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a

This report contains the results and details of a design study and

M	 analysis performed by Advanced Technology and Research, Inc. (ATR) for the NASA
F	 —

I

	

	 Goddard Space Flight Center (GFSC) as part of the overall Inertial Energy

Storage Hardware Definition Study. The study was confined to include only the

composite ring rotor element. The GSFC technical officer for this task was Mr.
r

G. Ernest Rodriguez.

The objectives of this study were:

1. Detailed design definition of a composite ring rotor meeting the

stated performance requirements.
k

2. Hefinative specifications for ring rotor fabrication andassembly.

r
3. Identification of potential sources for fabrication and assembly.

This design effort centered around the use of graphite -epoxy composite

materials. The study is significant because it resulted in the following:

f	 1. High energy density "thick ring" composite rotor design compatible
r

x	 with the "Mechanical Capacitor" concept.

2. Unique multiring prestressed design configuration.

3. Successful application of'a modified Tsai-Hill Quadratic _ Interaction

f^

}

'i

Analysis technique.

4. Demonstrated usefulness and versatility of previously developed

computer codes (FLYANS and FLYSIZE), which include the presence of an	 k'

a
iron inner ring.

t_
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1.	 DESIGN BACKGROUND

' This report covers the design definition of the composite fiber ring-rotor

portion of an Inertial Energy Storage Hardware Definition Study managed by the

NASA Goddard Space Flight Center (GSFC).	 Genesis for this effort stems from
k

I early work done at GSFC on the "Mechanical Capacitor" program. 	 This early work

showed the potential merits of a magnetically suspended ring rotor with
k t
er'

.

integral ironless armature motor/generator construction. 	 The three major

elements of this design concept are:

. w
1	 Composite material ring-rotor flywheel

2.	 Magnetic suspension

' 3.	 Permanent magnet ironless armature motor/generator
f

The GSFC selected item 1. as the logical starting point for a complete

design definition of the inertial energy storage system.

Stated requirements for this effort were to provide design definition and
k

a specification for a Inertial Energy Storage wheel comprised of composite
F

materials to yield high energy density and be capable of interfacing with an

f	 6 appropriate magnetic suspension system and motor/generator.

Performance requirements:

Energy Storage	 1.6 KWhf
(at max. speed)

ff ^i

;.' Weight	 60 kg(132 lbm) ;t
(total system)

Volume	 Less than 0.05 m3 0.77 ft3) ?'	 +

{

Environment
F

Temperature	 -10°C to +50°C	 140F to 1220F
(operating)

Pressure	 < 10 
4 

tors

w (operat ing')

•	 L_

r



77.k.,
The basic requirement that establishes the size of the storage element is

the 1 . 6 KWh capacity.	 Before determining specific parameters it was necessary

r
to select a best estimate composite material. 	 Previous work supported by the

Department of Energy, Mechanical Energy Storage 'Technology (MEST) program

a showed that graphite fiber epoxy matrix material demonstrated best overall

technical performance and ease of manufacturing when compared to other

materials and fabrication technique... 	 Thus, a graphite/epoxy fiber (Celion

6000) and an epoxy matrix (EPON 826) were selected for this study.

`

•

Two form factors (ID/OD ratio) of 0.5 and 0.4,were selected and the design

F' sizing and analysis were conducted using these stated parameters.

r
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OF POOR QUALITY

11.	 ROTOR ANALYSIS

1.	 In.troduction

In designing a magnetically suspended flywhiVel rotor it is necessary to

consider a reasonable geometry upon which the design/analysis will be based.

Early work in this area by Kirks Studer and Evans of GSFC [1, 2, 31* has shown

that a pierced disk of uniform thickness provides a desirable rotor 	 eometry9

from both a performance and manufacturing point of view.

Shown in Figure ELl is a cross sectional view of the original GSFC

magnetically suspended flywheel design. 	 The original design consists of 2

rings	 wit?,i	 the	 outermost	 ring being made Of a filamentary wound composite

material and the inner ring being made of continuous iron bonded to the

filamentary wound ring.	 The stator of this design fits in the "hole' of the 2

ring rotor and it carries the magnetic suspension and motor/generator

electronics.

RCA [41 and Kirk [51 t under contract to GSFC, have done additional work on

the original GSFC design. Kirk concluded that a multiring, interference

assembled rotor, such as shown in Figure U.2, would provide for substantial

improvements in the original GSFC design. The modified GSFC design, shown in

Figure IL2, differs from the original GSFC design in the following areas:

1. The rotor is composed of a number of individual filamentary wound rings,

rather than being one continuous ring.

2. The inside diameter (ID) to outside diameter (OD) rotor ratio (ID/DD)

is smaller than the original GSFC design.

*Brackets denote references at the back of this section.
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3. The innermost ring is made of iron and is segmented into discrete pie

shaped "chunks".

Epch of.the above changes was made in the origival GGFU design in order to

improve the overall performance of the energy st6iage system.	 The reasoning

behind the changes has been 4ocumented by Kirk and Huntington [6p 7, 0, 91 and

a brief explanation follows:

1.	 The rotor is made of a number of composite material rinre which are

IL interference assembled.	 The reason behind this change is to favorably

prestress the rotor so higher rotatitnal speeds and energy densities

can be obtained before a limiting performance constraint is

encountered.

2.	 The IDIOD ratio has been lowered.	 The reason behind this change is

that the original G$FC design was of a "thin hoop" type and suffered

excessive	 gap" growth between the rotor and the stator as it spun.

Since gap growth will degradateelectrical performance it must be

controlled and- the	 best	 way to achieve this control is by

decreasing the ID/OD ratio.

3.	 The innermost ring must be made of iron and is now segmented instead

of being continuous.	 This change has been made because the iron ring

would always reach the limiting strength long before the filamentary

Wound composite ring(s) reached their strength limit. 	 To overcome

this limitation a "segmented" inner ring is now proposed for use on

the magnetically suspended flywheel system.	 The important point to

note is that the inner iron ring will have all the necessary magnetic

properties but will consist of a number of pie shaped segments which

are bonded to the inside diameter of the first filamentary wound ring.



x_

The iron ring thus has no stiffness in a "hoop" or tangential

direction and presents an "inner loading" on the filamentary wound-

compcsite ring to which it is attached.

The result of mak;,ng the above changes in the original GSFC design are all

intended to bring the original design ' s excellent theoretical performance to

fruition in & physical system.

2. Rotor Analysis Methods

It is clear that the design dimensions for the GSFC rotor must evolve in

parallel with the magnetic suspension and motor generator designs (as they

impact on the dimensions and weight of iron inner ring). Obviously then, the

most useful rotor design and analysis tools are those which most closely model

the realphysical system and are convenient to apply as the iron inner ring

design evolves. One such tool has already to-.len reported by Kirk and Huntington

16, 7, 8, 9]and was used for this project.	 This tool, an interactive computer

r
code called FLYANS ( FI,Ywheel ANalySis), represents the most complete stressand

failure analysis ever performed on a pierced disk multiring rotor. A second

tool has been	 developed for this project and is a computer code

called FLYSIZE (FLYwheel SIZE), to size all dimensions for a given rotor

design.	 Each of these nodes will be discussed in more detail in the following

sections.

2.1.	 FLYANS .- Ft1wheel Analysis Com,^uter Code 4	 t

A. ground
k

Shown in Appendix 1 is the background theory which was used in developing

l R FLYANS.	 The computer code was originally written by R.A. Huntington [ 9], as

part of his Master's thesis, while working with his thesis advisor, Dr. J.A.

Kirk.	 The code has since been modified by Dr. Kirk, and the modified version

-	 was used for this project.
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Shown in Figure 0.3 is a schematic diagram of the multiring rotor which is

modeled in the FLYAIIS code. Each of the rings are thesame axial thickness and

the stresses in each ring consiot of a hoop or tangential stress (ere) and a

radial stress (or). If power is being put in or taken out of the system there

is an additional shear stress (tre) in each ring. This stress is assumed to be

zero for this design (i.e., power transfer occurs "slowly") although the FLYANS 1

code is set up to allow any stress input the user wishes. It is also assumed

that the flywheel rings are in a state of plane stress, meaning that there is

F	

rr
	 no variation of the aq and or stresses in the axial direction.

The materials which comprise the multiring rotor are modeled as
jj

homogeneous linearly elastic, specially orthotropic [10] materials, with

material properties specified in the radial and tangential direction. For this

project ring #1 is always segmented iron and ring #2 through ring #a are CELIGN

6000/EPDXY. The properties for these 2 materials are shown in Table 11.1. For

comparison purposes a number of other materials and their properties are also

shown. The source of information for properties on Celion 6000 / EPDXY was a

Celanese data sheet provided to us by Mr. Alan Hannibal (Section Manager

1	 Materials 6 Process, R 6 D Department), of Lord Corporation. The other

materials listed in the table were from an earlier report to GSFC by Dr. J. A.

Kirk [ 5]. These other materials are shown here because they constitute the
j

working database used by the FLYANS code. It should also be pointed out that
k

any new or hypothetical materials can easily be added to the database with

minimal effort.

°	 The total stress distribution in one ring of the multiring flywheel is the

superposition of the five stress distributions due to the following:

}i

n
k

y[{	
^.t^Y1r M	 rn	 F.	 x^F.	 +	 F.	 T.. N M	 t	 ^ F T r Y4 4	 .F. Y+ 	 .y W':F !^Ma	 4=	 .pe .F	 1	 w 	 W..	 .H s. 3.....i1 F.F r^ Ny °s,. 3 +J u.{ a _M y wr M+ y..: rtsi.> }.-.

aW'Kfex+arz-..st .:..iYK.['^«'" .»....^_ 	......	 wat^a	 .'.	 ,,,.FYF'Mi. C°t..".,^+^yft a"c.1+^.._r...• ^^io"
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Figure IL 3

Multiring Rotor Model.	 All rings are the same thickness
and may be either isotropic or orthotropic materials.
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1. Rotation of the ring at constant angular velocity.

2. Interaction with adjoining rings due to rotational expansion.

3.. Interference assembly of the rings.

4. Residual stresses due to curing.

5. Angular acceleration of the entire assembly.
. F.

The stress die.tribution for the entire flywheel is the summation of the above 5

stresses for each, flywheel ring.

Of the 5 stress distributions given above, no. 3, interference assembly,

t	
is under the direct control of the designer. It can therefore be stated that

qq!
S'k

it is the goal of the designer to choose an interference pressure set which

will maximize the flywheel stored energy per unit weight (termed SED).

B. Interference Stresses

It will be instructive at this point to consider the hypothetical example

of how interference stresses interact with rotational stresses in a simple 2

ring "pierced disk" rotor.

Shown in Figure L4 is the stress distribution which occurs when 2 rings

of the same material are interference assembled (no rotation). When the

interference stress distribution is added to '(i.e., superposed on) the

rotational stress distribution the net result is as shown in Figure 11.5. In

Figure u.5 the stresses have been made nondimensional by the factor:

p,00 (units are psi)

lwhere;

pi = mass density for the first ring of the assembly (value is 	
i

weight density in lb/in3 divided by g 386 in/sect)

v . rotational speed (rad/sec)

b outer radius of the flywheel(inches)
I
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Figure H.5

f	

Rotational Stresses in a-2 ring rotor. The dotted line	 z
_	 shows the effect of interference assembly.
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t The solid rive  shown in each of the plots in Figure 11.5 represents the stress

distribution which occurs when the 2 rings are spun
r

without any interference

assembly present.	 The dotted lines show the streca distribution when the 2

rings are interference assembled and then spun.	 Has interference assembly

actually helped?	 The answer is yes, because the largest value of

nondimensional stress limits performance, and thi s value has been reduced when

interference is applied between the rings. Consider the lower plot in Figure

LS. If the working tangential stress of the material, oe , is constant, then

the limiting value of ce/ p,02 b 2 is 0.97, with no interference present, and

0.94 with interference present. For a fixed value of b and a11 it is clear the

interference . assembled flywheel has a larger w. Since flywheels are

characterized by the amount of kinetic energy per unit weight they'achieve, the

interference assembled flywheel will have a larger SED compared to a

noninterference assembled one. Why? Because the flywheel is always limited by

its rotational stresses and for a given ve the interference assembled flywheel

can rotate faster, and thus have a larger kinetic energy for the same flywheel

weight.

M

	

C. Constraints

There are two principal constraints which limit the performance of the GSFC
4

F

	

multiring flywheel. These are:

It 1.	 The flywheel must not fail.

