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ABSTRACT

This report documents research activities which were

conducted from 1 January 1983 to 30 September 1983 under the

auspices of National Aeronautics and Space Administration

Contract NCC 9-9. During this contract period the primary

focus of research was on alternatives to sampling-theory

stratified and regression estimators of crop production and

timber biomass. An alternative estimator which is viewed

as especially promising is the errors-in-variable regression

estimator. Investigations conducted during the course of this

contract period established the need for caution with this

estimator when the ratio of two error variances is not precisely

known. One technical report on these investigations has been

completed, a shorter version of which is being prepared for

submission to a professional journal. In addition, further

research topics on errors-in-variables estimation have been

identified.

Richard F. Gunst
Principal Investigator
NASA Contract No. NCC 9-9

f
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1
I. RESEARCH ACTIVITIES

Research supported by this contract is directed toward the

study of estimators of crop production and timber biomass, two of

potentially many applications. The specific focus of these inves-

tigations is on the development of methodologies which will enable

satellite remote-sensing information to be combined with more

accurate but more costly ground observation. Two of the classical

Estimation techniques for combining satellite data with ground

truth are sampling-theory stratified estimation and regression

estimation.

The assumptions which underly the use of the two sampling-

V	 theory estimators require that one of the sets of observations
t

(satellite or ground-truth mean cements) be known exactly, i.e.,

without measurement error. In some applications it is unreasonable

to expect that either satellite or ground truth observations will

be free from error. When n is occurs a more appealing estimation

methodology assumes a:, "errors-in-variables" regression model

underlines the relationship between satellite and ground-truth

measuremei.cs .

Section A below outlines the investigations which were

conducted to assess the suitability of errors-in-variables models

for application to the problems mentioned above. Section B

describes related studies which were conducted on classical

•
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regression estimators. It is anticipated that these related

studies will be connected with errors-in-variables estimators

in future investigations.

A. Errors-in-Variables Models

Let y denote a measurement (e.g., timber biomass) taken by

ground observation and x a corresponding measurement obtained by

satellite remote sensing. It is desirable to establish an empirical

relationship between y and x so that the more readily obtained and

less costly x measurements can be used to accurately estimate the

more costly y values. Assuming that both y and x contain measure-

ment error, a linear "errors-in-variables" regression model can be

formulated as follows.

Denote the true (i.e., error free) ground-truth measurement by

Y and the corresponding true satellite measurement by X. Assume

that an adequate approximation to the relationship between Y and

X is given by the linear model

Y=a+SX.

In this setting Y and X cannot be observed because of measurement

error; rather, one observes

y = Y+v	 and x=X+u,

where v and u are the measurement errors. In this framework the

usual least squares estimators of a and S are biased since an

underlying assumption for least squares estimation is that the

predictor variable X is measured without error.

i n
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I
Most of the literature on errors-in-variables estimation is

concerned with establishing conditions under which consistent esti-

mators of a and d exist. If u, v, and X are assumed normally dis`ii-

bused and all model parameters are unknown, consistent estimators do

not exist. If one or more of the model parameters are known (e.g.,

variances of the error measurements), consistent estimators of a

and B are ordinarily available. In particular, if the ratio of the

error variances, a = a 2 hi 2 i known then consistent =.Limators of

a and B exist.

While the theoretical existence of consistent estimators of a

and 6 has been an important topic of study, very little research has

been conducted on (i) the effects of assuming an incorrect value for

a model parameter and (ii) the construction of consistent estimators

when X or u and v are assumed to be nonnormally distributed. A

major achievement of the research ^onducted under this contrac t is

an extensive investigation of the effects of assuming an incorrect

value for the error variance ratio X. The results of this investi-

gation are reported in a manuscript entitled "Sensitivity of Errors-

in-Variables Estimators to the Specification of the Ratio of Error

Variances" which is appended to this report. In the near future

this manuscript will be submitted for publication to a scientific

journal.

The second research tcpic is currently being explored. The

literature on errors-in-variables estimators established the

existence of consistent estimators of a and B when X or (u,v) is

-onnormal but no guidance is provided on how to construct consistent
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estimators. Maximum likelihood estimation is generally intractable.

Moment estimators exist and are consistent but moment estimation is

known to be inefficient for finite sample sizes. An alternative

approach which appears promising is outlined in Section II of

this report.

B. Related Research

Least squares estimators are known to be seriously affected by

the presence of outliers and cellinearities, even if the requisite

model assumptions are valid. The principal investigator has been

actively investigating topics of importance to an understanding of

outliers and collinearities over the past several years and is

continuing to do so under this contract. It is anticipated that

the results of these investigations will have an important impact

on the application of errors-in-variables estimation, especially

since the model framework admits the possible presence of outliers

through the error terms.

Two manuscripts were completed on these topics during the

current contract period. One manuscript i.s an invited critique

of a manuscript on collinearity measures which will be published

in the May 1984 issue of The American Statistician. The second

manuscript presents new results on outlier diagnostics for ridge

regression and smoothing spline estimators. This manuscript has

been submitted for publication.

i
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II. PROSPECTIVE FUTURE RESEARCH

As mentioned in the previous section, an important topic

of research on errors-in-variables models is the construction

of estimators when the true (unobservable) predictor variable X

or the error terms u, v are not normally distributed. For example,

in estimating crop proportions both y and x are bounded by the

interval [0,1]. The study of theoretical properties of errors-in-

variables estimators under the assumption that X follows a prob-

ability distribution over the unit interval (e.g., uniform or beta)

would appear to be more reasonable than assuming an (unbounded)

normal distribution.

Likelihood functions for (y,x) when X is nonnormal are generally

theoretically intractable and fraught with computational difficulties.

Moment estimators are easy to deal with but ordinarily inefficient

for finite sample sizes. An alternative to maximum likelihood or

moment estimation which is potentially fruitful for productive research

and application is "pseudo maximum likelihood" estimation (e.g., Gong

and Samsniego, Annals of Statistics, 1981). This theory allows all

nuisance parameters to be replaced in the likelihood function by

cons i stent estimators of the corresponding parameters and then the

likelihood function is maximized with respect to the parameter(s)

of interest. Future research will investigate asymptotic properties

I
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of pseudo maximum likelihood estimators and compare their properties

with moment and least squares estimators.

Once viable estimation methodologies are available under

feasible model assumptions, errors-in-variables estimators will

be compared with their sampling-theory counterparts. It is

intended that both theoretical and empirical (using actual satellite

and ground-truth measurements) comparisons will be conducted.

J
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III. PRESENTATIONS AND OTHER ACTIVITIES

An oral presentation of preliminary results achieved under

the support of this ccntract was made at a conference held at

the Johnson Space Center in September, 1983. Further presen-

tations are planned for future conference presentations at the

Johnson Space Center. In addition, oral presentations are planned

for national and regional meetings of the American Statistical

Association, including the 1984 Annual Meetings next August in

Philadelphia, PA.

During this contract period one advanced statistics graduate

student in the Department of Statistics, Southern Methodist

University , was supported by contract funds. Mani Y. Lakshminarayanan

is currently conducting dissertation research on errors -in-variables

models under the direction of the Principal Investigator. The

investigations discussed in this report are a result of the colla-

boration between Mr. Lakshminaravanan and the Principal Investigator.

^I
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IV. TITLES Or COMPLETED RESEARCH

1. "Sensitivity of Errors-in-Variables Estimators to the
Specification of the Ratio of Error Variances," revised
manuscript under preparation for submission to a professional
.journal. (with M. Y. Lakshminaravanan).

2. "Toward a Balanced Assessment of Collinearity Diagnostics,"
The American Statistician, 38 (to appear, May 1984).

3. "Regression Diagnostics and Approximate Inference Procedures
for Penalized Least „quares Estimators," submitted for
publication. (with R. L. Eubank)
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SENSITIVITY OF ERRORS-IN-VARIABLES ESTIMATORS TO THE
SPECIFICATION OF THE RATIO OF ERROR VARIANCES

Richard F. Gunst and Mani Y. Lakshminarayanan
Department of Statistics

Southern Methodist University

Dallas, Texas 75275

1. INTRODUCTION

Crop area estimation and the estimation of timber biomass are

two applications of satellite remote sensing. Estimates obtainable

with current technology often are not sufficiently precise for geo-

graphical regions which are as small as Crop Reporting Districts or

counties. In order to improve the precision of these estimates based

soley on remote-sensing inf r,rmation, field meas+ , rements are taken on

relatively small portions of the geographical areas of interest.I
Stratified (sampling-theory) and regression estimation (e.g., Cochrnn

1963) are two statistical methodologies which can be used to cor„bine

the satellite information with that collected on the ground. In

particular, regression estimation based on "errors-in-variables”

!EV) models is viewed as an especially promising alternative for

increasing the precision of satellite remote-sensing estimates of

crop and biomass area. Most applications of EV estimation, However,

require knowledge of a ratio of the variances of the measurement

errors in order to obtain consistent estimates of the unknown re-

gression coefficients. In this paper the sensitivit y of EV estima-

tors to the selection of the ratio of error variances is investigated.

a.
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Errors-in-variables models are appropriate when both variables

in a regression model are subject to measurement error. Thus, a

theoretical regression model specifying a relationship between a

response variable (e.g., "g-ound-t-uth" crop or biomass area measure-

ments) and a predictor variable (e.g., satellite area measurements)

might be defined as follows:

Y =a+sX+E ,	 (1.1)

where Y and X denote the true response- and predictor-variable values,

respectively, and a is an unknown model specification error. In

practice, Y and X cannot be measured exactly; rather, one observes

x= X+u and y =Y+v ,	 (1.2)

where u and v are measurement errors which ma y be correlated. Model

(1.1) can now be expressed in terms of the observable quantities y

and x as:

	

y =a+ sx + ((v+E]-?u). 	 (1.3)

Note that in model (1.3) the specification and measurement errors of

the response variable (i.e., E and v) are additive and are not sep-

arately estimable. Consequently, in this investigation the speci-

fication error is assumed zero or negligible relative to the mea-

surement errors and the following reduced model is considered:

y =	 + ax + (v-6u) ;	 (1.4)

equivalently, the EV model specification incorporates equations

(1.1) and (1.2) with E = 0.

