises distance)

(2) Use of the Hellinger metric as an alternative to the

Cramer-.von Mises distance used in calculating the MDE

(3) Investigation into the use of the Weibull as 	 an

alternative to the	 normal for modeling	 component

distributions.

(4) Implementation of the estimation procedures on LANDSAT

data in an effort'to:

(a) investigate the normality (or non-normality)

of the Badhwar feature variables.

(b) compare the performance of the MLE and MDE in a

"real data" situation.

The progress which has been made in these areas is discussed

in this report.
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(1) Normal-based HIDE vs MLE

one of our primary investigations has been the

comparison of normal based MD and ML estimation of the

mixture proportion for simulated two component mixture

models. We have , compared the estimation procedures for

simulated mixtures of normal and of non-normal components.

Our investigations in this area were previously documented
in NASA technical report SR-62-04376« In that report we

showed ML procedures to be superior when the normal
component assumption is valid while MD procedures perform
better on the simulated mixtures of compoqents which
represent symmetric departures from normality. Mixtures of
t(4) components were examined in that report.

Our recent results have included more extensive

simulations in which double exponential and t(2) components

were examined. The double exponential was chosen since it

has lighter tails than a t(4) yet heavier than a normal
distribution. Tests for goodness-of-fit usually have little

power in distinguishing normal and double exponential data.

In addition, t(2) components were examined in order to

compare the estimation procedures in a heavier tailed
setting than the t(4). In fact, the t(2) distribution has

infinite variance, and not surprisingly, realizations often



have a few extreme observations. our results show that in

both of these non-normal situations, the MDE provides better

proportion estimates than the MLE. This improvement is

particularly striking for the t(2) simulations as the MDE

seems to be relatively insensitive to a few extreme values.

In these simulations we have initiated the iterative

routines used to calculate the MDE and the MLE with starting

values obtained using a somewhat ad-hoc quasi-clustering

technique. We have observed that in some situations,

particularly those with heavy overlap between component

distributions, the starting values perform better than both

the MLE and MDE, an interest.ng finding since the starting

value routine is easy to implement and is very fast since it

does not involve iteration.

Asymptotic results have been obtained which establish

the strong consistency and asymptotic normality of the MDE

in the mixture-of-normals setting. The form of the

asymptotic variance of the MDE is available from these

results so that the asymptotic relative efficiencies (AREs)

or the MDE relative to the MLE can be found. We have

calcaalated these AREs for several parameter configurations.

These AREs are fairly comparable to the empirical finite

sample results. The following reports have been written

since January 31, 1983 concerning our work in this area.

Report [1] is included as Appendix A in this document.
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[1) "Minimum Distance Estimation of Mixture Model

Parameters - Asymptotic Results and Simulation

Comparisons with Maximum Likelihood" by Wayne A.

Woodward, William C. Parr, William R. Schucany, and

Henry L. Gray (SR-63-04427), June 1983.

(2] "A Comparison of Minimum Distance and Maximum

Likelihood Estimation of a Mixture Proportion" by

Wayne A. Woodward, William C. Parr, William R.

Schucany, and Hildegard Lindsey - submitted to

Journal	 D-f	 ±	 American	 Statistical

Associatig

,(2) Minimum Hellinger Distance Estimation

We have also investigated the use of the Hellinger

metric for calculating the MDE. In our previous work, the

Cram4r-von Mises distance has been used Exclusively for this
r

calculation. The minimum Hellinger distance estimator(rIHDE)

is of interest to aerospace remote sensing since it has the

potential of providing robust proportion estimates under

deviations from normality while maintaining performance 	 1

comparable to the b1LE when the underlying 	 components

actually are normal. However, our initial implementations of
4

f

	

	 this procedure have shown that although the results are

encouraging, the iterative procedure is highly sensitive to

r
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starting values and is computationally more difficult than

the MDE based upon Cramer-pion Mises distance. More

investigation is needed before the MHDE can be considered to

be a viable alternative for proportion estimation.

As a result of our investigations of the MHDE, the

following report has been written and is included here as

Appendix B.

[3'] "Minimum Hellinger Distance Estimation of Mixture

Model. Parameters" by Wayne A. Woodward and Paul W.

Eslinger (SR-63-04433), July 1983.

(3) Weibull Based MD Estimation

The MD and ML estimation procedures discussed in the

previous sections were both based upon a mixture of normal

components. Our results showed that although the MDE is more

robust to symmetric departures from component normality,

neither normal based procedure provided adequate results in

the presence of asymmetric departures. We have investigated

Y the use of the Weibull distribution as an alternative to the

normal since the Weibull can be symmetric or skewed (to t,e

right or to the left), and it therefore provides a very

flexible model. The density function for the three parameter

Weibull is given by

6
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x-a Y

f(x)	 (xsa)Y-1 
a-(---) , x > a
	

(1)

where 0>0 and Y > 0.	 The mean and variance are given

by Y+1)
(2)

0 2 	 g 2 1r (Y + 1)	 j,2 (,
1—̂  + 1)) .

The parameter y serves as a shape parameter. When y=3.6 the

Weibull is symmetric and in fact, quite similar to the

normal distribution. The Weibull is skewed to the left or to

the right depending on whether y>3.6 or y<3.6 respectively.

The following technical report addresses the use, of the

Weibull in mixture;  proportion estimation. It is included

here as Appendix C.

[4) "?Proportion Estimation in Mixture s of	 Asymmetric

Distributions"	 Wayne A. Woodward, Richard F. Gunst,

Hildegard Lindsey, and H.L. Gray.

(SR-63-04409), May 1983.

The X 2 (9) was used in the simulations in report [4] to

,Iassess the effect of component asymmetry. in that,report,

the iterative procedures were started at "truth" rather than,

at starting values obtained from the data. In Table 1 we

present the results of a recent and more extensive set of
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simulations than those quoted in (4). In the new

simulations, starting values for Ii i, a^ , and p, i-lr2 were

obtained from the data as discussed in (2). The starting

values for p i and a2 were then converted to estimates of ui

and 3i using equations (2) with y i =3.6, fn1,2. The starting

value estimate for p remains unchanged. The simulations

summarized in Table 1 are based on simulated mixtures of

normal components while those in Table 2 are based on

simulated mixtures of X 2(9) distributions. As in (4] we

examined overlaps, as defined in (2], of .10 and .03, and

mixing proportions of .25, .50, and .75. We have added the

case in which the variance of component 1 is twice that of

component 2. It this table we compare the MLE based on a

mixture of normals model (MLEN), the MDE based on a mixture

of normals model (MDEN), and the MDE based on a mixture of

Weibulls model (MDEW).

The results here are similar to those shown in

SR-63-04409 in that the normal based procedures performed

better on the mixtures. of normal components while the

Weibull based FIDE was generally superior on mixtures of

X 2 (9) components. Again, the starting value routine obtained

-estimators which were competitive with and often better than

those estimators obtained through the iterative routines.

A few other comments are in order here. First, we

believe that if the asymmetry can be assumed to be in only

one direction (probably to the right for the profile

6
l	 J
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Table 1. Comparison of Proportion Estimation Techniques
Simulated Mixtures of Normal Components

n - 200
number of -repetitions 100

a2wv2

Overlap .10 Overlap - .03

A

P

A

Bias
h

MSE
A

p

A

Bias
A

TISE

MEN .27 .02 .023 .26 .01 .002
p -.25	 MDEN .31 .06 .045 .27 .02 005

MDEW .33 .08 .042 .33 .08 .015
Starts .30 .05 .009 .29 .04 .005

MLEN .50 .00 .020 .49 -.01 .002.

-.50	
DIDEN .50 .00 .019 .49 -.01 .002p	
MDEW .49 -.01 .028 .49 -.01 .005
Starts .51 .01 .007 .50 .00 .005

a2=2a

Overlap - .10 Overlap - .03

A

p

A

Bias
A

MSE
A

p

A

Bias
A

MSE
MEN .24 -.01 .011 .24 -.01 .002

k	 MDEN .31 .06 .031 .25 .00 .005
p -.25

MDEW .36 .11 .082 .25 .00 .011
Starts .23 -.02 .007 .25 .00 .003

MEN .49 -.01 .012 .50 .00 .002
MDEN=.50

150 .00 .016 .50 .00 .002
p	

MEW .49 -.01 .027 .50 .00 .007
x	 Starts .41 -.09 .015 .45 -.05 .007

MEN .70 -.05 .025 .74 -,01 ,I.002	 j
MDEN

p =.75
.64 -.11 .057 .73 -.02 .004

MEW .59 -x116 .057 .71 -.04 .009
Starts .59 -.16 .035 .66 -.09 .012

ti
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Table 2. Comparison of Proportion Estimation Techniques

Simulated Mixtures of X 2 (9) Components

n - 200
number of repetitions - 100

2	 2
0, ^ a2

Overla2 - .10 Overlap = .03

A

p
A

Bias
A

MSE
A	 AA

p	 Bias
A

MSE

MLEN .27 .02 .096 .17	 -.08 .007

MDEN .34 .09 .106 .17	 -.08 .008
P =.25 MDEW .35 .10 .049 .32	 .06 .011

Starts .32 .07 .035 .27	 .02 .003

BEEN .26 -.24 .062 .41	 -.09 .011
MDEN .29 -.21 .058 .42	 -.08 .009

p s.50 MEW .42 -.08 .023 .49	 -.01 .005
Starts .48 -.02 .007 .51	 .01 .004

MEN .48 -.27 .080 .65	 -.10 .013
MDEN .46 -.29 .095 .63	 -.12 .016

p =.75 I-MEW .55 - .20 .075 .71	 ••.04 .006
Starts .67 -.08 .013 .66	 -.09 .013

a 2	 2R2
e 1	

2
overlap _ .10 Overlap = .03

p Bias MSE p	 Bias IISE

MEN .16 -.09 .050 .19	 -.06 .006
_

p .25
IMEN .28 .03 .069 .18	 -.07 .008
MDEP .37 12 .062 .31	 .o6 .010
Starts .26 .01 .026 .25	 .00 .003

+
MEN .28 -.22 .053 .43	 -.07 .007	 l

=.50 MEN .31 -.19 .041 .43	 -.07 .007
p

DMEW .45 -.05 .015 .49	 -.01 .003
Starts .41 -.09 .015 .45	 - -.05 .007

XLEN .46 -.29 .089 .65	 -.10 .012

=.75
"NEN .50 -.25 .076 64	 -.11 .016

p
SDEW .58 -.17 .049 69	 -.06 .008
Starts .60 -.15 .030 .61	 -f14 .023
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variables under consideration), then the estimation results

shown in Tables 1 and 2 can be improved. Another interesting

finding was made during these simulations concerning the

3-parameter Weibull. Although we only show summary results

in this report, parameter estimates for all 7 of the

parameters of the fitted mixture-of-Weibulls is printed out

by the simulation program for each sample generated. For

several samples a(<0) and were very large in absolute

value, sometimes greater than 1000. These parameter values

were associated with a	 Y smaller in magnitude than a and

but substantially larger than 3.6. Although these

parameter values appear to be "very bad", plots of the

associated 37parameter Weibull densities showed to be

consistent with the data with only very small probability

being associated with the interval between a and 0. In

Figure 1 we show two 3-parameter Weibull densities, one

associated with parameters a = -1182, 8	 1205, and Y = 324

while the other density has parameters a = 0,	 = 21.2,

y = 5.8. We see that the densities are very similar although

the parameter values differ-- dramatically. Thus, the

3-parameter Weibull seems to suffer from a "practical

non-identifiability" which may or may not be a problem in

our setting. If', only proportion estimates are desired, then

	

this lack of "identifiability of the component Weibulls may
	 M

not cause difficulties. It is clear that the component'

Weibull parameter estimates can be very misleading.
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(4) LANDSAT Data

The relative performance of the MDE and VILE has been

examined through extensive simulation investigations. These

investigations have been an important first step in

understanding the behavior of the estimators in controlled

normal and non-normal mixtures. It has been shown that lack

of component normality can severely degrade the performance

of the MLE. In fact, we have seen that mild non-normality

(double exponential) can cause the "optimal" MLE to perform

in a less than optimal manner. Another key concern involves

the symmetry of component distributions since our

simulations have shown that such skewness can have adverse

effects on normal based procedures.