2.,	 The flywheel must not exceed a user specified displacement at the

inner radius (to control the rotor/stator air gap).

s	 E The failure conatraint is discussed in detail in Appendix 2.	 FLYANS allows

:e the user to choose between the following 3 failure criterion:

k - _	 .,-^ --emu..=::_.,.	 ' ` ^
♦ 	 ^^1'^ ^-	 n
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2. maximum STRESS
A

3. maximum STRAIN

and FLYANS will then return the limiting value of.p,0 2b2 for the user selected

geometry and materials. Extensive use of the FLYANS program by Dr. Kirk has

shown that the TSAI—HILL failure criterion is generally the most conservative

and it was therefore used for all work on this project. It should be noted
t	

,

that a prediction of flywheel performance based on one of the above failure

F
theories is a prediction for the maximum or "burst" performance of the rotor.

The second constraint is on air gap growth and the FLYANS code applies

this in addition to the failure criterion. Either a failure criterion or

"inner radius displacement" always limits multiring rotor performance.,

What about interference? Interference does not limit performance; it

enhances it. FLYANS analyzes a user specified design assuming no interference

and then asks if the user wishes to apply interference. If the user elects to

apply interference, he is asked to either input the ring to ring interference
_	

3

pressure he desires or to permit the program to use its own algorithm to choose

an interference pressure set. The interference pressure selection algorithm is

documented in Appendix 1 and details may be found there. If the program

4

	

	 selects the interference pressure set then the user must specify the maximum

allowable radial interference (i.e.. % INTERFERENCE . radial mismatch between 2

rings divided by the nominal radius of the rings). Typically 0.2 to 0.5%

NI interference is used. The FLYANS code will then compute the "best" pressure
aµ

	

	

set and will return the new SED and p lw2b2 values. Typically the SED will

increase 20% to 200% over the identical design without any interference.
7

Finally, the FLYANS code-returns-the partial assembly pressures for each of the

r	 r.. r r 
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rings.	 Rings are always added from the inside out, so knowing the partial

assembly pressures and ring thickness, it is straightforward to calculate the

assembly forces (this is exactly what FLYSIZE does).

D.	 Summary

The FLYANS code will analyze multiring flywheels including the presence of

f an iron inner ring.	 The required input parameters are summarized in Table 13.2

and typical output parameters are shown in Table U.3. 	 The code will select an

interference pressure set which maximizes the specific energy density (SED) of

' the multiring rotor.	 When this code was applied to two 1600 Wh multiring

^l
flywheel designs for this project the SED went from 25 Wh/lb to 41 Wh/lb in one

g case, and from 19 to 42 Wh/lb in a second case.	 The detailed output for these

two runs is presented in Section 2.3.

â 2.2.	 FLYSIZE = Flywheel Sizina Computer Code

A second computer code has been developed for this project

and the program listing is shown in Appendix 3.	 The purpose of this code is

to take output results of FLYANS and vombine them with the specifics of a user

S at
design, in order to produce detailed information which can then be used to

r generate engineering drawings for each of the flywheel rings. 	 The user

supplied inputs are:

.'
t.

1. 	 The number of rings in the wheel*

2. 	 The outside radius of the wheel, (inches)

3.°	 The inside radius ratios for each of the rings*

4.	 The calculated or specified % interference for each interface*

`

't

5.	 The user specified maximum inner displacement ratio*, (nondimensional, i

equal to actual displacement divided by flywheel outer radius)

6.	 The required stored energy, (Wh)
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d Tablle II.2

FLYANS INPUT'PARAMETERS

I'
1. Number of rings in the flywheel, (dimensionless)

►
2. Inner radius ratios of each ring, ( dimensionless)

t° 3. Flywheel materials, each specified by

a.	 Name and identification number

b.	 Orthotropic ratio,Ee/Er , where

-
E 
	 = tangential direction modulus of elasticity, (psi)

Er n radial direction modulus of elasticity, ( psi)
r:

c.	 Tangential modulus of elasticity, (psi)

d,.	 Weight density, ( lbs/in3)

e.	 Working stress in tension in the tangential direction, (psi)

f.	 Working stress in compression in the tangential direction, (psi)

g.	 Working stress in tension in the radial direction, (psi)
G

r
h.	 Working stress in compression in the radial direction, (psi)

r̀
i.	 Shear working stress, (psi)

j.	 Material cost, ($/lb) 	
^

k.	 Residual stress parameter, ( dimensionless)	 a

4. What material each ring is made from (chosen from the user supplied

database in item 3).	 E

5. The maximum inner radius displacement ratio ( i.e. gap growth divided by

flywheel outer radius).	 #

6.
^s

The maximum _ permissible ring interference X.

r _

^i



x	i

E

Table II.3

FLYA S OUTPUT

1. Specific energy density (SED), (Wh/lb).

2. Volumetric energy density (VED), (Wh /ft3).
3.

2 2
Limiting value of plw b , (psi). '

4. Which ring	 imitsg	 performance. i

5. Interference pressures at each ring interface

a.	 after complete assembly.
A

b.	 to assemble.

a

,I

r

:

j

1

M

t

t
`

4

jl

st

H

}



r

Y'

7. The limiting value of p iasbs , (psi)*

4 8. The calculated SED, (Wh/lb)*

^. The calculated DED, volumetric energy density, (Wh/ft3)*

10. The partial assembly pressures, (ksi)*

• 11. The weight densities for each of the flywheel rings*, (lb/in3)

The FLYSIZE code will then compute the following design values.

1. The inside and outside radius for each flywheel ring, ( inches)

• 2. The radial mismatch at each ring interface, ( inches)

3. The flywheel thickness, (inches)

4. The weight of each ring, (lbs)

5. The minimum conical taper which must be present on each ring to allow

interference assembly, ( degrees)

s: C. The maximum flywheel rotational speed, (rpm)

7o The 'total flywheel weight, (lbs)

8. The maximum . inner radius displacement (air gap growth), ( inches)

9. The partial assembly forces (assuming a 1-1/2° ring taper and 0.1

t	 interface coefficient of friction), (lbs)

The calculation formulas which are used to generate the above outputs are

a"	 explained in detail in Appendix 4. 	 Shown in Table 11.4 is a summary of thee

design, parameters which are utilized or calculated-by the FLYSIZE code. The

,.	 symbols shown in this figure are consistent with those used in the FLYSIZE
a..

program (listed in Appendix 3) and will permit an easier understanding of
;t3	

FLYSIZE logic.

Taken directly from the FLYANS run.
•



AFk

ek 1	 . `

yA	 Goes

of p^^^^	 Table 11.4

FLYSIZE MULTIRING ROTOR PARAMETERS

n'

	

2	 1
Y(n)	 Y(Z)	 YM

WT(n)	 WT(2)	 WT(1)

a(n+1)	 +^(n)	 a(^)	 a(2)	 a(1)

1.0	 RR( n-1)	 xR ( 3)	 RR(2)	 /RR(1,

INE(n)	 INF(2)	 INF(1)

PP(n)	 PP(2)	 P(1)	 (,	 .►^-

F(a)	 F(2)	 F(1)	 . b ,z

Disp	
fl

€	 • • • • • • • • • • • • • • 0?	 r

	

4	 t

E

SYMBOL TABLE

SYMBOL	 INPUT/OUTPUT	 MEANING

1, 2,---n	 I	 Identif.cation
TM, Y(2)---T(n)	 I	 Weight density

°	 WT(1), WT(2) --- WT(n)	 0	 Weight	 s
"	 a(1), a(2) --- a(n+l)	 0	 Radius

RR(1), RR(2) --- RR(n) 	 I	 Inside radius ratio
INF(L), INF(2) --- INF(n) 	 I	 Z Interference
PP(1), PP(2)---PP(n) 	 I	 Partial asst'. pressure
F(1), F(2)---F(n)	 0	 Partial assy. forces

b	 I	 Outer radius
DISP	 I	 Inner ring disp

a	 ,



The-PLYSYZE code has been appliedto two specific deeiEos for this project

and the results will be presented in section 2,3.
A

w



'e 3.	 Results
`r

Both the. FLYANS and FLYSIZE computer codes were used to design two rotors

for this project, and the design drawings for each`are presented in Appendix 7. f

x These two designs are identified as NASA-12 and NASA-20, and they represent the

results which were obtained from running the FLYANS code over 40 times.

` Shown in Table II.5 through Ix.8 are. the FLYANS output for the NASA-12 and

NASA-20 designs.	 The results shown in these 4 tables are summarized below.
a

1.	 Table IL.5 shows the results for a 6 ring rotor with ID/OD . 0.5.

This design is labeled NASA-12.	 The design is unoptimized and has no
r

interference between rings.	 The RED (specific energy density) is

25.0 Wh„Llb and this number includes the presence of an iron inner

ring.	 Displacement of the inner radiu3 (which is equal to the air gap
F

growth due to rotation) is less than .006 times the outer radius of
'r a:

the flywheel. y

2.	 Table II.6 shows the results for the NASA-12 design with interference

between rings.	 The SND has been improved to 41.0 Wh lb by the effect

of prestressing (through interference).	 The inner radius displacement

is still less than .006 times the outer radius of the flywheel.

3.	 Table II67 shows the results for a 6 ring rotor with ID/OD - 0.4.

this design is labeled NASA-20.	 The design is unoptimized and has no

interference between rings.	 The SED is 15.5 Wh/lb and the inner
4

1 radius displacement is less than .004 times the outer radius of the
I4

flywheel.

4.	 Table II.8 shows the results for the NASA-20 design with interference

p between rings.	 The SED has been improved to 41.96Wh	 and the inner

u



_	 ^ __- _^ _,...,^,^,..-«,-•.^=A-•.,.-.	 _.. s	 '-ter---^+,^.^:<,=zr. ^ yt^x

^ w o: o o.r ^ ^ 1
owc o ^, rgU ^ ,

tt
N to CT O O O fg a

'	 > WNW
a 46

N
/

N 111 N _i11
k

£	 n4 -	 ^i,y

1 1 / 1
q	 h^i^	 t

q r`,.c
^-„	 ^rt,, `̂̂ W

1•t.
v v o 0 01

F

xt s z	 IC Il K 4	 is • K 11.	 s 4 c
s •°c : eu W m W	 to w&

F	 a f IV11	 \ O ♦ D ♦
Q ♦ G + O

Sai O ~ o N C 0 17f	 N M O NFc, k ICD^ C +r•t0 W O	 •. 0 10 10z	 t s Y F O O p Q ^7
'a x 17 Z Q Sa a '7 i "i• W • Y T H 7 ` ^TV V T Y T #It

t t O Iy	 y. 'M V A f 7
s O JN

0 r
rJ• tJ

0ct 0"J1f W	 •" Y7 iW
q N V% Y N Y N Y N w N Y N

"k!

A
Y

fr•	 N )sfaa
WHWrP O 0 C co C
sw o.