Certain types of replication allow estimation of all EV
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model parameters (see Kendall and Stuart 1977, Chapter 29). Like-

wise, measurement of additional variables which are correlated with

the predictor variable X but not with the measurement errors can

alEc allow consistent Estimation of all model parameters (e.g.,

Durbin 1954; Feldstein 1974; Sargan 1958). Without either repli-

cation or the measuring of additional variates, it is possible to

consistently estimate all EV model parameters only when one or more

(functicas of) the unknown parameters is known.

In Section 2 of this paper EV estimators are derived under

normality assumptions and their lack of consistency is examined.

The sensitivit y of EV estimators when the ratio of the error

variances is assumed known, the most prevalent side condition which

is imposed to assure consistency, is examined in Section 3 by eval-

uating the derivative of the EV slope estimator under a variety of

probabilistic assumptions on the unknown variance ratio. Section 4

presents a simulation study investigating the mean squared error

properties of the EV slope estimator for a grid of assumed and true

values of the unknown ratio of error variances. Concluding remarks

are made in Section 5.

2. MkXIMi!NM LIKELIHOOD ESTIMATION

A distinction must be made between two assumptions about the

true (unknown) response and predictor variables in model (1.1) be-

fore maximum likelihood estimators can be derived and their appro-

priateness evaluated. "Functional" EV models stipulate that the

true underlying variates are constants whereas "structural" EV

I	 models assume that (Y,X) are realizations of some joint probability

^1
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distribution (e.g., Kendall and Stuart 1977, Chapter 29; Moran

1971). In this paper only the latter specification is studied;

in particular, assume that

X ti N(Ui 2)
	

(2.1)

which, from (1.1) (with E= 0), necessarily implies normality for

Y. In addition, it is co-..on to assume that the measurement errors

are jointly normally distributed, independently of (Y,X). Although

correlation between the two measurement errors does not add substan-

tive complexity, for simplicity and ease of presentation it is

assumed that u and v are uncorrelated with

u % N(O,a ?) and v % N(O,a 2 	(2.2)

Under these assumptions, differentiation of the likelihood

function results in the following system of maximum likelihood

estimating equations:

x= u 	 ya+Su
sX	 aX + au	 sy	 ^ 2aX + a^	 (2.3)

Ssx = aX
y

In equations (2.3) s 2x and s  are the sample variances of x and y,

respectively, Lnd s
xy 

is their sample covariance. There are six

EV -nodel parameters which must be obtained from these five estimating

equations; equivalently, there are five sufficient statistics from

which to estima-a all six model parameters. Much theoretical work

has been conducted to determine whether the six model parameters

I
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are estimable under the normality assumptions (2.1) and (2.2).

As will be detailed in Section 2.2, without additional knowledge

about one or more of the model parameters it is impossible to

consistently estimate all six parameters under the above nor-

mality assumptions. Before discussing the reasons for this lack

of estimability, consider the solutions to equations (2.3) when

one or both of the measurement error variances is known.

2.1 Estimation with Known Measurement Error Variances

Maximum likelihood estimates are the solutions to equations

(2.3), provided that the solutions fall within the parameter space

of the joint distribution of (X,,.,.). Estimation of u, a, and s

pose no parameter space difficulties since the parameter spa=e for

each is the entire real line. Estimation of the variances 
aX , au'

snd a 2 requires that the solutions be nonnegative, leading to the

following set of inequalities for the individual estimates:

For Qu > 0	 (i) ^sx > sxv

For Q2 > 0	 (ii) s 2 > Ss^-	 y -  xy

For QX> 	 0	 (iii) sX - Qu > 0	 (2.5)

(iv) sy - Cu > 0

(v) if 
a2> 

0, sign ( ^) = sign (sxy)

if a  = 0, g is indeterminate.

In the remainder of this paper it is assumed that solutions to

equations ( 2.3) satisfy these inequalities; refer to Kendall and

Stuart (1977) for alternatives when inequalities ( 2.5) are not

satisfied.

5
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Maximum likelihood solutions to equation:. (2.3) impose two

implicit restrictions on the estimator of

R( sx - au) = sxy and sy - o^	 BSxy 	(2.6)

with estimates replacing parameter values in (2.6) depending on

wh:.ch parameters are assumed known. Since both variances are

nonnegative, equations (2.6) lead to the following inequality

on the EV slope estimator:

isxy I/S 2 <I BI < s 2 /jsxy 1	 (2.7)

provided that B, s
xy 

# 0 (which occurs with prc}ability one). The

lower limit in inequality (2.7) is the least squares slope estimate

t:
	

from the regression of y on x and is attained when it is known that

=	 no measurement error occurs with the predictor variable. The upper 	 i

limit is the inverse of the least squares slope estimate from the

regression of x on v. The upper limit is attained when it is known

that no measurement error occurs with the response variable.

Several authors have attempted to circumvent the lack of

-stimability of B by defining estimators which sre functions of

the limits in inequality (2.7). Gini (1921) proposed the arithmetic

mean of the limits. Teisser (1948) and Kaila (1980) suggested using

the geometric mean of the limits. Pal (1980) showed that neither

of these proposed estimators is consistent; moreover, he argued

that ar.y EV slope estimator which is intermediate to the two limits

is optimal for some value of the ratio of the error variances but

not optimal for others.
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Since the main interest in EV model estimation centers on the

relationship between the true response and predictor variables,

estimation of a, S, u, and a 2 is of paramount importance. Thus some

knowledge of the measurement error variances is required to solve

equations (2.3). There are four special cases which can arise.

Case 1: a 2 Known
u

In this case,

	

= s /(s 2 - Q 2 )	 (2.8)
xy x	 u

Observe that if a u = 0, this EV slope estimator is the usual least
u

squares estimator and is equal (in magnitude) to the lower bound

in (2.7).

^.	 Case 2: a 2 Known
v

In this case,

	

S - (sY - 0 2 ) /sxy	(2.9)

If av = 0, this EV slope estimator is the reciprocal of the least
v

squares estimator from the regression of x on y and is equal

(in magnitude) to the upper bound in (2.7).

Case 3: a = a 2 /Q 2 Known
v	 :t

This assumption is the most frequently cited means of resolving

the lack of a unique solution to equations (2.3). When this

assumption is made, al l the restrictions in (2.5) are satisfied

unless s xy -0, which occurs with prc:.aoil'.ry zero. In addition,

this assumption does not require explicit knowledge of the exact

It
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value of either of the measurement error variances, only the rela-

tive magnitude of the variances. Often it is reasonable to assume

the measurement errors are of the same magnitude so that X = 1. The

resulting EV slope estimator is

	

a - [(sy - Xs X) + {(sy-asx)+4asXy } 1/2 ]/2sxy .	 (2.10)

Case 4: Both a 2 and a 2 Known
u	 v

In this case, equations ( 2.3) result in two estimators of a; viz.,

estimators (2.8) and (2.9). Depending on whether equations (2.5)

(iii) or (iv) are satisfied (with au and a^ replacing au and a^),

a is either the solution to (2.10) or indeterminate (see Birch 1964).

2.2 IdentifiabilityTinder Normal Assumptions

The maximum likelihood estimating equations (2.3) are derived

under the assumption that the predictor variable X and the measure-

ment errors u and v are normally distributed, assumptions (2.1) and

(2.2). Not only does this result in estimating equations which

produce nonunique solutions, but also the parameter a is "noniden-

tifiable" in the joint distribution of (y,x). Identifiability is

a distributional property which requires that only one set of para-

meters can give rise to any specific distribution of the observed

random variables. Under assumptions (2.1) and (2.2), the joint

distribution of (y,x) is bivariate normal with

u y a +au	 ux= u

a 2	 62a2 + a 2	 a2 = a 2 + a
2	 (2.11)

y	 X	 v	 x	 X	 u

=	 2
OMIT	

Bay
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That this joint distribution is nonidentifiable can be demonstrated

by the following sets of parameters from the distributions of (X,u,v),

each of which produces a bivariate normal distribution for (y,x) with

uy = v, u X = W, ay = a X = 1,	 and p xy = .5 (Madansky 1959) :

(a)	 a 2 = 1/2, au	 1/2, a 2 = 1/2,	 B= 1, a	 v-v=

(b)	 cX = 1/3,	 cu =	 2/3, a 2	 1/4,	 3/2, a=v-3u/2.

Geary (1942) showed that when (u,v) are jointly normally

distributed,	 if X possesses a finite nonzero cumulant of order

greater than two then 6 is identifiable in the joint distribution of

(y,x); thus, nonnormal distributions for X generally allow maximum

likelihood estimation of a.	 Reiersol (1950)	 strengthened this resLlt

by proving that when the distribution of	 (u,v)	 is bivariate normal,

nonnormality of X is a necessary and sufficient condition for iden-

tifiability of S.	 He also showed that if the distribution of X is

normal, a necessary and sufficient condition for identifiability

of B is that neither the distribution of u nor tnat of v is divi-

sible by a normal distribution. 	 Further, Reiersol established that

once B is identifiable,	 so is a.	 If S is identifiable, he proved

that a necessary and sufficient condition for identifiability

of the other model parameters is that	 (i)	 the distribution of X (Y)

is not divisible by a normal distribution and	 (ii) either u or v

is identically zero. 	 These important results on identifiability

are summarized in Table 2.1
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3. INFLUENCE OF A ON THE EV SLOPE ESTIMATOR

The results of the previous section demonstrate that auxiliary

knowledge must be available in order to estimate all six model para-

meters when normality of (X,u,v) is assumed. The most common assump-

tion which is made is that the ratio of measurement errors X is known.

This allows estimation of S with assurance that the requisite restric-

tions (2.5) on the parameter estimates will hold. Likewise, this as-

sumption does not require explicit knowledge of either of the measure-

ment error variances.