The performance of the estimation schemes on LANDSAT

data is, of course, of ultimate importance. The key

questions which are of interest in this respect are:

(a) Are the feature variables from the Badhwar profile

model normal? If not, what type of non-normality is

encountered?

(b) How do the estimation procedures compare on this data?

In an attempt to provide answers to these questions, *.e
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have utilized data from the Fundamental Research Data Base.

This, data base consists of eighteen segments on which ground

truth and the Badhwar feature variables are available for

each pixel. In our investigations we identified the pure

pixels on each segment and related these back to their

ground truth labels. our simulation investigations have been

based on mixtures of two univariate component distributions.

Therefore, the current interest concerns the ability of the

estimation procedures to estimate crop proportions in this

univariate, two component, real data setting. Accordingly,

we identified "pairs" of crops from these 18 segments for

which proportion estimation would be useful. That is, from a

given segment we identified two crops, say corn and

soybeans, and considered the related pixels to constitute a

mixture population. In an attempt to further understand the

data for these mixture populations, histograms of the

component distri.bution.4 and of the mixture distribution were

drawn for each of the three feature variables Tp, 0, and

G(Tp). In Figures 2 '7 we display 'these histograms for the

corn and soybean pure pixels of Segment 1380, a 1978

Minnesota segment. Several observations can be made

concerning the histograms. First, there is clear visual

separation between corn and soybeans on the basis of G(Tp),

a small amount of separation on Tp, and no separation on P.

Notice that what appears to be a second peak in the mixture

model fora in Figure 5 appears as a "spurious" peak in the
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Figure 3. Mixture Histogram based on T  for Corn and

Soybean Components of Figure 2
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Figure 7. Mixture Histograms based on G(Tp) for

Corn and Soybean Components of Fi-ure 6
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component distribution for soybeans (see Figure 4). This

heads to a second observation which is that the quality of

the data is very questionable. The peak in the soybean

component should be explained. Further, the figures indicate

that outliers are a major problem. For example, note should

be made of the extreme values for each profile, particularly

for soybean components. In order to correctly analyze these

data, the outliers must be more fully understood. Outliers

could arise from several sources. Among these are

incorrectly specified ground truth readings, crops which

were plowed under after the ground truth readings were made,

and extreme values which result from instability of

parameter estimation in the Badhwar model. Our examination

of all of the histograms reveals tk,.at outliers are in

general most prevalent for 0 We do not at present

understand the outliers observed here, but their magnitude

is significant to warrant further investigation.

Although the mixtures displayed in Figures 3 and 7 are

bimodal, a general impression after examining all of the

histograms is that for many of the crop comparisons, the

mixture histograms are not bimodal for any of the ;profile.

variables. This, of course, causes the usefulness of the

profile variables for separating crops; to be questionned.

Based upon our examination of the data, we are able to make

some very general comments concerning the crop separation.

21

For the segments we observed, none of the three variables

is
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produced hstog;ams from which a separation was visible when

comparing:

grass vs. spring small grains

spring wheat vs. other spring small grains

spring wheat vs. spring barley

corn vs. trees

grass vs. pasture

In contrast, visual separation was present for the following

comparisons-:

corn vs. soybeans (T p and G(Tp))

cotton vs. spring small grains (T p and G(TPH

sunflower vs. spring wheat (T p and G(Tp))

pasture vs. alfalfa	 (G (T p} )

Of course, multivariate examinations of these variables

might detect separations which we are unable to observe in

the univariate setting.

We also examined the performance of the estimates

studied in the simulation studies on the LANDSAT data. In

order to-do this we sampled from the mixture populations

described earlier. Specifically, for selected "crop pair

populations" we selected 100 samplos of size n=200,

obtaining the MDEN, MLEN, and MDEW for each sample. The

results of this "data simulation" were then summarized in

much the same way as were the simulations presented earlier.

In Table 3 we present the results for estimating the mixing

proportion based upon the corn-soybean mixture from Segment

i
I
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1380. The ground truth proportion there is p=.43 (proportion

of pixels in the mixture which are corn). From the table we

see that the estimation results are very poor for all	 {

estimation procedures. Examination of the histograms (see	 `+
Figures 2	 7) reveals that the outliers discussed earlier
are probably the major cause for this poor performance. The

starting value results deserve special attention.	 The	 i

startinU values are restricted to p=.1,.21...,.9, and they

are selected in such a way that if fewer than 5% of the data

are "extreme" in either direction, then this has very little

effect on the starting values. With outliers as extreme and

as numerous as the ones in the present data, the starting

value routine often interprets the extreme 10% of the data

as constituting a component. Thus we see the extremely poor

starting value results in Table 3. In an effort toexamine

the effect of the outliers on the results in Table 3 we

truncated the most extreme observations, and repeated the

simulations. In particular, all T p observations below 60 and

above 150 were truncated, all V observations above 80 were

truncated, and for G(T p), ill observations below 10 and

above 120 were truncated. These truncations were performed

independently for each variable so that the ground truth

proportions differ from profile to profile. These ground

truth readings are given in Table 3. A truncation based on

all three criteria together might be of interest since, for

example, the spurious peak at about V=53 for the soybean

AP
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Table 3. Results of "Data Simulation" based on Corn and
Soybean Pure Pixels from Segment 1380

Sample Size . 200
Number of Replications - 100

Data Not Truncated
Ground Truth p	 .43 (Proportion Corn)

T o G(Tp)
A A

MSE
A	 A

MSE
A

P
A

MSE
MDEN .59 .07 .64	 .05 .63 .10
MEN .83 .17 .77	 .13 .89 .23
MDEW .73 .15 .62	 .08 .67 .11
Starts .89 .22 I	 .85	 .18 .79 .15

Data Truncated

Ground Truth Ground Truth Ground Truth

A
p_.44

A A
p=.43

A A
p-.45

A

MSE p MSE P MSE
MDEN .47 .04 .61 .04 .58 .03
14LEN .71 .09 .64 .06 .44 .05
MDEW .49 .09 .57 .05 .54 .02
Starts .88 .20 .83 .16 .61 .03

t
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k in Figure 4 may be associated with extreme values of

of the other two variables, and thus these values of V

A be removed by such a joint truncation procedure. The

ilts of the simulations on truncated data are given in

.e 3. There it can be seen that the performance of the

estimators improves dramatically. However, it should be

noted that extreme observations seem to continue to have an

effect on the results. notice that G(TP) appears to be the

best single variable for separating corn and soybeans, in

which case MDEW results are superior. Simulations similar to

those reported here were obtained for several crop-pair

mixtures. In general, although visible separation sometimes

existed between the two components, estimation results were

usually very poor because of the outliers.

The symmetry of the component distributions is one of

our main interests. However, the outliers tend to diminish

our ability to examine skewness. Although many of the

component distributions appeared to be nearly symmetric, we

have observed skewness to the right in several cases, see

for example the component distributions for V in Figure 4.

Many of the comments which are made here are based on,

our examination of all of the histograms and "data

simulation" results which were obtained from our processing

of the segment data. Although _these displays and results

cannot all be included here, we believe that the ones we

have presented are sufficient to provide an understanding of
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e data. The histograms and data simulation results have

en provided to Dr. Dick Heydorn at Johnson Space Center.

Summary

The results of our investigations have provided new

insight into the role of non-normality and the performance

of the MLE presently used for crop proportion estimation. In

addition we have examined several alternatives to the

normal-based NILE for estimating mixing proportions. We

believe, however, that further research is needed in this

urea. fin particular, the extension of the investigations to

situations in which more than two components are present

would be a natural next step. Further extensions to the

multivariate case also seem to be of importance.

The MHDE appears to have some real potential as an

estimator due to its efficiency under normality. However,

much work is necessary before it can be determined whether

or not it is a viable alternative.

The role of symmetry of the component distributions and

the performance of the estimation procedures still requires

examination. In particular, if the asymmetry can be assumed

to be in only one direction (probably to the right) then we

believe that the estimation results shown in Table 2 can be

improved.	 The	 practical	 importance	 of	 the
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ion-identifiability" observed in the 3-parameter Weibull is

it yet fully understood. In addition, possible new

ternatives to the Weibull and normal component models

..^nsidered to date should be considered.

The simulation results concerning the per`ormance of

the simple starting value routine we developed imply that

further research into its capabilities is warranted.

Finally, the examination of the estimation procedures

on LANDSAT data is only in its initial stages. The problem

with ouliers and how best to deal with them is a very

important question related to the implementation of these,

 on LANDSAT data. Although the MDE procedures

examined in our investigations are relatively insensitive to

outliers, the magnitude and quantity of outliers present in

the data we observed had very deleterious effects on all

estimation procedures examined.
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MINIMUM DISTANCE ESTIMATION OF MIXTURE MODEL PARAMETERS -	
7,

ASYMPTOTIC RESULTS AND SIMULATION COMPARISONS
WITH MAXIMUM LIKELIHOOD

Wayne A. Woodward, William C. Parr,
William R. Schucany, and Henry L. Gray

1. Introduction

An important problem in aerospace remote sensing is the

estimation of the mixing proportions pl,p2,..•,pm in the

mixture density

f (x) = P l f l (X) + p 2 f 2 (x) +	 + pmfm (x)

where m is the number of components(crops) in the mixture

and for component i,fi (x) is a density. The variable of

interest, X, is some measurement such as the reflected

energy in four bands of the light spectrum as measured by

the LANDSAT satellite, certain linear combinations of these

readings, or other derived "feature" variables.