M O f
qr

W

Ilia

F t^iiN N
z	 . WoN
F zW fi O AWfi^+

# : s Hf11 Y O
ti * e1c d4/

WA W% C W-M N f;, iii- i- o V 0 dr 1- C rw! W VI C7 O C" O O 04 O O C" f l O 00 i7 O Om O C5 00 •If O OC "Q^ 0 O Op O V nv 0 O 00 C I 1.7	 QQ f7 O *aA a	 C7	 tSC;r 11
H u yN YY fr: N W%w W OA MO 4 W Ow ^ I Q MO M2	 Y'1	 OM7 w fo vi.r. ^. t W 1=19 N /'►.	 N%O O N fNN •I	 N	 0+10 W'f r PO: N	 00 Iw ^O N. on	 1'N. f♦.

r 9c N v ^• ^• ^^•W n. r`v z•	 • ^^•r	 4r. t • 	1 + p^•
lJ. :• 1 • 	 ;••

_P	 ^nfn ;•	 •	 ♦•n 'IMF
r	 • ,^•

IY1	 'vYl
^yrfv N Irip W a J. 't

z W

` 1
H

M x
Q

W
W

W►.uS N
r1- aaVn

I^./ t.= M
1-	 wIn

I.u►ruS M
0-

hue^ux N
; ,-w

^fJN/.IS M 1..ui-.u= iA
z fJ J LDW NNc)v q-"

t-f1fNO^rv/. v/NNrlq."" rrMWO"Mc3q. W.0 M-rlrawl141vC'1^^v1O J ZV/n CL C MW OCC•CCN C)COCOw C:000Cow CC:CSOCo OCOCC)o►^ D H wIfAN WCK2aW OOOQ13W .:147O"jl3W C.)-OOt7-^fW 00000"A .71JJ^W
"'

W UWVI I t 1 l + ++ fV ++++ +CK +++++t +++ ++o ; ++ +44: +++++C-
u

M
•0

M
M

104
oeoC>i
Oh-%&

1770W1-
LCCCffnH

-fNC^t00f
W"tlPVNN

vtrGtOtJF+
10-0P q•NVl

H1H7rr0ah-
40 %00,klfNvi

01VOW00.
%o 100• W4.6n

-00azoQUIZ
%ava-0^140!1'M n 1C -C =in •• { • • • • ^ • • • • • ^ • • • • •. • • • • • • • • • • •

.. w N H t"t-N'1r.r^ N^ I^fW'= N^f4N"I- hi•MPVr Nrftilti^M^ N"Nmf= =-
!^ IL I V► O W W W' W W Y7
W Z W 1.1 7C1^ O	 4 10,	 K h	 if h.	 -K Y1	 t wO Z D H OO t 0	 3. M	 ?: M	 M. M	 :w 1w O e W 16(40e •	 fr 1. •	 M L.•.	 H t!	 N• M' i	 1^i i

N M ^' D D

r	 rY W- W.♦ J Y ^+. 1.1 U %a	 W tN l • t O C O O O U O_. V.	 K V	 K C7 x i

d	 _ P P	 X: IC, em fy	 ):1 P CP.•. r
ac

,

•r. rtz
W 1.7 4 7 0 .,^ "'J+ ; + ♦ +,,
W a v r ~i r

r O ^O ^O .p; $i
E

Q9 W 4) .^ y 1J.. S•7
'

NF' Q AO N N 111 N`t W 0 P. A; I%,, A Av ^" M M M fn M

tj
{^:{ Zdttw N f%. w P

ED -..

F -..,. .... ..__.-..^^^.	 ....__ .,.,..«. y...t..,...r,,- ^,::.r	 a a.w.a...

..^a
„•>rr.^-, •w	 .:v•,a ,.W.... ,,_.^ s, a.a,:u,.m ..	

_.s 4i + :LTR1 +.1^n'a+a«t



47,141,04, ir

ORIGINAL PAGE 19
OF POOR QUALITY

IL w

uj
J

G IK It In

at
ft

IV 0

♦
V► 4D Vim. tv v-
dD In I- w

%
ru .0 or

&

ox
=

co C I.- -W
N j 93

0 cri

in

0 OD	 3w aj qc 49
31 31 bc J Q.

Lu

0 O
0
m

M
a

C3
O

x Lu
r

In0 ,.
C) w Q .1 31 Q

3 r2 13 .-J Ap -V
0 O 0 C3 04 d coF L4 oo	 (i go &a f'.

IV*
N N G. p u.
w

oft
C6 z z C4

WA X n 42
0-4 :4 ga Y .0 -C

V. a-. ui IV
W cc

0 mo usui CL "Ah z 0%
W C	 401 LA at w a
IC ML.	 Ir P. w "1 .0 W M. Lu

I



on p" Mi

1MUM a So
.

i N N	 N fy`Yts i
1 6	 1 1'

a to a	 ► IN.

p p p ^.
c z z CL c IL	 w a s	 fz c a.	 c
< O m w m w m W m	 W m W m! NC	 J J -% J ^ J	 -ft 'J JId̂ss	 3ORIG INAL PAGEPAGE

p
C0

N1 0 G' -% p 0 ^	 O

t OF POOR QUALITY

4wxo
.»KO

N
W W.

O N
t 

W. G1 M
a W.

a M	 c M
10 W.	 ° 0. O N

a ..
±;

t r O Q Orr f7	 O CJ'z O R 0 z 7 'W	 / V • V • V •	 V• V •
•, < s O f1 V M " ty V	 M is Iy	 i7

N:
W	 •
M M

W•
Y Nt

W eW
Y N	 :

•	 W	 •
Y N	 Y N

W	 •
Y N

x t• _Z J on n	 Ir+ on )
im•rs^ p G C
immwwo O
Wf•h- O O	 O

t P.	 a t^
,M	 i^on

! W
C •• p ..

W
vim1Y•t O O	 O O
WH ►• f: O	 C C

0 O	 4.0 1a
P' Y,NN + +

IXWm
O O r. •^C d 1.1	 V fV

1M Z H 1 i 1
N O
N tt H

a Ott

k • h• .1	 fns N	 V- h'1N N Q .f•• Nt	 O V•- N.	 O .fp N O rV,►
1	 ' 'N '• H 0 0 O c  s7 O 00 O O 00 O O PY3 O O 00 O O tmo H^. Z oa 9400% O: O 6:^0 0 O QO O O na r, 7 an7 O O '7 rD O .1 00O u wku" 1	 +	 1 I ++	 1 1 ♦ 	 +	 1 1 +	 +	 1 1	 +	 +	 1+ ++	 1 VN W m Gewo N f► Vno W H NOr ♦ r C:V1 0	 f "or O ^Q O.O fro	 O . 	.Cr 41

•` C h W HO Y co NO m N Oaf N N •+r w Or r 1
r r	 r%fqS

V!
^. Q

7

J
J

! 	 r±.
1

!'	 ! 	 •?W
+1	 1

IM us	 YVfL cc
H

< H tD tr <
s ! t h. At
'^ N W W had►^uSN ►.u1 . tdSN I^u WW(n f-c+l-u0N haul-tJSU

e - z y ►'h'0.. CN FI'- fY. G' N h'h • LYCN Dan^h'^K N	 Hf- ^. OC Vf hF• I^KIA:z O J taw r^r^•^VI fW Y'k'rN MrJCV- q-W N r%AMV-r'N NN[7 V'V-N fVNJW-•MV)O u J ZVrr+ CCOGCVI GcOOOv! Ccc:.CQVf ccocoV! COCT cCvf OC'CN'::Ctn,y H 1700) Zow 700oOW 07'^ SOW ^JJ taW :7J'J 7^wtiff Q S ^tWN sl Itt+Oc ++++4tt +i+t+•C tt ♦ t+< +++tiK +++l+etn <. M W 1 •LOCAL Q 00(- - wmoco01- -444- D {71• .rN •J000t- .fV00001• d(bt^4DtW an N IH W- CL/CCV1N 'O'OOr VNIn %0 %00 &N r N rO aOP• efNN	 aO^00r'•NrVI 'O'•OPtf^'K.
-.

M. on hfin r•MM^ = fbt►H• M1lr=. frrf^N^	 SVrP N4Z f^...+i'•-N^•.zh•-f+N^=
h• r K too W W W W	 W W! i D N!	 " O	 J O	 1 O	 J O	 J .,	 J O	 JW t: W Mgr O	 t in	 < h	 t W\	 S V►	 t W%	 K e

wl on
W. t'4 O- w Y. fLNfiC ` •	 ty •	 M •	 M •	 M	 •	 H •.

y
. « M O O H O	 O 7
F`t., z z.

0 ^. ...	 W V	 W V	 W J	 Vf 4	 W v
'	 1

t Q z ! O O O Q n	 p p t
41 09

t ;V	 X N	 c N	 X N	 Y !H' O Or Oa P	 (A G
,;,.	 , O ^ ^ ^ r I	 r ^ t

m
^r
€'` V r r fV	 N N !{r

1 O Nk W v .v r V	 J w t(	 '

)
h•c C, _o f7 t7	

0
' KW

*7f!\ 1 4 ♦ 	 + t

rJ

^u .Zy^cKS i i i f`	 R O

Mtn r

.	 -'--•w • t	 .	 +..	 : T *.v:s a	 ... .`.,	 .. w. ro•.w	 w, .,vim.•

t

F n.. .gin	 ^ a^	 4 -.....' :ar"r-	 •r	 '•	 ;



ORIGINAL PAGE IS
OF POOR QUALITY

7{

1

N

W 1

>r

t.M
N

;t a

w

v
'O

a[ p,

!!!! .i ifl. i Gbe 4D
V

A9 •: Y F1
H

N' N a r W
C. O O 1
O O O

H
M 1p OM < Z b

N A r N W M H •.1 M H
N ♦ O 1-- ID VI N N N yN P., W Z >tc Y Y Y
• • il^. t H

on .* u+E.
v, z re .- UN

•+ O O p O m 0. N .f N

,fOC < ^/ ♦ M W J 1 1
oC J M o 1-

J .
' ^ry

im
W Z N O W. R S

a
i J * ^W VV v< w< Q .J 1

O >E z ; S
r r

11 M M M
w

•y = it 1^ /^ b^ < O a w of aC aC. ^
Vf m X 1[ CI ^ K K a ^ Vl > > > > 1

4

1 O. -1 J a a Z Y J d N N N w I
W V) V) U) N`

{/^ •^ N 1^ 0 p 0 wl Q IK W W W W W
C Gs a o n n is p O z c aY a ne o: 1,

n o+ o .^ u o a a a a a i

!'7 G Ca O O # N O co .0 W M> >~ Y >b
O 'O O O O ^J 1^ -G OD N 1^ N N N N ".
G O^ r, C^ O r OD N In O W nl y V) N N k

M^. N O 1^, r V r M1 N r I- r
1+1 J N O

N 11 M N M M N N M M W M
i ^. J 1- O N

^. c ^ti v « r r ..
J t.l ►^ VI N M z H m N N N N a

J m Y / ^ N M Vl M N M F^

^.
v.

UL J u M6 u W \ mi
7K

O O O. O
H W In G J D K ul W W W
p W > W W O O O D

m r 67 M to ti is t W O O a. O.
w z w z R W U' L R C K A

^. r. W W .7 W i J S V
"`' ^' z 2 8 i \ L% O W W v O O W W

-: s < .- o W a W CL W r_ .. Z z :. z

ul ! W l9 y 0 w 2 O ;^S Q m OC
S IL i Z: r r.I W u ... >. su S.1 r r t :H " V. C ii 4 J. S u•
}.. 19 r M Y V) 1L. f v

s



I^u h
p C GWO O-

co o O o	
0 0 ORIGINAL PAW IS }

,.. on a °• °. °• °.	 a
OF POUR QUALITYu4mor

IC
z £ I► 	 3: a c d c	 a £ IC	 c

i 0 Q! W a. w	 /D w. CP	 W	 M Yf	 lu d:

! a 49	 J ` J ♦ J % J	 J '^	 J
CJ ~ N	 N M*	 '. , ft? H A G~ C C C

•K O W r O r
W u L i C3 z 0 Z 7	 IC O Z	 Ca .'.
fn- Y	 1 'w	 • IJ	 4 V	 ',. W,	 Tri w	 -t

O N Y M U H w	 61 Y M V

W WW 0	 W f YJ/ 0
N h Y N V N w w	 w N w N

rc Ca p C	 O C;
sots O p p	 p pYaQ I.- • •	 t •	 i •	 I •I-.	 Js	 Y•
H G

v

W
1.1

` ZW

Wh H
C 1LY. V)

ccui 1c
YO v

O O
i'

O	 O
i	 C

o

i1-d •
^" v

fV • N
8
F. !i « 1- w 0 fnN r O Mr •- Q yr r O -ff0 r L .fr r !, rtrbi VP c ran O O 00 C2 O 00 O O OO O O 0f^ O O 000 F-1N O Is VIVA+ r -	 f;l	 00 4 O 00 O O 00 O O 97O O O MO O O 00 al«+ u u•"04 1	 4	 1 1 ♦♦ 	 g o ♦ 	 t	 1 1 ♦ 	 ♦ 	 1♦ 	 ♦ 	 ♦ 	 1 I ♦ 	 ♦ 	 1 1C W h f 9nw ICI	 •-	 V1 1f! A V1	 60 .0 %0 P V1N 0• O •-O 40 W Nr f0	 -0	 If1M1` N £ -K W 1-0 w r	 M	 11 -.0 O M MM O t- &0 •- M -O J. P 40 rfA V
C. 1 ►. Or Vl v •	 •	 0 • ^•	 a.•	 i •• ^•	 •	 t• i•	 6• ;,,• ii	 •	 f • l •	 !•	 ct•i ►^ ^. J '1.1 Y !WV W !V ^V. 'lAV M1	 p- w ^R! r%."M1 M1 +r f0 W	 -f	 fV-•