Published research on EV model estimation has concentrated more

on the existence of consistent estimators of s under various alterna-

tive assumptions than on the sensitivity of the resulting estimators

to the assumptions. The dearth of sensitivity studies is surprising

in light of the known lack of identifiability of S under the norma-

lity assumptions. The need for an evaluation of the sensitivity

ofequation (2.10) to the value of a derives not only from the

uncertainty of the robustness of the estimator to the choice of X

but also from parallel studies of other estimators which are simi-

larly dependent on an unknown ratio of variances such as MINQUE

variance component estima^ion. These latter studies (e.g., Hess

1979) have demonstrated that estimators which depend on selection

of variance ratios can be affected by the choice of the ratio.

No such guidance has been reported for EV parameter estimation.

CDnsidei now the derivative of S with respect to X. Asymp-
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totically (i.e., replacing the sample moments by their corresponding

parameter values),

as

where t s au/a2 is the "noise-to-signal ratio" for the observable

predictor variable x. From equation (3.1) one can readily see that

the rate of change of S with respect to X is not only a function of

the value of a but also of the true parameter value a and the noise-

to-signal ratio. If the noise-to signal ratio is sufficiently small,

equation (3.1) reveals that a will be relatively insensitive to the

value of the true variance ratio X. In addition, if for fixed t

the true variance ratio a is sufficiently large,j(a6/aa)J/E will be

relatively insensitive to the specific value of X, especially if 6

is large.

That the estimator (2.10) can be extremely sensitive to the

value of X is illustrated in Figure 3.1. This figure graphs the

(absolute) proportional rate of change of 8, t/(B+a), as a function

rif a for two choices of the noise-to-signal ratio t and two choices

of the true parameter S. The figure confirms that B is most sensi-

tive to the choice of a when t is large. For fixed t, the estimator

is less sensitive to the choice of X when a is large, especially if

coupled with a large b. In other words, under the precise condi-

tions for which EV estimation is most often proposed (i.e., t

moderate to large and X small to moderate-eac .h condition implying

a 2 is nonnegligible) the EV slope estimator is extremely sensitive
u

to the true value of X.

%;D
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A somewhat different perspective on the sensitivity of S to

the value of X is obtained by assuming that A is stochastic rather

than deterministic. Lindley and E1-Sayyad (1968) suggest using a

Uniform (k-1 , k) prior distribution for the error variance ratio if

one believes that the two measurement errors are of the same magni-

tude. In addition, one might propose N(k,a 2) or Chi-square(k)

priors as reasonable alternatives in order to study the sensitivity

of B to a variety of suspected prior distributions.

Given any of the above prior distributions for a, one would

like to evaluate the expected rate of change of S with respect to

that prior; i.e., the expectation of (3.1) with respect to the

prior on X. Closed-form expectations do not ordinarily exist;

however, the following theorem (e.g., Bishop, Feinberg, and Holland

1975, p. 493) allows approximate expectations to be determined.

Theorem 3.1 (Method of Statistical Differentials)

Let g(x1,x2""' xP ) be a real-valued continuous function with

continuous first and second derivatives at the pjint u=(ul,v...,up).

Let x 
	 (xln'x2n' " '' x P

 n} be a sequence of sample means of the

vector random variable x	 [xl,x2, ... ,xp ]. Finally, let E[x]	 v

and let the distribution of x have finite third moments. The; ►

n
l/2

[g(xn - g(u)) i N ( O , L ) .

where

A - [g(1)(u),...,g(P)(v_)]C g(1)(u),...,g(P)(u)J,

(i)
g	 (u) is the partial derivative of g(x) with respect to xi

evaluated at x = u, and $ is the variance-covariance matrix of x.
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Applying this theorem to the expectation of (3.1) under the

three priors listed above for a, the following approximations are

obtained from a three-term Taylor expansion of 3s/ax:

X ti Uniform (k 1,k)

E L as JI	
26t{(29 2;k+k 1 ) -1 + (k-k-k-k 1 ) -2 /3(26 2+k+k1 ) 3 }	 (3.2)

X ti N(k.a2)

E 

[La
a

 11 'Bt{(62+k)-1 + a
2

( 6 2+k )
-3 }	

(3.3)

X ti Chi-Square (k)

E 
L J	

Bt{(62+k)- 1 + 2k(6 2+k) -3 )	 (3.4)

Figures 3.2-3.4 depict the absolute proportional rate of change of

w

6, 136/aaI/6, under the Uniform, Normal and Chisquare priors using

equations (3.2)-(3.4). The Uniform prior displays the least sensi-

tivity to the value of the variance ratio while both the Normal and

the Chisquare priors produce large changes in 6, especially for small

values of k. In each case the sensitivit y is least when k is large

and the noise-to-signal ratio t is small, as with the curves in

Figure 3.1.

In each of Figures 3.2 to 3.4 the proportional rate of change

of 6 is greatest when the parameter k of the prior distribution for

X is small. Thus if the measurement error in x tends to be much

smaller than that of y and all other model parameters are fixed,

the EV maximum likelihood estimator is relatively insensitive to

i

0
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the exact value of a; i.e., values of a over a fairly wide range

will result in similar, relatively small, estimator changes

whereas small values of a result in consequential estimator

changes for the same values of other model parameters.

The results of this section can be summarized concisely as

follows. First, if the measurement error in x is small relative

to the measurement error in y and small relative to the variability

in X (i.e., A large r t small), then the EV maximum likelihood esti-

mator of B, equation (2.10), will be relatively insensitive to

the exact value of A; therefore, one would expect that C would be

relatively insensitive to erroneous selection of a in a neighbor-

hood of the true value. When the measurement error in x is large

relative either to the error in y or to the variability in X, then

the EV estimator of B is highly influenced by the true value of a

and, one would expect, to erroneous choices for a in equation (2.10).

These results indicate that the selection of A can be critical

for accurate estimation of the slope parameter and one cannot merely

assume that any "close" guess for the variance ratio will provide

a suitalle estimate. The simulation study reported in the next

section documents more explicitly the dependence of the estimator

on the correct choice of the measurement error variance ratio.

4. SIMULATION STUDY

Asymptotic properties of EV model estimators are often cited

with little regard to whe'her they are valid for finite sample

tz
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sizes. In particular, asymptotic variance formulae are used to

compare alternative estimators and to draw inferences on model

parameters. In this section results of a simulation study are

examined in order to (i) determine whe ,:her asymptotic variance
formulae are adequate approximations to the true variar.ces for

finite samples, (ii) gauge the magnitude of the effects of

assuming an incorrect value for the Measurement error variance

ratio a, and (iii) assess the relative merits of least squares

and EV estimators.

The following simulation results fix the values of 8, o?,

and a 2 at 3.0, 5.0, and 5.0, respectively, so that by varying o2
the results are only a function of X. Under the assumption of

a known (correct) variance ratio, the EV estimator of 6, equation

(2.10) is asymptotically unbiased; i.e.,

plim(E) - 6	 (4.1)

The asymptotic variance of 6 is well known (e.g., Robertson 1974;

Gleser 1981):

asvar(6) - n 1 ((n 2+a)t + at 2 1 	(4.2

In Tables 4.1 and 4.2, the mean and mean squared error of 6 are

compared to the asymptotic values (4.1) and (4.2) for N-1,000

samples of size 20, 50 and 100. The ratios tabulated in Table 4.1

are the sample means of the 1,000 E values divided by 5. In

Table 4.2, the sample mean b uared error, 7.(6 1 - 0 2 /N, of 6 is
compared to the corresponding theoretical values calculated from

(4.2). In all cases, the sample means and mean squared errors

in Tables 4.1 and 4.2 are evaluated using the assumed values of

L	 J
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X, and compared to equations (4.1) and (4.2) using the true value

of X. In this way both the effect of sample size and the effect

of an incorrect choice of a can be assessed.

The entries in Table 4.1 corresponding to the correct assumed

values for X indicate close agreement between the average estimated

EV slope values and the true parameter values, especially when the

sample size is at least 50. In Table 4.2 agreement is not as good

a
for small sample sizes but appears to be adequate for samples of

size 100 if a not too large. It would appear that a sample of	 f

size 200 would be adequate for acceptable agreement between the
i
7

sample variance and the asymptotic variance. Tables 4.3 and 4.4

exhibit comparisons of sample mean squared errors to asymptotic

variances for 1,000 samples of size 200 for three values of a and

two choices of the noise-to-signal ratio t. In most of the model

configurations the 3gree*nent is quite adequate when the correct

value of the variance ratio is assumed, especially when 3 is large

and t is small.

The off-diagonal elements of Tables 4.1 to 4.4 reveal the

effects of incorrectly guessing the variance ratio X. Incorrectly

assuming too large a value of a results in underestimation of B

while the reverse is true when n is assumed too small (Table 4.1).

Any incorrect guess for a produces an over-estimate (except for a

few ratios which are within sampling error) for the asymptotic

mean squared error of 3, b , it it is far more serious to guess too

small a value for a than too large a one (Tables 4.2-4.4).

it
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Small sample sizes yield very erratic results; when n-20, the

small sample estimates are unreliable as measures of asymptotic mean

squared error (recall that the EV estimator is asymptotically unbiased).

Even with larger sample sizes the sample mean squared errors are only

reliable estimates of the asymptotic variances when the assumed value

of a is in a narrow interval around the true error variance ratio.

For samples of size 200, the agreement between sample and asymptotic

mean squared errors is adequate if the assumed k is between approxi-

mately half and double the true ratio, especially--as the results of

the previous section suggested--when the true value of A is large,

the noise-to-signal ratio is small, and B is large. While not con-

firmatory, this empirical finding about the close agreement between

sample and asymptotic mean squared errors supports the use of Lindley

and El-Sayyad's (1968) uniform prior in studies of the properties of

EV slope estimators.

Another comparison which is of importaice is that of the mean

squared error of the EV maximum likelihood estimator to that of the

least squares estimator, mse(d)/mse U LS ). Table 4.5 displays the

ratios of the sample mean squared errors for the two estimators

using the same model configurations as in Tables 4.1 and 4.2. It

is evident from this table that 6 offers substantial improvement

over least squares unless the sample size is small or the assumed

value of a is much less than the true value. As the sample size

increases, only assumed values of X which are grossly smaller than

the true ones will lead to a preference for least squares over EV

JI. A
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estimation.