Generally, parameter estimation in mixture model

applications has been accomplished by assuming that the

component distributions are normal and using maximum

likelihood(ML) techniques. In a recent report, Woodward, et.

al.(1982) have examined the use of minimum distance(MD)

estimation based on the Cramer -von Mises distance, as an

alternative to maximum likelihood. Both ML and MD estimation
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schemes in that paper were based upon the mixture of two

univariate normal distributions whose density function is

given by	 x-u 2	 x- u 2

f(x)	 2 _ e- 'f(	 + (1-^) a ^'f ( a22)
42 ir 

al	
V-27 a2

where all 5 parameters u l , al l u2, cr'2, and p are unknown. It

was also assumed that no training data are available, i.e.,

the only observations are from the mixture distribution, In

this setting, motivated by the crap example, p is the

parameter of paramount importance while location and scale

of the components are nuisance parameters. Woodward, et. al.

(1982) compare ML and MD estimation techniques on simulated

mixtures of normal, t(4), and chi-square(9) densities with

varying amounts of separation. The results indicate thatthe

MDE is more robust than the RILE to: symmetric departures from

component normality, while	 neither technique	 provides

satisfactory results when component distributions 	 are

skewed.

In this report, we present further simulation results

comparing ML and MD estimation of the mixing proportion

based on a mixture-of-normals model 	 when in fact the

component distributions are not normal, yet	 represent

symmetric departures from	 normality. Unless	 otherwise	 x

indicated, reference to the MDE in this report will involve

the use of Cramer-von Mises distance. We also present

asymptotic results which establish the strong consistency
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and asymptotic normality of DID estimators of the parameters

in the mixture-of -normals model, and finally	 provide

asymptotic relative efficiencies for comparing the MLE and

MDE in this setting.	 1

2. Simulation Results

In this section we report the results of a Monte Carlo

study designed to compare the ML and MD estimators based

upon a mixture-of-normals when the simulated component

distributions are normal and when they are non-normal. These

comparison's are made under varying degrees of separation

between the two component distributions. All computations

were performed on the CDC 6600 at Southern Methodist

University.

In these simulations, the mixing proportion, p, takes

on the values .25 .50, and .75. For a given mixture, the

component distributions differ from each other only in

location and scale. In particular, fl (x) is taken to be the

onsity associated with a random variable X=aY while f2(x)

is the density for X=Y+b where a>0, b>0. Thus, a is tYe

ratio of scale parameters for the densities fl, and f2 , and

similarly, b is the difference in location parameters. The

random variable Y in our simulations is either normal,

Student's t with 2 or 4 degrees of freedom, or double

exponential. In our simulations we use a=1 and a= V-2 while b

Y
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a

is selected to provide the desired separation between the

component distributions. The number of modes of the mixture

density depends to a large extent on this separation between

the two component distributions. Although, for sufficient

separation, the mixture model has a characteristic bimodal

shape, the density may by unimodal when there is only

moderate separation between the components, and in this

case, parameter estimation is more difficult than it is in

the bimodal cases. For purposes of _quantifying this

separation between the components, a measure of "overlap"

between two distributions was defined by Woodward et.

al.(1982).

For each set of parameter configurations, 500 samples

of size n=100 were generated from the corresponding mixture

distribution. Simulations were based on the IVISL

multiplicative congruential uniform random number generator

GGUBS. Normal component observations were generated using

IMSL subroutine GGNPM which uses the polar method, while

t(n) observations were based on the ratio of independent

chi-square and normal deviates, each obtained using IMSL

routines. Double exponential components were based on ln(U)

where U is uniform(0,1), and randomly assigning either a

positive or negative sign. In all cases, observations from

the basic component distribution under investigation were

simulated and then assigned to either component 1 or

component 2 depending upon whether an independent
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uniform(0r1) was less than or greater than p. The

observations were then scaled and shifted (with a and b) to

provide observations from the appropriate component.

For each sample simulated, both the VIDE and RILE were

obtained. The iterative procedures discussed by Proodward et.

alo (1982) were implemented in such a way that acceptable

parameter estimates are obtained for each sample. For

example, if the iterative procedure fails to converge in the

specified number of iterations, the last value obtained in

the iteration is taken to be the estimate if this value is

"reasonable" according to preset criteria. In general, if

any of the following conditions existed at any step in the

iteration,
A

a l > Y  - Y 1 (s sample range)
A

a 2 > 
Y 
	 Y1

Yn-Y1
41 < Y 1	 10

Yn-Y1U 2 > Y n +
	 0

iteration is terminated and the corresponding estimate is

taken to be the starting value. This did not occur in any of

the 500 repititions, for most configurations, but did occur

a maximum of 7 times out of 500 for MD estimates of the

parameters of a mixture of t(2) components. The extreme

observations which occasionally appear in samples from t(2)

mixtures, also forced a modification in the first step of

the MLE iteration to avoid a division by zero. Although both
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estimation procedures provide estimates of all 5 of the

parameters, only the results for estimation of p will be

tabulated since the mixing proportion is the parameter of

,primary interest, as previously mentioned. In addition, when

dealing with the non-normal mixtures, the remaining

parameter estimates often do not have a meaningful

interpretation.

In Table 1 we present summary results of the

simulations comparing the performance of the MLE and HIDE for

mixtures of normal components while in Table 2 we display

the results for the non-normal components. The results for

normal and t(4) components were previously given in Woodward

et. al.(1982). Estimates of the bias and MSE based upon the

simulations are given by:
n

^	 1	 s
Bias	 n	 (pi-p)

S i=l

and
n

1	 s	 2
MSE n	 (pi-p)

si=1

^
where ns is the number of samples, and pi denotes an

estimate of p,for the ith sample. It_ should be noted that

nMSE is the quantity actually given in the tables since this

facilitates comparison with asymptotic variances	 in
S

Section 4. Since the MLE and MD SE are both asymptotically

unbiased (this will be discussed for the MDE in the next
i'

2section) , nSMSE/c is approximately X Z(500) . It is easy to

r`

O `
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Table 1 - Simulation Results for Mixtures of Normal Components

Sample size 0100

Number of Replications - 500

Overlap - . 10	 Overlap - .03

Ratio
of Scale MDE MDE

Factors(a) Bias aMSE E Closer Bias nMSE E Closer

MDE .125 7.80 .55 .38 .026 1.09 .49 .39

.25 1 MLE .052 4.26 .008 .539
Start .084 2.06 .048 .782

MDE ,010 3.86 .83 .41 .001 .420 .91 .46

.50 1 MLE .000 3.21 .000 .382
Start -,005 1.22 .001 :4

MDE 1084 5.30 .42 .32 .027 .956 .51 .38

.25 v MLE .002 2.25 .006 .489

Start - .004 .894 .014_ .510

MDE .005 2.79 .86 .4T

1 

008 .441 .94 .45

.50 /2- MLE -,.009 2.41 .009 .416

Start -.089 1.85 -.048 .866

MDE -.137 8.36 .58 .36 -.024 1.08 .44 .42

.75 r MLE -.086 4.87 -.002 .470
Start -.158 3.97 -.093 1.56
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Table 2. Simulation Results for Mixtures

of Non-normal Components

Sample size . 100

Number of replications w 500

Double Exponential Components

Overlap - .10
	

Overlap - .03

Ratio
of Scale MDE MDE

Factors(a) Bias nMSE E Closer Bias nMSE E Closer

MDE .054 2.96 2.13 .66 .030 .545 1.18 .50
.25 1 MLE .091 6.31 .026 .645

Start - .065 1.40 .078 1.04

MDE .007 1.03 4.04 .69 -.001 .286 1.29 .54
.50 1 MLE .007 4.16 -.001 .368

Start -.004 1.17 .000 .414

TIDE .102 4.42 1.40 .60 0 035 .775 1.07 78
.25 r MLE 0034 6.17 .037 .832

Start .011 .926 .050 .678
MDE . 032 1.50 2.71 .68 .003 .259 1.44 .-58

.50 'r MLE .073 4.06. .009 .372
Starts -.088 1.86 -.035 .570
MDE -.037 2.20 2.94 .73 -.026 .344 .94 ,44

.75 5 MLE -.067 6.47

MMIM^I

-.014 .323
Stuti' -.151 3.31 -.107 1.63

#	 t(4) Components

MDE .104 6.18 1.19 .61

* 

020 .466 1.89 .49

.25 1 MLE .096
1

7.35 .029 .883

Start .068 1.59 .072 .998

1IDE .004 1.82 3.07 .69 .000 .266 1.64 .53

.50 1 MLE .015 5.59 -.005 .436
Start .006 1.21 -.001 .496

MDE .098 5.20 .89 .53 .029 .605 1.61 .49
.25 r MLE .061 4.63 .044- .976

Start -.010 .810--l -
.036 .654

MDE .022 1.80 2.77 .67 .001 .300 1.85 .55
.50 V MLE .028 4.99 .010 .554

Start , m: 1.52 -.046 .778
MDE -.058 3.68 2.13 .65 -.016 .361 1.57 .50

.75 MLE -.076 7.84 -.012 .567
Start -.137 3.07 -.108 1.75
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t(2) Components

Overlap - .10
	

Overlap - .03

a	 .
Ratio
of Scale MDE MDE

Factors(a) Bias nMSE E Closer Bias nMSE E Closer

MDE .076 3.42 4.30 .80 .024 .308 10.32 .65

025 1 HLE .199 14.7 .083 3.18

Start .067 1185 .096 1.37

MDE -.001 1.34 9.03 .92 -.005 .264 9.24 .63

.50 1 MLE .024 12.1 -.009 2.44

Start -.004 1.39 -.002 .364

MDE .118 4.92 2.26 .69 .031 .452 7.70 .69

.25 /2- MLE .169 11.1 .106 3.48
Start .006 1.18 .071 .962

;^E .016 1.52 7.76 .89 -.001 .243 8.27 .68

.50 2 MLE .028 11.8 .029 2.01
Start -.078 2.08 -.032 .508

MDE -.059 2.99 5.79 .85 -.022 .300 11.40 .63

.75 r MLE -.186 17.3 -.045 3.42
Start -.137 3.37 -.122 1.96
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show then, that the approximate standard error of a tabled
^	 A

nMSE is (.0632)(nNSE). In addition, we also provide the

ratio

A

E	 MSE(MLE)
A

MSE(MDE)

as an empirical relative efficiency measure.

In order to take advantage of the paired nature of 	 our

ML and MD	 estimates, we counted	 the proportion of 	 samples

for which 
P.
	 is closer	 to p	 than is	 pL ,where	 p D and	 PL

denote the MD and ML estimates respectively. We present this
r

proportion in	 the tables	 under the	 heading "MDE	 Closer".