(c 1- 01 01 [ 1 a
0 z Y. /rJ W= m 1-u ►-uS N hu1+uS N 4-vl-uS N	 F•u!-uS N I^uf.uS Ny, O V! 1-r-cd WO P-h-WwvC	 . 1..-1-fXww 0 -1-a MW h't-Wf tlf u J ow r•-q-•-rN r-ovow-r'N NNOr- q-h NNC?re W fwvc2q- •h NN09-w-N

y O J zo— CC C3000 cjcCcc.OVN OOOGON OOCC WOh C:^OCJOCNn ococov!•• O M MJ/ -1 '^ 7.00 W 0^7JGO W O a7L7(] W La.;^ f>OO W OaO».L O b3 JO W
'' t M N 1 acccu -#N00000- -fftm0a0Oh- ^fgfNrjwoo-	 wowzF- -/tV000O1-r>	 n P V on 0-1 f-r 01-x• C-MCC3V1h .O-OP WWW r%D0lWN0 R010014NSn •04Dp..~r

LL K R- rrM'rM• = NtT.fur-= ht	 Nom= f^N-hN^-	 -ftTf^Nr NrM1.(Nr!-..
.. MN H

0- r 4 1"a 4! W W W	 W W-	 x z * ck 17	 M O	 J 0	 J O	 J O	 J a	 J O	 Jsu z W .+z r o	 -IL n	 s h	 a in	 NE	 N	 4c fn	 sa- w 0049 O	 ar M	 : M	 X.- M	 w M	 a on	 .0

• ►n > > Dk r * C
.0 j

•£
z u w u °n ° t

e

d
m PC PC	 0.0	 s (aa	 m

t cc ♦ 	 t ♦ 	 t ♦ 	 t 4	 t ♦ 	 t ♦ t 1
i O	 3c N	 _ N	 = N	 Z N	 c N	 c

;.xl
•/ C 0 O- P	 P> Py O r ^- ^ ^	 ^ ^ f

j	
a

.- rV N	 N N
cv r r •.	 r •-' i

us 12♦ + 4

r 40 10 10	 O r0,

f.17 0

zA\ ♦
us r-

..
.. Za a v .f. in so P

69 a

rr

it	 r

%:•



`fig^e

ORIGNAL PAWS i5l

OF POOR Q4AWTY,

1p,

Iw

O

W 1.
j

04IL

CD
CD p z
+

M
me
w

z

r 0- 4D

of

lb
I

OIr CA

ax dt

gy
zt fn w N j a U. Wa

0 1.- 4 1%.
**'

%. I	 a)• J • K. I& Is .4
'a

z

in I- rn V- Q acPC IV W%
c. 0 rn a

L  C3 2

"
• P. +

M I fl-

Q
0 0 co I* N

Q 0 0 -C 0^ Wt oo on
m co CV f to

0, U,

a 10
vo

if of 0 0 11 0 14
J 0- FM

tn b..

.1c

Q z z
0. ui W qc W z Ir z JK
wo g V i V. 16M -% "o

"I n 3b 40 -K
%. Y r Y am (D
I— LD CD sm x jw "I

w LU
.2

at 3L z 0 w "A
9. O IL Y U) AL LU z
; w = AM

W.
41

tr_ u 2
IL AC w W w

-8
u P.

w AL c LL

N

R»..-.w...

f`7



MO .. ...
w

W C'..	 G M1 `'
^

.n. 9

f
^ oW C O 1 ORIGINAL PACE VS

i
^Q :

^

O O	 o o O, DOOR Ql. ALI R Y

1 ^ ^11 1
E..

' W OK tit	 C, a
t = = O. C	 IL	 Z d r	 IL c L =

r
' _ t O SL W d	 W tL W aN	 W c

•q a Q ' a	 p -^ Ci ^i	 ^g ^
Q

M M	 O M 1:! N	 p M W ^.Je .; N O cp Oi •K O W r 40•-	 O r %p	 d w W rK. u ► Cr 17	 C1 La	 Q O+x ; k	 ^: w Z o s o	 _ Ca 2C3	 C2'' u IN	 V	 ♦ O	 ♦ ' 	 V.	 ♦. V 1

'

` t Q . Y'I Y	 h 0 H LI	 ^M V 6M C1
W W*	 s.W inW W	 • W N h Y N	 Y N V N	 y I y	 I\A

r	 ^t u
on

► nt	 Vf O O	 O	 O 4a•n ow O O	 C>	 O

UAW 0-

r _	 yr
7

F I^ y i
UM

--0104 ra

pp1 aW 1t O	 A O	 f^	 A ;iWDt.'v, C:•	 r .p	 IV	 C
'C	 v H6. t •	 r • •.	 s	 •

tit a 2 H 1 1	 1	 1
!

.,

_
M
#

•.
+

by
w . .QOt,. to	 M M	 H.	 H

_.
f;

r ♦ N N r• M► r r Mr N C M•- N O rr• N 0 dr- 4'• M +A Q 10 60 O Ci 00 Q O oO O Q 00 CQ O C= O O 7f fZ. N T. D: VIO/. O .̂^ r 70 C O OO O O Cl0 0 O mm O O C'Q O 0 00
° O u WWM 1	 ♦ 	 1 1 ♦ 	 ♦ 	 11	 4	 ♦ 	 1 1 ♦ 	 ♦ 	 11	 ♦ 	 ♦ 	 1.I t	 ♦ 	 1 tC W •r aVIN 10	 r-	 &n 00 P r In.# r C . AP h O CM,. W. r +000 .p	 C,	 Inc)t pl t H W }gym O	 AM A r• tih O r• 00 N r N.f O t0 ch r W- ^ k

i •^I v t •	 •	 #•	 • I	 •'n•-	 ' -► 	 t • I	 1+v.• •	 •	 •i	 t •	 t^ • 	I • i	 ti •C 6i tM6	 • t. •- go	 Wrl	 W-	 ^- •-r •- In 	 VIA	 w -I	 1n0+ Cy 01	 Ivv- y }
t=D

.J .1 1	 1 H r	 t-K ►- 0.4+ Ilk
x ► ^

I' d er{ N
wr(rLn r IxorWh~- raau=iM P-"I ¢wW►~-/u-wcrV=i• F-ul-u=M /-1

d 7
y.

rt-aav+ ^p^:
g G

O
u

J
J

t9Y1 -•-^Yf►^.
=000-

tWG%^N NNOr►NOC.AOC +OM OOC/pOVt NIU7^►H tVN^Je^^N NVOrr-y toZIA-
—04 C30 a3^aw 70.200W coo- vow

C+Gr-jccm OCOL'aw
00=0=W a000 w COC Icsow

t^c70^1.7W E^
Ht on W

S
1

htWN
•tall

;, I I t ♦♦ or
0JO.7^ ttt ♦♦ a tt ♦ ttawvpwhH dNOg0a#- ♦♦♦♦♦ or	 ♦ ti* ♦ O;.er'sovol.- tttt ♦ of

-.^ u. NJ N H C•-^ MCSC4MV► .POPVtVN	 10 4001.fN40 10 %M -MAn %O+OPVNN VNO0001-+OOPVNN
„

W M; c N rT-MMf •-H f4•-►.- rat- F	 Nr+-"q-H Nw-p^rw.$- xt-N44- r
~

i r*-k-IV•-Z
r k. 1 N O W W	 W W	 W Wx i v w	 04 O	 J 0	 J O	 J O	 J O	 JC w 0-M r O	 K In	 E h	 K M	 4C h	 4w in	 iD Y M 001 O	 > M	 Y M	 !#n M.	 in	 30 M	 iM O i WdN a . •	 M : •	 H e • of (•	 •r . •	 w t .•	 w

cr cm
W

a s >C O C O	 O O	 Q p 1
S V	 RJ K V	 K y	 K .J 	 K y	

34a ♦ 	 <♦ t ♦ 	 t ♦ t ♦ 	 i
Ic IV	 C IV fm	 ME

s •	 •, ` •	 •;
r • ia +

« r  N	 N w-	 fN d	 Ijzis-
Uj r3

^ u a ^	 r
'_

r t^
A

•. ^p	 +O +p	 .O ^ ^	 I

/-o; r,3 c^	 /5 o	 C Oat o a •.a	 f-1

N W M1. A:
rN-	

,.
-N._

c
`^ r' NI	 HI M	 h fn.

CS
~	

G
i^tl- u w

ty

At



oR;L-1If1 AL PAGE

`	 OF POOR QUALITY,

I

1

W

"
^j

1gjJ'

w 1

O
R

! W
H
O

on•
(0 • {^.

W 4^;.i t i- +
O 10 K ^O
^ a a=c

W ~'E N fv O r '
r a o 0 1 CD

' N Ilk 00 I- ISO y N N N b
W, W 3C t[ m w u H

• • .• s L1:. M V in

H
Ir, a a a «+ h n H t►

0 0 0 m, .^ f>• In o

Z J N O I•'
Ka co O 1- K 1ti

M W Z W J O M. /Y =
• F R • \ tD M

C^ It II M N
M M 1 n 1- N 3

F H H H O t W W LLl W
£, M LD iC K GI < R f s w - M, D D O '

s Y J a.. N N y y i
& N- r m M J O M O K W ^c W W W W §
"•--^ t? o r o c o^ d v x a a a rs a
' J.. D o 0 O r= O IL tl a

;,,., O L O G O a0 h Iv O> Y Y Y 1.
O %p._p to O 00 .t r

x	 f^*iI C• NU . _O L C^ r OB ^O V In W M M y M. w

k 's -	 f^ ry .I v1 r ^f r PI N r' H r
M 'f UN 'p

H 11 M of N 'II 11 M II n M. N i
tt gg
f M 1' O > N V.- iI f	 t

4 r _ PI V s-4 ► h. r,
{ J M1. N W H Z H m N N M W
i	 :. d W W K W Z L Z K j

It : h At -7 " i u yI \ W. G O O O R	 'i:

` M W In O
2.

O 4 Y1 W UI W rO M > IJ- Y W W O O O O
IL. 1+7 H v7 t[ Q Y W O O p p

•' Q ul x tY Z a: W t7 L fir. -V !• K+.K F ►J W W i J fL . ri.! r cr 2 >C i v r O W W. v tD l7 to to
X 9- M P W` > W 416a ;c Z z 2 Z
I- fE C IL W S. _W V-
660 IC W lA Y IL' V _ O fY Q aC Q

• Y aG s . Z r ... W r: > w i I

Pte'

r



S

radius displacement is still less than . 004 times the outer radius of

the flywheel.

One of the additional, and very informative, outputs from the FLYANS code

are plots of residual and rotational stresses va.'radius ratio for each design

being considered. These plots are ^hovn in Appendix 6 for the following

stresses:

L Radial residual stress vs. radius ratio

2. Tangential residual stress vs. radius ratio

3. Radial, stress (at max. speed) vs. radius ratio

4. Tangential stress (at max. speed) vs. radius ratio

and have been obtained for both the unoptimized and optimized NASA-12 and

NASA-20 designs.

In order to apply the FLYANS results to a specific design it is necessary

to specify the following parameters.

1. Total stored energy in Wh, h value of 1600 Wh is being used for this

y L	 project.

2. The outer radius of the flywheel in inches, a value of 10 is being

k	 used in this project.