Lest these conclusions be affected by the inadequacy of

empirical mean squared errors as estimates of asymptotic mean

squared errors, Table 4.6 displays the ratios of the asymptotic

mean squared errors of the EV slope estimators to the corre-

sponding ones for least squares. the asymptotic mean squared

errors for the EV estimators are based on assuming an incorrect

value a* for X. The appropriate expressions for the two estimators

are:

asmse(6LS) = 62t(t+n 1)(1+t)-2 + n-la(l+t-1)-1
	

(4.3)

and

asmse(6) _ [-(62+a*)+(^-a*)t + {[62- *)+(a- *)t]2+4A*62}1/2]2/462

I
+ {3:.2t2(a-^*)2+(a4-4,k*62+a*2) [35 2+(,X+6 2 )t + Xt2]

- 33 2 (6 2-a*) 2 + 6a*6 2 [3 2+(.X+. 2 )t+at 2 11/n(6 2+a*) 2 . (4.4)

As is apparent from Table 4.6, the conclusions drawn from Table 4.5

remain valid when the sample mean squared errors are replaced by

asymptotic mean squared error.

Finally, Figures 4.1 to 4.6 display asymptotic mean squared

error comparisons of 6 and using equations (4.3) and (4.2) or (4.4),

as appropriate. The horizontal axes in Figures 4.1 and 4.2 are the

2
variance proportions a u /(, 2+o u ) = t/(l+t), a monotonic transformation
of the noise-to-signal ratio. As indicated by Figures 4.1 and 4.2,

for a fixed sample size and a fixed variance proportion the EV esti-

mator (2.10) using the correct value of \ is preferable to least

a

i', '.I
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i
squares only for small values of X (recall, small a implies the

error in y is comparable or less than the error in x). As the

noise-to-signal ratio decreases, the range of values of the

variance ratio a for which B offers improvement over least squares

increases. Increasing the sample size enlarges the (t,a)-region

for which EV estimators are preferable to least squares.

Figure 4.3 graphs the ratios of asmse(B) to asmse(B LS ) using

equations (4.2) and (4.3), respectively, for four sample sizes and

(B,aY ,av) 	 (3,5,10). Except for extremely small values of a, the

ratio of asymptotic mean squared errors is less than unity, especially

so for large sample sizes. These graphs confirm the conclusiciLs

drawn from Tables 4.5 and 4.6 for correct choices of X.

Figures 4.4 to 4.6 graph the ratio of the asymptotic mean

I	 squared errors using equation (4.4) for EV estimation with an

incorrect choice for X. Model parameters for these figures are

2
(B,a2 	(3,5) and a = 1, 6 and 10, respectively. Again the con-

clusions drawn from Tables 4.5 and 4.6 are graphically confirmed

from these figures: unless a is selected much smaller than its true

value the EV estimator of B is preferable to least squares.

5. C014CLUDING REMARKS

The results of Sections 3 and 4 establish the extreme sensi-

tivity of the EV maximum likelihood estimator to the choice of the

measurement error variance ratio. The sensitivity is model depen-

dent and is greater when the true variance ratio X is small and
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the noise-to-signal ratio t is large. Large sample sizes enable

the EV estimator to offer improvement over least squares if the

assumed measurement error variance ratio is not too much smaller

than the true ratio; however, the reliable use of asymptotic

formulae for estimator variances requires that the variance ratio

be known within a narrtw interval of the true value and that the

sample size be at least 200.

Throughout Sections 3 and 4 the EV slope estimator shows

least sensitivity to the choice of the variance ratio a when the

noise-to-signal ratio t = a u/a 2 is small and a = av/a 2 is large,

especially for large values of S. Together the conditions on A

and t imply that there is relatively little error in the predictor

variable (i.e., a u = 0). Thus, the model configurations for which

the EV slope estimator is relatively insensitive to the choice of

X are those for which least squares is most appropriate. In other

model configurations (i.e., when the error in x is not negligible)

the EV slope estimator exhibits demonstrable sensitivity to the

assumed value of the measurement error variance ratio.

In spite of these limitations on the application of EV esti-

mation, the simulation results and asymptotic mean squared error

comparisons in Section 4 indicate clear preference for EV esti-

mation over least squares. If sample sizes are at least 200, this

general conclusion is violated only when the assumed value of X

is much less than the true value.

Little insight can be gzined from this study relative to

the performance of EV maximum likelihood estimators under non-
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t	 normal assumptions. While the parameters become identifiable

under the conditions stated in Table 2.1, analytic derivations

of estimators and asymptotic variances are intractable for most

alternatives to the normality assumptions. This important area

of research is currently under investigation.
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Table 2.1 Identifiability Conditions for EV Models*

(a) Identifiability of a

(i) If (u,v) is Normal, then X cannot be Normally Distributed

(ii) If X is Normal, the distribution of neither u nor v can

be divisible by a Normal Distribution

(b) R is Identifiable

(i) a is Identifiable

(ii) All other Model Parameters are Identifiable iff

(1) The distribution of X (Y) is not divisible

by a Normal Distribution, and

(2) Either u = 0 or v = 0
--------------------------------I-----------------------------------

*All model parameters unknown.
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Fig 3.1: Proportional Rate of Change of EV maximum
likelihood estimator versus lambda
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Fig 3.2: Expected Rate of Estimator Change
with Uniform Prior

0.5

0.4

E
R

0.3

0.2

0.1

t n 1.0, ^2 n 1.0
....... t-1.0, 3 2 n 5.0

- — t no. 5, 3 2 n 1.0

— — t n 0.5,

---.___

---	 -	 ------------------ ,-------

n5.0

-`---_ __

1.0	 1.5	 2.0	 2.5	 3.0	 3.5	 4.0	 4•D

Parameter of Uniform Distribution (k)



+71

CR2f^-"'+":L Pr's^=' f^
OF PO f^Uiy

Fig 3.3: Exotcced Rate of Estimator Change
-vith Normal Prior
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Fig 3.4: Expected Rate of Estimator Change
With Chisquare Prior
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TOWARD A BALANCED ASSESS,U-*;T OF COLLINEARITI' DIAGNOSTICS

Richard F. Gunst*

Periodically it is wise to review the foundation upon which

statistical methodology is based. With the availabilit y of main-

frame and micro computer technology there is too great a tendency

to become more enamored with the sophistication with which sta-

tistical analyses can be reported than with the theoretical under-

pinnings of the results. Professor 3elsley's article contributes

to a growing number of survey papers which attempt to refocus

attention on the assumptions underlying regression methodology as

it is practiced today (e.g., D-apLr and Van Nostrand 1979; Smith

and Campbell 1980; Hocking and Pendleton 1983). These articles

are especially noteworthy because they force i;rvestigators to

confront fu-damental questions relating to one of the most diffi-

cult and controversial problems facing data anal y sts: redundant

predictor variables in a regression analysis.

Professor Belsley criticizes the prevailing practice of

ceitering predictor variables (usually followed by scaling to

unit length) prior to assessing the presence and effects of

collinearity. He clarifies the position of Belsley, Kuh and

Welsch (1989) that predictor variables should be scaled to unit

length but not centered prior to diagnosing collinearit y . He

argues unequivocall y that collinearity diagnostics are only
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meaningful when interpreted in terms of "basic variables" which

are "structurally interpretoble." In keeping wit's the preference

endorsed in his book, he stresses the use of the condition index

as the only appropriate measure of collinearity.

Without hesitation I laud Professor Belsley's effort to re-

dress the lack of attention to the role of centering in discus-

sions of collinearity and his effort to create a framework within

which collinearity can be more rigorously examined. If I differ

with him on any of the issues which he raises, m y divergence of

opinion rests primarily with the dogmatic_ insistence that there

is one correct technique within which discussions of collinea • :v

must be straightjacketed. Rather, I believe that man;: of the

technical issues he raises arE related more to one's perspective,

education, and experience than necessarily to a correct technique

for the proper assessment of collinearity.

1. CONFLICTING PERSPECTIVES

Although Professor Belsley repeatedly cautions against cen-

tering when diagnosing collinearity, tie is careful to point out

that there are legitimate circumstances under which centering is

appropriate. As has been argued elsewhere (Hocking 1983, with

discussion), it is common practice t,, -enter all experimental

designs and attendant anal y ses when fitting response surfaces.

Similarly, Marquardt (1930) argues that polynomial regression
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(	 coefficients derive their interpretability only when predictor

variables are centered. Bradley and Srivastava (1979) stress

that centered, symmetrically-located and equally-spaced value3

of the predictor variables should be selected in any polynomial

regression analysis in which the investigator can control the

values of the variates. Thus there are wide classes of tegres-

sion problems for which centering is considered essential, even

if the data are collinear.

The major difference between the above illustrations and

the arguments posed by Professor Belsley is one of perspective.

The above illustrations are most relevant in industrial settings

where controlled experimentation is prevalent and constant :erns

are ;;noun to bc necessary for adequate model fits. Observation

rather than experimentation is more common in the economic studies

to which Professor Belsley alludes in his example of consumption

functions. In observational studies it is not necessaril y assumed

that constant terms are inherent to correct model specification

(e.g., consumption can only be zero when the constanr term is zero).

Each of these perspectives should be recognized as legitimate when

appropriate.

Centering can be either beneficial or detrimental regardless

of whether one's perspective is derived from industrial experi-

mentation or observational studies. Centering replaces each pre-

dictor variable with the residuals from a least squares regression

of that variable on the constant term. In an intuitive sense,
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centered predictor variables contain no common information with

the constant term of the model. In addition, centering alters

the constant term:

y=a+8 1X 1 +6 2x 2 + ... +dx' +e	 (1)
P .

becomes

y = a0 + a 
I 

w 1 + ;2WI) + ... + +"
P w P

where

a0 = a + 8 1x1 + 6 2x 2 + ... + 6 x	 and	 w. = X. - x..
P P	 J	 J	 J

Inferences on a0 are all but meaningless since the x i are data-

dependent; an exception sometimes arising when the predictor-

variable values are predetermined in a Designed experiment. In

general, then, if one wishes to maize inferences on the level of

the response variable (including tests for no-intercept models),

centering is pointless. On the other hand, if one wishes to

draw inferences on whether the predictor variables contribute

to the fit of the response variable in addition to the constant

term (i.e., the response variabilit y is not simply due to random

fluctuation about its level) then centered predictor variables

are essential.