This	 provides	 an	 estimate	 of POP_P l< 1 PL -pl}	 .	 The
standard error	 of the	 binomial	 proportions shown	 in	 the

tables is no greater than / (.500.5)	 022.
'7

Analyzing	 the	 results,	 and	 as	 can	 be	 seen	 by

inspection,	 we	 find	 that	 the	 estimated	 Bias	 and	 MSE

associated with the	 MLE were generally	 smaller than	 those
i

for the	 MDE	 when	 the components	 were	 actually	 normally

-- distributed. This relationship	 -between the estimators 	 held.

w. for both overlaps.	 The MLE	 and MDE were	 quite similar	 at

p=.5 while for p=.25 and p=.75 the superiority of the MLE is

more pronounced.

For	 the	 mixtures	 of	 non-normal	 components,	 the

relationship between MDE and RILE is reversed in that the MDE

generally has the smaller estimated Bias and MSE, especially
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for t(2) mixtures. The superiority of the MDE is due in part

to the heavy tails in these components. The MLE often

interpreted an extreme observation as being the only sample	 F'

value from one of the 9cpulations with all remaining

observations belonging to the other. Due to the well known

singularities associated with a zero variance estimate for a

component distribution, Day(1969), we were concerned that

the observed behavior of the MLE was due to the fact that

the variances were not constrained , away from zero.

However,simulation results in which equal variances were

assumed (which removes the singularity) and also those that

used a penalized MLE suggested by Redner(1980) were very

similar to those quoted here.

A surprising result which was previously noted by

Woodward et. al.(1982) is that the starting values obtained

using the procedure outlined in Section 3 produced

estimators that were competitive with both the MLE and MDE.

For both the normal and non-normal mixtures, the MSEs

associated with the starting values were generally lower

than those for the MDE and FILE when_ overlap= .10. However,

when overlap=.03,	 the starting	 value estimates	 were t

generally poorer than those for the MDE and MLE, except for

the t(2) mixtures for which the MLEs were the poorest.
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3. Asymptotic Distribution Theory for Minimum
Cramdr-von Mises Distance Estimation

A^vmptotic theory for minimum Cramer-von Mises distance

estimators for location parameters can be found in Parr and

Schucany(1980), and for the general one parameter case in

Parr and de Wet(1981). Bolthausen(1977) gives results for

the mutiparameter case, but with conditions which are so

strict as to rule out scale parameters for unbounded random

variables (see his condition III). The purpose of the

results in this section is to extend this previous work to

cover multiparameter situations including, among others, the

problem of normal mixtures.

Assume that at stage n we observe real-valued X11
i

X ? ,...,X n ild from a distribution with cdf G and let G n

denote the usual empirical distribution function.	 Let

o1"={F e OCOCRk 	the projection model.,	 be a family	 of
1

continuous distribution functions and assume that GE3,

i.e., G= F6	for some 6 0 E0	 Further, assume that there
0

exists an open set A C e with 00 e Also consider the
{

following continuity(C) and differentiability(D) conditions:

(C) if ' nee, n = 1,2,..., then
_

lim j ( Fe (X)	 F Q (x)) ZdFe W	 0
n-►^	 n	 0	 0

implies lim en a e0
n^
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(D) There exists a function ne (0 1 ) -► R  such that

sup	 IF 8 (x)—F e (x) — (e-e o )'n(Fe (X) )I = 0 ((( e -601 1)
_49<x<080	 0

as Ile - 6 0 11 ♦ 0, where 1; -11 is the usual Euclidean

1
norm on Rk , and f n(u)du < - for i 	 1,2,...,k where

0

n( u) = ( n l ( u), n2(u ),-•-,nk(u)).

Notes:

1) Condition C is satisfied if, for instance, Fe (x) is

continuous in a at 6 0 , pointwise in x (use dominated

convergence),, It can be interpreted as requiring that 6

"continuously parametrize".

2) If condition C is not satisfied, then this implies

-^su}p ^I Fa (x)-F, (x) ( can be arbitrarily small without having 6
0

approach 60 . In such a case, the search for any consistent

estimator seems hopeless. In particular, in such a

situation, any consistent estimating functional must be

discontinuous with respect to the sup-norm, and hence highly

nonrobust.

3) Condition D is weaker than (implied by) quadratic

mean differentiability of fe the canonical regularity

condition for asymptotic normality of the maximum likelihood

estimator (see LeCam ( 1970) and Pollard (1980)).
8Fe (x)

4) Usually, n i (u) = -ae 	 and condition D simply
s IX= 8 (u)

I
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states the uniform valiiity of the first order Taylor

approximation to VO W. If k;=l and a is a location

parameter, a sufficient condition to imply D) is that Fe

possess a uniformly continuous density.

Before continuing define the kxk symmetric matrices A

and B by

A= (aid }	 B = (bij)

1
with al b 	f ni (u) n j (u) du

0
l 1

and b.. - f f (min (u, v) - uv) n  (u) n  (v) duds;
1^ 0 0

and assume A to be of full rank. We can now state and

outline the proof of the following , strong consistency and

asymptotic normality results.

Theorem 1: Let en be a minimum distance estimator of 8 for

all n=1 1 2, ...	 Then, if condition C holds, On -* e 0	 with
i.

probability one.

Proof: Clearly, f-(Gn-Fe ) 2dF 0 -► 0 with probability one,

e

	

0	 0
fand hence also inf	 (Gn_F 2 	 probabilitydF	 0 with 	 one.

ee0

Now,
i

s oup) f (Gn-F O ) 2dF 0 - f (F-Fe) 2 dF 0 < 4 sups Gn(t) -F O (t)I	 0
w<t<cc

with probability one. Hence,
{

f (FO -FO ) 2 dF e	f (Fe -Fa ) 2dF O -+ 0
0	 n	 n	 n 0	 0
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with probability one, and strong consistency of e n follows

from the assumption.

Theorem 2: Assume conditions C and D and that A is of full

rank. Then, if f e`(x) is continuous in 6 at e 0 for every x,

(e n- 8 0 ) -x-i N{0, A^ 1 BA- 1)

Proof. (Sketched)

Set

Kn () = n f (Gn-Fe 0+;/^) 2dFe 0+ /v''n for s s R}..

Then we have

K  (^) = o f (Gn-F60- (F8O+9/;/-n-Feo)) LdFeO

+ of (Gn-Fe0-(FeO+&/
3
-n-FeO)) 2d[Fe0+r/ 3-n-F6

= op (1) + f l ( Un (t) - g'ri (t) - Rn (t)) 2dt,
0

	uniformly in	 for y',< C, for any C < -, where

sup IRn (t)^ * 0 with probability one, also uniformly in
0<t<l
for ^^^ < C. Here, Un (t) = 3n(Gn(F81(t))-t). 0 < t < 1.

0
By an extension of the argument of Pyke (1970, p. 29-30) to

the present context, we obtain that the limiting law of the

random variable minimizing K  M over ^ is also that of the

value minimizing

	

f 1(B (t)	 n (t) 2dt,
0

where B is a Brownian bridge. The result then .follows

immediately.

It can be shown that the mixture of normals model satisfies the

conditions of both Theorem 1 and Theorem 2.

IF r
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4. Asymptotic Relative Efficiencies

Theorem 2 of the previous section indicates that for

the mixture-of-normals mode, we have

(8n-e0) `^► N(O,A -BA 1) r

where	 _ (1101' u2' 02' p ) and an	 is the vector of

corresponding MD estimators using Cramer-von Mises distance.

Likewise, it is well known that

n (eLe0)	 N(0,I :1 ( 60 )) ,

where eL is the MLE of 60 and I ( e 0)is Fisher's information

matrix. We will employ the usual terminology and refer to

S A 1BA-1 and I(8 0) as asymptotic `' arance -- covariance matrices

and to their diagonal elements as asymptotic variances of

the corresponding estimators. In this section we will

present computed asymptotic variances- for the MDEof p,

which is denoted by p',and compare these with the asymptotic

variances associated with the MLE, denoted by pL•

The components of the matrix A were evaluated using the

expression

f ^i (X) (X) f g (x)dx,
t

where Fe(x) and fe(x) denote the distribution function and

density function respectively for the mixtu-re, ei, is the ith

a

k'



iponent of e, and

a Fe (x)
ae.

Ls integral was evaluated using IMSL subroutine DCADRE

Lch employs Romberg extrapolation to perform numerical

:egration of an integral over a finite interval. In our

Dlementation, we used DCADRE to evaluate the integral

L

j&i (x) ^^ (x) f  (x) dx,

U

where L=min ( •10 a l+u l , -100 2 + u 2) and U=max (l0al +µ1,10a 2 + u2)

with maximum allowable . absolute error	 specified	 as

1.0 X 10-15 and relative error of 1.0 X 10 -12 . The double

integral

r f { F e (min ( x , y) - F, (x) Fe (y)	 i (x) ^ i (y) f e (x) f e (y) dxdy

involved in calculating the elements of the matrix B is

approximated by using IMSL subroutine DBLIN to perform a

Romberg integration of the integral

U
r U

1	
j {Fe (min (x,y) -F e  (x) Fe (y) } & (x) ^ i ( Y) f e ( x ) fg ( y ) dxdy

L L

with maximum allowable absolute	 errror specified as

1.0 X 10-9 .

The calculation of the information matrix for the

(
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mixture-of-normals model is discussed by a ehboodian(1972).

We	 have	 followed Behboodian''s 	 procedure	 and	 used

Gauss-Hermite quadrature to approximate the integrals

involved. Using 48--point quadrature we obtain good agreement

with Behboodian's tabled results.

In Table 3 we display the asymptotic variances for PD

and PL along with asymptotic 
relative efficiency (ARE)

calculated as
4

F

asymptotic variance
^

PL

ARE- ---------------------

asymptotic variance

i

A

PD	 .

These values	 are	 calculated for	 each	 of	 the parameter

configurations employed in Table 1 for the normal mixtures.

As in Table 1 1	the asymptotic results indicate that the	 MDE

compares more favorably 	 with the	 MLE when	 p=.5 while	 its

relative performance is not as good for p=.25 or p=.75.

F	
y

0

y

F
y

4
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Table 3 - Asymptotic Relative Efficiencies

Overlap	 .10	 Overlap - .03

Ratio
of Scale Asymptotic Asymptotic

p Factors(a) Variance ARE Variance ARE

ME 13.60 .42 0471 .69
(7.80)* (.55) (1.09) (.49)

.25 1 MLE 5.67 .323
(4.26) (,539)

MDE 4.54 .65 .398 .89
(3.86) (.83) (.420) (.91)

.50 1 MLE 2.95 .355
(3.21) (.382)

FIDE 18.77 .32 .511 .65
(5.30) (.42) (.956) (•51)

.25 /2- MLE 5.96 .330
(2.25) (.489)

ME 3.49 .68 .395 .89
(2.79) (.86) (.441) (.94)

.50 r MLE 2.39 .353
(2.41) (.416)

MDE 5.51 .58 .420 .73
(8.36) (.58) (1.08) (.44)

.75 / MLE 3.18 .305
(4.87) (,470)

*Associated Monte Carlo results from Table 1 are given in parentheses.