I	 Once these values are specified, the FLYSIZE code can be run using the FLYANS
k	 Y

output for each design being considered. When FLYSIZE is applied to the

=-^	 NASA-12 and NASA-20 designs the results are as shown in Tables II.9 through

11.12. Based upon the results shown in these tables it is very convenient for

the designer to choose the dimensions of each ring of the flywheel. The method

used to select the ring diameters and tolerancesis included in Appendix 5, and

the detailed drawings for NASA-12 optimized and NASA-20 optimized are shown in

r	 Appendix 7 of this report.
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NASA-12 UNOPTIMIZED 6 81140 CELION 601:10/EPDXY FLYWHEEL
RUN ON 12-26-198Z AT 11:06t5t

RING IN. R.	 INSIDE	 OUTSIDE	 RADIAL	 % RING MIN.
NO. RATIO	 RADIUS	 RADIUS	 MISMATCH	 INT WEIGHT TAPED
(--) (--)	 (IN)	 (IN)	 (IN) (10"-3) (LBS) (DES)

---------------------------------------------------------------------------------
0 1 50 ► 	 5.000	 5.200 8.1
0.52r)	 5.200	 6.000	 0.000 2 — 	 O.C, :— Z 6.9 0.0
0. 600	 6.000	 7400	 0.000 Z- 4	 0. 0 Z— 4 10.0 0.0

4 0.700	 7.000	 0.000	 0.004) 4 — 5	 0.0 4— 5 11.5 0.0

5 0. So	 S. coo	 9.000	 0.000 5 — 6	 0.0 5— 6 1Z.0 0. 6

6 0.900	 9.000	 10.000 14.6
RING THICKNESS(INCHES) ........ 4.4
RPM(ROT/MIN) .................. :30oSSO
S ED(WH/LS) ... . .......... . ..... 25.0
VED(WH/FT 6—,;) ) ... . ........... . .. 1,984.4
TOTAL STORED ENERGY(WH) ....... 1,600
TOTAL FLYWHEEL WEIGHT(LBS)	 ... 64.0,
MAX.	 INNER RAD,	 DIP. (INCHES). ').060

4

PARTIAL ASSEMBLY PRESSURES FORCES
PIN$ Z ADDED TO PREVIOUS RINGS ..... 6.6 k' PSI .... 0.0 10^3 LBS
RING 4 ADDED TO PREVIOUS RINGS..... 0.0 I.PSI .... 0.0 10"3 LBEE
RING 5 ADDED TO PREVIOUS RINGS..... 0.0 kPSI .... 0.0 LS^

RING 6 ADDED TO PREVIOUS RINGS..... 0.0 t, PSI .... 0.0 10^3 LBE

RING WEIGHT DENSITY RING WEIGHT DENSITY
(LB/ N"3 )

---------------------------
(LB/111':3)

1
-------------------------

0.286 6
2
11
4 0.055

055

DATA FOR THIS RUN IS IN FILE	 B:RUN-13.DAT

I

	 Table 11. 9
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t
NASA- 1, 2 OPTIMIZED	 6 RING CELION,EPDXY FLYWHEEL

RUN ON 12-26-1983 AT 1107r40
R=ING IN. R.	 INSIDE	 OUTSIDE	 RADIAL	 '% RING MIN.
NO. RATIO	 RADIUS	 RADIUS	 MISMATCH	 INT WEIGHT TAPER
--} -^)	 (IN)	 (IN)	 (IN)	 (10 —;) (LBS) (DEG)

----------------------------------------------- ^. -------------- -----------------
1	 0.500	 5.000	 5.240	 4.9
2 0.520	 5.200 	 6.416	 0.016 2— Z	 3.0 2— ,, 4.2 t^.

0.600	 6.000	 7.015	 0.01E 3^ 4	 3.0 7— 4 6.1 (11).4 
4 0.701.1	 7.00 0	 8.021	 0.021 4— 5	 3. () 4- 5 7.0 1.1. 4
5 0.800	 8.000	 9.024	 0.024 5- 6	 3.0 5— 6 7,9 0.$

W

6 0. 90 0	 9, ('100	 10.010 e.9
RING THICKNESS(INCHES)........	 2.7
RPM(ROTIMIN)	 ..	 .	 ..	 ..	 ...	 39,581

r SED(WH /LB) ...	 ..	 rti.....	 41.0 r
VED(WHIFT 7N).	 .	 ...	 3, 260."
TOTAL STORED ENEROY(WH).......	 1,60
TOTAL FLYWHEEL WEIGHT (LSS) 	...	 39.0
MAX.	 INNER RAD.	 DISP.(INCHES).	 0.060

I^
)

e

PARTIAL ASSEMBLY	 PFESSURES FORCES
" RING 3 ADDED TO PREVIOUS RINGS.....	 .,.9	 [.'PSI	 .... 43.7	 10^3 LES

RING 4 ADDED	 PREVIOUS RINGS	 4,6	 I^PSI	 , . 50.7	 1t 1 3 LES
RING 5 ADDED r0 PREVIOUS RINGS	 ....	 4.5	 I:PSI	 .... 66.7 LES
RING 6 ADDED TO PREVIOUS RINGS.....	 4.2	 [:PSI	 .... 72.1	 10"Z LES

RING WEIGHT DENSITY	 RING	 WEIGHT DENSITY i
(^- ) (L9JIN' ,)	 J--,	 (L5rIN-3)

f

1 0.286	 6	 J. CJ53
055 i

^z [} 1;). ^
)J 

J
v 4

J ^.^ . ,.f W tJ

DATA FOR THIS RUN IS IN FILE B:RUN-1'—O.DAT

^,

;z	 a
; 	 z

E
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Y NASA-20 UNOPTOMIZED 6 RING CELION/EPDXY 6 RING FLYWHEEL
£ RUN ON 12-24-1983 AT 09;5'..:06

*. RING IN. R.	 INSIDE	 OUTSIDE	 RADIAL	 % PING MIN.
NO. RATIO	 RADIUS	 RADIUS	 MISMATCH	 INT WEIGHT TAPER
(--J t--)	 (IN)	 (IN)	 (IN)	 ( IO' ,— 0

--------------------------
(L65) (DEG)

I
------------------------------------------------

4.400	 4.000	 4.204 8.1
------

2 0.420	 4o2OO	 s.uOO	 0.000	 - 3	 9.0 2— 3 7.0 010
3 0.540	 5.000	 6.500	 0.000 3— 4	 000 3— 4 16.4 O.4
4 0.650	 6.500	 81490	 0.000 4— 5	 0.0 4 — 5 20.7 0.0
5 0.800	 8.000	 9.009	 0.004 3- • 6	 0.0 5— 6 16.2 0.0

.'	 6 4.900	 91400	 10.000 18.1

ORIGINAL PACE IS RING THICKNESS(INCHES)...a....	 5.5
RPM(ROT/MIN)...•.	 .....	 .	 .	 27,484

OF POOR QUA1. IV SED (WH/LB) .................... 	 18.5
VED(WH/FTA,3) .................. 	 1,596.7 r

TOTAL STORED ENERGY(WH)......	 1,600
r TOTAL FLYWHEEL WEIGHT(LBS)	 ...	 86.6

MAX.	 INNER PAD.	 DISP.(INCHES).	 0.040

F

,

K

" PARTIAL ASSEMBLY	 PRESSURES FORCES
FIND 3 ADDED TO PREVIOUS RINGS.,... 	 0.0	 kPSI	 :.. 0.0	 10"Z LBS
RING 4 ADDED TO PREYIOUS RINGS.....	 0.0	 14PSI	 .... 0.0	 10'13 LBS
RING 5 ADDED TOraREUIOUS FLINGS..... 	 010	 kPST	 .... 0.0	 1063 LBS

F'
ICING 6 ADDED TO PREVIDUS RINGS..... 	 0.0	 )°PSI	 .... 0.0	 10 11 3 LSS

RING WEIGHT DENSITY	 RING	 WEIGHT DENSITY

— -- j -°--.
---- L LB, I 

N -? ---	
(-- -----`-- (L6 / I N_-) ^

E
—1 0.286	 6	 0.055

2 4.0`5
0. 65

4 4. 65 m
5 4.055

DATA FOR THIS RUN I5 IN FILE	 8:RUN-20.DAT

Table II. 11

q

I
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NASA-1.0 OPTIMIZED 6 RING CELION/EPDXY FLYWHEEL
RUN ON 12-26-198	 AT 09302t16 }

RING IN. R.	 INSIDE	 OUTSIDE	 RADIAL	 Y. RING MIN.
NO. RATIO	 RADIUS	 RADIUS	 MISMATCH	 INT WEIGHT TAPER

`,1
I--)

-w-------
t-•.?	 (IN)	 (IN)	 (IN)	 (0-ti)

-----ray+.!..---.--------- .-ar------------.--.-----s.--.--.------------
(LDS) (DEG)

I Q. 40 f., 	 4.000	 4.200
----

,;,6
--- ---..---

2 0.420	 4.200	 5.025	 0. 0:5 2- z'	 5. 0 	- w 3.1 0-6
3 0. 500	 5.000 	 6. 5=	 0.0= 3- 4	 5. 0 Z- 4 7.2 o. S

,-. 4 0. 650	 6.5+00 	8.040	 0.040 4- 5	 5.0 4- 5 9.1 X5.5
' 5 0. 800 	 0.000	 9.04.°,	 0.045 S- 6	 5.0 3- 6 7.1 1.1

6 0.900	 9. 000	 1 e"r. 000 8. 0
RING THICKNESS(INCHES) .... .....	 2.4
RPM(ROT/MIN) .... o ..... ,...... 	 41,372

' SED(WH1LE)....................	 41.9 t'
VED(WH/FT	 71. ....	 .........,..	 3,618.1
TOTAL STORED ENERGY(WH).......	 1,600

r TOTAL FLYWHEEL WEIGHT(LBS) 	 ...	 38.2
1 MAX.	 INNER RAO.	 DISP.(INCHES).	 0.040

)
r

PARTIAL. ASSEMBLY	 PRESSURES FORCES
RING 3 ADDED TO PREVIOUS RINGS.....	 8.5	 kPSI	 .,.. Si.5	 10"-7 LFS
RING 4 ADDED TO PPEV10US RINGS..... 	 9.9	 kPSI	 .... 124.6	 10-3 L&S
RING 5 ADDLO TO PREY10LIS RINGS..... 	 7.6	 kPSI	 .... 114.8	 10'3 Lss
RING 6 ADDED TO PREVIOUS RINGS..... 	 7.1	 LPSI	 .... 122.7	 i0''3 LBS

RING WEIGHT DENSITY	 RING	 WEIGHT DENSITY
4--T (LEi/IN°^3)	 (..^^	 (LB/IN:''3)

1 - ---	

- --------	 ---
-055

---- 

2 0. 05
x7.055

4 ..055
c

i*? . 055

DATA FOR THIS RLIN IS IN FILE	 B: RUIV-20-O. DAT

ti
i

Table I1. 12
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4. Discussion,

For a given fom factor (ID/OD) rotor there are 2 principal advantages of

using isultirigg construction versus winding the rotor as one continuous ring.

ft

4
These area	

..

r 1. The residual stresses due to fabrication are known to be smaller for

smaller size rings.

2. The individual rings of a multiring design can be interference

assembled.	 The condition will significantly improve performance and is

much better than building in rotor prestress through controlled Funding

tension.

r The main.disadventage of multiring construction is that each ring interference

must be bonded together upon assembly. 	 This binding must be sufficiently

strong so that the interference radial stresses (due to rotation) will not cause

the outer rings to separate from the-inner ones.	 Since the required strength of

GF,
the interface bond is always less than (or equal to) the transverse strength of

4 the graphite/epoxy, the same epoxy used in ring fabrication will accomplish the

s.
task of bonding the rings together *	it can be concluded that the advantages of

,a - multiring fabrication outweigh the disadvantages and that the multiring
F ,

construction with interference assembly represents the best manufacturing

F method or the NASA-12 optimized and NASA-20 optimized designs.

The NASA-12 optimized design will produce 41.0 Whflb at its maximum 	 f

rotational speed of 39,581 rpm.	 This design has an inside diameter of 10

inches an outside diameter of 20 inches, and an axial thickness of 2.7 inches.

p
It will store 1600 Wh of energy when it is running at maximum speed, and its

air gap growth will not exceed .060 inches at 39,581 rpm. 	 The design has anl

r

iron inner ring weighing 4.9 lbs and the total weight of the flywheel is 39.0



r

i•

f

G

lbs. There are 6 rings in this design and rings 2 through 6 are Celion

6000/EPDXY (filamentry wound composite) There is light interference (._3X)

between all Celion 6000 /EPDXY rings and the assembly forces to press the rings

together do not exceed 75,000 lbs.

The NASA-20 optimized design will produce 41.2 Wh/lb at its maximum

rotational speed of 41,372 rpm. This design has an inside diameter of 8

inches, an outside diameter of 20 inches, and an axial thickness of 2.4 inches.

It will store 1600 Wh of energy when it is running at its maximum speed, and

its air gap growth will not exceed .040 inches at 41,372 rpm. The design has

an iron inner ring weighing 3.6 The and the total weight of the flywheel is

38.2 lbs. There are 6 rings in this design and rings 2 through 6 are Celion

6000/EPDXY. There is heavy interference ( . 5X) between all Celion 6000/EPDXY
I

rings but the assembly forces to press the rings together do not exceed 125,000

lbs.