In -.his latter setting one need not sacrifice tin,;nostic

information about possible collinearity of the r.redictor vari-

ables with the constant term_ The estimated standard error cf

the constant terns of model (1) can be expressed as

s.e.(o0) a o{n - 1'X(X'`)-1t,1 -1/2

(o/n1 ^ 2 ) (1- d0)
-1/2

4
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l	 where R2 is the coefficient of determination when the constant

term is regressed on the other predictor variables. Note that

if in the definition of the model the columns of X are centered,

as can occur in an experimental design, s.e.(a 0	n) = o/
l/2 ; 

other-

wise, s.e.(a0)>a/nl/2. Consequently,

- 
1)

s.e.(C0)2/(a`/n) = 1/(i-R0)-1

is the variance inflation factor for the constant term of the

model. For the example in Section 1,

s.e.(a0)2/(; /n) = (.784) 2 /([.0055] 2 /20) % 400,000.

There is clearly a collinearity problem among the predictor vari-

ables and the constant term. Centering does not demean tiie colli-

nearity diagnostics, one must simply understand the nature of cen-

tering and know where to look for the appropriate diagncstic.

2. MEASURING COLLINEARITY

Comparisons of collinearity measures provide valuable guide-

lines for data analysts. Farrar and Glauber (1967), Leamer (1973),

Mason, Gunst, and Webster (1975), Wilian and Watts (1978), and

Belsley, Ruh, and Welsch (1980) describe a wide variet y of important

collinearity diagnostics; however, rarely will anv single collinearity

measure completely characterize the nature and effects of collinear

predictor variables. Some measures are appropriate for assessing

the sensitivity of least squares estimates to minor perturbations

of the input data (condition indices), others more readil y measure

JI
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the effects of collinearity on the variances of the estimators

(variance inflation factors), still others aid in identifying the

nature of the collinearities (predictor-variable correlations,

eigenvalues and eigenvectors of suitably scaled, perhaps centered,

X'X matrices). Table 1 lists selected collinearity measures from

the above references according to possibl= usage.

[Insert Table lj

Just as there is no monopoly by any single collinearity

measure on usefulness, collinearity itself is difficult to define.

Professor Belsley stresses conditioning as a descriptor of colli-

nearity. This author's preference is to define collinearity by

analogy with the algebraic definition of linear dependence among

a (normalized) set of vectors (Gunst 1983):

Defn. A collinearity is said to exist among the columns

of X = [x l , x 2 ,	 xp] if for a suitably small

predetermined n > 0 there exists constants c l , c,,, ...,

c P , not all of which are zero, such that

c lxl + c 2x 2 + ... + c,-x, = ^, with I1611 < ri•licll.

Neither this definition nor any other which can be offered is

entirely satisfactory (e.g., How small should r be' How large

should a condition index bet) but each is a meaningful conceit

to many data analysts, depending again on background ,nd expe-

rience. Hocking and Pendleton's (1983) "picket fence" analogy

is a marvelously simple geometric explanation of collinearity

which can be more useful than either of the above technical

J
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definitions when one must characterize predictor-variable

redundancies to those who have limited statistical training.

Even from a strictly analytic point of view there are

•	 difficulties with all measures of collinearity, difficulties

which limit the global utility of each diagnostic. Belsley,

Kuh, and Welsch contend that small eigenvalues of X'}: are

inadequate measures of collinearity since perfectly-conditioned

matrices of the form

CL	 0

X'X =

0 a

can have arbitrarily small eigenvalues for small values of ` > 0

even though the two columns of X are orthogonal (no collinearity).

Condition indices suffer from much the same problem if one examines

perfectly-conditioned matrices of the form

a 0

X1  =

0 8

and $ > 0 is allowed to become arbitrarily small while 1	 0 is

held fixed. Nore that if one scales the columns of X to unit

length both of the above matrices are identity matrices for all

a, S > 0 and both the eigenvalues of :^'X and the condition index:

of X will correctly diagnose the perfect conditioning;.

3. STRUCTURAL 1:,TERPRETABILITI

A major contribution of this article, one with whith I am in

wholehearted agreement, is its focus on correct model formulation.
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Model formulation receives scant attention in regression textbooks,

most of the emphasis being directed to variable transformations.

Structural interpretability demands that careful consideration be

directed toward the initial specification of each variable in a

regression model. Professor Belsle.; specificall y directs his

comments to centering but the overall admonition which he conveys

is more general.

The question of variable definition is a difficult one. It

is too frequent that one encounters "proxy" or "surrogate" variables

used in place of the real quantities one seeks but is unable to

measure. The rationalization that this is the best one can do leads

to acceptance of arbitrary variable definitions in many other cir-

cumstances. For example, few worry about whether temperature is

expressed in degrees Celsius or Fahrvnheight. Yet this is per-

haps the traditional example one uses to distinguish interval- from

ratio-scaled variables in introductory statistics courses, a uni-

variate version of structural interpretability.

Structural interpretability as a universall •i-accepted principle

in model formulation must await refinement. The relevance of struc-

tural interpretability, at least with regard to centering, is not

clear when quantities such as "beta-weights" are the intends] goal

of a regression analysis. Calculation of these quantities requires

that predictor variables be standardized, a transformation which

destroys structural interpretability. Extension to polynomial

models, models which include interaction terms, and nonlinear models--

__ 1) 1
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admittedly topics which are beyond the scope of the present manu-

script -- are additional important refinements which await clari-

fication. Nevertheless, the warning is clear: challenges to inter-

pretability are inevitable when model formulation, including cen-

tering, is slighted.

Finally, structural interpretability is a concept which is

meaningful without any reference to collinearity. The application

Of structural -aterpretability to regression implies that a constant

term is included in the model if appropriate, not of necessity.

Collinearity is a separate issue which becomes relevant onl y after

proper model formulation. In order to properly diagnose collinearity

variates should be centered or standardized as required to apply

appropriate analytical techniques.

4. THE E\L`iPLE

Smith and Campbell (1980) discuss clearl y the relationship

between (linear) predictor-variable transformations and the dis-

guising of collinearities as small predictor-variable variances.

Mullett (1976) demonstrates that the ill-effects usually associated

with collinearities can be produced b y other causes, including small

predictor-variable variances. These discussions have particular

relevance to collinearities involving the constant ter::.

Earlier the collinearity among the three predictor variables

in the example was shown to be diagnosable from the standard error

of the estimated coefficient of the constant term. That the "non-

9
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constant" predictor variables are essentially constant is apparent

from their coefficients of variation (s j /x j ): each is approximately

.0023. Regardless of whether each is correlated with the other,

a coefficient of variation this small calls for immediate investi-

gation of collinearity if one's intent is to evaluate each of the

predictor variables for its predictive ability without regard to

the presence or absence of the others, including a constant term.

A collinearity with the constant term occurs either because

+7

dW

two or more of the nonconstant predictors are (reasonably) vari-

able and some linear combination of them is essentially constant

or because individual variates are essentially constant.	 The

former situation can be detected from an anal ysis of the certered

(standardized) variates,	 the latter from the coefficients of vari-

ation (often just from the standard deviations). 	 In either

case,	 if collinearity with the constant term is a concern, exam-

ination of the standard error of 	 the constant term will readily

reveal the existence of a problem.

4.	 FINAL RE:IU KS

This manuscript is an excellent example of the dialogue which

should periodically review the foundations upon which regression

methodology is based. 	 While differences of opinion will inevitably

arise, separation of the fundamental issues fron personal preference

is important.	 I am in fundamental agreement with Professor Belsley

V
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on what I perceive to be the key issues in his article: (i) model

formulation, using concepts like structural interpretability, is

essential fcr meaningful inferences from a regression analysis,

(ii) careful consideration should be given to whether collinearity

with the constant term is important to detect, and (iii) if so,

collinearity diagnostics which enable such detection must be

examined. While we may prefer alternative collinearity diag-

nostics , 'we seek the same goal with equally -effective diagnostic

techniques.

^) .1
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TABLE 1.	 Selected Collinearity Measures

Detection	 Estimator

Measures	 Effects	 Precision

Predictor-Variable
Correlations

Variance,Inflation
Factors

Eiger:values, Eigen-
vectors of X'X

Condition Indices

Condition Indices

Estimator Correla-
tions

Curve Decolletages

Variance Inflation
Factors

s.^.(2 ). s.e.(y)
J

Variance Decompo-
sition Proportions

Volumes of Confi-
dence Ellipsoids
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REGRESSION DIAGNOSTICS AND APPROXIMATE INFERENCE PROCEDURES

FOR PENALIZED LEAST SQUARES ESTIMATORS

R. L. Eubank and R. F. Gunst*

ABSTRACT

Generalizations of least squares diagnostic techniques are

presented for a class of penalized least squares estimators.

Efficient computation of these diagnostics is afforded by expressions

which relate coefficient estimates and residuals from fits to sub-

sets of the data to the corresponding quantities from a fit to the

complete data set. From these expressions approximate confidence

intervals and test statistics can be obtained using jackknife and

bootstrap procedures. Applications are discussed for the special

cases of smoothing splines and ridge regression.
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REGRESSION DIAGNOSTICS AND APPROXIMATE INFERENCE PROCEDURES

FOR PENALILED LEAST SQUARES ESTIMATORS

R. L. Eubank and R. F. Gunst

1. INTRODUCTION

Regression diagnostics are an integral component of compre-

hensive regression modeling efforts, in large part because of

recent theoretical advances which lead to computational efficiency.