1
P
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S. Concluding Remarks

We believe that the results of this paper provide

further evidence that the use of the MDE should be

considered in crop proportion estimation procedures

developed by NASA. Our results, again, and more Conclusively

than before, indicate that the MDE is indeed more robust
	 r

than the MLE in the sense that it is less sensitive to

symmetric departures from the underlying assumption of

normality of component distributions.

Woodward et. al. (1983) have investigated basing the DID

estimation procedure on a mixture of Weibull components in

order to allow for possible asymmetry in the component

distributions. Their results indicate that this approach

provides a viable alternative to the normal-based procedures

discussed here. Research is also proceeding on the case of

multiple (>2) components in the mixture.

The results of Section 4 indicate that the MDE does not

perform as well as would be hoped when the data actually do

arise from a mixture-of-normals model. We are currently

examining the use of the Hellinger -metric -in this regard due

the results of Beran(1977) concerning the full asymptotic

relative efficiency of minimum Hellinger distance

estimators.
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MINIMUM HELLINGER DISTANCE ESTIMATION

OF MIXTURE MODEL PARAMETERS

Wayne A. Woodward and Paul W. Eslinger
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1. introduction

Recent reports by Woodward et. al. (1982,1983) have

considered minimum distance estimation(MCVMDE), based on

Cramer-von Mises distance, as an alternative to maximum

likelihood(ML) for estimating the parameters of the

mixture-of-normals model. Their results indicate that the

MCVMDE is more robust to departures from the assumption of

normal components than is maximum likelihood. In particular,

they have shown that if mixture-of-normal based MCVMD and ML

procedures are used to estimate the parameters or a mixture

of symmetric (but non-normal) distributions such as double

exponential, t(4), or t(2), then the MCVMDE produces

superior proportion estimates. However, their results also

show that when the component distributions actually are

normal, the MLE is superior.

Intuitively, robust procedures are those which are

insensitive to small deviations from the assumptions.

ypically, robust procedures obtain this robustness at the

xpense of not being optimal at the true model. In fact,

ickel(1978) describes robustness as "paying a price in

I	 ^-
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terms of efficiency at the (true) model in terms of

reasonably good maximum M.S.E. over the neighborhood." The

behavior of the MCVMDE described above is a good example of

this trade-off. However, Beran (1977) has suggested the use

of the minimum Hellinger, distance (MHD) estimator which has

certain robustness properties and is asymptotically

efficient at the true model. Its applicability to aerospace

remote sensing is of interest since it has the potential of

providing robust proportion estimates under deviations from

normality while maintaining performance comparable to the

MLE when the underlying components actually are normal. In

this report we will briefly examine the use of the MHDF for

estimating the parameters of the mixture-of-normals model.

r

2. The Minimum Hellinger Distance Estimator

Let X l , X 2 , ..., x.n denote a random sample from some

unknown distribution and let Y 1 , Y 2,...,Y T1 denote the

corresponding order statistics. Further, Let Y e = {Fe:6E0}

be a family of distributions, called the projection family

or projection model, depending on the (possibly vector

valued) parameter 6. A minimum distance estimate of a is a

value 6 which minimizes the distance between the data

distribution (whose model is unknown) and the projection

model. In particular, the MCVMDE minimizes the Cramer-von

r^

.	 t



3

ises distance between the empirical distribution function

nd Fe . For more discussion, the reader is referred to

oodward, et.al .(1982).

Hellinger distance between two absolutely continuous

istributions is defined to be Ilfh-g3'11- where f and g are

the corresponding densities and 1).i( denotes the usual L2

norm, i.e.

1 1 f 1/2-91/2 11 = (f (f 11/2-g1/2 ) 
2dx11/2	

(2.1)

where integrat^,on is with respect to Lebesgue measure on the

real line. Let 7 denote the set of all absolutely continuous

probability functions with respect to Lebesgue measure on

the realline, and for our purposes, let Ye {F 6:6e0}, the

projection family, be a parametrized subset of Y. The MHD

estimator e Hof a is defined as a value of a which minimizes

Ilfe
-g^'211 where gn is a suitable nonparametric density

estimator. It should be noted that minimizingIlf^-gull is

equivalent to maximizing

ffe/2gn/2dx	 (2.2)

and we will utilize this form for computational convenience.

• Beran(1977) and•Stather(1982) have provided theoretical

results establishing the consistency, asymptotic normality,

asymptotic full efficiency, and robustness of the MHDE.

However,	 their	 results only	 briefly	 discuss	 the

computational aspects of implementing the MHDE and provide

r•

Mm-
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only limited empirical evidence concerning its robustness.

In this report we investigate the usefulness of the MHDE for

estimating the parameters of the mixture-of-normals model.

In the mixture-of-normals setting, f 6 becomes
!	 1 x-u1 ) 2	 1 X-u2 2

f ( X ) _ . p _ e( a 1	 + (—- ef' a2 )	 (2.3)
6	 v 27 6 1	 7 

a2w
#	 where6=(ul,al,u262,p)I.In the next section we present the
i	 -

results of a simulation study in which the MHDE is

F calculated using the projection model in (2.3). In these

calculations, we have employed Newton's method to maximize

(2.2), which produces the iterative algorithm

a 2 f 1/2	 afl/2
8 (m+1)	 A (m) _ [ f	

6	 gl/2dx] -11 _ 6	 g 1/2dx 	 (2.4 )
H _ H	 ate'- n	 "0 8 n

whereEHm)denotes the estimate of a obtained on the mth step,

and 6 (0)denotes the starting value, (u(0)^6(0),P2	
a(0) P(0)).

H	 1	 1	 2	 2

If any step produces estimates ofa 1 or a 2 which are less than

zero, then we use a scaled step "half-way" to zero.

In the implementation the density estimator used is

gl
j2

(X)	
1	 n	 x-Xi

)
nn	 ncsn i=1 

w( 
cnsn

based on the Epanechnikov kernel w(x)=.75(1-x 2) for (xL 1,

with the scale statistic sn set to a i^ )when p (o) >.5 and a20)

when p ( ^ ) <.5. For a discussion of density estimators see Tapia

and Thompson(1978). The value for c n is given by the
-.271

expression c n 2.16n 	 . These values of c n are optimal for

use with a normal projection model and are used here for
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convenience. Although further investigation into c n values

which are optimal for use with the projection model of (2.3)

is needed, we believe that the c n values utilized are

sufficient for the purpose here. When the projection model
afe^y

in (2.3) is used, it follows that fae-gridxin (2.4) is a 5x1
2af^ ^.

vector while f ^.gridx in (2.4) is a 5x5 matrix, the elements
ae 

of which are integrals to be evaluated at each step of the

iterative procedure. In the Appendix we show the partial
af A 	 a2f^

derivatives involved in the calculation of a6 and

	

	 We
_ a 6-2

have chosen to evaluate the numerical integrals using the

trapezoidal rule over a grid of 100 steps equally spaced

between Y 1-cnsn and Yn+cns n, i.e. the range of support of
^

gn•

3. Simulation Results

In this section we report the results of simulations

designed to provide empirical evidence concerning 	 the

effectiveness of the MHDE using a mixture -of-normals

projection model when the component distributions in the

simulated samples are normal and when they are non-normal.

In addition, we have made our comparisons under two levels
t

of separation between the component distributions.

In these simulations,	 we have	 used parameter

configurations previously considered by Woodward, et. al.

M
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)83). In particular, we use mixing proportions .25, .50,

1 .75 and "overlaps" as defined by Woodward, et. al.(1982)

.03 and .10. Again, as in the previous work, we consider

ses in which the ratio of the standard deviations of

mponent 1 to component 2 is 1 and when it is VT. In these

mulations we have simulated mixtures with normal and t(4)

mponents. For each set of configurations, 500 samples of

size n=100 were generated from the corresponding mixture

distribution. Simulations were performed on the CDC 760

computer. Starting values were obtained as discussed by

Woodward, et. al.(1982) with the exception that starting

values for the component standard deviations, a 1 and Q 2 ,

utilized in this study are smaller than those used in the

previous reports(Woodward, et. al.(1982,1983))by a factor of

approximately 1.2. For each sample simulated, the MCVMDE,

MHDE, and MLE for all 5 parameters were obtained. However,

only the results for the estimation of p are tabled since

the mixing proportionis the parameter of interest.

In Table 1 we present the results for simulated

mixtures of normal components, while in Table 2 we show the

results for	 simulated mixtures of t(4)	 components.

Simulation based estimates of the bias and MSE associated

with the various estimators are given by

n

Sias = n 1(p -P)s i=1
and	 ns ,.

MSE= n E (Pi'P) 2
s i=l

6

Y

ti

^f
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where n s denotes the number of samples and p i denotes an

estimate of p for the ith sample. As in the earlier reports,

nMSE is given in the table where n is the size of each

individual sample (in our case 100). We provide the ratios

MSE(MLE)

ECVM MSE(MCVMDE)
and	 ..

E = MSE(MLE)

H	 MSE(MHDE)
as empirical measures of the relative efficiencies of the

MCVMDE and MHDE respectively with the MLE. An approximate

standard error of a tabled.nMSE is (.0632)(nMSE).

The results in Tables 1 and 	 2 illustrate	 the

characteristics of the MHDE shown 	 theoretically by

Beran(1977) and Stather(1982). In particular, for the

simulated mixtures of normal components in Table 1 1 the MSEs

for the MHDE were comparable (in most instances) to those

for the MLE and smaller than those for the MCVMDE. This
A

behavior can also be seen by noting that E H is close to 1
A

for most configurations while E CVM is consistently less than

1. However, in Table 2, for simulated mixtures of t(4)

components, E H was greater than 1 in all but one case. In

addition, the robustness shown by the MHDE was in most cases

comparable to that for the MCVMDE as evidenced by similar

values of E H and ECVM• As noted in the previous reports, see

Woodward, et. al.(1982,1983), the starting value routine

provided good estimates, which in fact were competitive with

those given by ML, MCVM, and MHD techniques.

0
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40

A few further comments are in order. First, although

the computational aspects of the MHDE are complex, we found

the computer time required for the MHDE to be similar to

that for the other two estimators. The Newton-Raphson

procedure used to calculate the MHDE is quadratically

convergent. This usually resulted in convergence within 10

steps for the MHDE. The MGVMDE also usually converged within

lei iterations while the MLE required more, especially for

the .10 overlap, in which case more than 50 steps were often

required. However, the MLE is computationally much simpler

at each step. For a discussion of the computational,

procedures used to calculate the MLE and MCVMDEr see

Woodward et. al.(1982,1983).

The number in parentheses after the MHDE results in the

table is the number of times (out of 500) that the MHDE

actually converged. When convergence was not obtained for

any of the estimators, the estimate was taken to be the

starting value. For the MCVMDE and MLE, convergence was
t

K 
almost always obtained. However, it can be seen that the

failure of the MHDE to converge was a common occurrence. Of

course, the results in the tables for the MHD must be viewed

accordingly, i.e. approximately 20% of the "MHD" estimates	 d	

i

used in the bias and MSE calculations are actually starting

values. In some instances, this may improve the performance

of the MHDE.