It was generally observed that to control growth of the air gap it is 	 r

desirable to decrease the inside diameter of the rotor. To control the

stresses which result from this action it is necessary to increase ring

prestressing through an increase in % interference between rings. To

illustrate this point, had the NASA-20 design been limited to 0.3% interference 	 is
k I

between rings, it would develop only 35.2 Wh/lb versus the 41.9 Wh / lb which it i

will develop with 0.5X interference between rings.
i

x	 It must be emphasized that the design values presented for NASA-12 and	 Ij

NASA-20 are for the flywheel pushed to its limiting failure speed. If the 	 -

`	 flywheel is operated at .707 of this limiting speed the maximum flywheel

stresses will be 1/2 their failure values and the SED will be 1 /2 of its	 {
a

{
Je	 limiting value. If it is required that the usable stored energy be 1600 Wh and

a

w o	 ^	
a ;.
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the flywheel is assumed to cycle between .707 of its limiting speed and .25 of

its limiting speed, then the calculated flywheel thickness must be increased,

in both the.NASA-12 and NASA-20 design-, by a factor of 2.3. Obviously, then,

vhen a flywheel is said to store 1600 Wh, it could only deliver this amount of

energy+rtp:

1. The flywheel is cycled from its maximum rotational sY	 Y	 Peed to zero speed

2. The flywheel did not fail at its maximum rotational speed.

Clearly, the final rotor design for a magnetically suspended flywheel must

x	 proceed with consideration for the speed range of the motor/generator and the

6 iron ring weight requirements for the magnetic suspension and motor/generator

magnetic paths. The'FLYANS/FLYSIZL tools used in this project are the best way

`	 to revise the rotor design as other system components evolve.
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III.	 FABRICATION/ASSEMBLY i

A.	 Materials.
F	 }

M;

i	
a

Two candidate graphite epoxy materials exist for this application. 	 These

materials are:

Fiber

Celanese Celion 60^0* or 12,000

Union Carbide Thornel 300, WYP6 1/0

The fiber should be without twist and have a matrix compatible sizing.

Epoxy

Shell EPON 826* with Jeffamine Chemical Company D230 Curative

NARMCO 5213
i

3 * Recommended for this task. r

B.	 Techniques

1.	 Fabrication P

k Residual transverse and/or circwnferential stresses should be held to a

minimum.	 Prestressing using fiber tension has not proven practical. 	 Either

precompression of thin rings (via interference assembly) or a flexible urethane

resin appears at present to be the best approach.	 Urethane resin use would

" require further study and testing before a practical matrix could be specified.

t A controlled environment, such as room temperature and a relative humidity I

less than 50%, are desirable during winding. 	 These conditions control

variations in material properties. 	 In addition, to assure quality materials,

the resin should be stored carefully according to the manufacturer's

recommendations and shelf life strictly adhered to.	 To verify the resin, a pad

should be cast with each flywheel for subsequent testing.

4.,
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Initial and final tie-off procedures as recommended in Lawreace Livermore

Laboratory report UCRL-15437 should be adhered to wherever appropriate.

The cure and post cure cycles should be designed to optimize the
x

properties of the resin and to minimize residual-stresses. Usually, a heat-up
P

cycle at a controlled rate to cure temperature followed by a cool down cycle

also at a controlled rate can achieve both of these goals. Report UCRL-15437

page 11 thoroughly discusses this.

Fiber volume fraction (nominally 60-65X) should be controlled to within a

±2X tolerance. The void content should be maintained at less than 3%. These

quantities should be checked at the inside, middle and the outside of each

r.

	

	 ring. The surface finiah should be free of bubbles, pock marks, resin rich

areas or exposed fibers.

2. Assembly

All composite rings should be tested both ultrasonically and

radiographically before assembly. Only high quality rings should be included
Y
f

in a multiring configuration. Subsequent flaw detection should also be

administered in order to assure no fracturing occurred during assembly.

Assembly procedures as specified on the assembly drawing must be strictly

i
followed. Each ring pair should be static balanced for mating assembly and

s	 overall static balance will be obtained by removing material from the inner

r	ring only.

C. Drawings

The drawing package is found in Appendix 7 and contains drawings for two

different ID/OD ratios. The sponsor will include the appropriate package for

the design selected to be built.
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D. Candidate Fabricators

The demise of the Department of Energy program in Mechanical Energy

Storage Technology (MEST) has reduced the number of possible candidate flywheel

fabricators to only two. They are:

Lord Corporation (A.J. Hannibal)

1635 West 12tb Street

P. 0. Box 10039

Erie, PA 16514-0039

i

and

Hercules Corporation (P. Ward Hill) r

Aerospace Division

" P.O. Box 98r

Magna, Utah	 84044k

At present, the strongest candidate from the standpoints of technical

capability, interest and corporate commitment is the Lord Corporation.
r

E.	 Testing

^^
,•

FR 	 ^
Over the past several years two experimental facilities have been active

a

in testing composite material flywheels. 	 These are:

M
1.	 The Oak Ridge Flywheel Evaluation Laboratory, located at the Oak Ridge

v
Y-12 plant near Knoxville, Tennessee.

2.	 The Applied Physics Laboratory of Johns Hopkins University in Laurel, t

Maryland.

Both facilities have been funded by the Department of Energy and both have been s

significantly dismantled as a result of DOE no longer funding a flywheel

effort.	 In addition, both facilities were built with the sole intention of

testing shaft driven flywheels. 	 Therefore, a major portion of their

a,

n



experimental equipment consisted of a high speed air turbine and air supply

source, neither of which is required for the GSFC design.

Our current assessment of GSFC spin testing requirements would indicate

that the following experimental equipment Would W required to evaluate a GSFC

magnetically suspended flywheel design:

1. An air tight enclosure having a volume of at least 7 ft  (3 feet in

diameter by 1 foot high).

2. A containment ring to surround the flywheel system.

3. One or more optical viewing ports to permit cameras to view the

enclosure interior.

4. Instrumentation to measure pressure, temperature, wheel runout, wheel
.

wobble, etc.

5. An air flushing system to exhaust epoxy and composite material fumes

from the enclosure.

6. A capture device which will restrain the spinning rotor so it does not

destroy the suspension or motor/generator electronics if the rotor

decouples.

7. Vacuum equipment to pump the enclosure to 10
-2
 TORR or better.

8. Remote viewing and data collection capabilities. {

9.	 - Controllers for the motor/generator electronics to either run at a {

constant speed or cycle between two reference speeds for fatigue
1

- testing.

Our best estimate is that while some of the facilities of the two laboratories

l
may still be available and applicable to GSFC requirements, it is not cost

<<, -effective to adapt them for GSFC testing.
r

i
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IV. SPECIFICATION FOR COMPOSITE FLYWHEEL RING-ROTOR,

Introduction

The objective of this task is to fabricate, assemble and static test a

multiring rotor for the NASA/GSFC "Spacecraft Flywheel Power System" program.

Previous studies by NASA/GSFC showed the merits of considering Inertial Energy

Storage as a possible viable alternative to electrochemical or fuel cell power

storage devices for long life, high cycle rate, extended use, space

7
T_
	

applications. These studies showed that.a magnetically suspended ring rotor,

made of filament wound construction, containing an integral ironless armature

motor-generator rotor, operating in an evacuated hermetically sealed enclosure

should be an efficient means for space energy storage use. This effort

addresses the first systems element, the "Filament Wound" rotor.

Scope

The scope of this phase of the program includes fabrication, assembly and

	

	 =f

a
static testing of the filament wound multiring rotor. Analysis has established

the best fiber /epoxy materials and the method of prestressing of multiring

elements to maximize energy storage capacity.

Requirements

A.	 Size a
r	 ^

;-J
1.	 Assembly

OD - 20.000" ±0.010"

g

ID -	 8.000" +0.010"

or 10.000" ±0.010"

i„
W	 -	 2.700" +0.005"

or	 2.400" ±0.005"

s_

-

u
t
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2. Components

Rings No. 1, lA

See drawings No. 7-1 b 7-1A in Appendix 7

Rings No. 2, 2A	 .<

See drawings No. 7-2 6 7-2A

Rings No. 3, 3A

See drawings No. 7-3 b 7-3A

Rings No. 4, 4A

See drawings No. 7 -4 6 7-4A

Rings No. 5, 5A

See drawings No. 7-5 & 7-5A

Flings fro. 6, 6a

See drawings No. 7-6 & 7-6A

Note:

x
Mandrel cylindricity control is critical. Each mandrel will have the

taper stated on the appropriate drawing with a 15% tolerance allowable. This

must be strictly adhered to in order to meet the assembly load requirements.

E	 B. Material Selection

'	 Fiber

^-	 Celanese Celion 6000 graphite fiber will be used.

EpoXy

	

I,.	 Shell EPON 826 with Jeffamine Chemical Company D230 curative will be used.

Mixing will be as prescribed _ by the manufacturer.

I	

f
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C. Processing

Wrap Lay-Up

1. Tensioning

Fiber tensioning should be controlled to minimize residual transverse

'and/or circumferential stresses. It is desirable to strive for a zero residual

stress 'winding technique.

2. Temperature

Winding will take place. in a clean "duet-free" area with room temperature

controlled to 75°F ±10 °F. Relative humidity will be controlled to be less than

50%.

3. Resin

Resin will be stored carefully according to the manufacturer's

recommendations and shelf life strictly adhered to. To verify resin, a pad

should be cast with each mix for subsequent testing.

4. Fiber Tie-Off

Initial and final tie-off procedures as recommended in UCRL-15437 will be

adhered to.

D. Cure Method

The cure method and post cure cycle shall be designed to optimize the r`

properties of the resin and to minimize residual stresses. A heat-up cycle at
,.

a controlled rate to 230°F followed by a cool down cycle also at a controlled

rate can achieve both of these goals.	 See page 11. of UCRL- 15437-for control

rates.	 An oven with a good commercial temperature controller will be adequate

for this operation.

r ,
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^. y	 E. Finishing

The fiber volume fraction shall be controlled to within a tolerance of

±2%. Void content shall be maintained at less than , 3%. The surface finish

shall be free of bubbles, pock marks, resin rich areas or exposed fibers. The

F	
machined outside diameter of each ring shall be smooth and free of loose fiber

ends.

F. Assembly
Y,

„

	

	 Drawing Nos. 7-7 and 7-7A (Appendix 7) cover assembly of the ring-rotor.

Assembly procedure stated must be followed implicitly. Only composite rings

that passed both ultrasonic and radiographic inspection will be used. Ring

alignment must be controlled during the "nesting" process. Press anvil and ram

faces must be parallel and smooth to p revent surface damage of the rings.

After each ring is assembled, the sub-assembly will be tested ultrasonically

and radiographically and certified before moving on to the next assembly

procedure. The completed assembly will be tested and certified ( see Section

Y	 n).

G. Testing

1. Fiber

A certificate of physical and mechanical properties shall be included with

each spool of graphite fiber. Only materials that exceed the minimum

iE	 manufacterer ' s requirements will be used.	 h
s

2. Epoxy	 'G

Pads taken from each batch mixed (see Section III Resin) will be tested 	 r

in accordance with the manufacturer ' s recommendations to insure, that

conformance to specifications has been met. 	 j

t

i
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3.	 Rinses

Fiber volume fraction and void content shall be checked at the inside,

middle a,iid outside of each ring.

C.	 Ring Assembly	 .,
F,	 t

_

All composite rings shall be tested both ultrasonically and

radiographically before assembly.	 Only high quality rings shall be included
i

for multiring assembly.	 Subsequent flaw detection shall be administered during

the subassembly build-up to assure that no fracturing occurred during the

assembly process.

H.	 Balancing

Prior to assembly of rings each ring should be static balanced and

oriented so, upon assembly, any imblaance compensates that which exists in

other rings.	 After complete assembly final static balance will be achieved by

removal of material from the inside of the inner ring. 	 Final static balance

will be 300 micro grams or lees.

Y

x

r

st
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V.	 SUMHARY

The design definition of a composite fiber ring rotor has been completed.
„

Two specific designs have been included with thin'report, both capable of	
s

storing a maximum energy of 1600 Wh.	 Both designs account for the presence of

a iron inner ring and both utilize Celion 6000/EPDXY as the composite material
t

for the fiber composite rings.

The first design is identified as NASA-12 and consists of a total of 6
.fi

rings with the flywheel having an ID/OD ratio of 0.5.	 The first ring is iron

and  the remaining 5 rings are interference assembled Celion 6000/EPDXY.	 The

projected maximum Specific Energy Density (SED), for the interference assembled

flywheel, is 41 Wh/lb (90.2 Wh/kg) and 25 Wh/lb (55.0 Wh/kg) for the identical

design assembled without interference.	 The airg	 gap growth., from zero to full

speed, will not exceed .060 inches.
t

i
The second design is identified as NASA-20 and also consists of a total of

6 rings, with the flywheel having an ID/OD ratio of 0.4.	 The first ring is

iron and the remaining 5 rings are interference assembled Celion 6000/EPDXY.'