With few exceptions (a notable one being Pregibon (1981)) these

(	 advances have been restricted to ordinary least squares (OLS) esti-

matit.n for linear models. In this paper diagnostic techniques are

extended to a class of penalized least squares estimators which

include smoothing splines and ridge regression estimators as

special cases. An additional bonefit of these results is the

ability to efficiently compute jackknife confidence intervals and

other inferential statistics for model parameters.

Let y - (y l , ... ,y n )' be a vector of observed responses which

follow the model

y - n + E ,	 (I" L)

where n - (^^1,...,nn)' is a vector of unknown constants and

E - ( E l y ... V F_ n ; is a vector of zero mean, unccrrelated errors with

i I



_	 common variance o 2 . It is assumed that n is to be approximated

by a linear form Xa where X is a known nxp matrix of rank p < n

having ith row xi and a -(a1,...,ap)' is a vector of parameters

which is to be estimated. The class of estimators which are

investigated in th's article are those obtained as the solution to

	

min{En_ (y, -x'9) 2 + AO'Qa}, X > 0	 (1.2)

a	 J- 1 J J

with Q denoting an arbitrary positive (semi-) definite matrix.

For a given Q, X, and a, expression (1.2) has a unique solution:

a	 C ( 0 )Y	 (1.3)

where

	

C(a) _ (X'X + aQ) -1X' .	 (1.4)

The estimator a is termed a penalized least squares estimator of

a. Observe that when X = 0, a reduces to the OLS estimator

s = (X , X) -lx'y .

At the other extreme, if Q is positive definit-e a	 G as a

In many instances it is preferable to use a value of X between

these two extremes and a variety of methods are available for estf-

mating its value from data. For example, Golub, Heath and Wahba (1979)

discuss generalized cross-validation (GCV) as well as other data-

driven methods for selecting X.

It is often reasonable to make the strong_r assumption chat

n = Xa under which model (1.1) becomes the linear regression model

y = Xa + E	 (1.6)

When this model holds and no further assumptions are made, a will

be termed a generalized ridge regression estimator of a; however,

2
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the results presented below are of sufficient generality to include

cases in which the n  represent values from an unknown regression

function, n, which is to be estimated nonparametrically. When

appropriately formulated (see Section 5) the smoothing spline esti-

mator of n is seen to be a special case of estimator (1.3).

As with ordinary least squares, the penalized least squares

"hat matrix" (see Hoaglin and Welsch 1978) provides important

diagnostic information about the influence of individual observa-

tions (yi ,xi) on the associated prediction equation. The hat

matrix corresponding to S is defined to be

H(^) = { h id M} = XC M	 (1.7)

This matrix transforms the response vector y to the vector of

fitted values, y = (yl,...,yn)'; i.e.,

y = H(a)y

The element h rj M is a direct seasure of the influence of y j on.the

fit to y i . In particular, the "leverage value's hii(A) measures the

influence of y  on its own prediction.

i
This study of the estimator class (1.3) begins with a deriva-

tion of some of the properties of H(a) in Section 2. In Section 3

techniques are presented for computing estimates and fitted values

when observations are deleted from the data set. The results of

this section are applied, in Section 4, to obtain approximate

inference procedures for the parameter vector S and to derive diag-

nostic measures for detecting influential observations. Specific

applications to nonparametric estimation by smoothing splines

ani to ridge regression estimators are detailed in Section 5. Con-

?l
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eluding remarks are made in Section 6.

2. LEVERAGE VALUES FOR PENALIZED LEAST SQUARES

In this section certain properties of the hat matrix HM will

be derived. It will be seen that the characteristics of its elements

are closely related to those of the hat matrix H for the corresponding

OLS estimator:

H = {h ij } = X(X'X)
-1

X' .	 (2.1)

Since H in equation (2.1) is a (orthogonal) projection operator,

the following properties are easily proven:

i) 0<h.. <1

ii) -1 < h ij < 1,	 i # j	 (2.2)

iii) hij = 1	 =, hij = 0, 1 # j
When X contains a constant column, somewhat sharper results are

provided by

i)' n 1 < h, . < 1

ii)' - ( n-1)n l < hij < 1,	 i # j	 (2.3)
iii)' hii = 1 

<=> h
iJ

. = 0	 i # j .

Extreme rows of X result in large leverage values. The rough

cutoff of h ii > 2p/n suggested by Hoaglin and Welsch (1978) is

often used to identify such rows. Note from iii) and iii)' that,

as h ii i 1, h ij	 0, i # j and y i = xis -+ y i , indicating that an

observation with a large leverage value will tend to dominate its

own fit.

For a > 0, HM is no longer a projection matrix. The following

J I
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theorem establishes bounds for the elements of HM as a function

of the corresponding elements of H, thereby providing an analog

of properties i) and ii) in equation (2.2).

Theorem 2.1. The elements of H(a) satisfy

Ih ij (W < ( 1 + Xd1)-1{hiihjj}1/2 	 (2.4)

where d 1 is the smallest eigenvalue of (X'X)-1Q.

Proof. Using the spectral decomposition (eg. Kshirsagar 1972,

Chapter 7) of X write X = UL 1/2Z', where L = diag(R l , ... ,kp)

is a diagonal matrix containing the nonzero eigenvalues of XX' (and

X'X) in ascending order, and U = [u l , ... ,u JP and Z are the corre-

sponding matrices of eigenvectors of XX' and X'X, respectively.

H(A) can now be expressed as

1/2	 -1
H(a) = U(I + XL_	 Z, QZL

-1/2 
) U,	 (2.6)

Let 0 < d l < d 2 < ... < d  denote the eigenvalues of L-1/2Z'QZL 1/2

(which are also the eigenvalues of (X'X) -1Q). Using r _ [Y...,Yp]

to denote the corresponding matrix of eigenvectors, individual elements

of H(a) can now be represented as

h (a) = E	 b	 jr
 (1+ad )	 uk r •ij	 r=1 t	 r	 bkri 

Application of the Cauchy-Schwarz inequality in equation (2.7) along

with the ordering of the d  completes the proof.

Theorem 2.1 and its proof have several important consequences.

First, it furnishes tighter bounds for the elements of H(a) than

the inequalities in equation (2.2); i.e.,

1) 0 
<_ hiiM < (1 + ,1d1)-1

(2.8)
ii) -(1 + Xd

1
) -1 < h ij M < ( 1 + adl)-1,
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r	
In addition, from equation (2.7), it is apparent that h ii M is

l	 monotonically decreasing with a from h 11 (0) = hii to h ii (^). Note

that in general h ii
,
 .00) > 0 unless dl > 0; when dl > 0, hii	 - 0.

Since h ij (a) is continuous in A, standard results from calculus can

be used to show that for a sufficiently small (large) h ij M will

have the same sign as hij (hij (-)) provided that h ij # 0 (h ij MOO).

Two important special cases occur when (1) 0 = d l = ... = dm

< d
m+l	 p

< ... < d and (ii) Q - I. These special cases have appli-
— —

cations to smoothing splines and ridge regression, respectively,

which will be explored in Section 5. The important details are

summarized in the following two corollaries.

Corollary 1. Suppose 0 = d l = ... = dm < dm+i < ... < d
P 

and

define hi.(^)	 Em=lbir Jb 
r , where the b kr are as in equation (2.7).

J 
Then

i	 PP

h ii (m) 
+ (1+ad ) -1 E b 2 < h..(a) < h (-) + (1+ad	

)-1 
E b. .

P r=m+1 it — ii	 — ii	 m+l r-m+lir

(2.9)

Corollary 2. If S = (X'X + XI) -1X'y then

Ih ij (W < Rp(Zp+a)-1{hiihJJ}1/2

where Z  is the largest eigenvalue of X'X. The upper bound for

the ith leverage value, viz. 2 (Z +a) -1 , is obtained when x'=it/2z'
P P	 j P	 P

where z  is the eigenvector corresponding to Zp.

3. DELETING OBSERVATIONS FROM AN ESTIMATOR

The development of exact tests and interval estimates for a

using the penalized least squares estimator S is a difficult, and

E"qw
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•	 as yet unresolved, problem. In contrast, approximate techniques

based on nonparametric procedures such as the jackknife and boot-

strap are easy to propose but their practicality depends on the

ability to efficiently perform the necessary calculations. In this

section a simple method of deleting observations from 6 is derived

which requires no refitting of the data. This is found, in Section

4, to make the use of inference techniques such as jackknife confi-

dence regions for 6 a practical alternative and to allow a general-

ization of several types of regression diagnostic measures to the

penalized least squares setting.

For q < n—p let J = {jl,...,jq} be a subset of the indices

{1,...,n} and let S (J) represent the coefficient estimates obtained

using only those (y., x^) with j i J. The following theorem provides

a partial characterization of 6(J).

Theorem 3.1. Let B [Jl (wj I ...,wj) 	 solve
1	 q

	

min{ E (y. —x 1 6) 2 + E (w . —x'6) 2 + \6 1 Q6}	 (3.1)
6 jii J j	 jEJ J j

and define y 	 = xi6 (J) , i = 1,...,n. Then,

;1J] (-(J) ... , - (J) ) = a(J)	 (3,
1	 q

Theorem 3.1 has the consequence that 6 (J) can be obtained by

applying C(a) to a "new data vector" wherein y.
J 

has been replaced

by 
y(J) for all jEJ. This would seem to presuppose knowledge of

6 (J) ; however, such is not the case and in many cases of interest

it is possible to compute the y^ J) without explicit computation of
J

6 (J) . This property follows by application of the next theorem.

r
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^-	 Theorem 3.2. The values yj J) , jEJ, satisfy the linear equation

system

yiJ)— EjEJhij(a)YjJ) = Yi - EjEJhij(x)Yj

E jQJh ij (X)vj . 1 EJ	 (3.3)

Proof of Theorems 3.1-3.2.	 Set w  = y^J) . Proof of Theorem 3.1

is provided by the following inequalities:

E jeJ (y j -x^6 (J) ) 2 + EjEJ(wj-xjs(J))2 +ag(J),QS(J)

= E	 (y.—x'a(J))2 + as (J)' QS (J) < E	 (y -x'5) 2 + aa,QajQJ J j	 — jiJ j j
< E j ^ J (y j -x^a) 2 + EjEJ(wj-x^a)2 + aa'Qa .