A related observation is that the MHDE seems to be

w



quite sensitive to starting values. For example, in the -

tables, we see that the poorest results for the MHDE are

obtained when p=.75 and the ratio of standard deviations

between components is 32. It should be noted that this is

also the situation in which the starting values are the

poorest. While the other two estimators do not seem to be

overly affected by these poor starts, the MHD is quite

sensitive. As noted earlier, the starting values for o f and

02 used here are smaller than the intuitively appealing ones

proposed earlier by Woodward, et. al., (1982,1983). Although

we do not understand why, the use of these smaller starting

values improves the performance of the MHDE (and has very

little effect on the MLE and MCVMDE).

In related investigations of the MHDEy we have examined

its performance on the estimation of the location and scale

k parameters of a univariate normal projection model. In this

setting we have also seen an extreme sensitivity to starting

values. In Table 3a we display an array of starting values

for u and a of a univariate normal projection wodel. Samples

of size n=40 were simulated from a normal distribution with
G

P=O and a=l. In Table 3b we provide an associated array

displaying the number of times out of 1000 such samples that

the iterative routines for the b1HDE converged when using the

corresponding starting values in the array of Table 3a. The

sensitivity of the MHDE to poor starting values is very

evident. It should be noted that using the "good" starting
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Table 3 - Effect of Starting Value on

IIHD Estimators

of N and o from 1000 Simulated

N(0 0 1) Samples of Size n - 40

(a)
Starting Values

(u(0),a(o))

-1,) ► ) (-1,1) (-1,r) (-1,2)

(Or	 ) (01A) (0,1) (0,yr2-) (012)

(	 ,^`i) (4,rw ("ir 1) (4,V-2) (11,2)

( 1 r	 ) (1A) (1, 1) (1,r2) (1,2)

(h)

Number of Times (out of 1000) that
MHDE Converged Using Starting

Values from Table 3a

62 43 59 458 284

210 420 867 866 233

834 993 999 876 179

196 415 843 866 224

71 49 60 463 265

{

j

g

y
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0

values u (0)s median and 0 (0) amedian(,X i-p (0) 1)/.6745, obtained

from the data for each sample, resulted in convergence of the

MHDE for all 1000 of the samples. In contrast to the results

of Table 3b, the MCVMDE converged 10-0-0 times out of 1000 for

each set of starting values in Table 3a, while of course, in
n

this situation the ML estimators X and S2. 1 E(X =x)exist in
nisl i

closed form.

4. Concluding Remarks

In this report we have briefly considered the use of
the MHDE for estimating the parameters of the mixture of

normals model. The MHDE was of interest originally due to

its theoretical robustness and asymptotic full efficiency.

Our empirical results indicate that these properties do hold

in the mixture setting, at least to some degree. We have

shown that the MHDE requires computation times which are

similar to those for the other techniques although it is

more difficult to calculate. Further research is in progress

concerning the use of density estimators other than the

Epanechnikov kernel density estimator. Preliminary results

indicate that MHD estimates based upon the histogram density
estimator (Tapia and Thompson(1978)) require substantially

less computer time than those based on the Epanechnikov

kernel, and they have only slightly higher MSEs.	 -
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The major problem concerning the use of the MHDE

appears to be witk its extreme sensitivity to starting

values. It is our opinion that, although, these convergence

problems t puld be somewhat alleviated with further

"fine-tuning" of the iterative algorithm, the implementation

of the MHDE into segment level proportion estimation

procedures would be difficult.
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Appendix

!t f (x) = pf l ( x) + (1-p) f 2 ( x) where

x—u 2

	

_ 1 (	 i)

f l (x) _	 1	 e l Gi
ai

and let 9 = (Ullal"2102,p)'. Then

afl/2	 afl/2 aft/2 aft/2 aft/2 af1/2)1
( 

	

• =	 aa2	 ^p

where

afl/2	 P- f-1/2 aft
2	 au 1

aft/2 _•	 f-1/12 af t
aa l 	 2	 aal

arx< /2 	(1-p) f-1/2 a f 2
2

E #	 a fl/2
 = 

( 1_p ) f-1/ 2 aft

[	 8a2	 2	 902
A

a f1^2 _ if-1/2 ( f 	 f )
'p - 2	 1 2

and
x- 2

8fi	 1	 x-ul	 - ^( Q 1)

	

-—( a ) e	 i	 ,	 i	 1,2

x

s
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x—u. 2

afi	
1	 x—pi 2-11e- ( a 
	

i - 1,2

To i 7Ta?	 )

Similarly,

a2f1/2

32f1/2 32f1/2 92fl/2 92f1/2 92f1/2

a iJ aulaa l aulaµ2 a
u1902 d ul _P

32f1/2 a2f1/2

92f1/2
a2f1/2

92f1/2	
t

a ul aal ac

-	 _

aQ l au 2
8a1Da2 aalap

2 1/2 2 1/2 2 1/2 2 1/2 2 1/2
2	 a f _	 o f -	 o f	 o f	 o f

a_e	
91119P2aalau2	 91122
	 aa2ap

a 2
1/2	 a 2 1/2	 a2f 1/2	

82f1/2 	 a2f1/2
aulaa2	

991992	
aµ2aa2	 892	 aa2aP

r	 a 21/2	 a2 f 1/ 2 	 a2f1/: 	 92f1/2	 a2f1/2
au l ap	 aalap	 au2ap
	

3o2ap	 aP2

where

a2f1/2
	 —
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PROPORTION ESTIMATION IN MIXTURES

OF ASYMMETRIC DISTRIBUTIONS

Wayne A. Woodward, Richard F Gunst,
Hildegard Lindsey, and H. L. Gray

Center for Applied Mathematical and Statistical Research
Southern Methodist University

1. Introduction

A standard approach -to the estimation of crop

proportions in agricultural remote sensing has been to

estimate the proportions gl ,p2 ,,,pm in the mixture density

f(x) = Plfl(x) +'p2f2(x) +	 + pmfm(x)	 (3.1)

where m is the number of components(crops) in the mixture

and f i (x) is the density associated with component i. The

usual procedure for estinating the parameters in the mixture

model of (1.1) has been to:

(a) assume that the component distributions are normal

(b) use maximum likelihood estimation.

The variable X has usually been taken to be the

reflected energy in the four LANDSAT bands or some linear

combination of these such as greenness or brightness. Recent

efforts have focused on the use of certain derived features

from growth models such as 
gmax and tmax as variables in the

mixture model. Studies have indicated that there is often a

i
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substantial asymmetry in the distributions of these features

for a given	 crop. 'Woodward	 et. al.(1982)	 have shown	 that

'	 asymmetry	 in	 the	 component	 distributions	 can	 cause	 a

substantial bias	 in	 the	 proportion	 estimators	 when	 the ?

mixture of	 normals	 model is	 assumed.	 As an	 example,	 in

Figure 1 we display the mixture density associated with	 the

mixture of	 two	 distributions. Examination	 of	 the	 figure

reveals that if the	 component distributions are assumed	 to

be symmetric, then we must conclude that pl <p2 and that	 the

j	 component to	 the right	 has larger	 variance. Actually,	 in

this mixture pl=p2	and the	 distribution to the	 left is	 a

X19) while the component tothe right is a "shifted" X2(9),

i.e.	 its left truncation point is at x=10 instead of x=0.	 It

can be seen	 that a	 bias will be	 introduced in	 estimating

mixing	 proportions	 in	 this'	 mixture	 if	 the	 component

distributions are assummed to be symmetric, which of	 course

is the case when the components are assumed to be normal.

In this paper we will discuss techniques for estimating

the crop proportions in the presence of asymmetric component

distributions. In	 particular the	 estimation procedures 	 we

will	 propose	 assume	 that	 the	 underlying	 component

distributions belong to some 	 family of distributions	 whose

members can	 be	 either	 symmetric or	 skewed	 depending	 on

parameter configurations. At the 	 present time, the	 Weibull
#

distribution is being examined concerning its usefulness	 in

this area.	 The	 effectiveness	 of this	 technique	 will	 be
.f

examined through simulations.

7
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2 The Weibull Distribution

The Weibull distribution is named after the Swedish

physicist Waloddi Weibull who used it to represent the

distribution _ of the breaking strength of materials

(Weibull(1939)). The distribution has been widely used in

recent years in the fields of reliability and quality,

control. its popularity is largely due to the flexibility

which it introduces into the model due to the fact that it

can be used to describe distributions which are symmetric or

skewed in either direction. For these reasons we have chosen

to investigate its applicability to estimation in mixtures

of asymmetric components6	 The three-parameter Weibull

density can be expressed as

1 x-a
Y

X-a
f(x) `_	 ^	 ) Y e_` r) .	 x > a	 (2.1)

$, Y > 0

We will use the notation XtiW(a,b,c) to indicate that the

random variable X has a three-parameter Weibull distribution

with parameters a=a, S=b, and Y =c. The parameter a locates

the left truncation point and S serves as a scale parameter

	

while Y determines the shape of the distribution. In 	
a

Figure 2 we show Weibull densities for a fixed a and a and a

-3nge of values for Y. From the figure it is clear that the

nape can vary dramatically as Y changes. In Figure 3 the
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tact that the Weibull density can be skewed to the left as

well as to the right is more clearly demonstrated. For

Y=3.60232 aprroximately, the *standardized skewness parameter

Sl- 03 0/2' where P i is the ith central moment, is zero
P

indicating symmetry. If Y<3.60232 then the Weibull is skewed

to the right, while if y>3.60232 it is skewed to the left.

The Weibull distribution is unimodal, and if Y>1 the mode

occurs at

Xm =a+S(^)1/y

Otherwise, when 0<y<1, the mode occurs at xm a.

Dubey(1967) has studied the Weibull distribution when

y=3.60232 and has concluded that it is very similar to the

normal. In particular, Dubey has shown that

supIFZ (v) - FY (v)	 (2.3)
-3<v<3

where FZ denotes the cumulative distribution function of the

random variable Z'-N(0,1) and Y is the standardized variate

Y=(X-µ)/v where u and Q2 are the mean and variance of the

Weibull variate X.

It should be noted that the Weibull distribution is

often given in the literature in two parameter form in which

a is assumed to be known (and usually 0). However, unless

otherwise specified, reference to the Weibull distribution

in this report, we will be to the three-parameter form

specified by (2.1).

The cumulative distribution function corresponding to

6
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the three-parameter Weibull is

expression '

(x-a )Y

F  (x) • 1-e r

given by the closed Form

(2.4)

while the noncentral moments are given by

,r

	

ur =k0 (k)ar-k skr(Y + 1)	 (2.5)

From (2.5) it can be seen that

u = a +or(. +l)
a 2	 6 2 ( r'(Y + 1)	 r 2 (Y + 1) }	 (2.6)

The first three moments of the weibull distribution

determine the values of a, o r  and Y. The method of moment

estimators can be obtained using these relationships, but

unfortunately the estimators do not exist in a closed form.