The projected maximum SED is 42 Wh /lb (92.4 Wh/kg), for the interference

assembled flywheel, and 19 Wh/lb (41.8 Wh/kg) for the identical,geometry
t }

assembled without interference.	 The air gap growth, from zero to full speed,

will not exceed .040 inches.

The majordifferences between NASA-12 and NASA-20 are in the level of 	 t

interference which is built into the ring. 	 NASA-12 is designed for 0.3%

4 maximum ring to ring interference while NASA-20 has 0.5%. 	 NASA-20 has a	 s
't

smaller ID/OD ratio and thus a smaller maximum air gap growth.	 Both designs

appear equally viable but before either is built it is recommended that two of
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the Celion 6000/EPDXY rings, from the NASA-20 design, be fabricated, attain

gaged, and pressed together. Details of this recommendation way be bound in

Section VI. .`

In addition to producing 2 specific designso " this project has also

demonstrated the usefulness of two computer codes, FLYANS ( FLYwheel ANalySis) e

and FLYSIZE (FLYwheel SIZE ) $ for efficiently carrying out multiring rotor

design - including the presence of an iron inner ring. Since the rotor design

may have to be modified as the motor /generator and magnetic suspension evolves,

a	 the computer codes will allow this to be done as easily as possible. In

m	 addition, both codes are available for use in projecting the types of future
aI

composite material properties  Which will most benefit the GSFC magnetically

suspended flywheel.

A review of the spin test requirements for the GSFC eyatem indicates

existing exerimental facilities will not be applicable. Two of the most active
:r

facilities ,_ Oak Ridge and Johns Hopkins University Applied Physics Laboratory,

have been effectively dismantele _d due. to their loss of DOE funding. Even if

these facilities were fully functional, the unique capabilities of the GSFC

system ( i.e. to spin its own rotor) effectively eliminate the need for a major

item in these facilities, namely the high speed air turbine. It would thus

appear that_ a new spin test facility, which takes advantage of the exerience

gained from the DOE program, would be most cost effective for NASA/GSFC.

µt
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VI RECOMMENDATIONS

The results presented in this report show that interference assembly of

rotor rings will be required to achieve competitive energy densities with shaft

driven flywheel designs. It is suggested that 2 rings (Number 5 and Number 6)

of the NASA-20 design be built, instrumented with strain gages, and then

pressed together. The experimental results can be compared to the theoretical

predictions in order to enhance our understanding of pressing assembly

performance. After these 2 rings have been assembled, they can be

disassembled, and ring No. 5 machined to generate .3% interference (making it

identical to ring Number 5 in the NASA-_12 design). The rings can then be

instrumented and pressed together again, and results can be compared to

theoretical predictions. Finally, the rings can be disassembled and then

radially cut in order to determine the residual stresses present in each ring.

This test sequence requires only 2 rings and will provide the greateit

information return for the cost invested.

In characterizing the composite ring-rotor, the iron ring was treated as a

uniform profile mass load.	 Before a practical rotating assembly can be built,

T

	

	

the iron ring must be defined in detail to identify the magnetic suspension

portion of the assembly. In addition, the inner composite ring must be further.

	

-•	 defined to accommodate the ironless armature portion of the motor/generator.

This also includes provisions for the magnet assembly.

Both of these refinements will necessitate recalculating the stress

	

r	 ,

patterns and analytically determining the true operating characteristics of

this design. While it is felt that the new calculations will not seriously

de-rate the ring-rotorl3 defined in this study, one must know what the actual

e;q,,T..cating capacity of this design is before test hardware is built.



Completion of this follow-on effort will result in a detailed definition_

of the rotating assembly. This approach is a necessary and logical sequence in

pursuit of a. total energy storage system design.
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VII. APPENDICES

1.4 Reference Paper for FLYANS Code

2. Failure Analysis

3. FLYSIZE Listing

4. FLYSIZE Formulas

5. Ring Tolerances

6. Stress Plots

y . Drawings
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APPENDIX 2

FAILURE ANALYSIS

from

Huntington, R. A., M. S. Thesis, 'Stress

Analysis and Maximization of Performance

for a Multiring Flywheel," University of

k,	 Maryland, Mechanical Engineering
F

Department, Jan. 1978. Thesis advisor: 	 t.

Y.4 .	 Dr. J. A. Kirk;.
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To determine the performance of the multiring flywheel, it has been stated

that a-suitable failure criterion must be applied to the stress distribution.
k_

This appendix will present several failure criteria, including the maximum

stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories [1, 2-51*.

Their development, applications, and limitations will also be presented along

with their specific application to the multiring flywheel.

A simple test for the determination of a failure stress is a uniaxial

tensile test in which a specimen is continuously loaded until rupture. The

results of this test may be applied directly to a design situation in which

uniaxial laods along a known direction are found. However, virtually all real

situations involve stress states which are biaxial or triaxial with both normal
a

and shear stress components. Since it would be very impractical, if not

impossible, to perform a failure test for every combination of stress which may

be foreseen, it becomes necessary to develop a failure criterion, based on a

limited number of experiments, to predict if any arbitrary stress state will

rA 11010 material failure.. This nrediction of failure stress has been studied in

a

a

e

-q

isotropic materials since the ninteenth century. 	 Two widely used criteria, the
P,

x

Treska and von Mises, have emerged from these studies. 	 Both assume that

failure is induced solely by the action of shear stresses.	 The von Miser r

criterion further defines the distortional energy - the strain energy not

`
associated with dilatation - as a parameter which reaches a critical value at

I

failure. Modifications of both of these criteria (for isotropic materials)

have been proposed to eliminate original restrictions [6-8]. 	 Also, a
a

a:

* Denotes references at back of this Appendix.
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a

generalization of the von Mises criterion has been proposed by Hill [3] for

€t	slightly anisotropic metals. However, the materials considered for the

multiring flywheel consist of both isotropic metals and orthotropic metals and
M.

orthotropic composites. Therefore, either one very general or several
f

individual failure criteria are necessary to meet the requirements of the

multiring flywheel. Two of the failure theories to be discussed, the Tsai-Hill

and Tsai -Wu criteria, meet this requirement of generality since they both

reduce to the von Mises failure theory for isotropic materials. The other
^a

failure criteria to be discussed should not be applied to isotropic materials,

although it may be applied to pseudo-isotropic composite laminates.

The complexities of failure prediction for a composite material is easily
ti

portrayed by a brief discussion of the stress states in an isotropic versus an

orthotropic materials under an arbitrary loading. For an isotropic material,

the state of stress may be transformed at will to any convenient reference

le

E
plane ( usually the principle stress or maximum shear directions) without change

in material properties. However, if the stress state of the composite is

transformed, both the elastic properties and material strengths vary. While

the variations of elastic properties follow the transformtion of a fourth rank

tensor, the transformation of strength is not well known. Therefore, a failure.

^i
criterion for a composite material must relate all components of stress to a

ti.

plane of symmetry in which strength properties are well known. This adds to

the number of parameters necessary to characterize a failure surface. A

w	
failure theory for composites is further complicated by the variety of modes of	 x'

failure which exist. The three major modes are fiber fracture, matrix cracking

and delamination [ 9]. Therefore, it is necessary that the criterion predict 	
,.

F
tom►
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i
	 stress limits for several failure modes. However, it is not necessary to

actually predict the mode of failure which will occur ender a given loading.

Maximum Stress Criterion

i

F,

The maximum stress failure criterion assumes that failure will. occur in a

composite material when any one of the stress components exceeds a critical

value [2). Each component of stress is considered independently from the

others and all of the critical stress values are independent. This failure

criterion is given by the following equation set:

a < or < Or 

a < Qe 
< a6T

ssTre < Tre 
< Tre

where:	 a I QT, a t o I T S are the uniaxial. compressive,r r e e :e
s..	 tensile and shear strengths. }

If any of the inequalities given by Eqn. 2.1 are violated, failure is

a	
postulated to occur. This is a very simple criteria to use and mainly because

6

k	 of this, it is often used to predict failure of composite materials. There

71?	 are, however, several major restrictions on the general application of this

method. The first of these requires that the components of stress be

transformed to the material symmetry axes. But for the multiring flywheel, the

"	 stress distributions are given in the r-A plane while this is also the assumed
i

plane of material symmetry. Therefore, the restriction does not limit

1
i	 application for the multiring. The most important restriction on the
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application of this criterion is simply is accuracy.	 This is demonstrated by

Figure 2.1, which is a plot of predicted and experimentally determined failure

stresses versus the angle between the line of action of a uniaxial load and the
t	 °`

x fiber orientation of the composite material. 	 I't should be noted that the

loading axis uses a logarithmic scale so that the apparently small deviations

represent large Terrors in the criterion. 	 It should also be noted that this

4

failure criterion predicts discontinuities in the failure strength. associated
1

with changing failure modes, while the experimental data shows smooth

variations.

., Maximum Strain Criterion
60

The maximum strain failure criterion is very similar to the maximum stress

j criterion in application. 	 The only major difference between these criteria is

the assumption that a critical value of strain limits material strength rather

than a critical value of stress (as with the maximum stress criterion).	 These

strain values may be transformed to stress terms by application of Hooke's Law

^^ Y ielding the following equation set which describes this failure criterion in
r

bf

the case of plane stress:

<a _ a	 <aTcC 	 ^e
^:#

r	 r	 N	 8	 r }
- ae < ce - 

vrelrr 
< 'e	 (2. 2)

-
Tre < Tre < TA f	 r

where:	 G= etc.- have been previously defined.

9

Comparison of Eqns. 2.1 and 2.2 shows that the only difference between

these failure criteria is the poisson effects between the normal stress
z

f'

components.	 Along with their similarities, these criteria share identical
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restrictions (i.e.: stress components must be transformed to material symmetry

axes and inaccurate predictions of failure stress). The latter of these is

shown by ' Figure 2.2 which is a plot of predicted and experimentally determined

failure stress similar to Figure 2.1. Again large errors are seen in the

predicted failure stress over a wide range of loading orientation.

Tsai-Wu Criterion

The preceding failure criteria each have several inadequacies which impair

their agreement with experimental data and their application. An obvious

method of improving data fit is to increase the number of independent

parameters in the criterion. The next failure criterion to be discussed, the

Tsai-Wu theory 15, 10, 111, achieves this with a tensorial failure theory which

relates linear and quadratic stress components. The basic-postulate is that

there exists a failure surface with an equation of the form:

f

Fiai + Fi^aia3 1	 i,j = 1,2,...6	 (2.3)

where: Fi	2nd rank tensor of strength parameters

Ft t R 4th rank tensor of strength parameters

These strength tensors will obey known tensor transformations for

coordinate changes and are asusmed to be symmetric. The former demonstrates

that it is now possible to determine the strength properties of an anisotropic

material in an arbitrary plane once the terms of the strength tensor are

established. This is a major advantage of this failure theory although this

j	 feature is not needed to analyze multiring flywheel failure. It may be noted
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i

1 ^	 that the linear stress terms allow for variations in the tensile and

compressive strengths while the quadratic terms define a closed ellipsoidal

failure surface which intersects each stress axis provided that the following

stability relations 151 are satisfied

p'

	 Fij ^ Fii ji
	 (2.4)

t

where: repeated indices are NOT summations

The failure theory, as represented thus far, is applicable to general

anisotropic materials with triaxial loading; however, the multiring flywheel

deals with specially orthotropic materials under plane stress loadings. For

this case, Eqn. 2.3 may be expanded, yielding:

F a +F a +P T +F a2 +2F a o +F a2 F TZ	 1	 (2.5)l r	 2 8	 6 r8	 11 r	 12 r-8	 22 8	 66 r8

.	 Using Eqn. 2.5, the F ' s may now be evaluated with experimental data. All

but F1 2 may be found by uniaxial tensile and compressive testing and assuming

that the positive and negative pure shear strengths are equal, the F's become:

	

1	
QC T

I ^	
3.1 Q Ta c	

Fl _ T _ 

Cr
I'	 r t	 a p=

F22 =	
T

r
c	 T

a8 'ae	 (2.6)

}

'F2 INS

1	 2
F66 _ `TrBs, F6 =

0
t

The stress interaction term, F121 must be determined with a combined E

stress loading arrangement.	 A great deal of work has been carried out to

determine optimal tests for this parameter 15, 10, 111; however, conclusive 

Owl
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results have not been presented in these references. This identifies a

significant disadvantage of this failure theory since information which may

de termine F is not generally available for the composite materials bein gete	 i2	 g	 Y v	 P	 B

considered for the multiring flywheel. To examine the effect of variations of

F12 on the predicted performance of a flywheel rotor, F12 is defined using

«	 Egns. 2.4 and 2.6 as

i

F :12	 T c	 T c	 (2.7)
ar ar o^ ce

n _
	 where: -1 < C < 1 for stability conditions	 'v

Figure 2.3 shows the effect of variations of F, within these stability
12

limits, on the predicted SED of a single ring flywheel ( a0 - .75). Since the

maximum prediction is three times greater than the minimum, it is obvious that

the SED, and other performance parameters, is very sensitive to change in F12•

Despite this disadvantage, the Tsai-Wu failure, the Tsai-Wu failure theory

hag good agreement with experimental data if F 12 is properly selected. This is

V	 demonstrated by Figure 2.4 which shows predicted and experimental data for

off-axis strength tests on a boron-epoxy composite. Despite this improvement

in ;accuracy over the previously discussed failure theories, the lack of

information needed to determine F 12 prevents the further use of this failure.