To verify equation (3.3) note that xiS[J](wj ,...,wj ) is linear

	

1	 q

in wj , jEJ, and can, therefore, be written as

I	 xis[J](wjl,....wjq) = xis + EjEJhij (Mw
j —y j )	 (3.4)

	Letting w. = x'.; (J) gives the desired result.	 a
J	 J

To illustrate uses for Theorem 3.1-3.2 confine attention, for

the moment, to the instance q = 1, J - (j} for some j E (1,...,n}.

To distinguish this important special case the notation

6 [J] = 6(J)	 (3.5)

and

v(J] = x'.6 [j]	(3.6)
1	 1

is utilized. Application of Theorem 3.2 to this special case yields

the following expression for y1j]
J

	

y] j l _ (yj -hii Myj )/(1-hjj (M.	 (3.7) i

4

. 
D I
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^-	 This relationship explicitly demonstrates the ability to obtain

each of the yj j] without refitting the model.

The term "deleted residual" will be used to designate the

difference y j - y. Equation ( 3.7) provides an ef ficient compu-

tational form for the deleted residual; viz.,

e [ j l - Yj	
yjj] = ej/(1-hjj(X)),	 j - 1,...,n,	 (3.8)

where e  is the jth residual from the fit to the entire data set:

e  = Y^ - Y j .	 j = 1,...,n.	 (3.9)

Substituting equation ( 3.8) into equation ( 3.2) yields

b [ll = R - (i Me Ull 
	

3 - 1, .... n,	 (3.10)

where cj (a) is the jth column of C(1).

Formulas ( 3.8) and (3.10) include as special cases the equi-

valent expressions for ordinary least squares, a = 0 (e.g., Beckman

and Trussel 1974; Hoaglin and Welsch 1978). In the case of smoothing

splines equation (3.8) was established by Craven and Wahba (1979)

using a method of proof similar to the one employed here.

4. INFERENCE AND DIAGNOSTICS

Equation ( 3.8) provides a fundamental expression for the

derivation of approximate confidence intervals to complement the

point estimator B. Define the jth vector of pseudo-values by

b 
j	

n6 - (n-1)B^^]

= B + (n-1)cj(X)e(j]
	

(4.1)

Then the jackknife estimator of B based on B is b = n 
lZj=1 

b

	

^	 j

J I



r w

ORIGINAL PT.GP TF
OF POOR QUALIW	 10

and the variance-covariance matrix of B or b can be estimated by

	

V = Ejl1 (b j - b)(b j - b)'/n(n-1)	 (4.2)

For a linear functional a'S, an approximate 100(1-a)% confidence

interval is provided by

a's + Za/2 (a'Va) 1/2 or	 a'b + Za/2(a'Va)1/2	 (4.3)

where Za/2 is the 100(1-a/2) percentage point of the standard normal

distribution (critical values from a Student's t distribution with

n-1 degrees of freedom could be used in place of Z a/2 in expression

(4.3)). Notice that the interval estimates (4.3) can be computed

using information available entirely from the original fit. When

X = 0, equations (4.1)-(4.2) reduce to formulae given in Miller (1974),

Hinkley (1977a), and Efron (1982, Chapter 3) for jackknifing L

Diagnostic measures which parallel those utilized for ordinary

(	 least squares can also be derived as a result of (3.8) and (3.10). To

do so first note that a natural estimator of a 2 associated with the

penalized '_east squares estimator B is

	

a2 = f i=l
ei /tr(I-H(a))	 (4.4)

where tr denotes the matrix trace. This estimator reduces to the

usual estimator of a 2 associated with 8, namely a 2
 = i=1ei/(n-p),

when a = 0. The estimator (4.4) has been found to be quite effective

for spline smoothing by Wahba (1983). Studentized (deleted)

residuals can then be defined as

	

t[j] = e
j /a [j] (1-hjj (M l/2	 (4.5)

_2
where aI j] is the estimator (4.4) computed from the reduced data set

61
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t

wherein (y j ,x^) has been excluded. An explicit formula for -02	 is

a fj) = E (e
i + h ij (a)e^ j ^) 2 /tr(I-H [j]

M )	 (4.6)
i=1if j

with

tr(I-11	 ( a )) - n-1 - E (h ii (a j + hij M /(1-hjj(X))?. (4.7)
i=1
i#j

To prove formulas (4.6)-(4.7) observe that yijl can be written as

Erfjairyr- The coefficients air can be deduced from equation (3.2)

and used to establish equation (4.7). The form of the numerator

follows easily from expression (3.10).

The studentized residuals along with formulas (4.6)-(4.7) are

generalizations of relations which hold when A = 0 (e.g., Gunst and

Mason 1980, Chapter 7). These residuals provide a scaled measure

of how the fit to y  changes when its value is not used to estimate

6. They can, therefore, be used to detect overly influential data

values. The value of t [j] might be compared to values from a Student's

t distribution with approximately tr(I-H[j](a)) degrees of freedom.

Simulation results discussed in Section 5 indicate that Student's t

critical values provide a reasonably good approximation for 5% cutoff

values for the t (j] . Through similar considerations a variety of

other diagnostic measures can also be suggested. One such example

is

DFFITSj	 (Yj - x^g^j^)/aIj]'hjj(^)1/2

[hjj(a)/(1-hjj(M] 
1/2t [j)	

j = 10...,n,

(see Velleman and Welsch 1981 or Belsley, Kuh and Welsch 1980).

J
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Deleting q > 2 observations is somewhat more complicated than

1•
the case q - 1. When q > 2 it is no longer obvious that equations

(3.3) always uniquely determine the y j J) . This will be true if

and only if (I-H(X)) J , the submatrix of I-H(a) corresponding to those

indices in J, has rank q. For example, when q = 2, J - {i,j} this

condition is equivalent to (1-hii(a))(1-hjj(a)) - h ij (a) 2 f 0.

Instances where this is not satisfied would seem rare in practice.

Now suppose that one obtains m random samples of q indices

each, J l ,...,Jm , by sampling with replacement from {1,...,n). A

bootstrap estimator of the variance-covariance matrix of B is pro-

vided by

W - Em=1(B 
d_ 

B*)U  r-B*),/(m-1)	 (4.8)

'(Jr)
where B* = m 

-1 
E 
m 

1 6	 I£ the matrices (I-11(a)) J all have rank q,r 
r

W can be computed using equations (3.2)-(3.3) and its elements can

then be used to obtain bootstrap analogs of the jackknife confidence

intervals (4.3). A similar approach when all possible subsets of

size q are used leads to the development of grouped jackknife inter-

val estimates of B (see Efron 1932, Chapter 2).

To conclude note that when X - 0 Theorems 3.1 - 3.2 can be

used to e.3tablish "leave-q-out" identities such as equation (7)

of Draper and John (1981). It is, therefore, possible to generalize

leave-q-out diagnostics such as those discussed in Gentleman and

Wilk (1975a, b) and Draper and John X1978, 1981) to the case of

penalized least squares estimation.

b I
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5. EXAMPLES

In this section the application of results in Sections 3 and

4 to the special cases of smoothing splines and ridge regression

will be illustrated.

5.1 Smoothing Splines

Suppose n is a smooth response function and that n  = n(tj),

0 < t  < ... < to < 1, in model (1.1). For n > m the smoothing

spline estimator of n, denoted by n, is obtained by minimizing

En (yj - f(tj )) 2 + AJlf(m)(t)2dt	 (, V

0

over all functions f having m-1 absolutely continuous derivatives

and a square integrable mth derivative. Schoenberg (1964) proposed

this type of nonparametric estimator for n and showed that n was a

spline function of order 2m with knots at the t j . General dis-

cussions of smoothing splines can be found in Wahba (1977), Wegman

and Wright (1981) and Eubank (1983).

Demmler and Reinsch (1975) (see also Speckman 1983) develop

a basis for spline smoothing which consists of functions xl,...,xn

and constants 0	 q l = ... = q  < gm+l < ... < q  which satisfy

Er=lxi(tr)xj(tr) - d ij	 (5.2)

and

Jlx(m) (t)x^m) (t)dt = gj5i]
	

(5.3)

0

where o
fJ 

is the Kronecker delta. They show chat the minimizer

of criterion (5.1) is necessarily of the fo;m

f(t)	
rj=l6xjit)	

(5.4)

i

J
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hence, it sufficies to minimize criterion (5.1) over functions of

this type. Substituting f(t) from (5.4) into (5.1) and invoking

the relationships in equation (5.3) gives the equivalent criterion

mini £j -1(Y^-Er-lBrxr(tj))2 + J^Ej-lB2gj} 	
(5.5)

B

Comparison with (1.2) reveals this to be a special case of penalized

least squares estimation with n - n, x^ - (x 1(tj),...,xn(tj)) and

Q - diag (g i , .... g n). Therefore,

B - D(a)X'y	 (5.6)

where D(a) - diag((1 + Aq1)-1,...,(1 + 
^q n)-1).

The hat matrix corresponding to the estimator (5.6) is

( )^	 -H(a)	 XD a X'; moreover, since 	 I the eigenvalues of (X'X)-
1
Q

are simply the q j . Applying Corollary 1 of Section 2

the following bounds are obtained for hii M: 	

t
`	 hii 	

+ (1 + aq n )-1£ r-m+lx r (t i )2 < hii (X) < h ii (^ )	I

+ (1 + ag m+l
)-1	

2

	

£r-m+lxr(ti) 	 (5.7)

where h ii ( m ) - Em lx r ( t i ) 2 . It follows from Demmler and Reinsch (1975)

that h ii (m) is the ith leverage value for regression on polynomials of

order m. Equation (5.7) therefore establishes a connection between

the leverage values for spline smoothing and those for polynomial

regression. These results generalize to multivariate "Thin Plate"

or Laplacian smoothing splines (e.g., Wahba 1981; Wahba and Wendle-

berger 1980; and Wendelberger 1981) where the h ;i (a) may be parti-

larly useful in the detection of sensitive points in the design.