The log-likelihood function for a random sample of n

observations from the Weibull distribution is

n	 n
Zn(L) = nZny -nytn$ + (y-1) G Rn(x. -a) - 1	 (x -a) Y (2.7)

i=1	
x	

$Yi=1, i

Differentiating ln(L) yields	 the following	 likelihood

equations

n	 n
-(Y-1) I ( xi-a) -1

 + —Y 2 (xi-a)y-1 _ 0	 (2.8)	 1
i=1	 S i-1

n
B	 (n, 1 (xl-a) Y ]1/Y	 (2.9)

i=1

y= { I (Rn(Xi a)IN —Ta)Y- 1] } 1
	

(2.10)
i=1	 _ ^-

':i
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Let a t 8 , and Y denote the estimators obtained from the

simultaneous solution of equations (2.8) to (2.10). If 0<a<Yl,

where Y i denotes the ith order statistic, these estimators

are the maximum likelihood(ML) estimators for the three

Weibull parameters. However, due to the restriction x>a in

(2.1), if an	 , then the MLE of a is taken to be Y 1 and

8 and a are estimated from (2.9) and (2.10). As in the case

of method of moment estimators, the ML estimators do not

have a closed form expression. For a general review of the

literature on Weibull parameter estimation see Johnson and

Kotz (1970) .

3. Mixtures of Weibull Distributions

In order to examine the feasibility of using the

Weibull as a model for the component distributions in the

mixture model of (1.1), we will investigate the estimation

of the parameters in the mixture of two Weibull

distributions. This mixture density is given in (3.1)
Y	 x-a 2 Y 2'

Yl x-a l Y1-1 e-( ^l) 1 + (1-p) Y2(x-a2)Y2-1e-(-)
f(x)	 p i 5.1 )	 (3.1)
where the 7 parameters pr al' $ 1 , Yl ' a2 , 82 , and Y2 are

assumed to be unknown.

Previous research in this area includes that of

Kao(1959), who proposed a graphical procedure for estimating

the parameters in (3.1) when one of the location parameters

is assumed to be known and equal to zero. The estimation of

4
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the 6 remaining parameters is accomplished using a graphical

procedure whose applicability to our problem seems to be

limited although some of his estimation rules could be

automated. Rider (1961) and Falls (1970) propose estimating

the parameters of a mixture of two-parmeter Webulls using

the method of moments. Falls' procedure involves estimating

the mixing proportion p using a graphical procedure similar

to that of Rao.

Maximum likelihood estimation of the parameters of

(3.1) has been discussed by Looney and Bargmann (1982). The

likelihood equations obtained by differentiating the

log-likelihood function ln(L)

n

Rn(L) _;^ {Qn[pf l_(x i ) + (1-p)f2(xl)]}
;^ 1

with respect to each of the 7 parameters yields the

likelihood equations

I Y . n	 Y,-1
(Y j -1) I f(j1xi) (Xi a j ) - 	 —Z	 f (i1x i) (xi-aj) 3 =0, j=?,2

ni=1	 ^j3i=1	 (3.2t
n	 1,/Y ,

S j -{ [I (xi-a j) Y3 f (j l' x i ) ]/ I f (j {xi) 1	 3, j=1,2	 (3.3).
1=1	 i=1

-	 nX . -a. Y.

Y j = {_[ 1 ^ 1 ( ( is 2 ) 3- 1) ln(	 ) ] /i l f ( j lxi) }-1 j =1,2	 (3.4)3
1 np	 n	 f (l1x i )	 (3.5)
i=1

where f (ijx) = p if i ( x)/f(x) with f i(x) denoting the ith

component density and f(x) the mixture density. Solving this

set of equations for the maximum likelihood estimators is

difficult due largely to equations (3.2) which are not in

fixed point form. Looney and Bargmann(1982) suggeste& a

9
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procedure in which the shape parameters Yl and Y2 are fixed

independently at each of the values

(p T, 7, 11, 71 1, 3Z, 2 , 3 , 4 1 51	 •

A A

and, for each of the Yl , Y2) pairs, "preliminary" maximum

likelihood estimates of the remaining 5 parameters are
A A

found. A search procedure results in selecting the (Y3.,Y2)

	

A	 A

pair for which ln(L) is maximized. With Y l and Y2 fixed at

these values,	 ,maximum likelihood	 estimation for the

remaining 5	 parameters is	 then carried	 through	 to

convergence. The Looney and Bargm_ann procedure for solving

the system of equations (3.2) (3.5) seems overly

restrictive with respect to the selection of possible values

of the shape parameter, while expansion of the search

procedure to allow for more shape parameter values would

probably be prohibitive because of time constraints.

However, solution of these_ likelihood equations directly

appears to us to be quite intractable. For these reasons, we

have investigated	 the	 use	 of	 minimum distance(MD)

estimation, first	 introduced by	 Wolfowitz(1957),	 for
y

estimating the 7 parameters in the mixture of Weibulls model

given in (3.1). Woodward et. al.(1982) have recently studied

the use of 14D estimation in the mixture of normals model.

These authors showed that MD estimation was easy to

implement in that setting, and that MD estimators showed to

be superior to ML estimators under departures from component

normality. Since our use of Weibull components is due to the

It
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flexibility which it introduces into the model rather than

underlying theoretical justifications, we definitely need an

estimation procedure which is robust to departures from

assumptions.

The minimum distance estimator of the parameter 6

(possibly vector valued) is defined to be that value of

which minimizes the distance between H 6 and Fn where

HUN 6 :6eQl denotes a family of distributions depending on 6

and Fh denotes the empirical distribution function, i.e.

Fn (x)=k/n where k is the numberof observations less than or

equal to x. The family of distributions H is referred to as

the	 projection	 model, 	 where	 in	 this	 case

e =(p, al' 8 1' Y 1` a 2' S 2' Y2), and H6 (x) is the	 distribution

function associated with a mixture of two Weibull components

given by	
x-al Y1	 x

-a2 Y2

He (x)	 p[l-e ( 1 )	 ? + (1-p) [l-e-(- 2 )	 ] (3.6)

Note that in contrast to the situation in which the

projection model is taken to be the mixture of two normals,

H6 (x) in (3.6) has a closed form expression. The choice of

distance function to be used to measure the distance between

two distributions is a topic of current interest in the

field of MD estimation. Woodward et. al.(1982) used the

Cramer-von Mises distance, W2, given by

CO

W2 = f [G1(x) -G2 (x) ] 2dG2 (x)	 (3.7)

where G  and G2 are two distribution functions, and we have

11

s
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chosen to use this distance measure in the current study.

The distance between a distribution function H 8 and the

empirical distribution function F n, which is needed for

calculation of the MD estimator, is given by the simplified

expression
n

Wn	 12n +	
[He(Yi) - in.5 )2 	(3.8)

i=1

where Yi denotes the ith order statistic. Since He(X) exists in

closed form, the MDE in this case is easily obtained by

using nonlinear least squares techniques to minimize (3.8).

We have performed this minimization with IMSL subroutine

ZXSSQ which uses Marquardt's(1963) procedure.

4. Simulation Results

In Section 3 we discussed the problem of estimation in

the mixture of Weibulls model. From that discussion it

appears that the minimum distance techniques are preferable

for estimating the parameters in a mixture of three

parameter Weibulls, especially in terms of computational

convenience. In this section we will discuss the results

an initial computer simulation which was designed for use in

evaluating the numerical capabilities of this method. All

computations were performed on the CDC 6600 at Southern

Methodist University. In this section we will evaluate the

performance of the MD estimation procedures discussed. Since

the usual procedure_ is to assume that the components are

normal, we will compare the Weibull based MDEs_ with the



normal based procedures. We have generated samples from

mixtures of normal components and mixtures of X 2 (9)

components. Obviously, we would expect the normal based

procedures to perform better than Weibull based procedures

when the mixture really is a mixture of normal components.

However, if the Weibull techniques are to be useful, then

they must give reasonable results in this situation since

the normal assumption does appear to be a reasonable

assumption in some cases. Since the Weibull with y=3.6 is

very nearly normal, there is reason to believe that Weibull

procedures will perform well in this situation. We have not

simulated samples from mixtures of Weibull distributions,

but we plan to consider this in the future. Of course, as

mentioned in the previous section, we are most interested in

the performance of the Weibull based procedures when the

underlying components from which we sample are not

necessarily Weibulls, but are realistic representatives of

the types of component distributions we see in practice.

Our simulation results are based on 200 samples of size

13

n=200 from mixtures of normal and of x2(9)

each mixture, the variance associated

components are	 equal.	 In fact,	 the

distributions differ from each other only

shift. We have simulated from mixtures

proportions of .25, .50, and .75, and with varying degrees

of separation between the two component distributions.

Overlap as defined by Woodward et.al .(1982)	 is a

components. In

with the two

two component

by a location

having mixing

1
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quantification of t)is separation. It is defined as the the

probability of misclassification using the rule:

Classify an observation x as:

population 1 if x < xc

population 2 if x > xc

where without loss of generality, population l is assumed to

be centered to the left of population, and where xc is the

unique point between ul and 4 2 such that

pf1 (xc) _ (1-p) f 2 (xc ) .

We have based our current study on "overlaps" of .03 and

.10. In Figure 4 we display the mixture densities associated

with normal components. For each mixture, the scaled

components p£ 1 (x) and (1-p) f 2 (x) are also shown. Note that

t.
the densities for p=.75 are not displayed here. Since c1=Q2,

it follows that fp (x)=fl-Ru l+u 2-x) where fp (x) denotes the

mixture density associated with a mixing proportion of h.
R, 

Thus the shapes of the densities at p=. 75 can be inferred

from those at p=.25. Likewise, parameter estimation for

p=.75 is not included in the results of the simulations for

the mixtures of normals. In Figure 5 we display the mixture

densities associated with the mixtures of X 2 (9) components.

Note that although we refer to a mixture of X2(9)
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distributions here, they are actually "shifted" chi-squares,

i.e. the left truncation points are different from zero.

For each of the simulated samples, three sets of

parameter estimates were obtained:

(1) ML estimates based on mixture of normals model (MLEN)

(2) MD estimates based on mixture of normals model (DIDEN)

(3) MP estimates based on mixture of Weibulls model (r1DEta)

Although the MEN and MDEN provide estimates of all 5 of the

parameters of the mixture of normals model, and the -,DEW

produces estimates for all 7 parameters in the mixture of

Weibulls model, only the results for the estimation of p

f

	

	 will be shown. The mixing proportion is the parameter of

primary interest, and: when dealing with the "wrong-model"p	 y	 g 

situations, the remaining parameter estimates often do not

have a meaningful interpretation. For purposes of aiding in

the discussions which follow, we will call a component model

from which we actually simulated, a "simulation component

model", while a component model which is assumed under a

particular estimation	 procedure will	 be	 called	 an

"estimation component	 model".	 Thus,	 a	 "wrong-model"

y situation is one in which the simulation component models

are not the same as the estimation component models.