However, an additional failure criterion, the Tsai-Hill theory [1, 2-4] 0 which

is similar to the Tsai -Wu theory, will be discussed next.

Tsai-Hill Criterion
1

The Tsai-Hill criterion is a generalization of the von Mises yield

criterion for isotropic materials. It was first proposed by Hill in 1948 [3]
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u
for _slightly ani.sotropic metals and latter adapted (1965) to composite

materials by Tsai (4). As described in these references, the criterion

contains only quadratic stress terms. However, linear terms have been added to

 allow for variations in the tensile and compressive strengths. The resulting

criterion, which will be termed the modified Tsai-Hill criterion, is identical

to Eqn. 2.5 with the F's defined by Eqn. 2.69 However, this criterion

contrasts the Tsai-Wu in that the interaction term F12 
is not independent of

u,	 the other strength parameters. For the materials considered in this project,

2F12 -F12* Therefore, the parameter C from Eqn. 2.7 becomes:
33

QTQc

C s T c	 (2.8)
Q9 Qe

n

For filamentary wound composites or isotropic materials, it is obvious that

C is within the stability requirements given by Eqn. 2,7. The agreement of the

modified Tsai-Hill failure criterion with experimental data is shown in Figure

2.4. Also, the value of C given by Eqn. 2.8 for the previously cited single

ring flywheel has been indicated on Figure 2.3. It is easily seen that the

w	 agreement with experiment is not as good as is seen for the Tsai-Wu theory.

t

However, this sacrifice of some accuracy is necessary to eliminate the problem

>	 of determining F12 for the Tsai-Wu theory. Therefore, the modified Tsai-Hill 	 x
ff	 3

criterion will be used instead of the Tsai-Wu theory for the multiring

flywheel. However, they development of the remaining theory will be general
3	 y

enough to allow a simple transition back to the Tsai-Wu criterion if F12 values

become available in the future for the materials considered in this study,:

e	 E

x

3

i
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4-1 Calculation-of TARer Anpl&

Shown in Figure 4.1 is a schematic diagram showing the cross section of

two rings, Ring (I) and Ring (1+1), which are td'be assembled using pressing

force F(I). In order to permit these 2 rings to be press assembled, it is

necessary that ROint A lie inside (i.e. towards the center line) of goint B.

To calculate the minimum value of 0 which will permit this, assume that point A

and point B are directly above each other, and further assume that the

following information is known for these 2 rings:

T - ring axial thickness, (inches)

INFM - % interference between ring M and (I+1), (dimensionless)

AM - nominal radius of the interface between ring (I) and (1+1),

It then follows from the definition of % interference that:

RMM(I) - INF(I) * AM

vhere:

RKMM = radial mismatch between Ring M and (I+1).

Then, it can be seen that 0(1), the taper angle, should be selected so that:

0(1) 2 TAN-	(RMM(I)/T) (4-1)

FLYSIZE calculates the taper angle for each interfering ring pair using the

equality in equation	 ( 4 -1) and provides the results in a printed design report

for the sub ect flywheel.	 In general the angle OM is leas than 1.5 degrees

for up to 0.5% interference.

j7-.1. uA
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4-2 C„glcu),Atign gf Assembly Forces

Shown in Figure 4.2 is a schematic diagram of the pressing forces (F(I))

which acts on Ring ( I). Since the Rings (I) and ( 1+1) are tapered the pressing

force will be _a maximum at the point where the two rings are flush with each

other. Assume that at this point the following information is known:

PM - partial assembly pressure between Ring (I) and ( I+1), (psi)

p m 0.1, coefficient of friction between the two rings. This value is

taken as a constant for FLYSIZE and assumes the rings are put

together using epoxy as an effective lubricant.

s(I) - p * PM, interfacial shear stress between the two rings, (psi).

Since the forces are in equilibrium it is known that

E Forces - 0
z

Ther bore :

_
F(I)	 v(I) * AREA ( I) cos 0 + PM AREA ( I) sin o

- AREA (I) (s(I) cos o + PM sin 0) (4 -2)

where:

MAREA (I)- surface area of the interface between the two rings, (in2)

o - 1.5 0 , assumed to be constant for all ringo, ( degrees)
g

The expression for AREA(I) is obtained assuming that the Tine segment T - A is

revolved about the center line of the ring. 	 Therefore:r

AREA ( I) - 2 * u * (T / cos o) * (AM + RMM( I)/2), (in 2 ) ( 4-3)

f	 ^

In practice RMM(I) is at least 2 orders of magnitude less than AM, so

equation	 (4-3) simplifies to:

AM - 2 * n * (T/cos 0) * A(I), (in 2) (4-4)

If equation (4 -4) is substituted into equation { 4-2), then:

UA
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F(I) - 2 * n * (T/co a ♦) * AM * (p*P( I) cos p + P(I)*sin f)

F(I) .	 * n * AM * T * P ( I) * (p + tan 0), (lbs)	 (4-5)

FLYSIZE ' calculate$ the assembly force between Rings ( I) and ( I+1) using

M equation	 (4-5).	 The actual pressures (P(I)) used by FLYSIZE are the partial 3

assembly pressures required to add Ring (I+1) to all previously assembled

rings.	 This means that the force calculated using equation 	 (4-5) will be the t

partial assembly force required to add Ring (I+1) to all the previously
l

4
'

assembled rings.	 Note that multiring assembly always starts from the inside

ring outward, and that the first 2 rings which are press assembled are rings 2

and 3.	 Ring l is a wa s segmented iron and requires no interference assembly. r

Practically this means that it is added last and simply bonded into place. J
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4-3 Crlcugtion of Ring Thickness

To calculate the ring thickness (T), assume that the following ,information

is known:

KE a the required total stored energy in the flywheel, NO

VED . the volumetric energy dens,ty of the subject flywheel, (Wh /ft3)

b - flywheel outer radius, ( inches)

Since VED KE/(nb 2T) by definition then:

T 1728 * KE/(n * h2 * VED), (inches)	 (4 -6)

where the constant 1728 converts ft  to in 3.



riA!,

4-4	 Calcu lation ofMaximum Wheel RPM

To calculate the maximum wheel rpm assume that the following information

is known: y

piasbs a known value from the FLYANS code, ( psi); call this K
t

a pi - mass density of the ring ( 1);equal to weight density C7(M of

ring (1) divided by g (386 in / sect)

b w outer radius of the flywheel (inches)

Since W is the angular rotational speed (radians /sec), it is equal to the rpm

(N) as:
r

(2)(11)
(N3

(4-7)

60

r._

If equation ( 4-7) is applied to p iwsbs _ K then:

(60)
N-

(4-8)
(2)(a)b)

^I

4

8 impi ifying

_

N s
	

(60)	
386	 ( K/Y(1))

(4-9)

r
E

-Ar (12)(n)(b)

187.61	 K
N	 + (rpm) I

b	 Y(1) (4-10)

FLYSIZE calculates the flywheel rpm using equation	 (4-10).

1

j

t
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4-5 Calculation of Miscellaneous Values

To calculate the nominal ring radius (AM) values, assume the following

information is known:

RR(I) - Inside radius ratios for Ring (I), (dimensionless)

b = outside radius of flywheel, (inches)

Then

AM - RR(I) * b	 (4-11)

rLYSIZE computes the inside radius of each ring using equation 	 (4-11).	 If

there is no interference between rings the outside radius of Ring (I) is equal

° to the inside radius of Ring (I+1), namely A(I+1).	 If there is interference

then the outside radius of Ring (I) is equal^to the nominal inside radius of

the next Ring (A(I+1)) plus the radial mismatch (RMM(I))_between Ring (I) and

(I+1).	 Recall that RMM(I) has previously been discussed in section .4-1.

To calculate the weight of each ring assume that the following information

is known: s
,

b
i

AM = nominal inside radius of ring (I), (inches) y

A(I+1) - nominal outside radius of ring (I), (inches)
+

E
11 'YM	 weight density for ring (I), (lb/in3 ) ,

Then:

„s _	 *WT(I)	 RINGVOL	 YM	 (4-12) '}

where •
a^

:z RINGVOL = volume of ring (I), RING AREA * T, (in ) ^

RINGAREA - n k (A(I+1)
Z
 - AM 

T	 ring thickness, (inches)

f

w



,F

FLYSIZE calculates the weight of each ring using equation 	 (4-12), and then

F

adds up all the ring weights to obtain the total weight of the rotor.

To calculate the maximum inner radius displacement ( i.e. gap growth) of
k

the flywheel, assume that the following information is known:

' b - Ctywheel outer radius, (inches)

IRDR - inner radius displacement ratio, ( dimensionless)

Since:

IRDR ' gg
b

Then:
r:

P '6 gg	 ( IRDR )*b 	 (4-13)

where:

gg _- air gap growth or displacement of inner flywheel radius from 0 spegd
i

to maximum speed, ( inches)

FLYSIZE calculates the maximum air gap growth using equation	 (4-13).
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As an example of the procedure used to select ring dimensions and

tolerances, . Consider the design NASA-12, rings 3 and 4, as previously shown in

Table IL 10. The dimensions of the two rings are

Ring	 Inside	 Outside	 Radial

	

Radius	 Radius	 Mismatch

(inches) ( inches)	 ( inches)

3	 6.000	 7.018	

0.018
4	 7.000	 8.021 1^"

First the radius of each ring is converted to a diameter and a tole-ance

of ±.001 inches is assigned to the diameter. Thus:

O..D. (ring 3) - 14.036 +.001 inches

I.D. (ring 4) - 14.000 +,001 inches

Using these specifications the maximum and minimum radial interference at the

3-4 interface can be obtained and is:

max. radial interference - 0.019 inches

min. radial interference = 0.017 inches

This variatip t) tv interference in considered acceptable and will not degrade

performs	 m	 Tt is now necessary to choose a tolerance on the ring taper

angles so that the design interference will be acceptable after assembly is

completed.

Consider the drawing shown in Figure 5.1. showing the interface between

^,. r rings 3 and 4.	 The nominal taper angle, 0 ( nom), must be selected so that point

B on ring 3 lies to the inside of point A' on ring 4.	 A valve of 0(nom) = 19

will accomplish this for all rings in the NASA-12 design so it will be used.

It is mandatory that the tolerances on the interface taper angle, 0 j be

selected so that the interference between the top of ring	 3 (point A) and the

o^	 A

f.
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top of ring 4 (point A') be "close to" the interference between the bottor of

ring 3 (point B) and the bottom of ring 4 (point B'). This means that the

nominal value of dimension Y must not vary by more than ±.0005 inches between

ring 3 and ring 4. Assuming the O(nom) is l degree, then:

Y(nom) - 2.7 * tan(1°) - 0.0471 inches

Thus:

Y(max) - 0.0471 + .0005	 .0476

Y.(min) - 0.0471 - .0005 - .0466

and

Tan o(max) . Y(max) /2.7

O(max) - 1.01

Tan.O(min) - Y(min)/2.7

o(min) - 0.99

The tolerance on 0 is therefore ±0.01 degrees.

Practically, this means that the interface between rings 3 and 4 must be

measured and then machined to assure that the diameter of the top of ring 3 is

within ±0.0005 of the diameter of the top of ring 4. And, the diameter of the

bottom of ring 3 is within ±0.0005 of the bottom of ring 4.
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