To illustrate the behaviour of some of the diagnostic and

0
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inferential methods proposed in Section 4, a small scale simula-

tion was conducted. Data sets were generated from model (1.1) with

n i - n(t i ) - 4.26{exp(-3.25ti)-4exp(-6.5ti)+3exp(-9.75ti)),

Li - (i-1)/n,	 n - 80 ,

and normal errors with c values of .05, .1, .2 and .4. This

function is a resealed version of one studied by Wahba and Wold (1975).

The basic experiment was re p licated r - 50 times (i.e., 50 data sets

of size 80) with each replicate being "treated" by all four -.'alues

of o. A cubic smoothing spline (m - 2) was fitted to each data set

with a selected via CCV.

Approximite 95% jackknife confidence intervals for the ni,

centered at n i , were compu r ed by taking ai
	 (xl 

(t
i )'" .,xn(ti))

in equation (4.3). The proportion of times the true function value

was contained in its interval estimate was recorded along with the

value of o 2 and the proportion of times It [j] I exceeded the 5% (two-

tailed) critical value for the Student t d_stribution. Summary

staListics for the simulation are given in Table 1. A typical

example of these results, for o - .1, appears in Figure 1.

[Insert Table 1, Figure 1]

The empirical confidence levels in Table

than might be desired. However, by using 99

vals, confidence levelG in excess of 94% were

This is typical of simulations performed with

and other configurations for the values of r,

results will appear elsewhere. As illustrate

1 are somewhat lower

rather than 95% inter-

obtained in all cases.

other function types

n, and o. These

I in Table 1, the
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^-	 Student's t approximation to t [j] and the estimator a 2 performed

well.

5.2 Ridge Regression

Ridge regression estimators (Hoerl and Kennard 1970; Marquardt

1970) are solutions to the criterion function (1.2) when (i) only

the nonconstant predictor variables from model (1.1) are included

in X, (ii) the predictor variables are standardized so that X'X is

in correlation form, and (iii) Q = I. Much controversy persists over

automated selection of a, the effect of standardizatior, on ridge

estimation, and the assumptions underlying the validity of the

ridge estimator (e.g., Draper and Van Nostrand 1979; Smith and

Campbell 1980, with discussion). in order to demonstrate the

application of the results of Section 2-4, assume that for a

specific regression analysis the criticisms noted above ?re

satisfactorily answered and that a ridge regression analysis is

deemed appropriate.

Ridge regression diagnostics can be obtained from the results

of Sections 2-4 under the conditions stated above; however, the

efficient computational expressions for deleted estimators (i.e.,

and B	 ) and deleted residuals (i.e., e [j) ) are exact only

if the reduced X matrix is not restandardized when rows are deleted.

Hinkley (1977a) noted a similar restriction w an he cautioned against

obtaining (least squares) jackknife estimates of the constant term

of a regression model using centered predictor variables. Since

the major benefits of centering and standardization cited by

Marquardt (195) are essentially maintained when one (or a small

number) of the rows of the standardized X matrix is (are) deleted,

16
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r -	 only the original matrix of predictor variables is standardized

in the following example.

Gunst and Mason (1980, Appendix A) contains a data set on the

gross national product (GP1P) of 49 countries of the world along with

the six additional socioeconomic indices: an infant death rate (INFD),

a physician/populaticn -atio (PHYS), population density (DENS), pop-

ulation density measured in terms of agricultural land area (AGDS),

a literacy measure (LIT), and an index of higher education (HIED).

Table 2 displays regression diagnostics for the fit of Rn(GNP) by

the six socioeconomic indices.

[Insert Table 2]

The relatively small value of X(0.08) which was chosen for this

illustration has little effect on the bcLk;_ for ridge leverage values

given by Corollary 2 since Q 6 /(Z 6+0.08)=0.97. With the exception of

Malta, least squares leverage values which exceed 2(p+l)/n = 0.286

are also large with the ridge estimator using the analogous bound

2(tr[H(X)1+1)/n = 0.271. Although the ridge DFFITS values appaar to

be slightly more uniform than those of least squares (e.g., none of

the former are greater than 1.0 in mas;nitude), four of the five

observations which exceed 2{(p+1);n}
1/2

=0.756 for least squares also

exceed 2{(tr[H(X)1+1)/n; 1/2=0.736 for ridge regression--tialta is again

the exception--and a similar comment can be made about the t[j1.

Malta is obviously affecting the two estimation procedures

differently. It has high leverage and is influential on the least

squares fit but has neither high leverage nor an influen t ial impact

on the ridge regression fi:. A scatterplot of DENS and ADDS reveai.:

that Ualta lies well o`f the concentrated linear scatter (r = 0.97)
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between these two variates. i.,us by lessening the effect of the

strong pairwise correlation between DENS and AGDS on the estima-

tion of the regression coefficients, the ridge estimator is also

lessening the influence of Malta on the fit. Although the other

least squares and ridge diagnostics identify equally important

characteristics of this data set, comparison of the two sets of

diagnostics has provided important insight about Malta which might

have gone unappreciated had only the least squares diagnostics

been examined.

Table 3 displays least squares, ridge (N _ .08), and jack-

knifed ridge (b) coefficient estimates and confidence intervals.

The purpose of presenting the ridge and jackknifed ridge estimates

is to highlight typical characteristics of these estimators, not

to draw definitive conclusions relative to this data set. Note

in psrti,:ular that, while similar, the ridge and jackknifed ridge

estimates are somewhat different. In addition, both of these

latte •. two estimators produce jackknife confidence intervals-

(using expressions X4.3)) which are shorter than least squares.

in view of the simulation results in Section 5.1, it might be

advisable to adjust these confidence intervals (not done here)

by using a larger Student t critical point. If one uses 99%

nominal coverage, the ridge confidence interval for the coeffi-

ci:nt of DENS includes the origin.

Obviously a more complete analysis of this data set is needed

in order to resolve questions which remain about influential observa-

tions and the s-gnificance of the predictor variables. Any thorough

J7

. JI
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analysis must incorporate prior knowledge about the regression

coefficients and information concerning the intended use of the

conclusions which are to be drawn from the fitted model. These

topics are beyond the scope of this paper; nevertheless, this

example illustrates some important characteristics of penalized

least squares diagnostics and approximate inference procedures.

6. CONCLUDING REMARKS

The results of this paper generalize least squares regression

diagnostics and certain approximate inference procedures to a

class of (quadratic) penalized least squares estimators for linear

models. Theorems 3.1 and 3.2 produce expressions for deleted esti-

mators and residualL which provide exact, computationally efficient,

calculation of quantities such as pseudo values and Studentized

residuals. These results have wide application, two specific

illustrations being nonparametric estimation with smoothing splines

and ridge regression.

Much research remains to be conducted regarding the properties

and usa6e of the procedures proposed in this paper. For example,

the jackknife confidence intervals 6o not achieve the nominal con-

fidence level, although they are well-known to be insensi.:ive to a

variety of .nimodal error distributions. Corrections for the jack-

knife such as those proposed in Hinkley (1977b, 1978) may alleviate

coverage difficulties and the behavior of jackknife intervals under

nonnormal errors merits further investigation. Likewise, the sensi-

tivity of jackknife confidence intervals to the choice of a warrants
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further study. For instance, in the ridge regression example

increasin" a from 0.08 to 0.20 decreases the estimated standard

errors of the individual coefficients between 5 percent (HIED)

and 50 percent (AGDS). On the other hand, the Studentized

residuals and the estimator of o 2 performed well in the simula-

tion in Section 5.1. Similarly, the ridge regression diagnostics

highlighted an important characteristic of the presence of Malta

which could have been overlooked if only the least squares dia-

gnostics were examined.

20
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TABLE 1	 Summary Statistics for the Simulation

Empirical Confidence Empirical Significance Estimated

Levels Levels Variance

G Average Std. Error Average Std. Error Avg. MSE

-7
.05 .8838 .0084 .0508 .0025 .0023 2x10

.10 .8868 .0087 .0510 .0024 .0091 3x10-6

-5
.20 .8863 .0102 .0493 .0021 .0366 5x10

-4.40 .8843 .0149 .0490 .0023 .1490 6x10



TABLE 2.	 Regression Diagnostics for GIP Data, Selected Observations

Least Squares Ridge 0-.08)

Obsn. hjj tljl DFFITSj hjj(.08) t ljl DFFITSj

BARBADOS .238 -2.026 -1.131 .137 -1.929 -.769

CANADA .042 2.011 .419 .039 2.111 .423

HONG KONG .511 -.107 -.109 .471 -.138 -.130

INDIA .538 1.337 1.502 .507 .903 .917

JAPAN .049 -2.799 -.633 .046 -2.743 -.602

LUXEMBOURG .('a4 2.356 .713 .077 2.391 .690

MALTA .688 1.506 2.236 .262 .426 .254

SINGAPORE .632 .562 .136 .516 .632 .653

TAIWAN .178 -2.401 -1.119 .129 -2.475 -.953

U.S. .490 .804 .787 .447 .951 .855

jp I



t
TABLE 3. Coefficient Estimates and Nominal 95% (Individual)

Confidence Intervals

Predictor Least Squares Ridge Regression Jackknifed

Variable Estimates (a	 -	 .08) Ridge

(a) Coefficient Estimates

INFD -1.870 -1.772 -1.695
PHYS .171 -	 .125 .113

DENS -1.094 -	 .410 - .606

AGDS .862 .151 .453

LIT 2.298 1.985 2.163

HIED 1.454 1.411 1.662

(b) Confidence Intervals

(-2.218,-1.326)
(- .524,	 .274)
(- .767,- .053)
(- .188,	 .490)
( 1.408, 2.562)
(	 .994, 1.828)

(-2.142,-1.250)
(- .286,	 .512)
(- .963,- .249)
(	 .114,	 .792)
( 1.586, 2.740)
( 1.245, 2.079;

INFD (-3.012,- .729)
PHYS (-1.192, 1.535)
DENS (-4.718, 2.530)
AGDS (-2.738, 4.462)
LIT (	 .748 3.348)

HIED (	 .528, 2.380)
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