In the "correct-model" situations, i.e. using the MEN

or MDEN to estimate the parameters of a simulated mixture of

normal components, the true parameter values are used as

starting values for the iterative estimation procedures. In

all of the other cases, there is not a "true" set of
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parameters. For starting values, we have used the "true"

mixing proportion, and then estimated the parameters of each

component separately using a method of moments procedure.

Consider a situation in which the estimation components are

normal. We obtain starting valves for each component by

equating the first and second moments of the corresponding

simulation and estimation components and using these to

obtain u i and ci for the normal estimation component. When

the estimation components are Weibull, we have taken the

approach of setting the starting value for Y at Y =3.6 for

each component. Then the first two moments of	 the

corresponding simulation and estimation components are

equated to yield starting value estimated for the other two

parameters. We believe that this provides a "neutral start.

If the final estimates reflect the finding of substantial

i skewness for one or both of the component Weibulls, this

will be because of the data and not because of "skewed"

starting values.

c
The normal component models were generated with u l -7.5,

of =Q2 =l, and u2 positioned so that the desired overlap is

obtained. As mentioned previously, both components in the

chi-square mixtures were "shifted" chi-squares. In our	
r

simulations, the left truncation point for population 1 was

always taken to be 7.5, and for population 2 it was located

so; that the desired overlap was obtained. In the MLEN and

MDEN procedures, the natural constraints a >0 ,v2>0, and

0 .^p<1 were imposed. Similarly, for the MEW, the natural

.	 }f
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constraints a 1>0, rl > 0, 8 2 >0, Y2>0, and 0pp
<1 were imposed

along with the constraints a 1>0 and a 2>0 which are
reasonable constraints on the left-truncation point which

would be imposed due to physical considerations, etc.

In Table 1 we display the results of the simulations.

For a given simulation model and estimation procedure, we

will obtain an estimate p of p f defined by

n
l	 sP n Pi
s i=1

where p i is the estimate of p for the ith sample, and ns is
the number of samples. Then based upon the simulations,

estimates of the bias acid PISE are given by:
n`^

bias	 n	 (p i-p) P . p

nS
MSS; _ n	 (pi-P) 2.

s i=1

Upon viewing the results, it can be se,n that the MDEW

was competitive when the component models were actually

normally distributed, and it produced the best overall

results for the chi-square mixtures. Of particular interest

is the chi-square mixture where p=.5 and overlap=.10. This

is the mixture displayed in Figure 5c and also in Figure 1

(except for location shift). When symmetric components are

Assumed (as with the MEN and MDEN), a bias does occur in

the estimation of p as discussed in Section 1. This behavior

has been noted previously by Woodward, et.al .(1982). we -see

from the table that the MDEW performs substantially better



Table 1 - Simulation Results

Comparing Normal Based with
Weibull Based Estimation Procedures

Sample size - 200
Number of repititions . 200

Mixture of Normals

Overlap .10 Overlap .03
A

o Bias MSE
A

p Bias MSE
MLEN .27 .02 .02 .25 .00 .022

p w.25	 MDEN .37 .12 .074 .26 .01 .004

MDEW .34 .09 .044 .30 .05 .011

MLEN .50 .00 .014 .50 .00 .002

p w .5	 MDEN .49 -.01 .023 .47 -.03 .002

MEW .48 -.02 .019 .51 .01 .004

Mixture of x2(9)

Overlap .20 Overlap .03

p Bias MSE o Bias MSE
MLEN .24 -.01 .061 .18 -.07 .006

p -.25	 MDEN .41 .16 .098 .17 -.08 .008

MDEW .50 .25 . 122 .29 -.04 .007

MLEN .27 -.23 .064 .45 -.05 .011

p -.50	 MDEN .26 -.24 .061 .41 -.09 .010

MDEW .42 -.08 .024 .50 .00 .004

MLEN .50 -.25 .070 .65 -.10 .013

p *.75	 MDEN .48 -.27 .085 .64 -.11 .016

MDEW _.62 -.13 .032 .71 .04 .005

20
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1

than either of these normal based procedures on the basis of

both bias and MSE. In Figure 6 we display histograms of the

200 estimates of p obtained from. the three estimation

procedures for the chi-square mixture shown in Figure Sc. It

can be seen there, that the normal based procedures

consistently estimated p to be substantially less than .5

while the estimates based on Weibull components were in

general closer to the true vaue p=.5.

The one case in which the Weibull based estimates were

not best, was when p=.25 with overlap=.10. This mixture is

displayed in Figure 5a where it is obvious that estimation

should be difficult since there is no distinct contribution

due to component l in the mi kture. Indeed, all procedures

yield poor estimates as memo urtW, by the high MSEs. In Figure

7, we display histograms of the V values obtained from the

three estimation procedures for this set of parameter

configurations. There it can be seen that the Weibull

procedure certainly gave the poorest results, with estimates

being spread nearly uniforml y between 0 and 1. However, the

normal based procedures also had difficulty as is reflected

in the histograms. In fact, there appears to be a tendency

for the p i values to be very low (approximately .10).
A

However, p is very close to .25 for the MEN since several

of the pi values were spread out uniformly between 0 and 1,

which increased the estimate of p to near .25. However, the

large MSE shown in the table for this case reflects this

lack of accuracy.

p^	 .
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5. Concluding Remarks

Results in this report and in the report by Woodward,

et.al .(1982) indicate that the normal based procedures

perform poorly in the presence of a mixture of asymmetric

distributions. In this paper we have suggested the mixture

of Weibulls model as an alternative to the mixture of

normals model in this situation. Results indicate that

minimum distance estimation of the parameters of a mixture

of Weibulls is a viable alternative to the normal-based

techniques currently in use.

Before this	 procedure could be recommended 	 and

implemented, further research 	 is needed.	 iiur example•	 the

`w	 problem of how to obtain starting values for the 	 patameters

of mixtures of possibly	 asymmetric components has not	 been

resolved. Also,	 the	 Weibull	 based	 procedures	 should	 be

applied	 to	 LANDSAT	 data	 in	 order	 to	 Examine	 their
t

performance	 on	 the	 types	 of	 asymmetry	 which	 will	 be

encountered	 in	 practice.	 The	 fact	 that	 an	 additional

parameter has	 been	 introduced	 into	 the	 model	 for	 each
a

L'	 component has caused the estimation procedures to be 	 slower

than for the normal based procedures. Further	 investigation

concerning the	 practical aspects	 of actually	 implementing

the procedures is needed.

_g

r

1



^	
liJ

, n+

T

25

References

1. Dubey, S. D. (1967). "Normal and Weibull Distributions,"

Naval Research Logistics Quarterly_ 1,4, 69-79.

2. Falls, L. W. (1970). "Estimation of Parameters 	 in

Compound Weibull	 Distributions,"Tachnomgtrics	 IZ,

399-407.

3. Rao, J. H. K. (1959). "A Graphical Estimation of Weibull

Parameters in Life - testing of Electron Tubes,"

Technometrics 1,, 389-407.

4. Johnson, N. L. and Kotzp S.(1970). Distributions j,n

Statistics - ontinuous Univariate Statistics - 2,

Houghton Mifflin Company, Boston.

5. Looney, S. W. and Bargmann, R. E. (1982). "Procedures for

Fitting a Mixture of Weibull Distributions to	 an

Empirical Growth Curve," presented at National Meetings
.

of the American Statistical Association in Cincinnati,

August 1982.

6. Rider, P. R. (1961). "Estimating the Parameters of Mixed

Poisson, Binomial, and Weibull Distributions by the

Method	 of	 Moments,"	 Bulletin 	 ^da	 L'institute

International de Statisticiue 39, 225-232. 	 p

7. Weibull, W. (1939). "A Statistical Theory of the Strength

of	 Material,"	 Ingeniors	 Vetenska"	 Akademiaag
C

Handlicar, 1Stockholm No. 151.

8. Wolfowitz, J. (1957). "The Minimum Distance Method,"
	

I

Ann 	 S& Mathematical Statistics a, 75-88.



26

1 . Woodward, We A. r Schucany, W. R., Lindsey, H. and Gray,
r

H. L. (1982). "A Comparison of Minimum Distance and

Maximum Likelihood Techniques for Proportion Estimation,"

NASA Technical Report SR-62-04376, November 1982.

4


	GeneralDisclaimer.pdf
	0025A02.pdf
	0025A03.pdf
	0025A04.pdf
	0025A05.pdf
	0025A06.pdf
	0025A07.pdf
	0025A08.pdf
	0025A09.pdf
	0025A10.pdf
	0025A11.pdf
	0025A12.pdf
	0025A13.pdf
	0025A14.pdf
	0025B01.pdf
	0025B02.pdf
	0025B03.pdf
	0025B04.pdf
	0025B05.pdf
	0025B06.pdf
	0025B07.pdf
	0025B08.pdf
	0025B09.pdf
	0025B10.pdf
	0025B11.pdf
	0025B12.pdf
	0025B13.pdf
	0025B14.pdf
	0025C01.pdf
	0025C02.pdf
	0025C03.pdf
	0025C04.pdf
	0025C05.pdf
	0025C06.pdf
	0025C07.pdf
	0025C08.pdf
	0025C09.pdf
	0025C10.pdf
	0025C11.pdf
	0025C12.pdf
	0025C13.pdf
	0025C14.pdf
	0025D01.pdf
	0025D02.pdf
	0025D03.pdf
	0025D04.pdf
	0025D05.pdf
	0025D06.pdf
	0025D07.pdf
	0025D08.pdf
	0025D09.pdf
	0025D10.pdf
	0025D11.pdf
	0025D12.pdf
	0025D13.pdf
	0025D14.pdf
	0025E01.pdf
	0025E02.pdf
	0025E03.pdf
	0025E04.pdf
	0025E05.pdf
	0025E06.pdf
	0025E07.pdf
	0025E08.pdf
	0025E09.pdf
	0025E10.pdf
	0025E11.pdf
	0025E12.pdf
	0025E13.pdf
	0025E14.pdf
	0025F01.pdf
	0025F02.pdf
	0025F03.pdf
	0025F04.pdf
	0025F05.pdf
	0025F06.pdf
	0025F07.pdf
	0025F08.pdf
	0025F09.pdf
	0025F10.pdf
	0025F11.pdf
	0025F12.pdf
	0025F13.pdf
	0025F14.pdf
	0025G01.pdf
	0025G02.pdf
	0025G03.pdf
	0025G04.pdf
	0025G05.pdf
	0025G06.pdf
	0025G07.pdf
	0025G08.pdf
	0025G09.pdf
	0025G10.pdf
	0025G11.pdf
	0025G12.pdf
	0025G13.pdf
	0025G14.pdf
	0026A01.pdf
	0026A02.pdf
	0026A03.pdf
	0026A04.pdf

